Plant Biol (Stuttg) 2001; 3(4): 386-390
DOI: 10.1055/s-2001-16463
Original Paper
Georg Thieme Verlag Stuttgart ·New York

Genome Analysis of a Natural Hybrid with 2n = 63 Chromosomes in the Genus Elytrigia Desv. (Poaceae) Using the GISH Technique

A. Refoufi 1 , J. Jahier 2 , M.-A.. Esnault 1
  • 1 Université de Rennes 1, UMR 6553 Ecobio, Bat. 14, Campus de Beaulieu, 35042 Rennes cedex, France
  • 2 INRA Le Rheu, UMR «Amélioration des Plantes et Biotechnologies Végétales», BP 35327, 35653 Le Rheu cedex, France
Further Information

Publication History

December 6, 2000

May 23, 2001

Publication Date:
16 August 2001 (online)

Abstract

Genomic in situ hybridization (GISH), using genomic DNA probes from Thinopyrum elongatum (E genome, 2n = 14), Th. bessarabicum (J genome, 2n = 14), Pseudoroegneria stipifolia (S genome, 2n = 14), Agropyron cristatum (P genome, 2n = 28) and Critesion californicum (H genome, 2n = 14), was used to identify the genome constitution of a natural hybrid population morphologically close to Elytrigia pycnantha and with somatic chromosome number of 2n = 63. The GISH results indicated the presence of a chromosomal set more or less closely related to the E, P, S and H genomes. In particular, two sets of 14 chromosomes each showed close affinity to the E genome of Th. elongatum and to the P genome of A. cristatum. However, they included 2 and 10 mosaic chromosomes, respectively, with S genome specific sequences at their centromeric regions. Two additional sets (28 chromosomes) appeared to be very closely related to the S genome of Ps. stipifolia. The last genome involved (7 chromosomes) is related to the H genome of C. californicum but includes one chromosome with S genome-specific sequences around the centromere and two other chromosomes with a short interstitial segment also containing S genome related sequences. On a basis of GISH analysis and literature data, it is hypothesized that the natural 9-ploid hybrid belongs to the genus Elytrigia and results from fertilization of an unreduced gamete (n = 42) of E. pycnantha and a reduced gamete (n = 21) of E. repens. The genomic formula SSSSPSPSESESHS is proposed to describe its particular genomic and chromosomal composition.

