11.07.2015 Views

Impact of Coal Mining on Vegetation: A Case Study in Jaintia Hills ...

Impact of Coal Mining on Vegetation: A Case Study in Jaintia Hills ...

Impact of Coal Mining on Vegetation: A Case Study in Jaintia Hills ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Coal</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong>Vegetati<strong>on</strong>: A <strong>Case</strong> <strong>Study</strong><strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> District <str<strong>on</strong>g>of</str<strong>on</strong>g>Meghalaya, IndiaKiranmay SarmaFebruary, 2005


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIATable <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tentsAcknowledgements......................................................................................................................IAbstract...................................................................................................................................... IITable <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>tents......................................................................................................................IIIList <str<strong>on</strong>g>of</str<strong>on</strong>g> Figures............................................................................................................................ VList <str<strong>on</strong>g>of</str<strong>on</strong>g> Tables ............................................................................................................................VI1. Introducti<strong>on</strong>.........................................................................................................................11.1. Introducti<strong>on</strong>.................................................................................................................11.2. Research Objectives....................................................................................................41.3. Research Questi<strong>on</strong>s.....................................................................................................41.4. Research Hypothesis...................................................................................................41.5. Organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>Study</strong> ...........................................................................................51.6. Literature Review .......................................................................................................52. <strong>Study</strong> Area ..........................................................................................................................92.1. <strong>Study</strong> Area ..................................................................................................................92.2. Geology.......................................................................................................................92.3. Physiography and Dra<strong>in</strong>age......................................................................................132.4. Climate......................................................................................................................132.5. Soil............................................................................................................................142.6. Natural Vegetati<strong>on</strong>....................................................................................................142.7. Populati<strong>on</strong>.................................................................................................................142.8. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> Deposits and <str<strong>on</strong>g>Coal</str<strong>on</strong>g> Fields..................................................................................142.8.1. Bapung Area .....................................................................................................152.8.2. Lakad<strong>on</strong>g Area..................................................................................................152.8.3. Jara<strong>in</strong>-Shkentalang............................................................................................152.8.4. Lumshn<strong>on</strong>g .......................................................................................................162.8.5. Malwar-Musiang-Lamare.................................................................................162.8.6. Sutnga ...............................................................................................................162.8.7. Ioksi ..................................................................................................................162.8.8. Chyrmang .........................................................................................................162.8.9. Mutang..............................................................................................................162.9. Present <strong>Study</strong> Area ...................................................................................................173. Materials and Methods .....................................................................................................213.1. <strong>Study</strong> Area ................................................................................................................213.2. Materials ...................................................................................................................213.3. Research Methods.....................................................................................................213.3.1. <strong>Study</strong> Initiati<strong>on</strong> .................................................................................................213.3.2. Pre-Field Work .................................................................................................213.3.3. Field and Post-Field Work................................................................................213.3.3.1. Radiometric Correcti<strong>on</strong> ............................................................................263.3.3.2. Visual Interpretati<strong>on</strong> .................................................................................263.3.3.3. Change Analysis .......................................................................................263.3.3.4. Forest Fragmentati<strong>on</strong> Analysis.................................................................263.3.3.5. Phytosociological Analysis.......................................................................26III


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA4. Results and Discussi<strong>on</strong> .....................................................................................................294.1. Community Characteristics ......................................................................................294.1.1. Floristic Compositi<strong>on</strong> .......................................................................................294.1.2. Density..............................................................................................................304.1.3. Dom<strong>in</strong>ance Pattern............................................................................................314.1.4. Species Diversity ..............................................................................................364.2. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Coal</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> Tree Populati<strong>on</strong> Structure ..............................................364.2.1. Density-Diameter Distributi<strong>on</strong> .........................................................................364.2.2. Basal Cover.......................................................................................................384.3. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Coal</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> Species Distributi<strong>on</strong> Pattern...........................................384.4. Change Detecti<strong>on</strong>......................................................................................................494.4.1. Land Use/ Land Cover Distributi<strong>on</strong> and Changes............................................494.4.2. Changes <strong>in</strong> different land use/ land cover categories from 1975 to 2001 ........554.4.3. Forest Fragmentati<strong>on</strong>........................................................................................605. General Discussi<strong>on</strong> and C<strong>on</strong>clusi<strong>on</strong>s ...............................................................................655.1. Discussi<strong>on</strong> and C<strong>on</strong>clusi<strong>on</strong>s .....................................................................................655.2. Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Results and Discussi<strong>on</strong>............................................................................675.3. Summary and Recommendati<strong>on</strong>s .............................................................................68References.................................................................................................................................70IV


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAList <str<strong>on</strong>g>of</str<strong>on</strong>g> FiguresFigure 1.1: Rat-hole m<strong>in</strong><strong>in</strong>g method - a crude m<strong>in</strong><strong>in</strong>g technique is the sole method <str<strong>on</strong>g>of</str<strong>on</strong>g> coalextracti<strong>on</strong> <strong>in</strong> the district (a). Damage to natural vegetati<strong>on</strong> due to pil<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> coal (b).........4Figure 1.2: Landscape degradati<strong>on</strong> (a) and damage to soil system (b) <str<strong>on</strong>g>of</str<strong>on</strong>g> the district due to coalm<strong>in</strong><strong>in</strong>g.................................................................................................................................4Figure 2.1: Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> district <strong>in</strong> Meghalaya, India............................................10Figure 2.2: Geology <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> district (Geological Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India, 1974). ...................11Figure 2.3: M<strong>on</strong>thly average maximum and m<strong>in</strong>imum temperature and ra<strong>in</strong>fall <strong>in</strong> Jowai, thedistrict headquarters <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> (Mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1991 to 2001)..........................................14Figure 2.4: Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district..................................................17Figure 2.5: Digital elevati<strong>on</strong> model (m). ..................................................................................18Figure 2.6: Dra<strong>in</strong>age <strong>in</strong> the study area......................................................................................19Figure 2.7: Settlement and road network..................................................................................20Figure 3.1: Landsat MSS FCC for the period 1975..................................................................22Figure 3.2: Landsat TM FCC for the period 1987....................................................................23Figure 3.3: Landsat ETM + FCC for the period 1999. ..............................................................24Figure 3.4: IRS-1D LISS-III FCC for the period 2001. ...........................................................25Figure 3.5: C<strong>on</strong>ceptual framework <str<strong>on</strong>g>of</str<strong>on</strong>g> different coal m<strong>in</strong>e impact z<strong>on</strong>es. ................................28Figure 3.6: Paradigm for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g impact <strong>on</strong> vegetati<strong>on</strong>.....................................28Figure 4.1: Dom<strong>in</strong>ance-diversity curves <str<strong>on</strong>g>of</str<strong>on</strong>g> trees <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas. .........................33Figure 4.2: Dom<strong>in</strong>ance-diversity curves <str<strong>on</strong>g>of</str<strong>on</strong>g> shrubs <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas. ......................34Figure 4.3: Dom<strong>in</strong>ance-diversity curves <str<strong>on</strong>g>of</str<strong>on</strong>g> herbs <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas. ........................35Figure 4.4: Density-diameter distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trees <strong>in</strong> different girth classes under c<strong>on</strong>trol andm<strong>in</strong>ed areas. ......................................................................................................................37Figure 4.5: Basal area <str<strong>on</strong>g>of</str<strong>on</strong>g> tree species <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas............................................38Figure 4.6: Land use/ land cover <strong>in</strong> 1975. ................................................................................50Figure 4.7: Land use/ land cover <strong>in</strong> 1987. ................................................................................51Figure 4.8: Land use/ land cover <strong>in</strong> 1999. ................................................................................52Figure 4.9: Land use/ land cover <strong>in</strong> 2001. ................................................................................53Figure 4.10: Area under different land use/ land cover categories <strong>in</strong> different years. .............54Figure 4.12: Unsuccessful forest plantati<strong>on</strong>s were carried out by the Govt. Departments <strong>on</strong> them<strong>in</strong>e spoils........................................................................................................................54Figure 4.13: Changes <strong>in</strong> different land use/ land cover categories <strong>in</strong> different years. .............56Figure 4.14: Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> land use/ land cover from 1975 to 1987............................................57Figure 4.15: Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> land use/ land cover from 1987 to 1999............................................58Figure 4.16: Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> land use/ land cover from 1999 to 2001............................................59Figure 4.17: Areas under different fragmentati<strong>on</strong> classes <strong>in</strong> different years............................60Figure 4.18: Forest fragmentati<strong>on</strong> <strong>in</strong> 1975. ..............................................................................61Figure 4.19: Forest fragmentati<strong>on</strong> <strong>in</strong> 1987. ..............................................................................62Figure 4.20: Forest fragmentati<strong>on</strong> <strong>in</strong> 1999. ..............................................................................63Figure 4.21: Forest fragmentati<strong>on</strong> <strong>in</strong> 2001. ..............................................................................64Figure 5.1: The Nepenthes khasiana (pitcher plant), an endangered species, threatened due to<strong>in</strong>discrim<strong>in</strong>ate m<strong>in</strong><strong>in</strong>g. ......................................................................................................65V


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAList <str<strong>on</strong>g>of</str<strong>on</strong>g> TablesTable 2.1: Lithostratigraphic Successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> district.............................................12Table 2.2: <str<strong>on</strong>g>Coal</str<strong>on</strong>g> deposits (milli<strong>on</strong> t<strong>on</strong>nes) <strong>in</strong> different districts <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya .........................14Table 2.3: <str<strong>on</strong>g>Coal</str<strong>on</strong>g> producti<strong>on</strong> (’000 t<strong>on</strong>nes) and percentage <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya..........................................................................................................................................15Table 4.1: Species, generic and family compositi<strong>on</strong>s <strong>in</strong> different z<strong>on</strong>es..................................30Table 4.2: Stand density as affected by m<strong>in</strong><strong>in</strong>g <strong>in</strong> different z<strong>on</strong>es...........................................31Table 4.3: Plant species with higher importance value <strong>in</strong>dex <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas.......32Table 4.4: Shann<strong>on</strong>-Weaver diversity <strong>in</strong>dex <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas.................................36Table 4.5: Proporti<strong>on</strong> (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> tree species under different distributi<strong>on</strong> pattern <strong>in</strong> c<strong>on</strong>trol andm<strong>in</strong>ed areas .......................................................................................................................39Table 4.6: Overall community structure <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol and coal m<strong>in</strong>ed areas................................39Table 4.7: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> trees,.......40shrubs and herbs <strong>in</strong> c<strong>on</strong>trol stands............................................................................................40Table 4.8: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> trees,.......41shrubs and herbs <strong>in</strong> z<strong>on</strong>e-I ........................................................................................................41Table 4.9: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> trees,.......43shrubs and herbs <strong>in</strong> z<strong>on</strong>e-II......................................................................................................43Table 4.10: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g>...............45trees, shrubs and herbs <strong>in</strong> the z<strong>on</strong>e-III......................................................................................45Table 4.11: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> trees,shrubs and herbs <strong>in</strong> the z<strong>on</strong>e-IV .......................................................................................46Table 4.12: Area (km 2 ) under different land use/ land cover categories <strong>in</strong> different years......49Table 4.13: Changes <strong>in</strong> land use/ land cover <strong>in</strong> different years................................................55Table 4.14: Area (km 2 ) and proporti<strong>on</strong> (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> different fragmentati<strong>on</strong> classes <strong>in</strong> differentyears..................................................................................................................................60VI


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA1. Introducti<strong>on</strong>1.1. Introducti<strong>on</strong><str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> tends to make a notable impact <strong>on</strong> the envir<strong>on</strong>ment, the impacts vary<strong>in</strong>g <strong>in</strong> severity depend<strong>in</strong>g<strong>on</strong> whether the m<strong>in</strong>e is work<strong>in</strong>g or aband<strong>on</strong>ed, the m<strong>in</strong><strong>in</strong>g methods used, and the geological c<strong>on</strong>diti<strong>on</strong>s(Bell et al., 2001). It causes massive damage to landscapes and biological communities <str<strong>on</strong>g>of</str<strong>on</strong>g> the earth(Down and Stock, 1977). Natural plant communities get disturbed and the habitats becomeimpoverished due to m<strong>in</strong><strong>in</strong>g, present<strong>in</strong>g a very rigorous c<strong>on</strong>diti<strong>on</strong> for plant growth. The unscientificm<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>erals poses a serious threat to the envir<strong>on</strong>ment, result<strong>in</strong>g <strong>in</strong> the reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest cover,erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil <strong>in</strong> a greater scale, polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air, water and land and reducti<strong>on</strong> <strong>in</strong> biodiversity(UNESCO, 1985). The problems <str<strong>on</strong>g>of</str<strong>on</strong>g> waste rock damps become devastat<strong>in</strong>g to the landscape aroundm<strong>in</strong><strong>in</strong>g areas (Goretti, 1998).<str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> operati<strong>on</strong>s, which <strong>in</strong>volve extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>erals from the earth’s crust is sec<strong>on</strong>d <strong>on</strong>ly toagriculture as the world’s oldest and important activity. In a sense, the history <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g is the history<str<strong>on</strong>g>of</str<strong>on</strong>g> civilizati<strong>on</strong> (Khoshoo, 1984). From the pre-historic days man has been <strong>in</strong>terested about earth’sm<strong>in</strong>eral wealth. The crude st<strong>on</strong>e implements <str<strong>on</strong>g>of</str<strong>on</strong>g> the early Paleolithic period, post-Neolithic pottery, theEgyptian pyramids, ir<strong>on</strong> and copper smelt<strong>in</strong>g <strong>in</strong> various civilizati<strong>on</strong>s, and the modern steel-age are alltestim<strong>on</strong>y <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g activities <str<strong>on</strong>g>of</str<strong>on</strong>g> man (Sarma, 2002). Natural resources have been over-exploited foralmost two centuries, without any c<strong>on</strong>cern for the envir<strong>on</strong>ment.<str<strong>on</strong>g>Coal</str<strong>on</strong>g> was known as burn<strong>in</strong>g rock and believed to possess supernatural power (Sharan et al., 1994). Itwas known to the Ch<strong>in</strong>ese before Christian era and the Greeks knew about the use <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong> the 4 thcentury A.D. It was used as a domestic fuel <strong>in</strong> England <strong>in</strong> the 9 th century. The <strong>in</strong>venti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the steameng<strong>in</strong>e <strong>in</strong> England and the c<strong>on</strong>sequent <strong>in</strong>dustrial revoluti<strong>on</strong> <strong>in</strong> the 18 th century provided great impetusto coal m<strong>in</strong><strong>in</strong>g. The demand for coal got further <strong>in</strong>creased when coke made from bitum<strong>in</strong>ous coalbegan replac<strong>in</strong>g charcoal <strong>in</strong> the ir<strong>on</strong> ore smelt<strong>in</strong>g <strong>in</strong>dustries (Brown et al., 1975). Today coal is usedprimarily for produc<strong>in</strong>g electricity and, to a lesser extent, by heavy <strong>in</strong>dustries such as ir<strong>on</strong> and steel<strong>in</strong>dustries (Raven et al., 1993). <str<strong>on</strong>g>Coal</str<strong>on</strong>g> c<strong>on</strong>ta<strong>in</strong>s a significant amount <str<strong>on</strong>g>of</str<strong>on</strong>g> ferrous sulphate <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g>pyrites. The exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> pyrite to atmospheric oxygen through the m<strong>in</strong><strong>in</strong>g operati<strong>on</strong>, br<strong>in</strong>gs about anoxidati<strong>on</strong> process <strong>in</strong> which pyrite is c<strong>on</strong>verted <strong>in</strong>to ferrous sulphate and sulphuric acid <strong>in</strong> the presence<str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria. The sulphuric acid thus formed, lowers the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil and water <strong>in</strong> the terrestrial andaquatic envir<strong>on</strong>ments, respectively, which affects the populati<strong>on</strong> and activity <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms <strong>in</strong>habit<strong>in</strong>gthose envir<strong>on</strong>ments. Chemicals released from the coal m<strong>in</strong>es, overburden and tail<strong>in</strong>gs also c<strong>on</strong>ta<strong>in</strong>high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metals such as Cu, Cd, Fe, Hg and Zn, which also affect the organismsadversely.The Indian sub-c<strong>on</strong>t<strong>in</strong>ent is replete with m<strong>in</strong>erals and many states have rich coal resources. So<strong>on</strong> after<strong>in</strong>dependence, India witnessed a spurt <strong>in</strong> the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy <strong>in</strong>dustries that needed a large amount <str<strong>on</strong>g>of</str<strong>on</strong>g>m<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> coal and metals. Thus the m<strong>in</strong><strong>in</strong>g operati<strong>on</strong>s <strong>in</strong> India began <strong>on</strong> a large scale <strong>in</strong> 1950s.Presently, <strong>in</strong> India, more than 80,000 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> land are under various types <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g (Valdiya, 1988).<str<strong>on</strong>g>Coal</str<strong>on</strong>g> is the most abundantly available fossil fuel <strong>in</strong> India and provides a substantial part <str<strong>on</strong>g>of</str<strong>on</strong>g> energyneeds. It is used for power generati<strong>on</strong>, supply <str<strong>on</strong>g>of</str<strong>on</strong>g> energies to <strong>in</strong>dustry as well as for domestic needs.1


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAIndia is highly dependent <strong>on</strong> coal for meet<strong>in</strong>g its commercial energy requirements. India ranks thethird largest coal producer <str<strong>on</strong>g>of</str<strong>on</strong>g> the world next <strong>on</strong>ly to Ch<strong>in</strong>a and USA. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g <strong>in</strong> India was started<strong>in</strong> the year 1774 <strong>in</strong> the state <str<strong>on</strong>g>of</str<strong>on</strong>g> West Bengal. At the beg<strong>in</strong>n<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> 20th century, the total producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>coal was just about 6 milli<strong>on</strong> t<strong>on</strong>nes per year. The producti<strong>on</strong> was 154.30 milli<strong>on</strong> t<strong>on</strong>es <strong>in</strong> 1985-86 andit reached 298 milli<strong>on</strong> t<strong>on</strong>nes <strong>in</strong> the year 1997-98. The expectati<strong>on</strong> to reach the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal by2000 A.D. was 417 milli<strong>on</strong> t<strong>on</strong>nes (<str<strong>on</strong>g>Coal</str<strong>on</strong>g> India, 1997).In north-east India, coal m<strong>in</strong><strong>in</strong>g was <strong>in</strong>itiated by Medlicott <strong>in</strong> 1869 and 1874. Some coal occurrences<strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> were exam<strong>in</strong>ed by shallow drill<strong>in</strong>g by Dias <strong>in</strong> 1962-63 and Goswami and Dhara <strong>in</strong>1963-64 (Bullet<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India, 1969). Commercial exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong>Meghalaya started <strong>in</strong> the Khasi <strong>Hills</strong> dur<strong>in</strong>g the 19th century. S<strong>in</strong>ce most <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal deposits weresmall and isolated and it was not amenable for scientific m<strong>in</strong><strong>in</strong>g to be c<strong>on</strong>ducted <strong>in</strong> the organizedsector and m<strong>in</strong><strong>in</strong>g operati<strong>on</strong>s were left to the local m<strong>in</strong>ers to take up coal m<strong>in</strong><strong>in</strong>g as a cottage <strong>in</strong>dustry.In due course <str<strong>on</strong>g>of</str<strong>on</strong>g> time, the tribal m<strong>in</strong>ers accepted coal m<strong>in</strong><strong>in</strong>g as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> their customary rights. FromKhasi <strong>Hills</strong> these activities proliferated to other parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the state, viz., Ja<strong>in</strong>tia <strong>Hills</strong> and Garo <strong>Hills</strong> <strong>in</strong>the beg<strong>in</strong>n<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the 1970s (Directorate <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>in</strong>eral Resource, 1992).Meghalaya, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the seven states <str<strong>on</strong>g>of</str<strong>on</strong>g> north-east India, is bestowed with rich natural vegetati<strong>on</strong> as wellas large reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral resources. Dur<strong>in</strong>g the last few decades, there have been phenomenal<strong>in</strong>crease <strong>in</strong> m<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, limest<strong>on</strong>e, sillimanite and clay caus<strong>in</strong>g large-scale destructi<strong>on</strong> anddeteriorati<strong>on</strong> to the envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> the state. The forests and the m<strong>in</strong><strong>in</strong>g are <strong>in</strong>timately l<strong>in</strong>ked. Theforests are the greatest victims <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong><strong>in</strong>g activities, which can be gauged from the denudati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the forest cover <strong>in</strong> all the m<strong>in</strong>e belts. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the complex landhold<strong>in</strong>g systems, and exclusiverights <str<strong>on</strong>g>of</str<strong>on</strong>g> land owners <strong>on</strong> land resources as guaranteed under 6 th Schedule <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian c<strong>on</strong>stituti<strong>on</strong>, verylittle governmental c<strong>on</strong>trol can be exercised <strong>on</strong> the lands <strong>in</strong> Meghalaya. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> is d<strong>on</strong>e undercustomary rights and are not covered by any m<strong>in</strong><strong>in</strong>g acts, rules or any other legislati<strong>on</strong>s. Noenvir<strong>on</strong>mental acts and rules can be enforced <strong>in</strong> these areas. As a result, <strong>in</strong> most parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the state coalis be<strong>in</strong>g <strong>in</strong>discrim<strong>in</strong>ately m<strong>in</strong>ed <strong>in</strong> most unscientific manners, caus<strong>in</strong>g large-scale damage to thenatural ecosystems (Tiwari, 1996).<str<strong>on</strong>g>Coal</str<strong>on</strong>g> deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> the state occur as th<strong>in</strong> seams, which range <strong>in</strong> thickness from 30 cm to 1.5 m <strong>in</strong>sedimentary rock, sandst<strong>on</strong>e and shale <str<strong>on</strong>g>of</str<strong>on</strong>g> the Eocene age (Guha Roy, 1991). The coal deposits arefound al<strong>on</strong>g the southern fr<strong>in</strong>ge <str<strong>on</strong>g>of</str<strong>on</strong>g> the Shill<strong>on</strong>g plateau extend<strong>in</strong>g over a length <str<strong>on</strong>g>of</str<strong>on</strong>g> 400 km. In the hills<str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya, the coal bear<strong>in</strong>g sedimentary formati<strong>on</strong>s are sub-horiz<strong>on</strong>tal to gently dipp<strong>in</strong>g <strong>in</strong> nature.It is estimated that there is 562.8 milli<strong>on</strong> t<strong>on</strong>nes <str<strong>on</strong>g>of</str<strong>on</strong>g> coal reserve <strong>in</strong> 20 major or m<strong>in</strong>or depositsdistributed throughout the state. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the areas where extensive coal m<strong>in</strong><strong>in</strong>g is go<strong>in</strong>g <strong>on</strong> with<strong>in</strong> thestate are: Laitryngew, Cherrapunjee, Laitduh, Mawbehlarkar, Mawsynram, Lumdid<strong>on</strong>, Langr<strong>in</strong>,Pynursla, Lyngkyrdem, Mawl<strong>on</strong>g-Shella-Ishamati <strong>in</strong> Khasi <strong>Hills</strong>, Bapung, Lakad<strong>on</strong>g, Sutnga, Jara<strong>in</strong>,Musiang-Lamare and Ioksi <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> and West Darrangiri, Siju, Pyndengru-Balphakram, SelselaBlock <strong>in</strong> Garo <strong>Hills</strong>.The total deposit <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> the state is approximately 40 milli<strong>on</strong> t<strong>on</strong>nesspread<strong>in</strong>g over patches <str<strong>on</strong>g>of</str<strong>on</strong>g> different sizes. The areas where coal m<strong>in</strong><strong>in</strong>g is prom<strong>in</strong>ent are Bapung,Lakad<strong>on</strong>g, Jara<strong>in</strong>-Shkentalang, Lumshn<strong>on</strong>g, Malwar-Musiang-Lamare, Sutnga, Ioksi, Chyrmang andMutang. Bapung has the largest deposit <str<strong>on</strong>g>of</str<strong>on</strong>g> 34 milli<strong>on</strong> t<strong>on</strong>nes cover<strong>in</strong>g an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 km 2 . The ma<strong>in</strong>characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal found <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> are its low ash c<strong>on</strong>tent, high volatile matter, high2


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAcalorific value and comparatively high sulphur c<strong>on</strong>tent. The coal is mostly sub-bitum<strong>in</strong>ous <strong>in</strong>character. The physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> district are that it is hard, lumpy,bright and jo<strong>in</strong>ted. Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal revealed by chemical analysis <strong>in</strong>dicates moisture c<strong>on</strong>tentbetween 0.4 to 9.2 percent, ash c<strong>on</strong>tent between 1.3 to 24.7 percent, and sulphur c<strong>on</strong>tent between 2.7to 5.0 percent. The calorific value ranges from 5,694 to 8230 kilo calories/kilogram (Directorate <str<strong>on</strong>g>of</str<strong>on</strong>g>M<strong>in</strong>eral Resources, 1985).The m<strong>in</strong><strong>in</strong>g activities <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district are small scale ventures c<strong>on</strong>trolled by <strong>in</strong>dividual owners<str<strong>on</strong>g>of</str<strong>on</strong>g> the land. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> extracti<strong>on</strong> is d<strong>on</strong>e by primitive sub-surface m<strong>in</strong><strong>in</strong>g method comm<strong>on</strong>ly known as ‘rathole’m<strong>in</strong><strong>in</strong>g. In this method, the land is first cleared by cutt<strong>in</strong>g and remov<strong>in</strong>g the ground vegetati<strong>on</strong>and then pits rang<strong>in</strong>g from 5 to 100 m 2 are dug <strong>in</strong>to the ground to reach the coal seam. Thereafter,tunnels are made <strong>in</strong>to the seam sideways to extract coal which is first brought <strong>in</strong>to the pit by us<strong>in</strong>g ac<strong>on</strong>ical basket or a wheel barrow and then taken out and dumped <strong>on</strong> nearby unm<strong>in</strong>ed area. F<strong>in</strong>ally, thecoal is carried by trucks to the larger dump<strong>in</strong>g places near highways for its trade and transportati<strong>on</strong>.Entire road sides <strong>in</strong> and around m<strong>in</strong><strong>in</strong>g areas are used for pil<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> coal which is a major source <str<strong>on</strong>g>of</str<strong>on</strong>g> air,water and soil polluti<strong>on</strong>. Off road movement <str<strong>on</strong>g>of</str<strong>on</strong>g> trucks and other vehicles <strong>in</strong> the area causes furtherdamage to the ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the area. Hence, a large extent <str<strong>on</strong>g>of</str<strong>on</strong>g> the land is spoiled and denuded <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetalcover not <strong>on</strong>ly by m<strong>in</strong><strong>in</strong>g but also by dump<strong>in</strong>g and storage <str<strong>on</strong>g>of</str<strong>on</strong>g> coal and associated vehicular movement(Figure 1.1). <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> operati<strong>on</strong>, undoubtedly has brought wealth and employment opportunity <strong>in</strong> thearea, but simultaneously has lead to extensive envir<strong>on</strong>mental degradati<strong>on</strong> and erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> traditi<strong>on</strong>alvalues <strong>in</strong> the society. Envir<strong>on</strong>mental problems associated with m<strong>in</strong><strong>in</strong>g have been felt severely because<str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>’s fragile ecosystems and richness <str<strong>on</strong>g>of</str<strong>on</strong>g> biological and cultural diversity. The <strong>in</strong>discrim<strong>in</strong>ateand unscientific m<strong>in</strong><strong>in</strong>g, absence <str<strong>on</strong>g>of</str<strong>on</strong>g> post m<strong>in</strong><strong>in</strong>g treatment and management <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>ed areas are mak<strong>in</strong>gthe fragile ecosystems more vulnerable to envir<strong>on</strong>mental degradati<strong>on</strong> and lead<strong>in</strong>g to large scale landcover/ land use changes. The current modus operandi <str<strong>on</strong>g>of</str<strong>on</strong>g> sub-surface m<strong>in</strong><strong>in</strong>g <strong>in</strong> the area generates hugequantity <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>e spoil or overburden (c<strong>on</strong>solidated and unc<strong>on</strong>solidated materials overly<strong>in</strong>g the coalseam) <strong>in</strong> the form <str<strong>on</strong>g>of</str<strong>on</strong>g> gravels, rocks, sand, soil, etc., which are dumped over a large area adjacent to them<strong>in</strong>e pits (Figure 1.2). The dump<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> overburden and coal destroys the surround<strong>in</strong>g vegetati<strong>on</strong> andleads to severe soil and water polluti<strong>on</strong>. Large-scale denudati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest cover, scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> water,polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air, water and soil, and degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural lands are some <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>spicuousenvir<strong>on</strong>mental implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong>. The district <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> has been mostextensively extracted <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, am<strong>on</strong>g all the districts <str<strong>on</strong>g>of</str<strong>on</strong>g> the state (Das Gupta, 1999). As aresult <str<strong>on</strong>g>of</str<strong>on</strong>g> this, <strong>in</strong> many parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the district there has been c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the orig<strong>in</strong>al lush greenlandscape <strong>in</strong>to m<strong>in</strong>e spoils. The crude and unscientific ‘rat-hole’ method <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g adopted by theprimitive operators lead to the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the landscape (Sarma, 2002).The studies related to the floristic compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong><strong>in</strong>g areas have been c<strong>on</strong>ducted by severalworkers <strong>in</strong> different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the world (Cornwell, 1971; Fyles et al., 1985; Game et al., 1982; S<strong>in</strong>ghand Jha, 1987; Prasad and Pandey, 1985). An understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g <strong>on</strong> theenvir<strong>on</strong>ment particularly <strong>on</strong> vegetati<strong>on</strong> characteristics is a prerequisite. However, <strong>on</strong>ly a few studies(Lyngdoh et al., 1992; Lyngdoh, 1995; Pandey et al., 1993; Das Gupta, 1999; Das Gupta et al., 2002;Dkhar, 2002; Rai, 2002; Swer and S<strong>in</strong>gh, 2004) have been c<strong>on</strong>ducted <strong>in</strong> this field <str<strong>on</strong>g>of</str<strong>on</strong>g> research <strong>in</strong> thecoal m<strong>in</strong>e affected areas <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya. Here an attempt has been made to f<strong>in</strong>dout the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> the vegetati<strong>on</strong> by us<strong>in</strong>g remote sens<strong>in</strong>g and geographic <strong>in</strong>formati<strong>on</strong>system (GIS) techniques <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya.3


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA1.5. Organisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>Study</strong>The present thesis <strong>on</strong> “<str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> vegetati<strong>on</strong>: a case study <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g>Meghalaya, India” has been divided <strong>in</strong>to five chapters.1. Introducti<strong>on</strong>2. <strong>Study</strong> Area3. Materials and Methods4. Results and Discussi<strong>on</strong>5. General Discussi<strong>on</strong> and C<strong>on</strong>clusi<strong>on</strong>s1.6. Literature ReviewEcosystem disturbance may be def<strong>in</strong>ed as an event or series <str<strong>on</strong>g>of</str<strong>on</strong>g> events that alters the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g>organisms and their habitat <strong>in</strong> time and space. Ecosystem disturbance by m<strong>in</strong><strong>in</strong>g is an evitable fall out<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dustrializati<strong>on</strong> and modern civilizati<strong>on</strong>. With accelerat<strong>in</strong>g demand for fuel energy the world over,coal is certa<strong>in</strong>ly go<strong>in</strong>g to reta<strong>in</strong> its place <str<strong>on</strong>g>of</str<strong>on</strong>g> primacy well <strong>in</strong> to the future. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal causesenormous damage to the flora, fauna, hydrological relati<strong>on</strong>s and soil biological systems. Destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the vegetal cover dur<strong>in</strong>g the m<strong>in</strong><strong>in</strong>g activity is <strong>in</strong>variably accompanied by an extensive damage andloss <str<strong>on</strong>g>of</str<strong>on</strong>g> the system. The disturbed and haphazardly mixed <strong>in</strong>fertile, c<strong>on</strong>solidated and unc<strong>on</strong>solidatedmaterials overly<strong>in</strong>g a coal seam are known as overburdens. These overburdens when dumped <strong>in</strong>unm<strong>in</strong>ed areas <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal m<strong>in</strong>es create m<strong>in</strong>e spoils. Nutrient deficient sandy spoils aregenerally hostile to plant growth and the regevetati<strong>on</strong> and reclamati<strong>on</strong> strategies other than naturalcol<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>e spoils are very tardy process. Some important researches <strong>on</strong> the study <str<strong>on</strong>g>of</str<strong>on</strong>g> theimpact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g <strong>on</strong> the vegetati<strong>on</strong> that relevant to the present study are be<strong>in</strong>g reviewed here.<str<strong>on</strong>g>Coal</str<strong>on</strong>g> m<strong>in</strong>e spoils when freshly tipped has a great range <str<strong>on</strong>g>of</str<strong>on</strong>g> particle size rang<strong>in</strong>g from large pieces <str<strong>on</strong>g>of</str<strong>on</strong>g>shale to silt and clay (Molyneux, 1963). These m<strong>in</strong>e spoils represent extremely rigid substrata for plantgrowth and development. Col<strong>on</strong>izati<strong>on</strong>, establishment and ma<strong>in</strong>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>on</strong> these spoilsare enormously difficult. Am<strong>on</strong>g the factors which h<strong>in</strong>der the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species <strong>on</strong> these spoils,acidity merits special attenti<strong>on</strong>. Extreme acidity is caused due to the oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> pyrites(Chadwick, 1973). C<strong>on</strong>t<strong>in</strong>ued acidificati<strong>on</strong> for many years may lead to die back <str<strong>on</strong>g>of</str<strong>on</strong>g> well establishedvegetati<strong>on</strong> (Costigan et al., 1981). Besides acids, coal m<strong>in</strong>e spoils c<strong>on</strong>ta<strong>in</strong> toxic levels <str<strong>on</strong>g>of</str<strong>on</strong>g> solubleelements such as Fe, Al, Mn and Cu. The physical factors which limit plant establishment and survival<strong>in</strong>clude high temperature, moisture stress (Richards<strong>on</strong>, 1975), soil particle size (Down, 1974) andcompacti<strong>on</strong> (Hall, 1957, Richards<strong>on</strong>, 1975). Soil fertility is also a major factor regulat<strong>in</strong>g plant growth.The two limit<strong>in</strong>g nutrient <strong>on</strong> coal m<strong>in</strong>e spoils are nitrogen and phosphorus (William, 1975). Theshortage <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter is attributed to the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> litter (Schafer et al., 1980). Power (1978)c<strong>on</strong>siders soil physico-chemical characteristics like texture, pH, electrical c<strong>on</strong>ductivity, soluble Ca,Mg, Na, B, cati<strong>on</strong> exchange capacity, exchangeable cati<strong>on</strong>s, gypsum and calcium carb<strong>on</strong>ateequivalents as be<strong>in</strong>g crucial to the predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant growth potential <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>e overburdens with waterhold<strong>in</strong>g capacity and <strong>in</strong>filtrati<strong>on</strong> rates as the other important variables. Bradshaw et al. (1975) and Belland Ungar (1981) found high temperature and low moisture <str<strong>on</strong>g>of</str<strong>on</strong>g> surface coal m<strong>in</strong>e spoils to be importantfactors limit<strong>in</strong>g plant growth.The col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species <strong>on</strong> coal m<strong>in</strong>e spoils is <strong>in</strong>fluenced by the particle size <str<strong>on</strong>g>of</str<strong>on</strong>g> the soilderived from the overburden and coal m<strong>in</strong>e wastes. This was c<strong>on</strong>clusively proved by Richards<strong>on</strong> et al.(1971). They reported that with high clay c<strong>on</strong>tent, the soils become water logged, whereas with high5


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAsilt c<strong>on</strong>tent, the soils become compact form<strong>in</strong>g crust which <str<strong>on</strong>g>of</str<strong>on</strong>g>ten restrict seedl<strong>in</strong>g growth and entry <str<strong>on</strong>g>of</str<strong>on</strong>g>water and air <strong>in</strong>to the soil system. pH is a major determ<strong>in</strong>ant <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g plant growth <strong>on</strong>impoverished lands such as m<strong>in</strong>e spoils. The average value <str<strong>on</strong>g>of</str<strong>on</strong>g> pH is 3.5, which <strong>in</strong>dicates the acuteacidity <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil (Johns<strong>on</strong> and Bradshaw, 1977).Intensive studies <strong>on</strong> the vegetati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>ed areas have been undertaken <strong>in</strong> differentparts <str<strong>on</strong>g>of</str<strong>on</strong>g> the globe. The development <str<strong>on</strong>g>of</str<strong>on</strong>g> an ecosystem <strong>on</strong> ch<strong>in</strong>a-clay wastes was studied by Dancer etal. (1977). The vegetati<strong>on</strong> establishment <strong>on</strong> asbestos waste was studied by Moore and Zimmermann(1977). Saxena (1979) has provided a list <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species for revegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gypsum, bentomite andfuller’s earth m<strong>in</strong>ed areas <strong>in</strong> Rajasthan. Revegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong>-ore m<strong>in</strong>e areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Madhya Pradesh wasstudied by Prasad <strong>in</strong> 1989 who observed better growth performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Dalbergia sisso, Albizziaprocera, P<strong>on</strong>gamia p<strong>in</strong>nata etc. <strong>in</strong> the manured pits.The factors c<strong>on</strong>tribut<strong>in</strong>g to the early col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>e dumps have given c<strong>on</strong>siderable attenti<strong>on</strong> byvarious workers. Bradshaw (1983), Chadwick (1973), Byrnes et al. (1973) found natural successi<strong>on</strong> <strong>on</strong>coal m<strong>in</strong>e spoils a slow process due to surface m<strong>in</strong><strong>in</strong>g alter<strong>in</strong>g physico-chemical properties. Thesespoils present a special habitat where c<strong>on</strong>diti<strong>on</strong>s are extremely unfavourable for plant growth andestablishment. Marrs and Bradshaw (1980) and Marrs et al. (1980 and 1981) studied the development<str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch<strong>in</strong>a clay waste. Ir<strong>on</strong> m<strong>in</strong>e tail<strong>in</strong>gs were studied by Leisman (1957) and Shetr<strong>on</strong> andDuffek (1970). Floristic diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> lead m<strong>in</strong><strong>in</strong>g wastes was studied by Clarke and Clarke (1981), leadand z<strong>in</strong>c by Kimmerer (1984) and copper m<strong>in</strong><strong>in</strong>g wastes by Goodman and Gemmel (1978) andVeeranjaneyulu and Dhanaraju (1990).Doerr and Guernsey (1956) dealt with the envir<strong>on</strong>mental effects <str<strong>on</strong>g>of</str<strong>on</strong>g> strip m<strong>in</strong><strong>in</strong>g and undergroundm<strong>in</strong><strong>in</strong>g, which create c<strong>on</strong>spicuous landscape features and associated phenomena. Mukherjee (1987 and1988) described about the land degradati<strong>on</strong> associated with surface and sub-surface m<strong>in</strong><strong>in</strong>g. Chadwicket al. (1987) outl<strong>in</strong>ed the envir<strong>on</strong>mental implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>creased coal producti<strong>on</strong> and utilizati<strong>on</strong>.Chaudhury (1992) dealt with the impact <strong>on</strong> m<strong>in</strong><strong>in</strong>g activities <strong>on</strong> envir<strong>on</strong>ment and also the managementand protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>ed areas.The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>ed lands has been the subject <str<strong>on</strong>g>of</str<strong>on</strong>g> extensive study the world over (Bradshaw etal., 1986, Brenner et al., 1994, Rodrigues et al., 2004, Fretas et al., 2004, Wiegleb et al., 2001, Grant2003, Bell et al., 2001, Goretti 1998, Game et al., 1982). In India, Banerjee (1981), S<strong>in</strong>gh and Jha(1987), Valdiya (1988), Saxena (1979), Mann and Chatterjee (1979), Prakash (1998), S<strong>on</strong>i et al.(1989) have made pi<strong>on</strong>eer<strong>in</strong>g c<strong>on</strong>tributi<strong>on</strong>s to the ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian m<strong>in</strong>es. In the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g>Meghalaya, studies have been d<strong>on</strong>e by Lyngdoh et al. (1992), Uma Shankar et al. (1993), Lyngdoh(1995), Tiwari (1996), Rai (1996), Das Gupta (1999), Das Gupta et al. (2002), Sarma (2002), Rai(2002), Dkhar (2002) and Swer and S<strong>in</strong>gh (2004).The state <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya is rich <strong>in</strong> m<strong>in</strong>eral resources. The coal deposits occur as th<strong>in</strong> seams, whichrange <strong>in</strong> thickness from 30 cm to 1.5 m <strong>in</strong> sedimentary rocks, sandst<strong>on</strong>e and shale <str<strong>on</strong>g>of</str<strong>on</strong>g> the Eocene age.The deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong> the state are Cretaceous orig<strong>in</strong> (Guha Roy, 1991). The unscientific m<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>coal poses a serious threat to the envir<strong>on</strong>ment (Dadhwal, 1999). <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal causes massivedamage to landscape and biological communities. The natural plant communities are disturbed bym<strong>in</strong><strong>in</strong>g activity because the m<strong>in</strong><strong>in</strong>g envir<strong>on</strong>ment alters the climatic and edaphic complexes <str<strong>on</strong>g>of</str<strong>on</strong>g> the plantcommunities lead<strong>in</strong>g to a drastic reducti<strong>on</strong> <strong>in</strong> the plant growth (Down and Stock, 1977). Acute scarcity6


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA<str<strong>on</strong>g>of</str<strong>on</strong>g> potable and irrigated water, polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air, water and soil, soil erosi<strong>on</strong>, reduced soil fertility andloss <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity are some <str<strong>on</strong>g>of</str<strong>on</strong>g> the manifestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g (Das Gupta et al., 2002).Rai (1996) <strong>in</strong>volved <strong>in</strong> study <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g and envir<strong>on</strong>mental degradati<strong>on</strong> with special reference tosoil, water and air polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya. Sarma (2002) has studied the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> theenvir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> Nokrek biosphere reserve, Meghalaya. He analysed different phyto-sociologicalcharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>ed and unm<strong>in</strong>ed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the biosphere reserve. The impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong>ecosystem health <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya was studied by Tiwari (1996) and Das Gupta etal. (2002) put efforts to give an ecological perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> the district due to the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g.Rai (2002) also alalysed the implicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> envir<strong>on</strong>ment <strong>in</strong> the district. Dkhar (2002)studied the micro-landforms <str<strong>on</strong>g>of</str<strong>on</strong>g> the district, which were affected due to the sub-surface coal m<strong>in</strong><strong>in</strong>g.Swer and S<strong>in</strong>gh (2004) analysed the water quality and its availability <strong>in</strong> the coal m<strong>in</strong><strong>in</strong>g areas <str<strong>on</strong>g>of</str<strong>on</strong>g> thedistrict. They also studied the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g <strong>on</strong> the aquatic fauna and flora <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>. Das Gupta(1999) analysed the vegetal and microbiological processes <strong>in</strong> coal m<strong>in</strong><strong>in</strong>g affected areas. In his studyvegetati<strong>on</strong> changes <strong>on</strong> coal m<strong>in</strong>e spoils <strong>in</strong> different years was carried out. Pandey et al. (1993) studiedvegetati<strong>on</strong> and soil <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal m<strong>in</strong><strong>in</strong>g areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. Physico-chemical properties <strong>in</strong> the aquaticsystem <strong>in</strong> the m<strong>in</strong><strong>in</strong>g affected areas was analysed by Sharma and Das (1993). The study related to themicrobiology <str<strong>on</strong>g>of</str<strong>on</strong>g> soil and water bodies was carried out by Tiwari and Das Gupta (1993). Socioec<strong>on</strong>omic,anthropological and epidemiological impact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g was studied by Mishra and Lyngdoh(1993) and Pathak and Dkhar (1993).There have been several major developments <strong>in</strong> the assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> forest c<strong>on</strong>diti<strong>on</strong> by visual methodsover the past decades. Remote sens<strong>in</strong>g and GIS techniques are useful to identify the areas <str<strong>on</strong>g>of</str<strong>on</strong>g>degradati<strong>on</strong> due to m<strong>in</strong><strong>in</strong>g activity. These are important tools for study<strong>in</strong>g the pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong>dynamics. The changes <str<strong>on</strong>g>of</str<strong>on</strong>g> land cover are <strong>in</strong>variably associated with m<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources.Remote sens<strong>in</strong>g provides multi-spectral and multi-temporal synoptic coverages for any area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>terest.The satellite data provides a permanent and authentic record <str<strong>on</strong>g>of</str<strong>on</strong>g> the land-use patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> a particulararea at any given time, which can be re-used for verificati<strong>on</strong> and re-assessment. Kushwaha (1990)expla<strong>in</strong>ed the use <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-time data <strong>in</strong> detect<strong>in</strong>g changes <strong>in</strong> the forest cover. GIS provides the facilityto <strong>in</strong>tegrate multi-discipl<strong>in</strong>ary data for dedicated <strong>in</strong>terpretati<strong>on</strong>s <strong>in</strong> an easy and logical way. This<strong>in</strong>tegrated approach proves to be time sav<strong>in</strong>g and cost-effective (Prakash and Gupta, 1998). Satellitedata has provided an important basis for vegetati<strong>on</strong> mapp<strong>in</strong>g, m<strong>on</strong>itor<strong>in</strong>g and understand<strong>in</strong>g ecosystemfuncti<strong>on</strong>s, primarily through the relati<strong>on</strong>ships between reflectance and vegetati<strong>on</strong> structure andcompositi<strong>on</strong> (Joshi et al., 2003). Kushwaha et al. (2000) studied the land area change and habitatsuitability analysis <strong>in</strong> the nati<strong>on</strong>al park. Kushwaha and Kuntz (1993) analysed the changes <strong>in</strong> theenvir<strong>on</strong>ment <strong>in</strong> the tropical forests <str<strong>on</strong>g>of</str<strong>on</strong>g> north-east India by us<strong>in</strong>g multi-time remote sens<strong>in</strong>g data.Airborne multi-spectral techniques are the most effective way to detect and m<strong>on</strong>itor vegetati<strong>on</strong>damage at m<strong>in</strong>e sites and have been used successfully by S<strong>in</strong>gh Roy and Kruse (1991), K<strong>in</strong>g (1993)and S<strong>in</strong>gh Roy (1995). Multi-spectral remote sens<strong>in</strong>g technique can detect the vegetati<strong>on</strong> damagecaused by the acid dra<strong>in</strong>age from m<strong>in</strong>e and mill tail<strong>in</strong>gs and waste rock and can m<strong>on</strong>itor regenerati<strong>on</strong>success at sites undergo<strong>in</strong>g restorati<strong>on</strong>. Graham et al. (1994) used Pr<strong>in</strong>cipal Comp<strong>on</strong>ent Analysistechnique <strong>on</strong> Landsat Thematic Mapper images to m<strong>on</strong>itor vegetati<strong>on</strong> change <strong>in</strong> large areas affected byir<strong>on</strong> ore m<strong>in</strong><strong>in</strong>g operati<strong>on</strong> at Noranda, Quebec. The normalized difference vegetati<strong>on</strong> <strong>in</strong>dex (NDVI) isan <strong>in</strong>dex that provides a standard method <str<strong>on</strong>g>of</str<strong>on</strong>g> compar<strong>in</strong>g vegetati<strong>on</strong> greenness between satelliteimageries. This can be used as an <strong>in</strong>dicator <str<strong>on</strong>g>of</str<strong>on</strong>g> relative biomass and greenness (Bo<strong>on</strong>e et al., 2000,7


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAChen, 1998). This is used to calculate primary producti<strong>on</strong>, dom<strong>in</strong>ant species, and anthropogenicimpact, and stock<strong>in</strong>g rates with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> field study (Ricotta et al., 1999; Paruelo et al., 1997).Prakash and Gupta (1998) studied the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> the land use changes by us<strong>in</strong>gtemporal remote sens<strong>in</strong>g data. Change detecti<strong>on</strong> analysis method was c<strong>on</strong>ducted <strong>in</strong> their study. Kosterand Slob (1994), Scheijbal (1995), Ghosh (1998), Rathore and Wright (1993) studied the changes andimpact <strong>on</strong> the land use/ land cover due to the m<strong>in</strong><strong>in</strong>g activities. Goretti (1998) c<strong>on</strong>cluded the result thatthe vegetal cover got lost due to the spread out <str<strong>on</strong>g>of</str<strong>on</strong>g> waste materials haphazardly, which were com<strong>in</strong>g outfrom the m<strong>in</strong>es, <strong>in</strong> and around the coal m<strong>in</strong><strong>in</strong>g.8