References

  • 01 Anamthawat-Jónsson,  K.,, Schwarzacher,  T.,, Leitch,  A. R.,, Bennett,  M. D.,, and Heslop-Harrison,  J. S.. (1990);  Discrimination between closely related Triticeae species using genomic DNA as a probe.  Theor. Appl. Genet.. 79 721-728
  • 02 Assadi,  M., and Runemark,  H.. (1995);  Hybridization, genomic constitution and generic delimitation in Elymus s.l. (Poaceae : Triticeae). .  Pl. Syst. Evol.. 194 189-205
  • 03 Bennett,  S. T.,, Kenton,  A. Y.,, and Bennett,  M. D.. (1993);  Genomic in situ hybridization reveals the allopolyploid nature of Millium montianum (Gramineae).  Chromosoma. 101 420-424
  • 04 Cai,  X., Jones,  S. S.,, and Murray,  T. D.. (1996);  Characterization of an Agropyron elongatum chromosome conferring resistance to Cephalosporium stripe in common wheat.  Genome. 39 56-62
  • 05 Cai,  X., Jones,  S. S.,, and Murray,  T. D.. (1998);  Molecular cytogenetic characterization of Thinopyrum and wheat-Thinopyrum translocated chromosomes in a wheat-Thinopyrum amphiploid.  Chromosome Research. 6 183-189
  • 06 Cauderon,  Y.. (1958);  Etude cytogénétique des Agropyron français et de leurs hybrides avec les blés.  Ann. Amelior. Pl.. 4 389-567
  • 07 Cauderon,  Y., and Saigne,  B.. (1961);  New interspecific and intergeneric hybrids involving Agropyron. .  Wheat Inf. Serv.. 12 13-14
  • 08 Chen,  Q.,, Conner,  R. L.,, Laroche,  A.,, and Thomas,  J. B.. (1998 a);  Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization.  Genome. 41 580-586
  • 09 Chen,  Q.,, Friebe,  B.,, Conner,  R. L.,, Laroche,  A.,, Thomas,  J. B.,, and Gill,  B. S.. (1998 b);  Molecular cytogenetic characterization of Thinopyrum intermedium-derived wheat germplasm specifiying resistance to wheat streak mosaic virus.  Theor. Appl. Genet.. 69 1-7
  • 10 Chen,  Q.,, Conner,  R. L.,, Laroche,  A.,, Fedak,  G.,, and Thomas,  J. B.. (1999);  Genomic origins of Thinopyrum chromosomes specifying resistance to wheat streak mosaic virus and its vector, Aceria tosichella. .  Genome. 42 289-295
  • 11 Copigny,  C.. (1983) Application des méthodes d'analyse de données, des techniques caryologique et immunoélectrophorétique, à la connaissance des populations d'Agropyron (Poacées) du littoral. Université de Rennes 1, France; Doctorat 3°cycle p. 184
  • 12 Dewey,  D. R.. (1984) The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Gene manipulation in plant improvement, Vol. 16. Gustafson, J. P., ed. New York; Plenum Press pp. 209-279
  • 13 Jauhar,  P. P., and Peterson,  T. S.. (1996);  Thinopyrum and Lophopyrum as sources of genes for wheat improvement.  Cereal Research Communication. 24 15-21
  • 14 Jellen,  E. N.,, Gill,  B. S.,, and Cox,  T. S.. (1994);  Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena).  Genome. 37 613-618
  • 15 Langdon,  T.,, Seago,  C.,, Mende,  M.,, Leggett,  M.,, Thomas,  H.,, Forster,  J. W.,, Thomas,  H.,, Jones,  R. N.,, and Jenkins,  G.. (2000);  Retrotransposon evolution in diverse plant genomes.  Genetics. 156 313-325
  • 16 Le,  H. T.,, Armstrong,  K. C.,, and Miki,  B.. (1989);  Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe.  Plant Mol. Biol. Rep.. 7 150-158
  • 17 Löve,  A.. (1982);  Generic evolution of the Wheatgrasses.  Biol. Zbl.. 101 199-212
  • 18 Löve,  A.. (1984);  Conspectus of the Triticeae. .  Feddes Repertorium. 95 425-521
  • 19 Mukai,  Y.,, Nakahara,  Y.,, and Yamamoto,  M.. (1993);  Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genome and highly repeated DNA probes.  Genome. 36 489-494
  • 20 Refoufi,  A.,, Jahier,  J.,, and Esnault,  M. A.. (2001);  Genome analysis of Elytrigia pycnantha (Godr.) and Thinopyrum junceiforme (Löve and Löve) and of their putative natural hybrid using the GISH technique.  Genome. 44 in press
  • 21 Schwarzacher,  T.,, Leitch,  A. R.,, Bennett,  M. D.,, and Heslop-Harrison,  J. S.. (1989);  In-situ localization of parental genomes in a wide hybrid.  Ann. Bot.. 64 315-324
  • 22 Wang,  R. R. C.. (1989);  Intergeneric hybrids involving perennial Triticeae. .  Genet. (Life Sci. Adv.). 8 57-64
  • 23 Wang,  R. R. C., and Zhang,  X. Y.. (1996);  Characterization of the translocated chromosome using fluorescence in situ hybridization and randon amplified polymorphic DNA on two Triticum aestivum-Thinopyrum intermedium translocation lines resistant to wheat streak mosaic or barley yellow dwarf virus.  Chromosome Research. 4 583-587
  • 24 Zhang,  X.,, Dong,  Y.,, and Wang,  R. R. C.. (1996);  Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum x Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD.  Genome. 39 1062-1071

A. Refoufi

Université de Rennes 1

UMR 6553 Ecobio
Bat. 14, Campus de Beaulieu
35042 Rennes cedex
France

Email: Aicha.Refoufi@univ-rennes1.fr

Section Editor: F. Salamini

    >