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA2. <strong>Study</strong> Area2.1. <strong>Study</strong> AreaJa<strong>in</strong>tia <strong>Hills</strong> district is located <strong>in</strong> the eastern most part <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya. It lies between 91°58'E to92°50'E l<strong>on</strong>gitudes and 25°02'N to 25°45'N latitudes. The district is bounded <strong>in</strong> the north and east bythe state <str<strong>on</strong>g>of</str<strong>on</strong>g> Assam; west by East Khasi <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> the state and south by Bangladesh (Figure 2.1).The total area <str<strong>on</strong>g>of</str<strong>on</strong>g> the district is 3819 km 2 , which is about 17 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total area <str<strong>on</strong>g>of</str<strong>on</strong>g> the state.2.2. GeologyJa<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya form a c<strong>on</strong>t<strong>in</strong>uous part <str<strong>on</strong>g>of</str<strong>on</strong>g> the Meghalaya Plateau that represents aremnant <str<strong>on</strong>g>of</str<strong>on</strong>g> the ancient plateau <str<strong>on</strong>g>of</str<strong>on</strong>g> Pre-Cambrian Indian pen<strong>in</strong>sular shield. The district is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> avariety <str<strong>on</strong>g>of</str<strong>on</strong>g> rock formati<strong>on</strong>s rang<strong>in</strong>g from Pre-Cambrian to Recent. The Pre-Cambrian formati<strong>on</strong> istraversed by swarms <str<strong>on</strong>g>of</str<strong>on</strong>g> dykes and sills <str<strong>on</strong>g>of</str<strong>on</strong>g> both acidic and basic nature. The major part <str<strong>on</strong>g>of</str<strong>on</strong>g> the district iscovered by the rocks <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia series <str<strong>on</strong>g>of</str<strong>on</strong>g> Eocene period and Barail and Simsang formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oligoceneperiods. A c<strong>on</strong>siderable porti<strong>on</strong> is covered by the Gneissic Complex <str<strong>on</strong>g>of</str<strong>on</strong>g> Pre-Cambrian. TertiaryFormati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Shangpung and Laske<strong>in</strong> are encountered with the host <str<strong>on</strong>g>of</str<strong>on</strong>g> Quartzites and Gneissic rocks(Figure 2.2). The general stratigraphic sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> the formati<strong>on</strong> <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> is given Table 2.1.The c<strong>on</strong>solidated hard crystall<strong>in</strong>e rocks <str<strong>on</strong>g>of</str<strong>on</strong>g> granite gneiss, amphibolite, poroxenite, carb<strong>on</strong>atites al<strong>on</strong>gwith quartzites <str<strong>on</strong>g>of</str<strong>on</strong>g> Pre-Cambrian period occur <strong>in</strong> the northern part occupy<strong>in</strong>g an area <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1300 km 2ma<strong>in</strong>ly <strong>in</strong> the Thadlaske<strong>in</strong> and Laske<strong>in</strong> C.D. Blocks. The rocks are highly fractured and jo<strong>in</strong>ted andwere subjected to <strong>in</strong>tense weather<strong>in</strong>g. The Shill<strong>on</strong>g group <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks <strong>in</strong>clud<strong>in</strong>g granite, schist,c<strong>on</strong>glomerate etc., overlies the gneissic complex and are marked by the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> sills and dykes.The Tertiary group <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks is represented by the Shella formati<strong>on</strong> compris<strong>in</strong>g alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> sandst<strong>on</strong>eand limest<strong>on</strong>e and cover extensive areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Amlarem and Khliehriat C.D. Blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. Thesealso <strong>in</strong>clude formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kopili, Borail, Surma and Dupitala. The Quaternary deposits (olderalluvium) overlie the Tertiary rocks. They occur <strong>in</strong> separate patches al<strong>on</strong>g the southern border <str<strong>on</strong>g>of</str<strong>on</strong>g> thedistrict. These deposits <strong>in</strong>clude assorted pebbles with coarse and brown coloured clay. Recentalluvium is found <strong>in</strong> the river valleys and c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> f<strong>in</strong>e silt and light to dark grey clay with pocketsand layers <str<strong>on</strong>g>of</str<strong>on</strong>g> coarse sand and sh<strong>in</strong>gles. From the structural po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view the Gneissic group <str<strong>on</strong>g>of</str<strong>on</strong>g> rocksshow evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> basement deformati<strong>on</strong> through <strong>in</strong>tricate fold<strong>in</strong>g and fault<strong>in</strong>g, hav<strong>in</strong>g a general trend<str<strong>on</strong>g>of</str<strong>on</strong>g> NE-SW. The Shill<strong>on</strong>g group <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks usually shows broad open folds with a steep dipp<strong>in</strong>g z<strong>on</strong>e,apparently due to fault<strong>in</strong>g.In the southern part, the predom<strong>in</strong>ant structural feature is the Dawki fault that runs <strong>in</strong> E-W directi<strong>on</strong>and c<strong>on</strong>t<strong>in</strong>ues towards east <strong>in</strong> the North Cachar <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Assam. At the closure <str<strong>on</strong>g>of</str<strong>on</strong>g> the Jurassicperiod, fault<strong>in</strong>g made the southern block to subside and the area the northern block upheaved. The rate<str<strong>on</strong>g>of</str<strong>on</strong>g> subsidence gradually slowed down towards Paleocene-Eocene times dur<strong>in</strong>g which the area atta<strong>in</strong>eda stable shelf c<strong>on</strong>diti<strong>on</strong> and the calcareous formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ja<strong>in</strong>tia group were deposited (An<strong>on</strong>, 1964).The district <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> reveals that most <str<strong>on</strong>g>of</str<strong>on</strong>g> the l<strong>in</strong>eaments have NE-SW trend but a few haveNNE, SSW and ENE-WSW. C<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>in</strong>eaments <strong>in</strong> the western part shows that this part hadmore tect<strong>on</strong>ic activities than the other parts.9


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAINDIAMEGHALAYAFigure 2.1: Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> district <strong>in</strong> Meghalaya, India.10


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 2.2: Geology <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> district (Geological Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India, 1974).11


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIATable 2.1: Lithostratigraphic Successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> districtAge Group Formati<strong>on</strong> Rock typeRecentNewer alluvium Unclassified Sand, silt and clay(Thickness not known)Pleistocene Older alluvium(Thickness not known)Unclassified Sand, clay, pebble, gravel andboulder deposits~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unc<strong>on</strong>formity~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Mio-Pliocene Dupitila Mottled clays, felsphathicsandst<strong>on</strong>e and c<strong>on</strong>glomerate~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unc<strong>on</strong>formity~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Oligo-Miocene Surma Sandst<strong>on</strong>e, shale, siltst<strong>on</strong>e,mudst<strong>on</strong>e~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unc<strong>on</strong>formity~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Oligocene Barail Hard, compact, f<strong>in</strong>e gra<strong>in</strong>ed greysandst<strong>on</strong>e,shale, siltst<strong>on</strong>e~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unc<strong>on</strong>formity~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Eocene Ja<strong>in</strong>tia KopiliShellaLangparShale, sandst<strong>on</strong>e, marlAlterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sndst<strong>on</strong>e-limest<strong>on</strong>eCalcareous shale, sandst<strong>on</strong>e,limest<strong>on</strong>e~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unc<strong>on</strong>formity~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ProterozoicIntrusivesShill<strong>on</strong>gPorphyrytic and coarse granite,doleritesQuartzites, phyllites, c<strong>on</strong>glomerates~~~~~~~~~~~~~~~~~~~~~~~~~~~~Unc<strong>on</strong>formity~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Precambrian Gneissic Complex Biotite gneiss, granitic gneiss,migmatite, mica, schist,amphiboliteSource: An<strong>on</strong>, 197412


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA2.3. Physiography and Dra<strong>in</strong>ageThe relative relief <str<strong>on</strong>g>of</str<strong>on</strong>g> the district is 1200 m. The elevati<strong>on</strong> ranges from 76m (at Dawki) and 1627m (atMaryngksih). Physiographically the district is divided <strong>in</strong>to three broad divisi<strong>on</strong>s. They are (i) thenorthern hills, (ii) the central plateau or the central Jowai upland and (iii) the southern escarpment. Thenorthern hills exhibit undulat<strong>in</strong>g topography. Denudati<strong>on</strong>al hills and less dissected topography coversthe northern part <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. The area is less dissected show<strong>in</strong>g youthful topography withdenudati<strong>on</strong>al hills trend<strong>in</strong>g N-S, E-W, NE-SW. The central plateau is characterized by roll<strong>in</strong>g moundsand hummocks <str<strong>on</strong>g>of</str<strong>on</strong>g> gentle height and shows flat topography. The southern escarpment exhibits denudostructural hills, highly dissected undulat<strong>in</strong>g topography with sharp crested hills, deep gorges andwaterfalls. The regi<strong>on</strong> is at higher elevati<strong>on</strong> than the northern hills. The district is dra<strong>in</strong>ed <strong>in</strong> the northby the Umkhen river, <strong>in</strong> the northeast by Kopili river and its ma<strong>in</strong> tributaries like Kharkor, Saipung,Umluren, Myntang, Mynriang and Litang. In the southern part, the district is dra<strong>in</strong>ed by Myntdu riverand its tributaries. The ma<strong>in</strong> tributaries are Umlatang, Lynriang, Lubha, Umlunar and Lukha. In thewest Umngot river separat<strong>in</strong>g the East Khasi <strong>Hills</strong> district with the Ja<strong>in</strong>tia <strong>Hills</strong>.2.4. ClimateThe district experiences a tropical m<strong>on</strong>so<strong>on</strong> climate. From the prevail<strong>in</strong>g weather c<strong>on</strong>diti<strong>on</strong>s the ra<strong>in</strong>yseas<strong>on</strong> occurs dur<strong>in</strong>g mid May to September. October and November is the transiti<strong>on</strong> period betweenra<strong>in</strong>y and w<strong>in</strong>ter seas<strong>on</strong>s and it represents the autumn. The period between December and February ischaracterized by cold and dry weather c<strong>on</strong>diti<strong>on</strong>s. The period between March to mid-May is warmer.The annual ra<strong>in</strong>fall from 1991 to 2001 <str<strong>on</strong>g>of</str<strong>on</strong>g> the district varies from 3797 mm and 7912 mm. December isthe driest m<strong>on</strong>th as it c<strong>on</strong>tributes average ra<strong>in</strong>fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 18.8 mm and June is the wettest m<strong>on</strong>th withaverage ra<strong>in</strong>fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 1326.2 mm. It is observed that summer m<strong>on</strong>ths (May to September) <strong>on</strong>ly c<strong>on</strong>tributemore than 70 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total ra<strong>in</strong>fall. August is the hottest m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> the district with averagem<strong>in</strong>imum and maximum temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> 18.4°C and 24.5°C, respectively. The coldest m<strong>on</strong>th isJanuary where the average m<strong>in</strong>imum and maximum temperatures are 7.8°C and 15.6°C (Figure 2.3).The average relative humidity is highest <strong>in</strong> the m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> July (85.2 percent) while December recordsthe lowest relative humidity <str<strong>on</strong>g>of</str<strong>on</strong>g> 61.2 percent.Temperature (°C)302520151050Jan Feb March April May June July Aug Sept Oct Nov DecM<strong>on</strong>ths140012001000Max. Temp (°C) M<strong>in</strong>. Temp. (°C) Ra<strong>in</strong>fall8006004002000Ra<strong>in</strong>fall (mm)13


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 2.3: M<strong>on</strong>thly average maximum and m<strong>in</strong>imum temperature and ra<strong>in</strong>fall <strong>in</strong> Jowai,the district headquarters <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> (Mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1991 to 2001).2.5. SoilThe soil is mostly sandy, reddish brown to yellow brown <strong>in</strong> colour, acidic <strong>in</strong> reacti<strong>on</strong> with low waterhold<strong>in</strong>g capacity and has poor c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter and nutrients. The pH value ranges between4.1 to 5.6. The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic carb<strong>on</strong> c<strong>on</strong>tent varies from 0.28 to 3.1 percent. Lowphosphorus c<strong>on</strong>tent is the characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil <str<strong>on</strong>g>of</str<strong>on</strong>g> the district, vary<strong>in</strong>g between 1.8 and 4.5 kg/ha.The potassium c<strong>on</strong>tent ranges between 28.0 and 112.0 kg/ha, which is quite lower than normal soil(Dkhar 2002).2.6. Natural Vegetati<strong>on</strong>The district <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> claims to have the biggest forest reserve <strong>in</strong> the state <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya.Accord<strong>in</strong>g to the 1991 Census, the total area under forest <strong>in</strong> the district is 1436.1 km 2 , which is 37.6%<str<strong>on</strong>g>of</str<strong>on</strong>g> the total area <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. The natural vegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the district is subtropical (Chouhan and S<strong>in</strong>gh,1992). The large scale unscientific land use practices have resulted <strong>in</strong> the depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary forestand col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the degraded sites by P<strong>in</strong>us kesiya, which grows well to develop <strong>in</strong>to sec<strong>on</strong>daryforests. Besides, the forest floor is covered with the species like Eupatorium adenophorum, Lantanacamara, Rubus sp. Paspalum orbiculare, Isachne himalaica, Globba clarkii etc. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g>isolated patches <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded forests amidst the grassland imparts a savanna like appearance to thelandscape <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>. The acidic and highly impoverished shallow soil layer is neither c<strong>on</strong>ductivefor regenerati<strong>on</strong> through seeds nor for healthy plant growth.2.7. Populati<strong>on</strong>Accord<strong>in</strong>g to the Census <str<strong>on</strong>g>of</str<strong>on</strong>g> India, 2001, the total populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the district is 295692. The literacy rateis 52.8 percent. The settlement pattern <strong>in</strong> the district is ma<strong>in</strong>ly compact or nucleated.2.8. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> Deposits and <str<strong>on</strong>g>Coal</str<strong>on</strong>g> FieldsIn Meghalaya, coal occurrence is c<strong>on</strong>f<strong>in</strong>ed to the Tertiary sediments. The coal is deposited over aplatform (Shill<strong>on</strong>g plateau) under stable shelf c<strong>on</strong>diti<strong>on</strong>s. The coal occurrences are developed more orless al<strong>on</strong>g the southern fr<strong>in</strong>ge <str<strong>on</strong>g>of</str<strong>on</strong>g> the state. The coalfields <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ja<strong>in</strong>tia <strong>Hills</strong> are small and spread out <strong>in</strong>different patches. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> occurs <strong>in</strong> n<strong>in</strong>e important deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. They are Bapung, Lakad<strong>on</strong>g,Jara<strong>in</strong>-Shkentalang, Lumshn<strong>on</strong>g, Malwar-Musiang-Lamare, Sutnga, Ioksi, Chyrmang and Mutang.Ja<strong>in</strong>tia <strong>Hills</strong> district has a total coal deposit <str<strong>on</strong>g>of</str<strong>on</strong>g> about 40 milli<strong>on</strong> t<strong>on</strong>nes, which is <strong>on</strong>ly 7 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> thetotal coal deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> the state (Table 2.2). The district has been most extensively exploited <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g>coal, though it has the lowest deposits am<strong>on</strong>g all the districts. The district c<strong>on</strong>tributes more than 74percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total coal producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the state (Table 2.3).Table 2.2: <str<strong>on</strong>g>Coal</str<strong>on</strong>g> deposits (milli<strong>on</strong> t<strong>on</strong>nes) <strong>in</strong> different districts <str<strong>on</strong>g>of</str<strong>on</strong>g> MeghalayaDistrict Deposit % <str<strong>on</strong>g>of</str<strong>on</strong>g> depositKhasi <strong>Hills</strong> 164.57 29.2Garo <strong>Hills</strong> 359 63.8Ja<strong>in</strong>tia <strong>Hills</strong> 39.25 7.0State 562.82 10014


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIASource: Directorate <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>in</strong>eral Resources, Government <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya, 2003Table 2.3: <str<strong>on</strong>g>Coal</str<strong>on</strong>g> producti<strong>on</strong> (’000 t<strong>on</strong>nes) and percentage <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> MeghalayaYear Meghalaya Ja<strong>in</strong>tia <strong>Hills</strong> % <str<strong>on</strong>g>of</str<strong>on</strong>g> the district1992-1993 3487.7 3040.80 87.181993-1994 2583.5 2062.20 79.821994-1995 3266.2 2389.70 73.161995-1996 3247.5 2159.50 66.491996-1997 3240.9 2273.60 70.151997-1998 3233.5 2414.60 74.671998-1999 4237.8 3246.10 76.591999-2000 4057.0 2935.00 72.342000-2001 4160.8 2839.80 68.252001-2002 5149.32 3869.32 75.14Total 36664.22 27230.62 74.27Source: Directorate <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>in</strong>eral Resources, Government <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya, 20032.8.1. Bapung AreaBapung coalfield has the largest deposit <str<strong>on</strong>g>of</str<strong>on</strong>g> coal (34 milli<strong>on</strong> t<strong>on</strong>nes) cover<strong>in</strong>g an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 km 2 . Twocoal seams produc<strong>in</strong>g good quality coal occur with<strong>in</strong> the undifferentiated Sylhet sandst<strong>on</strong>e <strong>in</strong> andaround Bapung (25°25' N and 91°49'E). The lower seam varies from 0.3 to 1.2m <strong>in</strong> thickness. Theupper seam is th<strong>in</strong>, and the thickness is 0.3m. The NH-44 passes through the heart <str<strong>on</strong>g>of</str<strong>on</strong>g> the coalfieldc<strong>on</strong>nect<strong>in</strong>g Shill<strong>on</strong>g and Silchar. The area represents a vast undulat<strong>in</strong>g surface with gentle slopestowards south. The general elevati<strong>on</strong> varies from 1073m to 1370m above mean sea level (Rai, 2002).The coal seams around Bapung are hard, lumpy, bright and sub-bitum<strong>in</strong>ous type. The coal shows themoisture c<strong>on</strong>tent from 2.2 to 9.2 percent, ash from 2.6 to 7.8 percent, volatile matter from 38.3 to 44.3percent, fixed carb<strong>on</strong> from 46.2 to 52.3 percent, sulphur from 3.2 to 7.1 percent and calorific valuefrom 6080 to 7494 k. cal/kg (DMR, 1985).2.8.2. Lakad<strong>on</strong>g AreaThe Lakad<strong>on</strong>g coal field cover<strong>in</strong>g the Umlatdoh (25°12'N and 92°17'E) plateau between the Myntduand Prang rivers <strong>in</strong> the southern part <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> occurrence is found around Umlatdoh andPamsaru area. The reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> coal has been estimated to be 1.5 milli<strong>on</strong> t<strong>on</strong>nes and exposes a veryirregular and <strong>in</strong>c<strong>on</strong>sistent coal seam vary<strong>in</strong>g from 0.3 to 3.0m <strong>in</strong> thickness. This spreads over an area<str<strong>on</strong>g>of</str<strong>on</strong>g> 3 km 2 . The coal shows the moisture c<strong>on</strong>tent from 0.4 to 0.8 percent, ash from 2.3 to 24.7 percent,volatile matter from 29.7 to 33.5 percent, fixed carb<strong>on</strong> from 44.7 to 59.8 percent, sulphur from 3.4 to4.9 percent and calorific value from 5694 to 7500 k. cal/kg (DMR, 1985).2.8.3. Jara<strong>in</strong>-ShkentalangThe Jara<strong>in</strong>-Shkentalang area is located <strong>in</strong> the western part <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. The total <strong>in</strong>ferred reserve <str<strong>on</strong>g>of</str<strong>on</strong>g>coal is 1.1 milli<strong>on</strong> t<strong>on</strong>nes cover<strong>in</strong>g an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.8 km 2 . In Jara<strong>in</strong> there is <strong>on</strong>ly <strong>on</strong>e coal seam with athickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.3 to 1.1m, whereas there are two coal seams <strong>in</strong> the Shkentalang coalfield that rangesfrom 0.1 to 1.0m. The coal found <strong>in</strong> the Shkentalang is bright and hard but <strong>in</strong> Jara<strong>in</strong> area coal is s<str<strong>on</strong>g>of</str<strong>on</strong>g>tand friable (GSI, 1974). The coal shows the moisture c<strong>on</strong>tent from 1.2 to 1.6 percent, ash from 4.4 to15


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA6.7 percent, volatile matter from 41.6 to 48.1 percent, fixed carb<strong>on</strong> from 45.9 to 50.5 percent, sulphuris 2.7 percent and calorific value is 6944 k. cal/kg (DMR, 1985).2.8.4. Lumshn<strong>on</strong>gSeveral isolated exposures <str<strong>on</strong>g>of</str<strong>on</strong>g> coal have been recorded to the west and southwest <str<strong>on</strong>g>of</str<strong>on</strong>g> Lumshn<strong>on</strong>g(25°10'N and 92°23'E) over an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.6 km 2 . The estimated reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong> this field is 0.2milli<strong>on</strong> t<strong>on</strong>nes. The seam thickness varies from 0.3 to 0.6m (GSI, 1974). The coal seams <strong>in</strong> this areaare hard and lumpy and str<strong>on</strong>gly cok<strong>in</strong>g. The coal shows the moisture c<strong>on</strong>tent from 1.6 to 1.8 percent,ash from 3.2 to 3.8 percent, volatile matter from 30.8 to 45.5 percent, fixed carb<strong>on</strong> from 42.1 to 64.6percent and calorific value from 7250 to 8230 k. cal/kg (DMR, 1985).2.8.5. Malwar-Musiang-LamareExposure <str<strong>on</strong>g>of</str<strong>on</strong>g> coal have been recorded around Malwar (25°12'30''N and 92°24'00''E) and Musiang-Lamare (25°13'N and 92°21'E) villages over an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.3 km 2 . The total reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> coal is estimatedto be 1.1 milli<strong>on</strong> t<strong>on</strong>nes. The coal field <strong>in</strong>cludes a th<strong>in</strong>, <strong>in</strong>c<strong>on</strong>sistent coal seam, extremely variable <strong>in</strong>thickness rang<strong>in</strong>g from 0.3 to 1.6m (GSI, 1974). The coal shows the moisture c<strong>on</strong>tent from 0.6 to 3.6percent, ash from 1.3 to 21.2 percent, volatile matter from 32.6 to 40.0 percent and fixed carb<strong>on</strong> from42.1 to 60.4 percent (DMR, 1985). The coal seams <strong>in</strong> this area are hard and lumpy.2.8.6. SutngaSutnga coalfield is the eastern extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Bapung coalfield. The coal seams occur <strong>in</strong> the Shellaformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Paleocene age. The coal seams are <strong>in</strong>terbedded with shales and sandst<strong>on</strong>e. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> isfound <strong>in</strong> two seams, the top <strong>on</strong>e be<strong>in</strong>g <strong>on</strong>ly 0.1 to 0.2m and the bottom seam varies <strong>in</strong> thickness from0.3 to 0.6m and the vertical <strong>in</strong>terval between the two seams is 3 to 5m. The total reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> coal is 0.65milli<strong>on</strong> t<strong>on</strong>nes over an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.16 km 2 . The physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <str<strong>on</strong>g>of</str<strong>on</strong>g> this area is hard, lumpyand bright (GSI, 1974). The coal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sutnga coalfield shows the moisture c<strong>on</strong>tent from 1.3 to 7.0percent, ash from 2.2 to 9.7 percent, volatile matter from 32.9 to 42.8 percent and fixed carb<strong>on</strong> from49.9 to 53.2 percent (DMR, 1985).2.8.7. IoksiIoksi is located <strong>in</strong> the eastern part <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. The estimated reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong> this area is 1.3milli<strong>on</strong> t<strong>on</strong>es cover<strong>in</strong>g an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.6 km 2 . The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> seams varies from 0.5 to 0.9m. The coal <strong>in</strong>Ioksi area occurs <strong>in</strong> the Lower Sylhet sandst<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Eocene age. The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> coal deposits is beddedtype. The physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong> this area is hard, bright and jo<strong>in</strong>ted (GSI, 1974). The coal<str<strong>on</strong>g>of</str<strong>on</strong>g> Ioksi coalfield shows the moisture c<strong>on</strong>tent from 4.2 to 7.5 percent, ash from 6.0 to 18.1 percent,volatile matter from 33.0 to 43.4 percent and fixed carb<strong>on</strong> from 41.3 to 46.4 percent (DMR, 1985).2.8.8. ChyrmangAn outlier <str<strong>on</strong>g>of</str<strong>on</strong>g> the undifferentiated Sylhet sandst<strong>on</strong>e cover<strong>in</strong>g the Chyrmang (25°26'N and 92°25'E) area<strong>in</strong> the Ja<strong>in</strong>tai <strong>Hills</strong> exposes two th<strong>in</strong> seams <str<strong>on</strong>g>of</str<strong>on</strong>g> coal. The average thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the seam is 0.6m. Thecharacteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal is similar to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the Bapung coal field. The reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> coal is not fullyassessed (GSI, 1974).2.8.9. MutangMutang coal field is located <strong>in</strong> the southwest extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Malwar. The thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal seamvaries from 0.25 to 1.08m. The seam shows c<strong>on</strong>spicuous p<strong>in</strong>ch<strong>in</strong>g and swell<strong>in</strong>g.16


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA2.9. Present <strong>Study</strong> AreaAn area <str<strong>on</strong>g>of</str<strong>on</strong>g> about 420 km 2 <strong>in</strong> the core <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal m<strong>in</strong><strong>in</strong>g areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the district is selected for the presentstudy. The area is extended from 92°13'52''E and 92°25'16''E l<strong>on</strong>gitudes to 25°16'7''N and 25°27'28''Nlatitudes (Figure 2.4). The topography <str<strong>on</strong>g>of</str<strong>on</strong>g> the area is undulat<strong>in</strong>g and elevati<strong>on</strong> ranges from 700m to1400m (Figure 2.5). The area is dra<strong>in</strong>ed by Laphirawi river and its tributaries (Figure 2.6). The totalnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> settlement <str<strong>on</strong>g>of</str<strong>on</strong>g> different sizes covered under the study area was 45. The length total roadnetwork was 520 km (Figure 2.7).Figure 2.4: Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district.17


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 2.5: Digital elevati<strong>on</strong> model (m).18


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 2.6: Dra<strong>in</strong>age <strong>in</strong> the study area.19


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 2.7: Settlement and road network.20


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA3. Materials and Methods3.1. <strong>Study</strong> AreaThe Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya is bestowed with rich natural vegetati<strong>on</strong> as well as large reserve<str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>eral resources. Dur<strong>in</strong>g the last few decades, there have been phenomenal <strong>in</strong>creases <strong>in</strong> m<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>coal, limest<strong>on</strong>e, sillimanite and clay caus<strong>in</strong>g large-scale destructi<strong>on</strong>s and deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the naturalvegetati<strong>on</strong>. The district has been most extensively extracted <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> coal, am<strong>on</strong>g all districts <str<strong>on</strong>g>of</str<strong>on</strong>g> thestate. Excessive m<strong>in</strong><strong>in</strong>g operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong> many parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the district has been resp<strong>on</strong>sible for thec<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> orig<strong>in</strong>al lush green landscape <str<strong>on</strong>g>of</str<strong>on</strong>g> the area <strong>in</strong>to m<strong>in</strong>e spoils. The crude and unscientificmethod <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g adopted by the primitive operators <strong>in</strong> several parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the district has caused severeecosystem destructi<strong>on</strong>. Unc<strong>on</strong>trolled and unscientific m<strong>in</strong><strong>in</strong>g operati<strong>on</strong> with<strong>in</strong> the district has beendetrimental to the fragile ecosystem. It is <str<strong>on</strong>g>of</str<strong>on</strong>g> urgent need to understand the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g <strong>on</strong> thevegetati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the district for further management plan.For the present study an area <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 420 km 2 was del<strong>in</strong>eated <strong>in</strong> the core <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal m<strong>in</strong><strong>in</strong>gareas <str<strong>on</strong>g>of</str<strong>on</strong>g> the district (92°13'52''E to 92°25'16''E l<strong>on</strong>gitudes and 25°16'7''N and 25°27'28''N latitudes).Lad Rymbai (25°21'53.2''N and 92°19'15.8''E), the major centre for coal m<strong>in</strong><strong>in</strong>g was taken as thecentre <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area.3.2. MaterialsIRS Satellite data for four different years period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1975, 1987, 1999 and 2001 were used for temporalanalysis. The data used are Landsat MSS for 1975, Landsat TM for 1987, Landsat ETM+ for 1999and IRS-1D-LISS III data for 2001 (Figure 3.1, Figure 3.2, Figure 3.3, Figure 3.4).The ancillary data used for the study are topographic maps <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area, GSI map, GPS andCompass.The s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware used are ERDAS IMAGINE 8.7, ArcGIS, ILWIS 3.2 and MS Office.3.3. Research MethodsTo fulfil the objectives follow<strong>in</strong>g methods will be adopted:3.3.1. <strong>Study</strong> Initiati<strong>on</strong>Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> study area followed by literature review.3.3.2. Pre-Field WorkDel<strong>in</strong>eati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> study area followed by rec<strong>on</strong>naissance survey.3.3.3. Field and Post-Field WorkAnalysis and <strong>in</strong>terpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> four different years satellite data with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> remote sens<strong>in</strong>g andGIS.21


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 3.1: Landsat MSS FCC for the period 1975.22


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 3.2: Landsat TM FCC for the period 1987.23


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 3.3: Landsat ETM + FCC for the period 1999.24


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 3.4: IRS-1D LISS-III FCC for the period 2001.25


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA3.3.3.1. Radiometric Correcti<strong>on</strong>First order correcti<strong>on</strong>s were d<strong>on</strong>e by dark pixel subtracti<strong>on</strong> technique followed by Lilles and Kiefer(1999).3.3.3.2. Visual Interpretati<strong>on</strong><strong>Study</strong><strong>in</strong>g changes <strong>in</strong> land use pattern us<strong>in</strong>g remotely sensed data is based <strong>on</strong> the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thetime sequential data. Differences <strong>in</strong> surface phenomen<strong>on</strong> over time can be determ<strong>in</strong>ed and evaluatedby visual <strong>in</strong>terpretati<strong>on</strong> with local knowledge (Garg et al., 1988; SAC, 1999). For the present purposevisual <strong>in</strong>terpretati<strong>on</strong> technique was used for land use/ land cover mapp<strong>in</strong>g for four different yearsremote sens<strong>in</strong>g data <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area.3.3.3.3. Change AnalysisThe land use/ land cover maps <str<strong>on</strong>g>of</str<strong>on</strong>g> 1975, 1987, 1999 and 2001 were c<strong>on</strong>verted <strong>in</strong>to grid format us<strong>in</strong>gIntergraph MGE Grid Analyst. Maps <str<strong>on</strong>g>of</str<strong>on</strong>g> different time periods were overlaid to f<strong>in</strong>d changes. The<strong>in</strong>crease or decrease <strong>in</strong> different land use/ land cover is obta<strong>in</strong>ed by <strong>in</strong>tersect<strong>in</strong>g and generat<strong>in</strong>g thematrices <str<strong>on</strong>g>of</str<strong>on</strong>g> change-no change for different years.3.3.3.4. Forest Fragmentati<strong>on</strong> AnalysisIt was measured by calculat<strong>in</strong>g the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> forest patches occurr<strong>in</strong>g <strong>in</strong> a landscape with respect t<strong>on</strong><strong>on</strong>-forest patches. In the programme, Bio_CAP the area was reclassified <strong>in</strong>to three categories viz.,n<strong>on</strong>-forest, high fragmentati<strong>on</strong> and low fragmentati<strong>on</strong>.3.3.3.5. Phytosociological AnalysisThe community characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>in</strong> coal m<strong>in</strong><strong>in</strong>g areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalayawere studied dur<strong>in</strong>g the last week <str<strong>on</strong>g>of</str<strong>on</strong>g> October, 2004. To f<strong>in</strong>d out the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong>vegetati<strong>on</strong> distant gradient analysis was carried out. In this method, from the center <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area,i.e., Lad Rymbai, structure and compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> is observed <strong>in</strong> four different z<strong>on</strong>es. Theradius <str<strong>on</strong>g>of</str<strong>on</strong>g> the first circle i.e., z<strong>on</strong>e-I is 2 km. The distance from the periphery <str<strong>on</strong>g>of</str<strong>on</strong>g> the first circle to theperiphery <str<strong>on</strong>g>of</str<strong>on</strong>g> the sec<strong>on</strong>d circle is also 2 km and is c<strong>on</strong>sidered as z<strong>on</strong>e-II. Likewise, z<strong>on</strong>e-III and z<strong>on</strong>e-IV are del<strong>in</strong>eated (Figure 3.5). In each circle 24 sample plots each for tree, shrub and herbs were laid.Each sample plot was supported by 3 replicas. The total number <str<strong>on</strong>g>of</str<strong>on</strong>g> sample plots for tree, shrub andherbs came to 72 each <strong>in</strong> each z<strong>on</strong>e. The overall number <str<strong>on</strong>g>of</str<strong>on</strong>g> sample plots for tree, shrub and herbspecies was 288 each <strong>in</strong> the m<strong>in</strong><strong>in</strong>g areas, i.e., <strong>in</strong> all the four z<strong>on</strong>es. The vegetati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g>the m<strong>in</strong>ed areas were compared with that <str<strong>on</strong>g>of</str<strong>on</strong>g> an adjacent undisturbed forest, i.e., Tubre Sacred Grove.The total number <str<strong>on</strong>g>of</str<strong>on</strong>g> quadrats laid <strong>in</strong> the c<strong>on</strong>trol site was 10.For tree comp<strong>on</strong>ent a quadrat <str<strong>on</strong>g>of</str<strong>on</strong>g> 10m x 10m size was laid while for the shrub species it was 5m x 5m.For the herbaceous species the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the quadrat was 1m x 1m. The species found <strong>in</strong> the quadratswere identified with the help <str<strong>on</strong>g>of</str<strong>on</strong>g> the herbaria <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany Department, North-Eastern Hill University,Shill<strong>on</strong>g and Botanical Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India, North-Eastern Circle, Shill<strong>on</strong>g. The plants hav<strong>in</strong>g CBH>15cm was c<strong>on</strong>sidered as tree, stem diameter 5-15cm at basal level was c<strong>on</strong>sidered as shrubs and stemdiameter


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIANumber <str<strong>on</strong>g>of</str<strong>on</strong>g> quadrats <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> a speciesFrequency (%) = ------------------------------------------------------------ x 100Total number <str<strong>on</strong>g>of</str<strong>on</strong>g> quadrats studiedTotal number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividuals <str<strong>on</strong>g>of</str<strong>on</strong>g> a speciesDensity = ----------------------------------------------------Total number <str<strong>on</strong>g>of</str<strong>on</strong>g> quadrats studiedBasal cover = Density x average basal area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividuals <str<strong>on</strong>g>of</str<strong>on</strong>g> a speciesBasal area was calculated based <strong>on</strong> the measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> CHB at 1.37m heights.Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividuals <str<strong>on</strong>g>of</str<strong>on</strong>g> a speciesAbundance = -------------------------------------------------------------Number <str<strong>on</strong>g>of</str<strong>on</strong>g> quadrats <str<strong>on</strong>g>of</str<strong>on</strong>g> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> the speciesSimps<strong>on</strong> Dom<strong>in</strong>ance Index (1949) = (n i / N) 2where, n i = importance value <strong>in</strong>dexN = total importance value <str<strong>on</strong>g>of</str<strong>on</strong>g> all speciesThe distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> the species was studied by us<strong>in</strong>g Whitford’s <strong>in</strong>dex (Whitford 1948).Abundance (A)Whitford’ s <strong>in</strong>dex = ----------------------;Frequency (F)if A/F ratio:< 0.025 :Regular distributi<strong>on</strong>0.025 - 0.05 :Random distributi<strong>on</strong>> 0.05 :C<strong>on</strong>tagious or clumped distributi<strong>on</strong>Shann<strong>on</strong>-Weaver <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> general diversity was calculated by us<strong>in</strong>g the formulaH = - ∑ (n i / N) ln (n i / N)where, H = Shann<strong>on</strong>-Weaver <strong>in</strong>dexn i = importance value <strong>in</strong>dexN = total importance value <str<strong>on</strong>g>of</str<strong>on</strong>g> all species27


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA8 km6 km4 km1.1. 2 kmZ<strong>on</strong>e-IZ<strong>on</strong>e-IIZ<strong>on</strong>e-IIIZ<strong>on</strong>e-IVFigure 3.5: C<strong>on</strong>ceptual framework <str<strong>on</strong>g>of</str<strong>on</strong>g> different coal m<strong>in</strong>e impact z<strong>on</strong>es.Rec<strong>on</strong>naissance Survey and Collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sec<strong>on</strong>dary Informati<strong>on</strong>Interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Satellite data Generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spatial Database(1975, 1987, 1999 and 2001)Trend AnalysisPhytosociological AnalysisChange AnalysisM<strong>in</strong>ed AreaUnm<strong>in</strong>ed AreaFragmentati<strong>on</strong> Analysis<str<strong>on</strong>g>Impact</str<strong>on</strong>g> AnalysisC<strong>on</strong>clusi<strong>on</strong>Figure 3.6: Paradigm for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g impact <strong>on</strong> vegetati<strong>on</strong>.28


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA4. Results and Discussi<strong>on</strong>Ecosystem disturbance may be def<strong>in</strong>ed as an event or series <str<strong>on</strong>g>of</str<strong>on</strong>g> events that alters the relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g>organisms and their habitat <strong>in</strong> time and space. Ecosystem disturbance by m<strong>in</strong><strong>in</strong>g is an evitable fall out<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dustrializati<strong>on</strong> and modern civilizati<strong>on</strong>. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal both surface and subsurface causesenormous damage to the flora, fauna, hydrological relati<strong>on</strong>s and soil biological systems. Destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the vegetal cover dur<strong>in</strong>g m<strong>in</strong><strong>in</strong>g operati<strong>on</strong> is <strong>in</strong>variably accompanied by an extensive damage and lossto the system. The disturbed and haphazardly mixed <strong>in</strong>fertile, c<strong>on</strong>solidated and unc<strong>on</strong>solidatedmaterials overly<strong>in</strong>g the coal seams are known as overburdens. These overburdens when dumped <strong>in</strong>unm<strong>in</strong>ed areas <strong>in</strong> the vic<strong>in</strong>ity <str<strong>on</strong>g>of</str<strong>on</strong>g> the coal m<strong>in</strong>es create m<strong>in</strong>e spoils. Nutrient deficient sandy spoils aregenerally hostile to plant growth. The dump<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> spoils and coal destroys even the surround<strong>in</strong>gvegetati<strong>on</strong> and leads to severe soil and water polluti<strong>on</strong>. The Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya hasbeen extensively extracted <strong>in</strong> terms <str<strong>on</strong>g>of</str<strong>on</strong>g> coal. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> this, many parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the district has beenc<strong>on</strong>verted from lush green landscape <strong>in</strong>to m<strong>in</strong>e spoils. Large scale denudati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> forest cover, scarcity<str<strong>on</strong>g>of</str<strong>on</strong>g> water, polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> air, water and soil, and degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural lands are some <str<strong>on</strong>g>of</str<strong>on</strong>g> thec<strong>on</strong>spicuous envir<strong>on</strong>mental implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong>.A detailed understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> vegetati<strong>on</strong> and plant diversity <strong>on</strong> time andspace is pre-requisite for the district. Keep<strong>in</strong>g this objective <strong>in</strong> view, the first part <str<strong>on</strong>g>of</str<strong>on</strong>g> this chapter willdiscuss the plant community characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the area and the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> them hasbeen assessed by compar<strong>in</strong>g certa<strong>in</strong> community attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>ed areas with that <str<strong>on</strong>g>of</str<strong>on</strong>g> the adjacentum<strong>in</strong>ed area. The sec<strong>on</strong>d part will deal with temporal impact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g activities <strong>on</strong> vegetati<strong>on</strong>. Inorder to achieve this objective the land cover types <str<strong>on</strong>g>of</str<strong>on</strong>g> dense forest, open forest and m<strong>in</strong><strong>in</strong>g area weredel<strong>in</strong>eated. The area under crop, settlement and grassland/ n<strong>on</strong>-forest were also taken <strong>in</strong>toc<strong>on</strong>siderati<strong>on</strong> to know the trend due to the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g activities <strong>in</strong> different time periods.4.1. Community Characteristics4.1.1. Floristic Compositi<strong>on</strong>There were variati<strong>on</strong>s <strong>in</strong> the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <strong>in</strong> the m<strong>in</strong>ed and unm<strong>in</strong>ed areas. The tree speciesshowed a drastic reducti<strong>on</strong> <strong>in</strong> their number <strong>in</strong> all z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong><strong>in</strong>g sites (3-11) with that <str<strong>on</strong>g>of</str<strong>on</strong>g> theunm<strong>in</strong>ed sites (27). In the unm<strong>in</strong>ed site 27 tree species bel<strong>on</strong>g<strong>in</strong>g to 22 genera and 19 families wereregistered. Four (4) tree species bel<strong>on</strong>g<strong>in</strong>g to 4 genera and 4 families, 7 tree species bel<strong>on</strong>g<strong>in</strong>g to 7genera and 7 families, 3 tree species bel<strong>on</strong>g<strong>in</strong>g to 3 genera and 3 families, and 11tree speciesbel<strong>on</strong>g<strong>in</strong>g to 10 genera and 9 families were recorded <strong>in</strong> the m<strong>in</strong>ed areas <str<strong>on</strong>g>of</str<strong>on</strong>g> z<strong>on</strong>e-I, z<strong>on</strong>e-II, z<strong>on</strong>e-IIIand z<strong>on</strong>e-IV, respectively. It was apparent from the study that the number <str<strong>on</strong>g>of</str<strong>on</strong>g> tree species was more <strong>in</strong>the peripheral z<strong>on</strong>e than the <strong>in</strong>ner z<strong>on</strong>es. There was not much variati<strong>on</strong> <strong>in</strong> the number <strong>in</strong> first threez<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the area. The shrub species did not show much variati<strong>on</strong> <strong>in</strong> the unm<strong>in</strong>ed and all the z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g>the m<strong>in</strong>ed areas. In the unm<strong>in</strong>ed area, total 27 shrub species bel<strong>on</strong>g<strong>in</strong>g to 22 genera and 18 familieswere found. Shrubs were represented by 19, 25, 22 and 34 species from 18, 25, 23 and 33 genera, and13, 17, 16 and 21 families were recorded from z<strong>on</strong>e-I, z<strong>on</strong>e-II, z<strong>on</strong>e-III and z<strong>on</strong>e-IV, respectively.There was remarkable <strong>in</strong>crease <strong>in</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> herbaceous species <strong>in</strong> the m<strong>in</strong>ed areas. In theunm<strong>in</strong>ed area total number <str<strong>on</strong>g>of</str<strong>on</strong>g> ground species recorded were 23 bel<strong>on</strong>g<strong>in</strong>g to 21 genera and 15families. In the m<strong>in</strong>ed areas herbaceous layer was composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 39 species, 38 genera, 25 families <strong>in</strong>the z<strong>on</strong>e-I, 41 species bel<strong>on</strong>g<strong>in</strong>g to 41 genera and 26 families <strong>in</strong> the z<strong>on</strong>e-II, 40 species from 39 genera29


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAand 23 families <strong>in</strong> z<strong>on</strong>e-III, and 34 species bel<strong>on</strong>g<strong>in</strong>g to 33 genera and 21 families <strong>in</strong> z<strong>on</strong>e-IV (Table4.1).Table 4.1: Species, generic and family compositi<strong>on</strong>s <strong>in</strong> different z<strong>on</strong>esSpecies compositi<strong>on</strong> C<strong>on</strong>trol Z<strong>on</strong>e-I Z<strong>on</strong>e-II Z<strong>on</strong>e-III Z<strong>on</strong>e-IVTreesNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 27 4 7 3 11No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 24 4 7 3 10No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 19 4 7 3 9ShrubsNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 27 19 25 22 34No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 22 18 25 23 33No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 18 13 17 16 21HerbsNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 23 39 41 40 34No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 21 38 41 39 33No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 15 25 26 23 21S<strong>in</strong>ce the m<strong>in</strong>ed and unm<strong>in</strong>ed areas had similar climatic, edaphic and physiographic features thedifferences <strong>in</strong> species compositi<strong>on</strong> could be attributed to the m<strong>in</strong><strong>in</strong>g activities. This is <strong>in</strong> agreementwith the f<strong>in</strong>d<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> Das Gupta (1999), Baig (1992), Jha and S<strong>in</strong>gh (1990). Sarma (2002), whilestudy<strong>in</strong>g the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> the vegetati<strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the Nokrek Biosphere Reserve<str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya outl<strong>in</strong>ed that the compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> reduces <strong>in</strong> the m<strong>in</strong>ed areas with that <str<strong>on</strong>g>of</str<strong>on</strong>g> theadjacent unm<strong>in</strong>ed areas. Lyngdoh et al. (1992) reported less number <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong> the m<strong>in</strong>e spoils <str<strong>on</strong>g>of</str<strong>on</strong>g>different ages to that the unm<strong>in</strong>d sites. Ivers<strong>on</strong> and Wali (1982) observed an <strong>in</strong>crease <strong>in</strong> speciesrichness with age <strong>in</strong> reclaimed coal m<strong>in</strong>e spoils.4.1.2. DensityThe tree density <strong>in</strong> the m<strong>in</strong>ed areas ranged between 515 and 647 stems per ha while <strong>in</strong> the unm<strong>in</strong>edarea it was 1040 stems per ha. There was not much variati<strong>on</strong> <strong>in</strong> the shrub density but density <str<strong>on</strong>g>of</str<strong>on</strong>g>herbaceous species was remarkably higher <strong>in</strong> the m<strong>in</strong>ed areas (154-178 <strong>in</strong>dividual/m 2 ) than theunm<strong>in</strong>ed area (32 <strong>in</strong>dividual/m 2 ) (Table 4.2).The unm<strong>in</strong>ed area had greater plant density compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>ed areas because <str<strong>on</strong>g>of</str<strong>on</strong>g> the acidicpH, moisture stress and nutrient property <str<strong>on</strong>g>of</str<strong>on</strong>g> litter. Low grow form, sparse density and ability totolerate low nutrient levels and low moisture c<strong>on</strong>diti<strong>on</strong>s are probably the adaptati<strong>on</strong>s to the harshphysical nature <str<strong>on</strong>g>of</str<strong>on</strong>g> substrate. Low nutrient habitats are usually col<strong>on</strong>ized by species with low relativegrowth rates. These adaptati<strong>on</strong>s enable col<strong>on</strong>iz<strong>in</strong>g species to maximize the nutrient uptake and ensurehigh nutrient use efficiency <strong>in</strong> low nutrient envir<strong>on</strong>ments (Baig, 1992). Lyngdoh (1995), Das Gupta(1999) and Sarma’s (2002) works lend support to the present f<strong>in</strong>d<strong>in</strong>gs. Bradshaw and Chadwick(1980) work<strong>in</strong>g <strong>on</strong> the colliery spoils reported that the number <str<strong>on</strong>g>of</str<strong>on</strong>g> species col<strong>on</strong>iz<strong>in</strong>g <strong>on</strong> the m<strong>in</strong>edareas was <strong>in</strong>fluenced by its pH.30


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIATable 4.2: Stand density as affected by m<strong>in</strong><strong>in</strong>g <strong>in</strong> different z<strong>on</strong>esSpecies C<strong>on</strong>trol Z<strong>on</strong>e-I Z<strong>on</strong>e-II Z<strong>on</strong>e-III Z<strong>on</strong>e-IVTrees (<strong>in</strong>dividual/ha) 1040 561 515 603 647Shrubs (<strong>in</strong>dividual/m 2 ) 1 2 1 1 2Herbs (<strong>in</strong>dividual/m 2 ) 32 165 178 154 1574.1.3. Dom<strong>in</strong>ance PatternThe dom<strong>in</strong>ance were different for tree, shrub and herb comp<strong>on</strong>ent <strong>in</strong> m<strong>in</strong>ed and the unm<strong>in</strong>ed c<strong>on</strong>trolarea <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> importance value P<strong>in</strong>us kesiya (IVI: 243.97-280.27) was thedom<strong>in</strong>ant tree species <strong>in</strong> the m<strong>in</strong><strong>in</strong>g area and presented <strong>in</strong> all the z<strong>on</strong>es, which was followed by theSchima wallichii (IVI: 10.05-46.36). In the c<strong>on</strong>trol site Camelia caudata (IVI: 54.5), Castanopsispurpurella (IVI: 44.9) and Quercus griffithii (IVI: 30.7) were the dom<strong>in</strong>ant tree species.In the shrub layer, Eupatorium adenophorum (IVI: 22.78-53.74) and Melastoma nepalensis (IVI:23.36-48.86) were the two dom<strong>in</strong>ant species followed by Lantana camara (IVI: 23.93-49.44) <strong>in</strong>different z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong><strong>in</strong>g area. C<strong>on</strong>trol site was dom<strong>in</strong>ated by Psychotria erratica (IVI: 16.13),Cassia floribunda (IVI: 14.52), Shutaria vestida (IVI: 14.52), and Plectranthus striantus (IVI: 14.52).Am<strong>on</strong>g herbaceous species Paspalum orbiculare (IVI: 68.42-95.47) dom<strong>in</strong>ated all the z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> them<strong>in</strong><strong>in</strong>g area, which was followed by Isachne himalaica (IVI: 15.75-19.57). Globba clarkii (IVI:38.73), Selag<strong>in</strong>ella semicordata (IVI: 29.52) and Panicum brevifolium (IVI: 24.13) were the dom<strong>in</strong>antground species <strong>in</strong> the c<strong>on</strong>trol site (Table 4.3).The high importance value <str<strong>on</strong>g>of</str<strong>on</strong>g> P<strong>in</strong>us kesiya <strong>in</strong> m<strong>in</strong><strong>in</strong>g areas suggest<strong>in</strong>g its ability to grow <strong>in</strong> thedisturbed envir<strong>on</strong>ments and its dom<strong>in</strong>ance <strong>in</strong> the harsh c<strong>on</strong>diti<strong>on</strong>s. Higher importance value <str<strong>on</strong>g>of</str<strong>on</strong>g> Schimawallichii <strong>in</strong>dicates the degraded envir<strong>on</strong>ment. The higher importance value <str<strong>on</strong>g>of</str<strong>on</strong>g> Paspalum orbicularesuggests that it can multiply rapidly <strong>in</strong> the disturbed envir<strong>on</strong>ments. This perennial grass by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> itsstol<strong>on</strong> and root<strong>in</strong>g at each node can b<strong>in</strong>d the soil particles, mak<strong>in</strong>g the soil more stable. The dom<strong>in</strong>ance<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or two species expla<strong>in</strong> the low diversity and high dom<strong>in</strong>ance <strong>in</strong> the m<strong>in</strong>ed affected areas.Dom<strong>in</strong>ance-diversity curves have been used to <strong>in</strong>terpret the dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong> the community <strong>in</strong>relati<strong>on</strong> to resource apporti<strong>on</strong>ment and niche space (Whittaker, 1975). The curves (Figure 4.1, Figure4.2, Figure 4.3) <strong>in</strong> the unm<strong>in</strong>ed sites resemble the log normal suggest<strong>in</strong>g that there was more or less aneven apporti<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> resources am<strong>on</strong>g the members <str<strong>on</strong>g>of</str<strong>on</strong>g> the important species. The curves for them<strong>in</strong>ed sites resemble with broken-stick series model (Poole, 1974). This could be attributed to thelesser number <str<strong>on</strong>g>of</str<strong>on</strong>g> species occurr<strong>in</strong>g <strong>in</strong> these areas and also represent a stress envir<strong>on</strong>ment wherec<strong>on</strong>diti<strong>on</strong>s were not favourable for plant growth. Species diversity was low <strong>on</strong> these stands, but thespecies that grow here appear to have developed tolerance that enable them to grow <strong>in</strong> such anenvir<strong>on</strong>ment.31


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIATable 4.3: Plant species with higher importance value <strong>in</strong>dex <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areasSpecies C<strong>on</strong>trol Z<strong>on</strong>e-I Z<strong>on</strong>e-II Z<strong>on</strong>e-III Z<strong>on</strong>e-IVTreesP<strong>in</strong>us kesiya - 264.47 280.27 246.05 243.93Schima wallichii - - 10.05 46.36 18.91Persea odoratissima - 20.58 - - -Quercus griffithii 30.7 - - -Camelia caudata 54.5 - - -Castanopsis purpurella 44.9 - - - -ShrubsEupatorium adenophorum - 53.74 27.55 22.78 40.52Lantana camara - - 26.41 23.93 49.44Melastoma nepalensis - 25.28 48.86 37.86 23.36Rubus ellipticus - - 23.15 - -Rubus khasiana - 12.30 - 9.83 -Shutaria vestida 14.52 - - - -Cassia floribunda 14.52 - - - -Psychotria erratica 16.13 - - - -Plectranthus striantus 14.52 - - - -HerbsPaspalum orbiculare - 68.42 89.45 83.29 95.47Gnaphalium pensylvanium - - - - 9.05Plantago erosa - - - - 7.27Borreria sp. - - - 12.7 -Isachne himalaica - 15.75 16.29 19.57 -Ageratum c<strong>on</strong>yzoides - 10.44 - 11.68 -Borreria articularis - 9.97 - 14.47 -Selag<strong>in</strong>ella semicordata 29.52 - - - -Panicum brevifolium 24.13 - - - -Globba clarkii 38.73 - - - -32


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA10001000C<strong>on</strong>trolC<strong>on</strong>trol100Z<strong>on</strong>e-I100Z<strong>on</strong>e-IIImportance Value Index1011010.10 10 20 300.10 10 20 3010001000100C<strong>on</strong>trolZ<strong>on</strong>e-III100C<strong>on</strong>trolZ<strong>on</strong>e-IVImportance Value Index1011010.10 10 20 30Species Rank<strong>in</strong>g0.10 10 20 30Species Rank<strong>in</strong>gFigure 4.1: Dom<strong>in</strong>ance-diversity curves <str<strong>on</strong>g>of</str<strong>on</strong>g> trees <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas.33


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA100100C<strong>on</strong>trolZ<strong>on</strong>e-IC<strong>on</strong>trolZ<strong>on</strong>e-IIImportance Value Index1011010.10 10 20 30 400.10 10 20 30 40100100Importance Value IndexC<strong>on</strong>trolZ<strong>on</strong>e-III101C<strong>on</strong>trolZ<strong>on</strong>e-IV1010.10 10 20 30 40Species Rank<strong>in</strong>g0.10 10 20 30 40Species Rank<strong>in</strong>gFigure 4.2: Dom<strong>in</strong>ance-diversity curves <str<strong>on</strong>g>of</str<strong>on</strong>g> shrubs <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas.34


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA100C<strong>on</strong>trolZ<strong>on</strong>e-I100C<strong>on</strong>trolZ<strong>on</strong>e-IIImportance Value Index1011010.10 10 20 30 40 500.10 10 20 30 40 50100100C<strong>on</strong>trolZ<strong>on</strong>e-IIIC<strong>on</strong>trolZ<strong>on</strong>e-IVImportance Value Index1011010.10 10 20 30 40 50Species Rank<strong>in</strong>g0.10 10 20 30 40 50Species Rank<strong>in</strong>gFigure 4.3: Dom<strong>in</strong>ance-diversity curves <str<strong>on</strong>g>of</str<strong>on</strong>g> herbs <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas.35


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA4.1.4. Species DiversityShann<strong>on</strong>-Weaver diversity <strong>in</strong>dex for tree and shrub species were less <strong>in</strong> the m<strong>in</strong>ed areas as comparedto that <str<strong>on</strong>g>of</str<strong>on</strong>g> the unm<strong>in</strong>ed area. Diversity <strong>in</strong> tree species was drastically reduced <strong>in</strong> the m<strong>in</strong>ed areas. Therewere not much differences <strong>in</strong> the diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> ground vegetati<strong>on</strong> both <strong>in</strong> m<strong>in</strong>ed and unm<strong>in</strong>ed areas(Table 4.4). The diversity <strong>in</strong>dex for herbaceous species <strong>in</strong>creased with m<strong>in</strong><strong>in</strong>g suggest<strong>in</strong>g that m<strong>in</strong><strong>in</strong>goperati<strong>on</strong> enhanced the col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certa<strong>in</strong> species <strong>in</strong> the newly created habitats due to m<strong>in</strong><strong>in</strong>g.This is <strong>in</strong> agreement with the f<strong>in</strong>d<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> Lyngdoh (1995), Das Gupta (1999) and Sarma (2002).Table 4.4: Shann<strong>on</strong>-Weaver diversity <strong>in</strong>dex <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areasSpecies C<strong>on</strong>trol Z<strong>on</strong>e-I Z<strong>on</strong>e-II Z<strong>on</strong>e-III Z<strong>on</strong>e-IVTrees 2.8 0.47 0.34 0.54 0.85Shrubs 3.13 2.59 2.51 2.84 2.56Herbs 2.69 2.83 2.44 2.48 2.414.2. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Coal</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> Tree Populati<strong>on</strong> Structure4.2.1. Density-Diameter Distributi<strong>on</strong>The trees <str<strong>on</strong>g>of</str<strong>on</strong>g> medium girth class (55-95cm) dom<strong>in</strong>ated <strong>in</strong> the m<strong>in</strong>ed areas <strong>in</strong> all the z<strong>on</strong>es. In thec<strong>on</strong>trol site the trees with low girth class (15-35cm) had the maximum <strong>in</strong>dividuals (Figure 4.4).In the unm<strong>in</strong>ed site, it was found from the study that density <str<strong>on</strong>g>of</str<strong>on</strong>g> young and middle sized trees washigher than the older tree, <strong>in</strong>dicat<strong>in</strong>g stable tree populati<strong>on</strong> structure. Such a tree populati<strong>on</strong> structureis represented by a normal case and suggests that the forest is grow<strong>in</strong>g and would c<strong>on</strong>t<strong>in</strong>ue to exist.However, <strong>in</strong> the m<strong>in</strong>ed areas, the tree density <strong>in</strong> all the girth classes was extremely low and did notfollow any standard density diameter populati<strong>on</strong> curve (Rao et al., 1990). This has been due torampant and random clear<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> forest areas for m<strong>in</strong><strong>in</strong>g purpose that has led to drastic change <strong>in</strong> treepopulati<strong>on</strong> structure. Such a trend <strong>in</strong> populati<strong>on</strong> structure does not <strong>in</strong>dicate the c<strong>on</strong>t<strong>in</strong>ued existence <str<strong>on</strong>g>of</str<strong>on</strong>g>the forest.36


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA800800Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividuals/ ha700600500400300200Z<strong>on</strong>e-IC<strong>on</strong>trol700600500400300200Z<strong>on</strong>e-IIC<strong>on</strong>trol100100015-35 36-55 56-75 76-95 96-115116-135>135015-35 36-55 56-75 76-95 96-115116-135>135800800700Z<strong>on</strong>e-IIIC<strong>on</strong>trol700Z<strong>on</strong>e-IVC<strong>on</strong>trol600600Number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>dividuals/ ha500400300200500400300200100100015-35 36-55 56-75 76-95 96-115Girth-class (cm)116-135>135015-35 36-55 56-75 76-95 96-115Girth-class (cm)116-135>135Figure 4.4: Density-diameter distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> trees <strong>in</strong> different girth classes under c<strong>on</strong>trol andm<strong>in</strong>ed areas.37


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA4.2.2. Basal CoverThe basal area (m 2 ha -1 ) <strong>in</strong> both m<strong>in</strong>ed and unm<strong>in</strong>ed areas showed no trend and were almost equallydistributed. Comparatively low basal area <strong>in</strong> spite <str<strong>on</strong>g>of</str<strong>on</strong>g> high populati<strong>on</strong> density (<strong>in</strong>dividuals ha -1 ) <strong>in</strong> theunm<strong>in</strong>ed site attributed that the trees dom<strong>in</strong>ated were <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller <strong>in</strong> size (Figure 4.5). The higher basalarea <strong>in</strong> the m<strong>in</strong>ed areas though it had low density, could be attributed to the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> bigger treesand caus<strong>in</strong>g no damage to these trees dur<strong>in</strong>g m<strong>in</strong><strong>in</strong>g operati<strong>on</strong>s by the m<strong>in</strong>ers. This <strong>in</strong>dicates theremoval <str<strong>on</strong>g>of</str<strong>on</strong>g> younger trees dur<strong>in</strong>g m<strong>in</strong><strong>in</strong>g. Such a trend leads to the failure <str<strong>on</strong>g>of</str<strong>on</strong>g> the community to generateback naturally. Similar trend were also observed by Paijman (1970) <strong>in</strong> New Gu<strong>in</strong>ea, Newbery et al.(1992) <strong>in</strong> Malayasia and Parthasarathi and Karthikeyan (1997) <strong>in</strong> India for various disturbed foreststands.35Total basal area (m 2 ha -1 )302520151050C<strong>on</strong>trol Z<strong>on</strong>e-I Z<strong>on</strong>e-II Z<strong>on</strong>e-III Z<strong>on</strong>e-IV<strong>Study</strong> sitesFigure 4.5: Basal area <str<strong>on</strong>g>of</str<strong>on</strong>g> tree species <strong>in</strong> c<strong>on</strong>trol and m<strong>in</strong>ed areas.4.3. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Coal</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <strong>on</strong> Species Distributi<strong>on</strong> PatternPlant populati<strong>on</strong>s exhibit three patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial distributi<strong>on</strong>, viz., c<strong>on</strong>tagious or clumped, randomand regular or uniform. Patch<strong>in</strong>ess, or the degree to which <strong>in</strong>dividuals are aggregated or dispersed, iscrucial to the understand<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> how species uses resources, and how it is used as a resource. Besides,the distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> species populati<strong>on</strong> is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten related to its productive biology. Webb et al.(1967), Asht<strong>on</strong> (1972) and Aust<strong>in</strong> et al. (1972) <strong>in</strong>dicated that <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> major disturbance, soiland water c<strong>on</strong>diti<strong>on</strong>s play major roles <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g species distributi<strong>on</strong> pattern.In the unm<strong>in</strong>ed area most <str<strong>on</strong>g>of</str<strong>on</strong>g> the tree and shrub species showed c<strong>on</strong>tagious distributi<strong>on</strong> pattern (85 and89%). In the m<strong>in</strong>ed areas all the comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> the plant species represented c<strong>on</strong>tagious pattern <str<strong>on</strong>g>of</str<strong>on</strong>g>distributi<strong>on</strong> (Table 4.5). The c<strong>on</strong>tagious distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong>dicated the mosaicness <str<strong>on</strong>g>of</str<strong>on</strong>g> theforest stand. The c<strong>on</strong>tagious <str<strong>on</strong>g>of</str<strong>on</strong>g> the species suggests the <strong>in</strong>crease <strong>in</strong> fragmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the naturalvegetati<strong>on</strong> due to m<strong>in</strong><strong>in</strong>g. Similar species distributi<strong>on</strong> pattern was observed by Sarma (2002) <strong>in</strong> coalm<strong>in</strong><strong>in</strong>g areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Nokrek biosphere reserve <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya.38


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIATable 4.5: Proporti<strong>on</strong> (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> tree species under different distributi<strong>on</strong> pattern <strong>in</strong> c<strong>on</strong>troland m<strong>in</strong>ed areasSpecies C<strong>on</strong>trol Z<strong>on</strong>e-I Z<strong>on</strong>e-II Z<strong>on</strong>e-III Z<strong>on</strong>e-IVTreeRegular - - - - -Random 15 - - - -C<strong>on</strong>tagious or clumped 85 100 100 100 100ShrubRegular - - - - -Random 11 - - - -C<strong>on</strong>tagious or clumped 89 100 100 100 100HerbsRegular - - - - -Random - - - - -C<strong>on</strong>tagious or clumped 100 100 100 100 100Table 4.6: Overall community structure <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol and coal m<strong>in</strong>ed areasSpecies C<strong>on</strong>trol Z<strong>on</strong>e-I Z<strong>on</strong>e-II Z<strong>on</strong>e-III Z<strong>on</strong>e-IVTreesNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 27 4 7 3 11No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 24 4 7 3 10No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 19 4 7 3 9Density (<strong>in</strong>dividuals ha -1 ) 1040 561 515 603 647Basal area (m 2 ha -1 ) 21.94 26.36 29.38 20.06 32.61Shann<strong>on</strong>-Weaver diversity <strong>in</strong>dex 2.8 0.47 0.34 0.54 0.85Simps<strong>on</strong> dom<strong>in</strong>ance <strong>in</strong>dex 0.085 0.783 0.87 0.697 0.67ShrubsNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 27 19 25 22 34No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 22 18 25 23 33No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 18 13 17 16 21Density (<strong>in</strong>dividuals/m 2 ) 1 2 1 1 2Shann<strong>on</strong>-Weaver diversity <strong>in</strong>dex 3.13 2.59 2.51 2.84 2.56Simps<strong>on</strong> dom<strong>in</strong>ance <strong>in</strong>dex 0.049 0.113 0.12 0.08 0.13HerbsNo. <str<strong>on</strong>g>of</str<strong>on</strong>g> species 23 39 41 40 34No. <str<strong>on</strong>g>of</str<strong>on</strong>g> genera 21 38 41 39 33No. <str<strong>on</strong>g>of</str<strong>on</strong>g> family 15 25 26 23 21Density (<strong>in</strong>dividuals/m 2 ) 32 165 178 154 157Shann<strong>on</strong>-Weaver diversity <strong>in</strong>dex 2.69 2.83 2.44 2.48 2.41Simps<strong>on</strong> dom<strong>in</strong>ance <strong>in</strong>dex 0.097 0.138 0.22 0.198 0.2439


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIATable 4.7: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> trees,shrubs and herbs <strong>in</strong> c<strong>on</strong>trol standsTrees Family TI BA IVI A/FPithecellobium m<strong>on</strong>adelphum (Roxb.) Koster Mimosaceae 2 0.03 5.3 0.200Castanopsis tribuloides (Sm.) DC Fagaceae 2 0.21 13.2 0.200Diospyros kaki Thunb. Ebenaceae 2 0.02 4.6 0.200Rhus acum<strong>in</strong>ata DC. Anacardiaceae 3 0.04 8.3 0.075Quercus griffithii Hk.f&Th ex DC Fagaceae 7 0.32 30.7 0.028Schima wallichii (DC.)Korth Theaceae 1 0.00 3.0 0.100Eurya acum<strong>in</strong>ata DC. Theaceae 2 0.01 4.4 0.200Syzygium tetrag<strong>on</strong>um (Wt.) Kurz Myrtaceae 2 0.01 6.0 0.050Sap<strong>in</strong>dus rarak DC. Sap<strong>in</strong>daceae 1 0.01 3.4 0.100Podocarpus nerrifolia D.D<strong>on</strong>. Podocarpaceae 1 0.05 5.3 0.100Camellia caudata Wall. Theaceae 38 0.11 54.5 0.078Beilschmedia roxburghiana Nees Laraceae 3 0.21 14.4 0.300Castanopsis purpurella (Miq.) Balak. Fagaceae 8 0.61 44.9 0.032Styrax serrulatum Roxb. Styraceae 1 0.00 2.9 0.100C<strong>in</strong>namomum granduliflerum (Wall.) Meissn. Lauraceae 2 0.21 15.1 0.050Pyrularia edulies A. DC Santalaceae 2 0.02 4.6 0.200Ficus nerifolia J.E.Sm. Moraceae 1 0.05 4.9 0.100Schefflera hypoleucea (Kurz) Harms Araliaceae 1 0.00 3.0 0.100L<strong>in</strong>dera latifolia Hk.f. Lauraceae 6 0.06 16.0 0.038Lithocarpus elagans (Bl.) Hatus ex Soep Fagaceae 5 0.10 14.7 0.056Eurya cerasifolia (D.D<strong>on</strong>) Kobuski Theaceae 4 0.06 12.0 0.044C<str<strong>on</strong>g>of</str<strong>on</strong>g>fea khasiana Hook.f. Rubiaceae 4 0.01 9.9 0.044Itea macrophylla Wall Itaceae 1 0.00 3.0 0.100Picresema sp. Simaroubiaceae 1 0.02 3.7 0.100Citrus latipes (Sw<strong>in</strong>gle)Tanaka Rutaceae 2 0.01 6.0 0.050Ficus hirta var Roxb (Mig.) K<strong>in</strong>g Moraceae 1 0.00 3.0 0.100Dysoxylum gobara (Buch.-Ham) Merr. Meliaceae 1 0.01 3.2 0.100104 2.19 300Shrubs Family TI IVI A/FRubus ellipticus Smith Rosaceae 5 7.26 0.125Rubus khasiana Cordat. Rosaceae 3 5.65 0.075Embelia vestita Roxb. Myrs<strong>in</strong>aceae 4 6.45 0.100Viburnum foetidum Wall. Caprifoliaceae 8 12.90 0.050Cassia floribunda Cav. Fabaceae 10 14.52 0.063Shutaria vestida W. & A. Rubiaceae 10 14.52 0.063Psychortia erratica Hook.f. Rubiaceae 10 16.13 0.040Psychortria curviflora Wall. Rubiaceae 7 13.71 0.028Erythroxylum kunthianum Wall. Ex Kurz Erythroxylaceae 1 2.42 0.100Pr<strong>in</strong>sepia utilis Royle Rosaceae 3 5.65 0.075Jasm<strong>in</strong>ium dispermum Wall. Oleaceae 4 6.45 0.100Rubus assamensis Focke Rosaceae 1 2.42 0.100Rhynchotecum vestitum Wall. Ex Cl. Gesneriaceae 3 4.03 0.300Lasianthus sikkimensis Hook.f. Rubiaceae 5 8.87 0.056Polyg<strong>on</strong>um molle D.D<strong>on</strong> Polyg<strong>on</strong>aceae 6 9.68 0.067Ficus clavata Wall ex Miq. Moraceae 3 5.65 0.07540


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAMeasa <strong>in</strong>dica (Roxb.) Wall Myrs<strong>in</strong>aceae 4 6.45 0.100Lasianthus lucidus Bl. Rubiaceae 3 4.03 0.300Aralia thoms<strong>on</strong>ii Seem. Araliaceae 1 2.42 0.100Eu<strong>on</strong>ymus lows<strong>on</strong>ii Clarke & Pra<strong>in</strong> Celastraceae 4 6.45 0.100Corylopsis himalayana Griff. Hamamelidaceae 1 2.42 0.100Embelia subcoriaceae (Clarks) Mez. Myrs<strong>in</strong>aceae 1 2.42 0.100Breynia retusa (Dennst) Alst. Euphobiaceae 4 8.06 0.044Boehmeria sidaefolia Wedd. Urticaceae 4 4.84 0.400Solanum aculeatissimum Jacq. Solanaceae 2 3.23 0.200Plectranthus striatus Benth. Lamiaceae 10 14.52 0.063124 200Herbs Family TI IVI A/FLophatherum gracile Br<strong>on</strong>gn. Poaceae 15 9.12 0.375Isachne himalaica Hook.f. Poaceae 31 20.95 0.124Selag<strong>in</strong>ella semicordata (Wall ex. Hk.Et.Grev.) Selag<strong>in</strong>allaceae 44 29.52 0.090Hedychium ellepticum Smith Z<strong>in</strong>giberaceae 17 9.84 0.425Globba clarkii Baker. Z<strong>in</strong>giberaceae 73 38.73 0.149Beg<strong>on</strong>ia palmata D.D<strong>on</strong> Beg<strong>on</strong>iaceae 4 3.49 0.400Impatiens khasiana Hk..f. Balsam<strong>in</strong>aceae 6 6.35 0.150Impatiens banthamii V.Steenis Balsam<strong>in</strong>aceae 5 3.81 0.500Commel<strong>in</strong>a paludosca Bl. Commel<strong>in</strong>aceae 4 5.71 0.100Panicum brevifolium L. Poaceae 55 24.13 0.611Murdannia gigantean (Vahl.) Bruck. Commel<strong>in</strong>aceae 2 2.86 0.200Aeg<strong>in</strong>etia <strong>in</strong>dica L<strong>in</strong>n. Orobanchaceae 2 2.86 0.200Carex filic<strong>in</strong>a Nees. Cyperaceae 1 2.54 0.100Crassocephalum crepidioides (Benth.) Moore Asteraceae 1 2.54 0.100Achyrospermum wallichianum (Benth.) Hk.f. Lamiaceae 8 4.76 0.800Elatostema dissectum Wedd. Urticaceae 10 5.40 1.000Elsholtzia blanda (Benth.) Benth. Lamiaceae 12 6.03 1.200Arisaema tortuosum (Wall.) Schott. Araceae 1 2.54 0.100Dianella ensata (Thunb.) R.J.Handers<strong>on</strong> Liliaceae 1 2.54 0.100Cyanotis vaga (Lour.) J.A.&J.H.Schult. Commel<strong>in</strong>aceae 5 3.81 0.500Balanophora dioica R.Br. Balanophoraceae 8 4.76 0.800Murdannia nudiflora (L<strong>in</strong>n.) Brenan Commel<strong>in</strong>aceae 2 2.86 0.200S<strong>on</strong>erila khasiana Clarke Melastomaceae 8 4.76 0.800315 200TI= Total Individual IVI= Importance Value Index A= Abundance F=FrequencyTable 4.8: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> trees,shrubs and herbs <strong>in</strong> z<strong>on</strong>e-ITrees Family TI BA IVI A/FCamellia caudata Wall Theaceae 10 0.160 9.84 0.200P<strong>in</strong>us kesiya Royle. Ex Gord<strong>on</strong>. P<strong>in</strong>aceae 367 18.098 264.47 0.051Persea odoristimma (nees) Koster. Lauraceae 23 0.556 20.58 0.137Helecia nilagirica Bedd. Proteaceae 4 0.162 5.10 0.320404 18.98 30041


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAShrubs TI IVI A/FCircium sp. Asteraceae 112 9.62 0.180Clerodendrum wallichii Merr. Verbenaceae 61 8.90 0.070Eupatorium adenophorum Spreng Asteraceae 1185 53.74 0.440Urena lobata L<strong>in</strong>n. Malvaceae 65 6.88 0.160Ficus clavata Wall ex Miq. Moraceae 55 5.99 0.180Lasianthus lucidus Bl. Rubiaceae 80 6.60 0.290Lantana camara L<strong>in</strong>n. Verbenaceae 174 11.54 0.310L<strong>in</strong>dera caudata Benth. Lauraceae 61 5.39 0.310Melastoma nepalensis Lodd. Melastomaceae 410 25.28 0.180Plectranthus striatus Benth. Lamiaceae 76 5.92 0.380Padocarpus neriifolia D.D<strong>on</strong> Podocaraceae 38 3.77 0.344Persea duthei (K<strong>in</strong>g ex Hk.f) Koster. Lauraceae 82 8.56 0.130Rhus acum<strong>in</strong>ata DC. Anacardiaceae 22 4.28 0.090Rubus ellipticus Smith Rosaceae 20 2.59 0.290Rubus khasianas Cordat. Rosaceae 119 12.30 0.100Senecio cappa Buch.-Ham.ex D.D<strong>on</strong> Asteraceae 44 5.60 0.144Sida rhombilolia L<strong>in</strong>n. Malvaceae 133 11.44 0.150Solanum aculeatissimum Jacq. Solanaceae 52 5.88 0.170Symplocos pyrifolia Wall. Ex G.D<strong>on</strong> Symplocaceae 40 5.73 0.1002829 200Herbs Family TI IVI A/FAgeratum c<strong>on</strong>yzoides L<strong>in</strong>n. Asteraceae 370 10.44 0.130Borreria articularis (L.f) F.N. Williams Rubiaceae 390 9.97 0.166Bidens pilosa (Bl.) Sherff Asteraceae 154 5.59 0.150Breynia retusa (Dennst) Alst. Euphorbiaceae 31 2.17 0.160Centella asiatica (L<strong>in</strong>n.) Urban Apiaceae 250 5.13 0.50Commel<strong>in</strong>a paludosca Bl. Commel<strong>in</strong>aceae 213 5.77 0.250Crossouphalum sp. Asteraceae 30 1.69 0.270Crotalaria anagyroides HBK. Fabaceae 95 3.98 0.170Cyperus flavidus Tetz. Cyperaceae 79 3.53 0.180Emilia s<strong>on</strong>chifolia (L<strong>in</strong>n.) DC. Asteraceae 21 0.97 0.600Eupatorium adenophorum Spreng. Asteraceae 394 8.89 0.230Asplenium phyllitides D.D<strong>on</strong> Aspleniaceae 79 3.05 0.250Floscopa scandens Lour. Commel<strong>in</strong>aceae 11 1.05 0.220Gnaphalium pensylvanicum Willd. Asteraceae 43 2.75 0.140Hedera nepalensis K.Koch. Araliaceae 13 1.22 0.190Hedychium cocc<strong>in</strong>eum Smith Z<strong>in</strong>giberaceae 28 2.46 0.100Hodgs<strong>on</strong>ia macrocarpa (Bl.) Cogn. Cucurbitaceae 19 1.59 0.170Isachne himalaica Hook.f. Poaceae 1324 15.75 1.130Lobelia angulata Forst. Campanulaceae 38 2.39 0.160Lycopodium cernum L<strong>in</strong>n. Lycopodeaceae 45 2.61 0.170L<strong>in</strong>derbergia muraria (Roxb.) Bruhl Scrophulariaceae 23 1.95 0.144Melastoma nepalensis Lodd. Melastomaceae 14 0.91 0.44Oxalis anaphele<strong>in</strong> L. Oxalidaceae 70 4.09 0.100Oxalis corniculata L. Oxalidaceae 129 4.11 0.260Pouzolzia hirta (Bl.) Hassk. Urticaceae 14 0.60 1.120Paspalum orbiculare Forst. Poaceae 7283 68.42 2.590Persea duthei (K<strong>in</strong>g ex Hk.f.) Koster. Lauraceae 29 1.36 0.430Plantago erosa Wall. Plantag<strong>in</strong>aceae 109 3.62 0.27042


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAPolyg<strong>on</strong>um barbata L Polyg<strong>on</strong>aceae 30 2.00 0.180Potentilla fulgens Wall. Rosaceae 43 1.48 0.630Girard<strong>in</strong>ia palmate (Forsk) Gaud. Urticaceae 82 1.65 1.640Pratia beg<strong>on</strong>ifolia (Wall.) L<strong>in</strong>dl. Campanulaceae 26 1.17 0.520Rubus ellipticus Smith. Rosaceae 50 2.97 0.140Scutelleria discolor Benth. Lamiaceae 8 0.70 0.360Senecio cappa Buch.-Ham. Ex D.D<strong>on</strong> Asteraceae 10 1.04 0.200Smithia ciliata Royle Fabaceae 46 1.50 0.680Solanum aculeatissimum Jacq. Solanaceae 107 5.20 0.110Viola palmaris G<strong>in</strong>g. Violaceae 98 3.53 0.240Unidentified 91 2.68 0.46011889 200TI= Total Individual IVI= Importance Value Index A= Abundance F=FrequencyTable 4.9: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> trees,shrubs and herbs <strong>in</strong> z<strong>on</strong>e-IITrees Family TI BA IVI A/FP<strong>in</strong>us kesiya Royle. Ex Gord<strong>on</strong>. P<strong>in</strong>aceae 355 20.90 280.27 0.049Schima wallichii (DC.) Korth Theaceae 9 0.10 10.05 0.180Saurauria punduana Wall. Saurauiceae 1 0.01 1.49 0.720Rhus acum<strong>in</strong>ata DC. Anacardiaceae 1 0.07 1.80 0.720Exbucklandia populnea Hammamalidaceae 2 0.03 3.07 0.360Macaranga denticulate Muell.-Arg. Verbenaceae 2 0.04 1.91 1.440Helecia nilagirica Bedd. Proteaceae 1 0.01 1.47 0.720371 21.16 300Shrubs Family TI IVI A/FCastanopsis <strong>in</strong>dica A.Dc. Fagaceae 39 5.83 0.440Circium sp. Asteraceae 18 2.83 0.810Clerodendrum wallichii Merr. Verbenaceae 57 8.66 0.290Eupatorium adenophorum Spreng Asteraceae 271 27.55 0.290Eurya acum<strong>in</strong>ata DC. Theaceae 76 10.67 0.280Ficus clavata Wall ex Miq. Moraceae 1 0.50 0.720Lantana camara L<strong>in</strong>n. Verbenaceae 274 26.41 0.370L<strong>in</strong>dera caudata Benth. Lauraceae 7 1.29 1.260Macaranga denticulate Muell.-Arg. Verbenaceae 2 0.56 1.440Melastoma nepalensis Lodd. Melastomaceae 533 48.86 0.250Mah<strong>on</strong>ia pycnophylla (Fedde) Takeda Berberidaceae 10 2.35 0.450Nellia thyrsiflora D.D<strong>on</strong> Rosaceae 9 1.41 1.620Padocarpus neriifolia D.D<strong>on</strong> Podocaraceae 5 0.74 3.600Persea duthei (K<strong>in</strong>g ex Hk.f) Koster. Lauraceae 2 0.56 1.440Plectranthus striatus Benth. Lamiaceae 37 5.27 0.540Rhus acum<strong>in</strong>ata DC. Anacardiaceae 5 0.74 3.600Rubus ellipticus Smith Rosaceae 153 23.15 0.110Saurauia punduana Wall. Saurauiaceae 18 4.14 0.260Schima wallichii (DC.) Korth Theaceae 8 1.79 0.640Senecio cappa Buch.-Ham.ex D.D<strong>on</strong> Asteraceae 65 9.14 0.330Sida rhombilolia L<strong>in</strong>n. Malvaceae 24 4.06 0.480Smilax aspera L. Smilacaceae 11 1.97 0.880Solanum aculeatissimum Jacq. Solanaceae 20 3.82 0.400Symplocos spicata Roxb. Symplocaceae 24 5.38 0.21043


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAUrena lobata L<strong>in</strong>n. Malvaceae 9 2.29 0.4101678 200Herbs Family TI IVI A/FAgeratum c<strong>on</strong>yzoides L<strong>in</strong>n. Asteraceae 160 5.73 0.450Anaphalis adnata DC. Asteraceae 41 1.72 1.180Borreria articularis (L.f) F.N. Williams Rubiaceae 60 1.03 1.080Borreria sp. Rubiaceae 363 12.07 0.240Bidens pilosa (Bl.) Sherff Asteraceae 87 4.32 0.370Breynia retusa (Dennst) Alst. Euphorbiaceae 42 2.57 0.470Carytia jap<strong>on</strong>ica L. Vitaceae 3 0.30 2.160Centella asiatica (L<strong>in</strong>n.) Urban Apiaceae 64 4.14 0.270Commel<strong>in</strong>a paludosca Bl. Commel<strong>in</strong>aceae 199 7.43 0.320Crassocephalum sp. Asteraceae 55 3.23 0.400Crotalaria anagyroides HBK. Fabaceae 14 0.67 2.520Cyperus flavidus Tetz. Cyperaceae 71 3.63 0.420Drymaria cordata (L<strong>in</strong>n.) Roem. & Schult. Caryophyllaceae 178 4.75 0.890Emilia s<strong>on</strong>chifolia (L<strong>in</strong>n.) DC. Asteraceae 54 1.82 1.560Eriosaema himalaicum Ohashi Fabaceae 8 0.34 5.760Eupatorium adenophorum Spreng. Asteraceae 118 3.16 1.330Asplenium phyllitides D.D<strong>on</strong> Aspleniaceae 87 2.08 2.510Floscopa scandens Lour. Commel<strong>in</strong>aceae 1 0.29 0.720Gnaphalium pensylvanicum Willd. Asteraceae 100 4.42 0.430Hedera nepalensis K.Koch. Araliaceae 2 0.30 1.444Hedychium cocc<strong>in</strong>eum Smith Z<strong>in</strong>giberaceae 3 0.30 2.160Hedyotis tenelliflora Bl. Rubiaceae 10 0.36 7.200Hodgs<strong>on</strong>ia macrocarpa (Bl.) Cogn. Cucurbitaceae 13 0.94 1.040Isachne himalaica Hook.f. Poaceae 976 16.29 0.730Lantana camara L<strong>in</strong>n. Verbenaceae 2 0.30 1.440Melastoma nepalensis Lodd. Melastomataceae 289 5.61 1.450Nepenthus khasiana L Nepenthaceae 4 0.31 2.880Osbeckia capitala Benth. Melastomataceae 64 2.46 0.940Oxalis corniculata L. Oxalidaceae 33 1.38 1.490Pouzolzia hirta (Bl.) Hassk. Urticaceae 13 0.66 2.340Paspalum orbiculare Forst. Poaceae 9290 89.45 1.800Persea duthei (K<strong>in</strong>g ex Hk.f.) Koster. Lauraceae 8 0.34 5.760Plantago erosa Wall. Plantag<strong>in</strong>aceae 145 3.93 1.040Polyg<strong>on</strong>um barbata L Polyg<strong>on</strong>aceae 25 1.04 2.000Potentilla fulgens Wall. Rosaceae 69 2.50 1.010Pratia beg<strong>on</strong>ifolia (Wall.) L<strong>in</strong>dl. Campanulaceae 95 4.10 0.480Rubus sp. Rosaceae 7 0.61 1.260Senecio cappa Buch.-Ham. Ex D.D<strong>on</strong> Asteraceae 25 1.60 0.720Smithia ciliata Royle Fabaceae 21 0.72 3.780Solanum aculeatissimum Jacq. Solanaceae 5 0.32 3.600Viola palmaris G<strong>in</strong>g. Violaceae 30 2.75 0.27012834 200TI= Total Individual IVI= Importance Value Index A= Abundance F=Frequency44


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIATable 4.10: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g>trees, shrubs and herbs <strong>in</strong> the z<strong>on</strong>e-IIITrees Family TI BA IVI A/FP<strong>in</strong>us kesiya Royle. Ex Gord<strong>on</strong>. P<strong>in</strong>aceae 357 13.848 246.05 0.050Schima wallichii (DC.) Korth Theaceae 67 0.516 46.36 0.057Ligustrum robustum (Roxb.) Warb. Oleaceae 10 0.076 7.54 0.288434 14.44 300Shrubs Family TI IVI A/FCastanopsis <strong>in</strong>dica A.Dc. Fagaceae 46 7.70 0.070Clerodendrum wallichii Merr. Verbenaceae 59 7.59 0.120Datura strom<strong>on</strong>ium L<strong>in</strong>n. Solanaceae 17 3.06 0.150Eurya acum<strong>in</strong>ata DC. Theaceae 36 5.97 0.090Eupatorium adenophorum Spreng Asteraceae 345 22.78 0.430Ficus clavata Wall ex Miq. Moraceae 28 4.59 0.120Lasianthus lucidus Bl. Rubiaceae 79 8.07 0.200Ly<strong>on</strong>ia ovalifolia var. ovalifolia (Wall.) Drude Ericaceae 24 3.40 0.210Lantana camara L<strong>in</strong>n. Verbenaceae 333 23.93 0.250L<strong>in</strong>dera caudata Benth. Lauraceae 11 2.27 0.166Melastoma nepalensis Lodd. Melastomaceae 527 37.86 0.166Nellia thyrsiflora D.D<strong>on</strong> Rosaceae 20 2.96 0.230Padocarpus neriifolia D.D<strong>on</strong> Podocaraceae 13 2.87 0.120Persea duthei (K<strong>in</strong>g ex Hk.f) Koster. Lauraceae 20 3.70 0.120Plectranthus striatus Benth. Lamiaceae 43 6.07 0.120Rhus acum<strong>in</strong>ata DC. Anacardiaceae 29 4.39 0.150Rubus ellipticus Smith Rosaceae 76 7.92 0.190Rubus khasianas Cordat. Rosaceae 85 9.85 0.120Senecio cappa Buch.-Ham.ex D.D<strong>on</strong> Asteraceae 49 6.61 0.120Sida rhombilolia L<strong>in</strong>n. Malvaceae 21 3.01 0.240Schima wallichii (DC.) Korth Theaceae 42 5.52 0.150Solanum aculeatissimum Jacq. Solanaceae 41 4.98 0.210Symplocos spicata Roxb. Symplocaceae 27 5.04 0.090Urena lobata L<strong>in</strong>n. Malvaceae 79 9.81 0.1002050 200Herbs Family TI IVI A/FAgeratum c<strong>on</strong>yzoides L<strong>in</strong>n. Asteraceae 231 11.68 0.140Anaphalis adnata DC. Asteraceae 7 1.43 0.200A<strong>in</strong>sliaea latifolia (D.D<strong>on</strong>) Sch. Asteraceae 23 2.13 0.340Borreria articularis (L.f) F.N. Williams Rubiaceae 358 14.47 0.150Bidens pilosa (Bl.) Sherff Asteraceae 28 1.62 0.810Breynia retusa (Dennst) Alst. Euphorbiaceae 15 1.51 0.430Crotalaria anagyroides HBK. Fabaceae 14 0.95 1.122Centella asiatica (L<strong>in</strong>n.) Urban Apiaceae 44 2.86 0.390Commel<strong>in</strong>a paludosca Bl. Commel<strong>in</strong>aceae 146 7.35 0.222Crossouphalum sp. Asteraceae 25 2.14 0.370Cyperus flavidus Tetz. Cyperaceae 69 4.46 0.250Drymaria cordata (L<strong>in</strong>n.) Roem. & Schult. Caryophyllaceae 368 6.62 1.84045


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAEmilia s<strong>on</strong>chifolia (L<strong>in</strong>n.) DC. Asteraceae 1 0.28 0.720Eupatorium adenophorum Spreng. Asteraceae 2 0.57 0.360Asplenium phyllitides D.D<strong>on</strong> Aspleniaceae 93 3.86 0.550Floscopa scandens Lour. Commel<strong>in</strong>aceae 2 0.29 1.444Gnaphalium pensylvanicum Willd. Asteraceae 40 1.73 1.150Hedera nepalensis K.Koch. Araliaceae 2 0.29 1.444Impatiens khasiana Hk..f. Balsam<strong>in</strong>aceae 55 2.42 0.810Isachne himalaica Hook.f. Poaceae 1254 19.57 1.000Lophatherum gracile Br<strong>on</strong>gn. Poaceae 23 1.58 0.660Leucus ciliata L. Lamiaceae 23 1.30 1.040Lobelia angulata Forst. Campanulaceae 11 0.65 1.980Lycopodium cernum L<strong>in</strong>n. Lycopodiaceae 44 2.59 0.500Oxalis corniculata L. Oxalidaceae 34 1.13 2.720Polyg<strong>on</strong>um barbata L Polyg<strong>on</strong>aceae 7 0.61 1.260Pouzolzia hirta (Bl.) Hassk. Urticaceae 20 1.28 0.900Paspalum orbiculare Forst. Poaceae 7721 83.29 2.320Persea duthei (K<strong>in</strong>g ex Hk.f.) Koster. Lauraceae 3 0.58 0.540Plantago erosa Wall. Plantag<strong>in</strong>aceae 136 4.24 0.810Polyg<strong>on</strong>um viscosum D.D<strong>on</strong> Polyg<strong>on</strong>aceae 3 0.30 2.160Potentilla fulgens Wall. Rosaceae 8 0.62 1.444Pratia beg<strong>on</strong>ifolia (Wall.) L<strong>in</strong>dl. Campanulaceae 84 4.05 0.420Rubus sp. Rosaceae 13 0.94 1.040Scutelleria discolor Benth. Lamiaceae 11 1.47 0.320Senecio cappa Buch.-Ham. Ex D.D<strong>on</strong> Asteraceae 25 1.32 1.130Smithia ciliata Royle Fabaceae 53 3.77 0.270Solanum aculeatissimum Jacq. Solanaceae 31 1.92 0.620Viola palmaris G<strong>in</strong>g. Violaceae 7 0.34 5.040Unidentified 18 1.81 0.36011052 200TI= Total Individual IVI= Importance Value Index A= Abundance F=FrequencyTable 4.11: Density, basal area, importance value <strong>in</strong>dex and distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> trees, shrubsand herbs <strong>in</strong> the z<strong>on</strong>e-IVTrees Family TI BA IVI A/FP<strong>in</strong>us kesiya Royle. Ex Gord<strong>on</strong>. P<strong>in</strong>aceae 398 22.25 243.93 0.060Schima wallichii (DC.) Korth Theaceae 23 0.37 18.91 0.080Saurauria punduana Wall. Saurauiceae 21 0.50 11.06 0.610Rhus javanica L<strong>in</strong>n. Anacardiaceae 1 0.03 1.24 0.720Rhus acum<strong>in</strong>ata DC. Anacardiaceae 3 0.04 3.48 0.240Plangium ch<strong>in</strong>ensis L. Cornaceae 2 0.04 2.37 0.360Litsea citrata Bl. Lauraceae 4 0.05 4.60 0.180L<strong>in</strong>dera caudata Benth. Lauraceae 5 0.09 4.98 0.230Myrica esculanta Buch.-Ham. Ex D.D<strong>on</strong> Myricaceae 3 0.03 3.42 0.240Macaranga denticulate Muell.-Arg. Verbenaceae 3 0.04 2.57 0.540Helecia nilagirica Bedd. Proteaceae 3 0.04 3.47 0.240466 23.48 30046


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAShrubs Family TI IVI A/FCastanopsis <strong>in</strong>dica A.Dc. Fagaceae 15 1.60 1.200Circium sp. Asteraceae 32 6.24 0.120Clerodendrum wallichii Merr. Verbenaceae 14 2.31 0.400Datura strom<strong>on</strong>ium L<strong>in</strong>n. Solanaceae 14 1.94 0.633Elaegnus sp. Eleagnaceae 4 0.87 0.720Eupatorium adenophorum Spreng Asteraceae 920 40.52 0.740Eurya acum<strong>in</strong>ata DC. Theaceae 71 5.99 0.510Ficus clavata Wall ex Miq. Moraceae 1 0.41 0.720Lasianthus lucidus Bl. Rubiaceae 2 0.81 0.360Lantana camara L<strong>in</strong>n. Verbenaceae 1071 49.44 0.460Ly<strong>on</strong>ia ovalifolia var. ovalifolia (Wall.) Drude Ericaceae 18 2.07 0.810L<strong>in</strong>dera caudata Benth. Lauraceae 5 0.53 3.600Itea macrophylla Wall. Iteaceae 75 3.14 13.500Macaranga denticulate Muell.-Arg. Verbenaceae 18 2.07 0.810Melastoma nepalensis Lodd. Melastomaceae 370 23.36 0.280Nellia thyrsiflora D.D<strong>on</strong> Rosaceae 20 2.88 0.400Girard<strong>in</strong>ia palmata (Forsk) Gaud. Urticaceae 2 0.81 0.360Persea duthei (K<strong>in</strong>g ex Hk.f) Koster. Lauraceae 7 1.72 0.320Prunus acum<strong>in</strong>ata (Wall.) Dietr. Rosaceae 1 0.41 0.720Rhus acum<strong>in</strong>ata DC. Anacardiaceae 23 3.35 0.344Pr<strong>in</strong>sepia utilis Royle Rosaceae 4 0.87 0.720Rubus ellipticus Smith Rosaceae 4 0.87 0.720Rubus khasianas Cordat. Rosaceae 125 14.81 0.111Saurauia punduana Wall. Saurauiaceae 11 1.84 0.500Schima wallichii (DC.) Korth Theaceae 1 0.41 0.720Senecio cappa Buch.-Ham.ex D.D<strong>on</strong> Asteraceae 169 13.22 0.280Sida rhombilolia L<strong>in</strong>n. Malvaceae 1 0.41 0.720Smilax myrtillus DC. Smilacaceae 13 2.65 0.260Solanum aculeatissimum Jacq. Solanaceae 32 4.01 0.360Symplocos spicata Roxb. Symplocaceae 9 1.03 1.620Thysanolaena maxima (Roxb.) O. Ktze. Poaceae 30 2.08 2.400Triumfetta tomentosa Bojer Tiliaceae 10 0.69 7.200Urena lobata L<strong>in</strong>n. Malvaceae 20 2.13 0.900Wendlandia wallichii W.&A.Prodr. Rubiaceae 25 4.53 0.1803137 200Herbs Family TI IVI A/FAgeratum c<strong>on</strong>yzoides L<strong>in</strong>n. Asteraceae 132 6.00 0.560Anaphalis adnata DC. Asteraceae 61 3.14 0.900Borreria articularis (L.f) F.N. Williams Rubiaceae 49 2.67 0.980Barreria sp. Rubiaceae 95 4.93 0.570Bidens pilosa (Bl.) Sherff Asteraceae 139 4.95 1.000Breynia retusa (Dennst) Alst. Euphorbiaceae 43 2.24 1.240Centella asiatica (L<strong>in</strong>n.) Urban Apiaceae 31 2.13 0.890Commel<strong>in</strong>a paludosca Bl. Commel<strong>in</strong>aceae 118 6.62 0.380Crossouphalum sp. Asteraceae 76 4.39 0.550Cyperus flavidus Tetz. Cyperaceae 90 6.00 0.333Dicranopteris l<strong>in</strong>earis (Burm.f) Undewood Gleicheniaceae 20 0.92 3.600Drymaria cordata (L<strong>in</strong>n.) Roem. & Schult. Caryophyllaceae 72 2.50 2.070Emilia s<strong>on</strong>chifolia (L<strong>in</strong>n.) DC. Asteraceae 55 3.09 0.810Eupatorium adenophorum Spreng. Asteraceae 96 3.83 1.080Asplenium phyllitides D.D<strong>on</strong> Aspleniaceae 64 2.80 1.280Gnaphalium pensylvanicum Willd. Asteraceae 224 9.05 0.450Hedychium cocc<strong>in</strong>eum Smith Z<strong>in</strong>giberaceae 41 1.48 3.280Hedyotis tenelliflora Bl. Rubiaceae 45 1.14 8.10047


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAIsachne himalaica Hook.f. Poaceae 75 1.78 6.000Lobelia angulata Forst. Campanulaceae 10 1.20 0.800Elsholtzia blanda (Benth.) Benth. Lamiaceae 23 1.32 1.840Melastoma nepalensis Lodd. Melastomaceae 77 3.29 1.130Osbeckia capitala Benth. Melastomaceae 136 5.30 0.810Oxalis corniculata L. Oxalidaceae 55 3.46 0.620Paspalum orbiculare Forst. Poaceae 9125 95.47 4.320Plantago erosa Wall. Plantag<strong>in</strong>aceae 107 7.27 0.270Polyg<strong>on</strong>um barbata L Polyg<strong>on</strong>aceae 27 1.73 1.220Potentilla fulgens Wall. Rosaceae 19 0.91 3.420Pratia beg<strong>on</strong>ifolia (Wall.) L<strong>in</strong>dl. Campanulaceae 74 5.12 0.370Rubus sp. Rosaceae 7 0.81 1.260Smithia ciliata Royle Fabaceae 43 1.50 3.440Smilax aspera L. Smilacaceae 18 1.27 1.440Viola palmaris G<strong>in</strong>g. Violaceae 5 0.42 3.600Unidentified 21 1.30 1.68011273 200TI= Total Individual IVI= Importance Value Index A= Abundance F=Frequency48


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA4.4. Change Detecti<strong>on</strong>4.4.1. Land Use/ Land Cover Distributi<strong>on</strong> and ChangesIn order to put any change <strong>in</strong>to a proper perspective, it is useful to establish the state <str<strong>on</strong>g>of</str<strong>on</strong>g> theenvir<strong>on</strong>ment <strong>in</strong> the selected base year. The aerial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> each land use/ land cover class <strong>in</strong> thedifferent years i.e., 1975, 1987, 1999 and 2001 was analysed <strong>in</strong> order to get an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> changes <strong>in</strong>magnitude so as to justify the change analysis (Figure 4.6, Figure 4.7, Figure 4.8, Figure 4.9).It was found that most <str<strong>on</strong>g>of</str<strong>on</strong>g> the areas were dom<strong>in</strong>ated by grassland/ n<strong>on</strong>-forest (64.7 to 66.1 percent)dur<strong>in</strong>g the course <str<strong>on</strong>g>of</str<strong>on</strong>g> the study. The forest area covered about 25 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total area dur<strong>in</strong>g 1975.This had decreased to about 16 percent <strong>in</strong> the year 2001. The coal m<strong>in</strong><strong>in</strong>g areas occupied ac<strong>on</strong>siderable porti<strong>on</strong> that ranged between 3 to more than 10 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the area. The settlement arearanged between 4 and 7 percent and the crop area was found quite less (1.5-2.7 percent) (Table 4.12).Table 4.12: Area (km 2 ) under different land use/ land cover categories <strong>in</strong> different yearsYears <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> area Dense forestGrassland/N<strong>on</strong>-forest Open forest Settlement Cropped area1975 13.76 (3.26%) 95.12 (22.5%) 271.23 (64.65%) 11.69 (2.76%) 17.63 (4.17%) 11.21 (2.65%)1987 28.86 (6.78%) 65.04 (15.7%) 272.39 (64.71%) 24.16 (5.68%) 23.48 (5.52%) 6.57 (1.54%)1999 40.21 (9.05%) 51.64 (12.23%) 273.01 (66.07%) 18.95 (4.38%) 28.49 (6.75%) 6.88 (1.52%)2001 45.24 (10.75%) 51.52 (12.34%) 273.36 (64.98%) 14.12 (3.35%) 29.20 (6.94%) 6.83 (1.62%)Dur<strong>in</strong>g the entire study period there were changes <strong>in</strong> the land cover and land uses. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> was<strong>in</strong>itiated <strong>in</strong> the area <strong>in</strong> early 1970s. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> what lots <str<strong>on</strong>g>of</str<strong>on</strong>g> the area were c<strong>on</strong>verted <strong>in</strong>to m<strong>in</strong><strong>in</strong>gareas. The forests were mostly victimized due to m<strong>in</strong><strong>in</strong>g activity (13 to 45 km 2 ). There was gradualdecrease <str<strong>on</strong>g>of</str<strong>on</strong>g> forest both dense and open dur<strong>in</strong>g the course <str<strong>on</strong>g>of</str<strong>on</strong>g> time. The total forest area lost dur<strong>in</strong>g thestudy period was 40.53 km 2 , which was about 40 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total forest area. There was loss <str<strong>on</strong>g>of</str<strong>on</strong>g>43.5 km 2 dense forest area from the study area, which was 45.7 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total area under denseforest. There was <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.43 km 2 open forest area dur<strong>in</strong>g the study period. This was due to thec<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dense forest to the open forest (95 to 65 km 2 ). There were not much variati<strong>on</strong> <strong>in</strong>dense forest dur<strong>in</strong>g the year 1999 and 2001. But area under open forest had reduced dur<strong>in</strong>g this period(Figure 4.10).As the m<strong>in</strong><strong>in</strong>g operati<strong>on</strong> started, there was lots <str<strong>on</strong>g>of</str<strong>on</strong>g> demand <str<strong>on</strong>g>of</str<strong>on</strong>g> manpower to work <strong>in</strong> the coalfields.Development <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>frastructure started <strong>in</strong> this period (Figure 4.11). Dense forest areas were targetedto accommodate these facilities. Dur<strong>in</strong>g this period a c<strong>on</strong>siderable porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dense forest area werec<strong>on</strong>verted <strong>in</strong>to n<strong>on</strong>-forest like, settlement, roads and grasslands. Grasslands were outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> them<strong>in</strong><strong>in</strong>g. When extracti<strong>on</strong> and supply <str<strong>on</strong>g>of</str<strong>on</strong>g> coal was over the areas kept fallow. In course <str<strong>on</strong>g>of</str<strong>on</strong>g> time thoseareas were covered with grasses that could grow <strong>in</strong> the harsh edaphic c<strong>on</strong>diti<strong>on</strong>s. No other plantspecies could grow <strong>in</strong> that area and it became completely aband<strong>on</strong>ed (Figure 4.12). The local peoplealso <strong>in</strong>cl<strong>in</strong>ed towards the m<strong>in</strong><strong>in</strong>g activities and most <str<strong>on</strong>g>of</str<strong>on</strong>g> the agricultural fields were c<strong>on</strong>verted <strong>in</strong>tom<strong>in</strong><strong>in</strong>g areas. It was found that there was not much impact <strong>on</strong> the grassland and exist<strong>in</strong>g n<strong>on</strong>-forestareas <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> s<strong>in</strong>ce the m<strong>in</strong><strong>in</strong>g was <strong>in</strong>troduced.49


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.6: Land use/ land cover <strong>in</strong> 1975.50


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.7: Land use/ land cover <strong>in</strong> 1987.51


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.8: Land use/ land cover <strong>in</strong> 1999.52


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.9: Land use/ land cover <strong>in</strong> 2001.53


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAPrakash and Gupta (1998) studied the land use/ land cover changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Jharia coal field <str<strong>on</strong>g>of</str<strong>on</strong>g> India andc<strong>on</strong>cluded that there were gradual decrease and threat to the vegetati<strong>on</strong> present <strong>in</strong> the area wherem<strong>in</strong><strong>in</strong>g was prom<strong>in</strong>ent. Ghosh (1998) emphasized that due to the c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g activitiesthere were thorough change <strong>in</strong> the natural topography <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>.1000Area (km 2 )1001011975 1987 1999 2001Years<str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> area Dense forest Grassland/ N<strong>on</strong>-forestOpen forest Settlement Cropped areaFigure 4.10: Area under different land use/ land cover categories <strong>in</strong> different years.(a)(b)Figure 4.11: <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> operati<strong>on</strong> attracted people from far-flung areas. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> urbancentre (a) and hamlets (b) around m<strong>in</strong>es are the result <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g.(a)(b)Figure 4.12: Unsuccessful forest plantati<strong>on</strong>s were carried out by the Govt. Departments <strong>on</strong>the m<strong>in</strong>e spoils.54


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA4.4.2. Changes <strong>in</strong> different land use/ land cover categories from 1975 to 2001To understand the land use dynamics related to vegetati<strong>on</strong> and m<strong>in</strong><strong>in</strong>g, successive land cover changemaps <str<strong>on</strong>g>of</str<strong>on</strong>g> 1975 and 1987, 1987 and 1999 and 1999 and 2001 has been prepared. Seven classes <str<strong>on</strong>g>of</str<strong>on</strong>g>changes i.e., dense forest to open forest, dense forest to m<strong>in</strong><strong>in</strong>g, dense forest to n<strong>on</strong>-forest, open forestto m<strong>in</strong><strong>in</strong>g, open forest to n<strong>on</strong>-forest, no change and others are c<strong>on</strong>sidered (Figure 4.14, Figure 4.15,Figure 4.16).It was found from the change analysis that there was impact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g to different land uses, whichwere directly or <strong>in</strong>directly related to vegetati<strong>on</strong>. About 6 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> the dense forest <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area werechanged to the open forest dur<strong>in</strong>g 1975 to 1987. This rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change was not ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> theproceed<strong>in</strong>g years. More than 6 km 2 area <str<strong>on</strong>g>of</str<strong>on</strong>g> open forest c<strong>on</strong>verted <strong>in</strong>to n<strong>on</strong>-forest dur<strong>in</strong>g that period.The changes <str<strong>on</strong>g>of</str<strong>on</strong>g> about 25 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total area could tell how much stress was go<strong>in</strong>g <strong>on</strong> to thelandscape dur<strong>in</strong>g 12 years <str<strong>on</strong>g>of</str<strong>on</strong>g> time. Dur<strong>in</strong>g 1987 to 1999 changes occurred <strong>in</strong> about 20 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> thetotal area. About 4 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> the dense forest were c<strong>on</strong>verted <strong>in</strong>to open forest dur<strong>in</strong>g this period. Thechange <str<strong>on</strong>g>of</str<strong>on</strong>g> open forest area to the n<strong>on</strong>-forest recorded a c<strong>on</strong>siderable porti<strong>on</strong> (12.87 km 2 ). Dur<strong>in</strong>g theyears 1999 and 2001 about 7 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total area underg<strong>on</strong>e changes. Dur<strong>in</strong>g this period about 3percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the area were c<strong>on</strong>verted <strong>in</strong>to n<strong>on</strong>-forest either from dense forest or open forest (Table 4.13).The changes that occurred due to the direct or <strong>in</strong>direct impact <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g are represented <strong>in</strong> Figure 4.13.Prakash and Gupta (1998) while study<strong>in</strong>g the change analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the Jharia coal field found that therewere changes <strong>in</strong> different land uses. They c<strong>on</strong>cluded that there was general decrease <strong>in</strong> the vegetati<strong>on</strong>cover. But after the change detecti<strong>on</strong> analysis it was apparent that due to the <strong>in</strong>itiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> afforestati<strong>on</strong>activities there were <strong>in</strong>crease <strong>in</strong> the vegetati<strong>on</strong> cover <strong>in</strong> the study area. The classificati<strong>on</strong> d<strong>on</strong>e for thechange analysis for the study were open cast m<strong>in</strong><strong>in</strong>g, new plantati<strong>on</strong> level out area and area <str<strong>on</strong>g>of</str<strong>on</strong>g> nochange. Rathore and Wright (1993) emphasized that the m<strong>in</strong><strong>in</strong>g and changes were correlated to eachother.Table 4.13: Changes <strong>in</strong> land use/ land cover <strong>in</strong> different yearsChange type 1975-87 1987-99 1999-2001Dense to open Forest 5.92 (1.41%) 3.68 (0.88%) 0.86 (0.21%)Dense forest to m<strong>in</strong><strong>in</strong>g 0.61 (0.15%) 0.09 (0.02%) 0.06 (0.01%)Dense forest to n<strong>on</strong>-forest 29.35 (6.99%) 19.25 (4.58%) 4.64 (1.11%)Open forest to m<strong>in</strong><strong>in</strong>g 0.22 (0.05%) 0.41 (0.1%) 0.12 (0.03%)Open forest to n<strong>on</strong>-forest 6.53 (1.55%) 12.87 (3.07%) 5.51 (1.31%)No change 318.16 (75.75%) 335.81 (79.96%) 390.35 (92.94%)Others 59.19 (14.09%) 47.86 (11.4%) 18.46 (4.4%)Total 420 (100%) 420 (100%) 420 (100%)55


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA1000100Area (km 2 )1010.10.011975-87 1987-99 1999-2001YearsDense to open forestDense forest to n<strong>on</strong>-forestOpen forest to n<strong>on</strong>-forestOthersDense forest to m<strong>in</strong><strong>in</strong>gOpen forest to m<strong>in</strong><strong>in</strong>gNo changeFigure 4.13: Changes <strong>in</strong> different land use/ land cover categories <strong>in</strong> different years.56


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.14: Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> land use/ land cover from 1975 to 1987.57


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.15: Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> land use/ land cover from 1987 to 1999.58


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.16: Changes <str<strong>on</strong>g>of</str<strong>on</strong>g> land use/ land cover from 1999 to 2001.59


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA4.4.3. Forest Fragmentati<strong>on</strong>Forest fragmentati<strong>on</strong> occurs when large, c<strong>on</strong>t<strong>in</strong>uous forests are c<strong>on</strong>verted <strong>in</strong>to smaller blocks, either byroads, clear<strong>in</strong>g for agriculture, urbanizati<strong>on</strong>, or other human developments. The forest fragmentati<strong>on</strong>maps <str<strong>on</strong>g>of</str<strong>on</strong>g> four different years have been prepared for the present study to del<strong>in</strong>eate the areas, which areunder risk due to the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g. The degree <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentati<strong>on</strong> is classified as n<strong>on</strong>-forestarea, high fragmentati<strong>on</strong> area and low fragmentati<strong>on</strong> area (Figure 4.18, Figure 4.19, Figure 4.20,Figure 4.21).A c<strong>on</strong>siderable porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area were dom<strong>in</strong>ated by n<strong>on</strong>-forest (68.4-75 percent). It wasapparent from the maps that high fragmentati<strong>on</strong> areas were located close to the m<strong>in</strong>es. Dur<strong>in</strong>g the year1975 and 2001 more than 20 km 2 area <str<strong>on</strong>g>of</str<strong>on</strong>g> low fragmentati<strong>on</strong> were c<strong>on</strong>verted either to highlyfragmented or n<strong>on</strong>-forest areas. As expected there was <strong>in</strong>creas<strong>in</strong>g trend for the areas under highfragmentati<strong>on</strong>. In case <str<strong>on</strong>g>of</str<strong>on</strong>g> the year 1999 to 2001 there were loss <str<strong>on</strong>g>of</str<strong>on</strong>g> high fragmentati<strong>on</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> about 9km 2 and those areas were c<strong>on</strong>verted to the n<strong>on</strong>-forest area. More than 68 km 2 (16 percent) area wereidentified as the areas at risk. The area under n<strong>on</strong>-forest was more <strong>in</strong> 2001 than the past years (Table4.14). The areas under different fragmentati<strong>on</strong> classes are represented <strong>in</strong> Figure 4.17.Table 4.14: Area (km 2 ) and proporti<strong>on</strong> (%) <str<strong>on</strong>g>of</str<strong>on</strong>g> different fragmentati<strong>on</strong> classes <strong>in</strong> different years1975 1987 1999 2001Low fragmentati<strong>on</strong> 74.58 (17.76%) 56.49 (13.45%) 37.37 (8.90%) 36.92 (8.79%)High fragmentati<strong>on</strong> 57.05 (13.58%) 76.29 (18.17%) 77.44 (18.44%) 68.23 (16.24%)N<strong>on</strong>-forest 288.37 (68.66%) 287.22 (68.39%) 305.19 (72.66%) 314.85 (74.96%)Total 420 (100%) 420 (100%) 420 (100%) 420 (100%)350300250Area (km 2 )2001501005001975 1987 1999 2001YearsLow fragmentati<strong>on</strong> High fragmentati<strong>on</strong> N<strong>on</strong>-forestFigure 4.17: Areas under different fragmentati<strong>on</strong> classes <strong>in</strong> different years.60


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.18: Forest fragmentati<strong>on</strong> <strong>in</strong> 1975.61


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.19: Forest fragmentati<strong>on</strong> <strong>in</strong> 1987.62


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.20: Forest fragmentati<strong>on</strong> <strong>in</strong> 1999.63


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAFigure 4.21: Forest fragmentati<strong>on</strong> <strong>in</strong> 2001.64


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA5. General Discussi<strong>on</strong> andC<strong>on</strong>clusi<strong>on</strong>s5.1. Discussi<strong>on</strong> and C<strong>on</strong>clusi<strong>on</strong>sJa<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya has a total coal deposit <str<strong>on</strong>g>of</str<strong>on</strong>g> about 40 milli<strong>on</strong> t<strong>on</strong>nes. The district hasbeen most extensively exploited for coal. Although <strong>on</strong>ly 7 percent coal deposits are found <strong>in</strong> thedistrict, it c<strong>on</strong>tributes more than 74 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total coal producti<strong>on</strong> <strong>in</strong> Meghalaya. The coalfields<str<strong>on</strong>g>of</str<strong>on</strong>g> the Ja<strong>in</strong>tia <strong>Hills</strong> district are small and highly dispersed. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> is mostly found <strong>in</strong> Bapung, Lakad<strong>on</strong>g,Jara<strong>in</strong>-Shkentalang, Lumshn<strong>on</strong>g, Malwar-Musiang-Lamare, Sutnga, Ioksi, Chyrmang and Mutang.The unscientific extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong> unorganized sector is go<strong>in</strong>g <strong>on</strong> s<strong>in</strong>ce l<strong>on</strong>g and the area affectedby coal m<strong>in</strong><strong>in</strong>g is <strong>in</strong>creas<strong>in</strong>g day by day.Due to extensive coal m<strong>in</strong><strong>in</strong>g, large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the district have been turned <strong>in</strong>to degraded land, creat<strong>in</strong>gunfavourable habitat c<strong>on</strong>diti<strong>on</strong>s for plants and animals. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal has caused massive damage tothe landscape and biological communities. It was found that the number <str<strong>on</strong>g>of</str<strong>on</strong>g> tree and shrub speciesdecreased due to m<strong>in</strong><strong>in</strong>g. The unfavourable habitat c<strong>on</strong>diti<strong>on</strong>s prevail<strong>in</strong>g <strong>in</strong> the coal-m<strong>in</strong>ed areas havereduced the chances <str<strong>on</strong>g>of</str<strong>on</strong>g> regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many a species, thereby reduc<strong>in</strong>g the number <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong> them<strong>in</strong>ed areas. Although the number <str<strong>on</strong>g>of</str<strong>on</strong>g> trees and shrubs have decreased, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> herbaceousspecies col<strong>on</strong>iz<strong>in</strong>g the m<strong>in</strong>ed areas were found to be higher than <strong>in</strong> unm<strong>in</strong>ed areas. Similarobservati<strong>on</strong>s were made by several workers <strong>in</strong> the coal m<strong>in</strong><strong>in</strong>g areas <strong>in</strong> different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the world(Cornwell, 1971; Fyles et al., 1985; Game et al., 1982; S<strong>in</strong>gh and Jha, 1987; Jha and S<strong>in</strong>gh, 1990).The density <str<strong>on</strong>g>of</str<strong>on</strong>g> tree species decreased c<strong>on</strong>siderably <strong>in</strong> the m<strong>in</strong>ed areas. The density <str<strong>on</strong>g>of</str<strong>on</strong>g> the shrub speciesdid not vary much. Lyngdoh (1995) and Das Gupta (1999) <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong>, and Sarma (2002) <strong>in</strong> Garo<strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> the state had similar observati<strong>on</strong>s. This could be due to the better ability <str<strong>on</strong>g>of</str<strong>on</strong>g> herbs toadapt to the disturbed sites. Some herbaceous species <strong>in</strong>vaded the newly created habitats. Nepentheskhasiana was documented from the m<strong>in</strong>ed areas (Figure 5.1). Meghalaya is the <strong>on</strong>ly home for thisendangered species. Due to <strong>in</strong>discrim<strong>in</strong>ate m<strong>in</strong><strong>in</strong>g throughout the district this rare species is highlythreatened.Figure 5.1: The Nepenthes khasiana (pitcher plant), an endangered species, threateneddue to <strong>in</strong>discrim<strong>in</strong>ate m<strong>in</strong><strong>in</strong>g.65


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAThe Khasi p<strong>in</strong>e, P<strong>in</strong>us kesiya was the dom<strong>in</strong>ant tree species <strong>in</strong> the study area. The high importancevalue <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> P<strong>in</strong>us kesiya <strong>in</strong> m<strong>in</strong><strong>in</strong>g areas suggests its ability to grow <strong>in</strong> the disturbed envir<strong>on</strong>ments.The importance value <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> Schima wallichii was next to P<strong>in</strong>us kesiya, which <strong>in</strong>dicates thedegraded envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> the area. The dom<strong>in</strong>ant shrub species <strong>in</strong> the m<strong>in</strong>ed areas were Eupatoriumadenophorum, Melastoma nepalensis and Lantana camara. The dom<strong>in</strong>ant herbaceous species <strong>in</strong> them<strong>in</strong><strong>in</strong>g area was Paspalum orbiculare, which suggests that it can multiply rapidly <strong>in</strong> the disturbedenvir<strong>on</strong>ments. The characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> this perennial grass by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> its stol<strong>on</strong> and root<strong>in</strong>g at eachnode can b<strong>in</strong>d the soil particles, mak<strong>in</strong>g the soil more stable. This grass plays an important role <strong>in</strong> soilstabilizati<strong>on</strong>. This is <strong>in</strong> agreement with the f<strong>in</strong>d<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> Ries and H<str<strong>on</strong>g>of</str<strong>on</strong>g>man (1983), who observed thatperennial grasses were well-suited to grow <strong>on</strong> the m<strong>in</strong>e spoils.Dom<strong>in</strong>ance-diversity curves for the m<strong>in</strong>ed sites resembled with broken-stick series model. This couldbe attributed to the lesser number <str<strong>on</strong>g>of</str<strong>on</strong>g> species occurr<strong>in</strong>g <strong>in</strong> these stressed envir<strong>on</strong>ments where c<strong>on</strong>diti<strong>on</strong>sare not favourable for plant growth. Species diversity was low <strong>on</strong> these sites, but the species that growhere appear to have developed tolerance.Shann<strong>on</strong>-Weaver <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> diversity for tree species was much lower <strong>in</strong> the m<strong>in</strong>ed areas compre toc<strong>on</strong>trol. This suggests dom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e or two species <strong>in</strong> the m<strong>in</strong>ed area. The Shann<strong>on</strong>-Weaverdiversity <strong>in</strong>dex for the shrub species was lower <strong>in</strong> the m<strong>in</strong>ed areas than the c<strong>on</strong>trol. There were notmany differences <strong>in</strong> the diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> herbaceous vegetati<strong>on</strong> <strong>in</strong> both the areas. The diversity <strong>in</strong>dex forherbaceous species <strong>in</strong>creased with m<strong>in</strong><strong>in</strong>g proximities suggest<strong>in</strong>g that m<strong>in</strong><strong>in</strong>g operati<strong>on</strong> favouredcol<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> certa<strong>in</strong> species <strong>in</strong> the newly created habitats. Similar observati<strong>on</strong> was made byLyngdoh (1995), Das Gupta (1999) and Sarma (2002).The trees <str<strong>on</strong>g>of</str<strong>on</strong>g> medium girth class (55-95cm) dom<strong>in</strong>ated the m<strong>in</strong>ed areas. Unm<strong>in</strong>ed area had more<strong>in</strong>dividuals <str<strong>on</strong>g>of</str<strong>on</strong>g> lower girth class (15-35cm) even though trees <str<strong>on</strong>g>of</str<strong>on</strong>g> all girth classes were present <strong>in</strong> thearea. In unm<strong>in</strong>ed areas, it was found that density <str<strong>on</strong>g>of</str<strong>on</strong>g> smaller and middle sized trees was higher than theold trees. This <strong>in</strong>dicates a stable tree populati<strong>on</strong> structure. Such populati<strong>on</strong> structure is represented bya normal case and suggests that the forest is grow<strong>in</strong>g and would c<strong>on</strong>t<strong>in</strong>ue to exist. However, <strong>in</strong> them<strong>in</strong>ed areas, the tree density <strong>in</strong> all the girth classes was extremely low and did not follow any standarddensity diameter populati<strong>on</strong> curve. This has been due to rampant and random clear<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> forest areasfor m<strong>in</strong><strong>in</strong>g purpose that has led to drastic change <strong>in</strong> tree populati<strong>on</strong> structure. Such a trend <strong>in</strong>populati<strong>on</strong> structure does not <strong>in</strong>dicate the c<strong>on</strong>t<strong>in</strong>ued existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest.The basal area <strong>in</strong> the unm<strong>in</strong>ed areas was found lower than the m<strong>in</strong>ed area. This was due to thedom<strong>in</strong>ance <str<strong>on</strong>g>of</str<strong>on</strong>g> low girth class trees, which had regenerated <strong>in</strong> the unm<strong>in</strong>ed area. The higher basal area<strong>in</strong> the m<strong>in</strong>ed areas could be attributed to the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> bigger trees. Bigger trees are normally spareddur<strong>in</strong>g m<strong>in</strong><strong>in</strong>g operati<strong>on</strong>s by the m<strong>in</strong>ers. This <strong>in</strong>dicates the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> younger trees dur<strong>in</strong>g m<strong>in</strong><strong>in</strong>gactivities. Such a trend leads to the failure <str<strong>on</strong>g>of</str<strong>on</strong>g> the community to generate back. Paijman (1970) andParthasarathi and Karthikeyan (1997) made similar observati<strong>on</strong>s <strong>in</strong> New Gu<strong>in</strong>ea and India,respectively.In the unm<strong>in</strong>ed area both trees and shrubs showed c<strong>on</strong>tagious distributi<strong>on</strong> pattern. All species <strong>in</strong> them<strong>in</strong>ed areas showed c<strong>on</strong>tagious pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong>. The c<strong>on</strong>tagious distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> species<strong>in</strong>dicated the mosaiced structure <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest stand. The c<strong>on</strong>tagious <str<strong>on</strong>g>of</str<strong>on</strong>g> the species suggests the<strong>in</strong>crease <strong>in</strong> patch<strong>in</strong>ess <str<strong>on</strong>g>of</str<strong>on</strong>g> the natural vegetati<strong>on</strong> due to m<strong>in</strong><strong>in</strong>g. This is <strong>in</strong> agreement with the f<strong>in</strong>d<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g>66


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIARao et al. (1990), who observed that due to disturbance c<strong>on</strong>tagiousness <strong>in</strong>creased. Webb et al. (1967),Aust<strong>in</strong> et al. (1972) and Asht<strong>on</strong> (1972) <strong>in</strong>dicated that <strong>in</strong> the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> major disturbances, soil andwater c<strong>on</strong>diti<strong>on</strong>s play significant roles <strong>in</strong> c<strong>on</strong>troll<strong>in</strong>g such distributi<strong>on</strong> pattern.The m<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong>itiated <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya <strong>in</strong> the early 1970s. As the m<strong>in</strong><strong>in</strong>goperati<strong>on</strong> started, there was lots <str<strong>on</strong>g>of</str<strong>on</strong>g> demand <str<strong>on</strong>g>of</str<strong>on</strong>g> manpower to work <strong>in</strong> the coalfields. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> the<strong>in</strong>frastructure started <strong>in</strong> this period. Dense forest areas were targeted to accommodate these facilities.Dur<strong>in</strong>g this period a c<strong>on</strong>siderable porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dense forest were c<strong>on</strong>verted <strong>in</strong>to n<strong>on</strong>-forest like,settlement, roads and grassland. Grasslands were outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong><strong>in</strong>g. When extracti<strong>on</strong> and supply<str<strong>on</strong>g>of</str<strong>on</strong>g> coal was over the areas kept fallow. In course <str<strong>on</strong>g>of</str<strong>on</strong>g> time those areas were covered with grasses thatcould grow <strong>in</strong> the harsh edaphic c<strong>on</strong>diti<strong>on</strong>s. No other plant species could grow <strong>in</strong> that area and itbecame completely aband<strong>on</strong>ed. The local people also <strong>in</strong>cl<strong>in</strong>ed towards the m<strong>in</strong><strong>in</strong>g activities and most<str<strong>on</strong>g>of</str<strong>on</strong>g> the agricultural fields were c<strong>on</strong>verted <strong>in</strong>to m<strong>in</strong><strong>in</strong>g areas. The decrease <strong>in</strong> cropped area might also bedue to the loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrient <strong>in</strong> the soil as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the dump<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the waste materials <strong>in</strong> and around them<strong>in</strong><strong>in</strong>g. It was found that there was not much impact <strong>on</strong> the grassland and exist<strong>in</strong>g n<strong>on</strong>-forest areas <str<strong>on</strong>g>of</str<strong>on</strong>g>the regi<strong>on</strong> s<strong>in</strong>ce the m<strong>in</strong><strong>in</strong>g was <strong>in</strong>troduced. There was gradual decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> forest both dense and opendur<strong>in</strong>g the course <str<strong>on</strong>g>of</str<strong>on</strong>g> time. There was an <strong>in</strong>crease <strong>in</strong> the open forest dur<strong>in</strong>g 1975 and 1987. This wasdue to the c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dense forest <strong>in</strong>to the open forest. There were not much variati<strong>on</strong> <strong>in</strong> denseforest dur<strong>in</strong>g the year 1999 and 2001. But area under open forest had reduced dur<strong>in</strong>g this period.The study <strong>on</strong> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> land use changes have been carried out world wide (Kosterand Slob, 1994; Schejbal, 1995; Prakash and Gupta, 1998; Ghosh, 1998; Rathore and Wright, 1993).The change analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> different comp<strong>on</strong>ents showed that there was decrease <strong>in</strong> the change <str<strong>on</strong>g>of</str<strong>on</strong>g> denseforest to open forest as time passed, also dense forest to m<strong>in</strong><strong>in</strong>g. Dur<strong>in</strong>g the <strong>in</strong>itial stage m<strong>in</strong><strong>in</strong>g wascarried out mostly <strong>in</strong> the dense forest areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the state. These forest areas got fragmented and existedas the open forest. The c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dense forest <strong>in</strong>to n<strong>on</strong>-forest also showed the decreas<strong>in</strong>g trend.The reas<strong>on</strong> may be the same. There was gradual <strong>in</strong>crease <strong>in</strong> the change <str<strong>on</strong>g>of</str<strong>on</strong>g> open forest to m<strong>in</strong><strong>in</strong>g andn<strong>on</strong>-forest areas. This could be c<strong>on</strong>cluded that there was lots <str<strong>on</strong>g>of</str<strong>on</strong>g> impact <strong>on</strong> the open forest areas <strong>in</strong>recent years.The area under low fragmentati<strong>on</strong> decreased significantly as the time passed. The high fragmentati<strong>on</strong>area, which were the areas at risk <strong>in</strong>creased as the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g had <strong>in</strong>creased s<strong>in</strong>ce its<strong>in</strong>cepti<strong>on</strong>. More than 68 km 2 (16 percent) area were identified the areas at risk. The areas <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-forestalso <strong>in</strong>creased from the start<strong>in</strong>g. There was loss <str<strong>on</strong>g>of</str<strong>on</strong>g> about 9 km 2 area <str<strong>on</strong>g>of</str<strong>on</strong>g> high fragmentati<strong>on</strong> <strong>in</strong> threeyears period from 1999 to 2001 and was c<strong>on</strong>verted <strong>in</strong>to n<strong>on</strong>-forest area. Goretti (1998), Koster andSlob (1994) and Schejbal (1995) c<strong>on</strong>cluded that the vegetati<strong>on</strong> got lost due to the spread out <str<strong>on</strong>g>of</str<strong>on</strong>g> wastematerials haphazardly <strong>in</strong> the areas <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g, which were very unhealthy for its growth.5.2. Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Results and Discussi<strong>on</strong>In execut<strong>in</strong>g this study, the different vegetati<strong>on</strong> community characteristics, tree populati<strong>on</strong> structure,distributi<strong>on</strong> pattern, land use/ land cover distributi<strong>on</strong> and changes, change analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> different landuses related to forest and m<strong>in</strong><strong>in</strong>g and forest fragmentati<strong>on</strong> were analysed to achieve the objectives <str<strong>on</strong>g>of</str<strong>on</strong>g>the study. The result <str<strong>on</strong>g>of</str<strong>on</strong>g> the study shows that:• There were more or less same impact <strong>on</strong> the community characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> due tocoal m<strong>in</strong><strong>in</strong>g <strong>in</strong> the first three impact z<strong>on</strong>es. The impact was less <strong>in</strong> the fourth z<strong>on</strong>e.67


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIA• Number <str<strong>on</strong>g>of</str<strong>on</strong>g> tree and shrub species got reduced and herbaceous species <strong>in</strong>creased <strong>in</strong> number <strong>in</strong>the m<strong>in</strong>ed areas as compared to the unm<strong>in</strong>ed area.• P<strong>in</strong>us kesiya was dom<strong>in</strong>ant tree species followed by the Schima wallichii, Eupatoriumadenophorum, Melastoma nepalensis and Lantana camara. Paspalum orbiculare was thedom<strong>in</strong>ant herbaceous species <strong>in</strong> all the z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong>ed.• Dom<strong>in</strong>ance-diversity curves showed the broken stick model <strong>in</strong> the m<strong>in</strong>e areas.• Shann<strong>on</strong>-Weaver <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> diversity was low <strong>in</strong> all the z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g areas compared tounm<strong>in</strong>d area <strong>in</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> trees and shrubs. Herbaceous species had higher value <strong>in</strong> the m<strong>in</strong>edareas.• Dom<strong>in</strong>ance-diameter distributi<strong>on</strong> curves showed that most <str<strong>on</strong>g>of</str<strong>on</strong>g> the trees <strong>in</strong> the m<strong>in</strong>ed areas were<str<strong>on</strong>g>of</str<strong>on</strong>g> medium girth classes. Unm<strong>in</strong>ed area had more <strong>in</strong>dividuals <str<strong>on</strong>g>of</str<strong>on</strong>g> lower girth class even thoughtrees <str<strong>on</strong>g>of</str<strong>on</strong>g> all girth classes were present <strong>in</strong> the area.• Basal area found lesser <strong>in</strong> the unm<strong>in</strong>ed area as compared to the m<strong>in</strong>ed areas.• Distributi<strong>on</strong> pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> the vegetati<strong>on</strong> found was c<strong>on</strong>tagious <strong>in</strong> the m<strong>in</strong>ed area. In the unm<strong>in</strong>edarea also most <str<strong>on</strong>g>of</str<strong>on</strong>g> the species showed c<strong>on</strong>tagious pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong>.• There was loss <str<strong>on</strong>g>of</str<strong>on</strong>g> 40.5 km 2 (40 percent) <str<strong>on</strong>g>of</str<strong>on</strong>g> forest area <strong>in</strong> 26 years.• Dense forest lost about 48 percent.• Increase <strong>in</strong> the open forest areas.• Increase <strong>in</strong> m<strong>in</strong><strong>in</strong>g area from 13.76 km 2 to 45.24 km 2 . The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>crease was 1.2 km 2 peryear.• Settlement area <strong>in</strong>creased from 17.63 km 2 to 29.20 km 2 .• Cropped area reduced about 5 km 2 dur<strong>in</strong>g the period 1975 to 1987.• There were not much temporal changes <strong>in</strong> the grassland and n<strong>on</strong>-forest areas.• The trend <str<strong>on</strong>g>of</str<strong>on</strong>g> change from dense forest to open forest decreased.• Decrease <strong>in</strong> dense forest to m<strong>in</strong><strong>in</strong>g and n<strong>on</strong>-forest areas.• Increas<strong>in</strong>g trend <str<strong>on</strong>g>of</str<strong>on</strong>g> open forest to n<strong>on</strong>-forest, i.e., from 6.5 km 2 dur<strong>in</strong>g 1975 to 1987 to 5.5 km 2<strong>in</strong> three years dur<strong>in</strong>g 1999 to 2001.• Area under low fragmentati<strong>on</strong> decreased with time.• Area under n<strong>on</strong>-forest <strong>in</strong>creased with time.• More than 68 km 2 i.e., more than 16 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the total study area were under highfragmentati<strong>on</strong> and identified the areas as risk.• There was loss <str<strong>on</strong>g>of</str<strong>on</strong>g> about 9 km 2 high fragmentati<strong>on</strong> area <strong>in</strong> three year period from 1999 to 2001and was c<strong>on</strong>verted <strong>in</strong>to n<strong>on</strong>-forest area.5.3. Summary and Recommendati<strong>on</strong>sExtensive coal m<strong>in</strong><strong>in</strong>g has led to shr<strong>in</strong>k<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> land base and creati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a landscape dotted with m<strong>in</strong>espoils. The pitfalls <str<strong>on</strong>g>of</str<strong>on</strong>g> such activities are felt <strong>in</strong> the impairment <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>in</strong> these ecosystems. Thepresent study analyses the plant community characteristics <strong>in</strong> the m<strong>in</strong>e affected areas and impact <str<strong>on</strong>g>of</str<strong>on</strong>g>coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> vegetati<strong>on</strong> dur<strong>in</strong>g different periods <str<strong>on</strong>g>of</str<strong>on</strong>g> time.It was found that there were more or less same impact <strong>in</strong> the <strong>in</strong>ner z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> the m<strong>in</strong><strong>in</strong>g impact areasdel<strong>in</strong>eated for the present study. The impact was less <strong>in</strong> the outer most z<strong>on</strong>e. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal has causeddamage to the landscape and the biological communities <strong>in</strong> enormous ways. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> tree andshrub species drastically decreased <strong>in</strong> their number due to m<strong>in</strong><strong>in</strong>g. The unfavourable habitat c<strong>on</strong>diti<strong>on</strong>s68


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAprevail<strong>in</strong>g <strong>in</strong> the coal-m<strong>in</strong>ed areas has reduced the chances <str<strong>on</strong>g>of</str<strong>on</strong>g> regenerati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species, thereby,reduc<strong>in</strong>g the number <str<strong>on</strong>g>of</str<strong>on</strong>g> species <strong>in</strong> the m<strong>in</strong>ed areas. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> herbaceous species col<strong>on</strong>iz<strong>in</strong>g <strong>in</strong>the m<strong>in</strong>ed areas were found to be higher than <strong>in</strong> the unm<strong>in</strong>ed areas. Species like P<strong>in</strong>us kesiya, Schimawallichii, Persea odoratissima, Eupatorium adenophorum, Lantana camara, Melastoma nepalensis,Rubus ellipticus, Rubus khasiana, Paspalum orbiculare, Plantago erosa, Gnaphalium pensylvanium,Isachne himalaica, Ageratum c<strong>on</strong>yzoides, Borreria articularis dom<strong>in</strong>ate <strong>in</strong> m<strong>in</strong>ed areas and thesespecies can grow <strong>in</strong> the degraded envir<strong>on</strong>ment. The Shann<strong>on</strong>-Weaver <strong>in</strong>dex <str<strong>on</strong>g>of</str<strong>on</strong>g> diversity for trees andshrubs was lower <strong>in</strong> the m<strong>in</strong>ed areas. On the other hand, the diversity <strong>in</strong>dex for herbaceous species<strong>in</strong>creased with m<strong>in</strong><strong>in</strong>g proximities suggest<strong>in</strong>g that m<strong>in</strong><strong>in</strong>g operati<strong>on</strong> favoured col<strong>on</strong>iz<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> certa<strong>in</strong>species <strong>in</strong> newly created habitats.The m<strong>in</strong><strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> coal <strong>in</strong>itiated <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya <strong>in</strong> early 1970s. S<strong>in</strong>ce then the m<strong>in</strong><strong>in</strong>ghas been <strong>in</strong>creas<strong>in</strong>g and the area affected by coal m<strong>in</strong><strong>in</strong>g is <strong>in</strong>creas<strong>in</strong>g day by day. A c<strong>on</strong>siderableporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the forest area was c<strong>on</strong>verted <strong>in</strong>to n<strong>on</strong>-forest. The dense forest areas c<strong>on</strong>verted <strong>in</strong>to the openforests and there was gradual decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> these two forest types dur<strong>in</strong>g the course <str<strong>on</strong>g>of</str<strong>on</strong>g> time. The areaunder low risk i.e., low fragmentati<strong>on</strong> area, decreased significantly with time. The area under n<strong>on</strong>forest<strong>in</strong>creased with time. About 68 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area (16 percent) were identified as the areas atrisk. These high fragmentati<strong>on</strong> areas are located <strong>in</strong> the proximity to m<strong>in</strong><strong>in</strong>g.The present study revealed that coal m<strong>in</strong><strong>in</strong>g has adversely affected the vegetati<strong>on</strong> <strong>in</strong> the coal m<strong>in</strong><strong>in</strong>gareas <str<strong>on</strong>g>of</str<strong>on</strong>g> Ja<strong>in</strong>tia <strong>Hills</strong> district. Such habitats do not permit proper plant growth and development.The present study led to the c<strong>on</strong>clusi<strong>on</strong>s that phytosociological analysis can be used as important toolsfor predict<strong>in</strong>g the suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>e spoil habitats for the plant growth. The <strong>in</strong>formati<strong>on</strong> gathered <strong>on</strong>various aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> and col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants <strong>in</strong> m<strong>in</strong>ed areas would be helpful <strong>in</strong>revegetat<strong>in</strong>g the m<strong>in</strong>ed areas. The change analysis can be useful <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g out the change <str<strong>on</strong>g>of</str<strong>on</strong>g> trend <str<strong>on</strong>g>of</str<strong>on</strong>g>different land use/ land covers. To understand the land use dynamics related to vegetati<strong>on</strong> and m<strong>in</strong><strong>in</strong>gthis method can be applied. It helps to del<strong>in</strong>eate the vegetati<strong>on</strong> areas under risk due to m<strong>in</strong><strong>in</strong>gactivities.It is evident from the above discussi<strong>on</strong> that the m<strong>in</strong><strong>in</strong>g activities <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district is detrimentalto the vegetati<strong>on</strong> and general envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> the district. It is advisable that such activities have to bestrictly regulated to avoid further damage and scientific m<strong>in</strong><strong>in</strong>g has to be taken up <strong>in</strong> a proper mannerto m<strong>in</strong>imize the damage to the vegetati<strong>on</strong> as well as the envir<strong>on</strong>ment. Appropriate rehabilitati<strong>on</strong>measures us<strong>in</strong>g the plants that grow <strong>in</strong> the m<strong>in</strong>e areas need to be taken up <strong>in</strong> the m<strong>in</strong>e-affected areas.The f<strong>in</strong>d<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the study could be quite useful while formulat<strong>in</strong>g the Management Plan for the district.69


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAReferencesAn<strong>on</strong>. 1964. M<strong>in</strong>eral development <strong>in</strong> Assam (Symposium volume), Directorate <str<strong>on</strong>g>of</str<strong>on</strong>g> Geologyand <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g>. Government <str<strong>on</strong>g>of</str<strong>on</strong>g> Assam.An<strong>on</strong>, 1974. Geology and m<strong>in</strong>eral resources <strong>in</strong> the states <str<strong>on</strong>g>of</str<strong>on</strong>g> India. Geological Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India.Miscellaneous Publicati<strong>on</strong>. No.30. pp. 124.Asht<strong>on</strong>, P.S. 1972. The quarternery geomorphological history <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Malaysis andlowland forest phytogeography. Trans. Sec<strong>on</strong>d Aberdeen Hull Symp. MalaysianEcology. pp. 35-42.Aust<strong>in</strong>, M.P.; Asht<strong>on</strong>, P.S. Smith, P.G. (1972). The applicati<strong>on</strong> quantitative methods tovegetati<strong>on</strong> survey III. A re-exam<strong>in</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ra<strong>in</strong> forest data from Brunei. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Ecology. 60: 305-324.Baig, M.N. 1992. Natural revegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong>e spoils <strong>in</strong> the rocky mounta<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Albertaand significant for species selecti<strong>on</strong> <strong>in</strong> land restorati<strong>on</strong>. Mounta<strong>in</strong> Research andDevelopment. 12 (3): 285-300.Banerjee, S.P. 1981. Envir<strong>on</strong>mental problem due to m<strong>in</strong><strong>in</strong>g <strong>in</strong> Jharia coal field. In: Bandu, D.(ed.), Envir<strong>on</strong>mental Management. India Envir<strong>on</strong>ment Society. New Delhi.Bell, F.G.; Bullock, S.E.T.; Halbich, T.F.J. and L<strong>in</strong>dsey, P. 2001. Envir<strong>on</strong>mental impacts associatedwith an aband<strong>on</strong>ed m<strong>in</strong>e <strong>in</strong> the Witbank <str<strong>on</strong>g>Coal</str<strong>on</strong>g>field, South Africa. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Coal</str<strong>on</strong>g>Geology, 45, 195-216.Bell, T.J. and Ungar, I.A. 1981. Factor affect<strong>in</strong>g the establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> natural vegetati<strong>on</strong> <strong>on</strong> a coal stripm<strong>in</strong>e spoil bank <strong>in</strong> south eastern Ohio. American Midland Naturalist. 10519-31.Bo<strong>on</strong>e, R.B. and Galv<strong>in</strong>, K.A. 2000. Generaliz<strong>in</strong>g El N<strong>in</strong>o effects up<strong>on</strong> Maasai livestock us<strong>in</strong>ghierarchical clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> patterns. Photogrammetric Eng<strong>in</strong>eer<strong>in</strong>g & Remote Sens<strong>in</strong>g.66(6): 737-744.Bradshaw, A.D. and Chadwick, M.J. 1980. The Restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Land. Blackwell Scientific Publicati<strong>on</strong>.Oxford. England.Bradshaw, A.D.; Dancer, W.S.; Handley, J.F. and Sheld<strong>on</strong>, J.C. 1975. Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> landrevegetati<strong>on</strong> and reclamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ch<strong>in</strong>a-clay wastes. In: Chadwick, M.J. and Goodman,G.T. (eds.), The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Resource degradati<strong>on</strong> and renewal. Blackwell ScientificPublicati<strong>on</strong>. Oxford, England. pp. 363-384.Bradshaw, A.D.; Goode, A.D and Thorpe, E.H.P. 1986. Ecology and design <strong>in</strong> landscape. 24 thSymposium <str<strong>on</strong>g>of</str<strong>on</strong>g> the British Ecological Society. Blackwell Scientific Publicati<strong>on</strong>s.Oxford. England.Brenner, F.F.; Brenner, E.K.; Brenner, P.E. and Ste<strong>in</strong>er, R.P. 1994. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> proceduresto estimate biomass <strong>on</strong> surface coal m<strong>in</strong>e lands reclaimed under the surface-m<strong>in</strong><strong>in</strong>gc<strong>on</strong>trol and reclamati<strong>on</strong> act <str<strong>on</strong>g>of</str<strong>on</strong>g> 1970. Envir<strong>on</strong>mental Management. 18, 307-315.Brown, C.J. and Dey, A.K. 1975. The m<strong>in</strong>eral and nuclear fuels <str<strong>on</strong>g>of</str<strong>on</strong>g> the India subc<strong>on</strong>t<strong>in</strong>ent andBurma. Oxford University Press. Delhi. pp. 1-170Bullet<strong>in</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India. 1969.Chadwick, K.J. 1973. Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> acid colliery spoils as a medium for plantgrowth. In: Hutnik, R.J. and Davis, G. (eds.), Ecology and reclamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> devastatedland. Vol. I. Gord<strong>on</strong> and Breach. New York. pp. 81-91.Chadwick, M. J.; Hight<strong>on</strong>, N. H. and L<strong>in</strong>dman, N. 1987. Envir<strong>on</strong>mental <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Coal</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> andUtilizati<strong>on</strong>. Pergam<strong>on</strong> Press. Oxford.Chaudhury, A. B. 1992. M<strong>in</strong>e Envir<strong>on</strong>ment and Management (An Indian Scenerio). Ashish Publish<strong>in</strong>gHouse. New Delhi.70


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAChen, D. and Brutsaert, W. 1998. Satellite sensed distributi<strong>on</strong> and spatial patterns <str<strong>on</strong>g>of</str<strong>on</strong>g>vegetati<strong>on</strong> parameters over a tall grass prairie. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> the Atmospheric Sciences.55(7): 1225-1238.Clarke, R.K. and Clarke, S.C. 1981. Floristic diversity <strong>in</strong> relati<strong>on</strong> to soil characteristics <strong>in</strong> alead m<strong>in</strong><strong>in</strong>g complex <strong>in</strong> the Penn<strong>in</strong>es, England. New Phytol. 87, 799-815.CIL. 1997. Report <str<strong>on</strong>g>of</str<strong>on</strong>g> the Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Coal</str<strong>on</strong>g>. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> India Limited .Cornwell, S.M. 1971. Anthracite m<strong>in</strong><strong>in</strong>g spoils <strong>in</strong> Pennsylvania. I. Spoil classificati<strong>on</strong> andplant cover studies. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology. 8:401-409.Costigan, P.A; Brdshaw, A.D. and Gemmel, R.P. 1981. The reclamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> acidic collieryspoils. I. Acid producti<strong>on</strong> potential. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology. 18: 865-878.Dadhwal, K.S. 1999. Rehabilitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> limest<strong>on</strong>e m<strong>in</strong>e spoils with reference to agr<str<strong>on</strong>g>of</str<strong>on</strong>g>orestry.Indian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<str<strong>on</strong>g>of</str<strong>on</strong>g>orestry. 1, 141-148.Dancer, W.S.; Handley, J.F. and Bradshaw, A.D. 1977. Nitrogen accumulati<strong>on</strong> <strong>in</strong> kaol<strong>in</strong>m<strong>in</strong><strong>in</strong>g wastes <strong>in</strong> Cornwall. II. Forage Legumes. Plant and Soil. 48, 303-314.Das Gupta, S. 1999. Studies <strong>on</strong> vegetal and microbiological processes <strong>in</strong> coal m<strong>in</strong><strong>in</strong>g affectedareas. Ph.D. Thesis. North_Eastern Hill University, Shill<strong>on</strong>g. India.Das Gupta, S.; Tiwari, B.K. and Tripathi, R.S. 2002. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong>, Meghalaya:An Ecological perspective. In: Passah, P.M. and Sarma, A.K. (eds.), Ja<strong>in</strong>tia Hiils, AMeghalaya Tribe: Its Envir<strong>on</strong>ment, Land and People. Reliance Publish<strong>in</strong>g House.New Delhi. pp. 121-128.Directorate <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>in</strong>eral Resource. 1992. Cottage coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> the state <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya and itsimpact <strong>on</strong> the envir<strong>on</strong>ment. In Gupta, A and Dhar, D.C. (eds.), Envir<strong>on</strong>mentC<strong>on</strong>servati<strong>on</strong> and Wasteland Development <strong>in</strong> Meghalaya. Meghalaya Science Society.Shill<strong>on</strong>g. India.Directorate <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>in</strong>eral Resources. 1985. Technical report <str<strong>on</strong>g>of</str<strong>on</strong>g> the Directorate <str<strong>on</strong>g>of</str<strong>on</strong>g> M<strong>in</strong>eralResources. Government <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya. Shill<strong>on</strong>g. Meghalaya.Dkhar, A. 2002. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> micro-landforms <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> district, Meghalya.M. Phil. Dissertati<strong>on</strong>. North_Eastern Hill University, Shill<strong>on</strong>g. IndiaDoerr, A and Guernsely, L. 1956. Man as a geomorphological agent: an example <str<strong>on</strong>g>of</str<strong>on</strong>g> coalm<strong>in</strong><strong>in</strong>g. Ann. Assoc. Amer. Geog. Vol. 46. pp. 197-210.Down, C.G. 1974. The relati<strong>on</strong>ship between colliery waste particle sizes and plant growth.Envir<strong>on</strong>mental C<strong>on</strong>servati<strong>on</strong>. 1:29-40.Freitas, H.; Prasad, M.N.V. and Prtas, J. 2004. Plant community tolerant to trace elementsgrow<strong>in</strong>g <strong>on</strong> the degraded soils <str<strong>on</strong>g>of</str<strong>on</strong>g> Sao Dom<strong>in</strong>gos m<strong>in</strong>e <strong>in</strong> the south east <str<strong>on</strong>g>of</str<strong>on</strong>g> Portugal:envir<strong>on</strong>mental implicati<strong>on</strong>s. Envir<strong>on</strong>ment Internati<strong>on</strong>al. 30, 65-72.Fyles, F.W.; Fyles, I.H. and Bell, M.A.M. 1985. Vegetati<strong>on</strong> and soil development <strong>on</strong> coalm<strong>in</strong>e spoil at high elevati<strong>on</strong> <strong>in</strong> the Canadian Rockies. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology. 22:239-248.Game, M.J.; Carrel, E. and Hotrabhavandra, T. 1982. Patch dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> plant successi<strong>on</strong> <strong>on</strong>aband<strong>on</strong>ed surface coal m<strong>in</strong>es: A case history approach. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology.Garg, J. K.; Narayan, A. and Basu, A. 1988. M<strong>on</strong>itor<strong>in</strong>g envir<strong>on</strong>mental changes overKudremukh ir<strong>on</strong> ore m<strong>in</strong><strong>in</strong>g areea, India us<strong>in</strong>g remote sens<strong>in</strong>g technique. Proceed<strong>in</strong>gs<str<strong>on</strong>g>of</str<strong>on</strong>g> the Indo-British workshop <strong>on</strong> remote Sens<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment <strong>in</strong> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> field. ISM.Dhanbad. pp. 41-47.Geological Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India. 1974. Miscellaneous publicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Geological Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India.Vol. 3. Government <str<strong>on</strong>g>of</str<strong>on</strong>g> India. pp. 69-91.Ghosh, R., 1989, <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> <strong>in</strong> Jharia coal field, Eastern India: An estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its impact <strong>in</strong>dex.Journal Geological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> India. 33, 353-360.71


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAGoodman, G.T. and Gemmel, R.P. 1978. The ma<strong>in</strong>tenance <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland <strong>on</strong> smelter wastes <strong>in</strong>the lower Swansea Valley. II. Copper smelter waste. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology. 15,875-883Goretti, K. K. M. 1998. The envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> underground coal m<strong>in</strong><strong>in</strong>g and landcover changes analysis us<strong>in</strong>g multi-temporal remotely sensed data and GIS.Unpublished M. Sc. Thesis. Internati<strong>on</strong>al Institute Aerospace Surveys and EarthSciences (ITC). Enschede. The Netherlands.Graham, D.F.; St-Arnand, E.L. and Rencz, A.N. 1994. Canada Geologic survey m<strong>on</strong>itorsM<strong>in</strong>e Tail<strong>in</strong>gs, Disposal sites with landsat. EOS Magaz<strong>in</strong>e, pp 38-41.Grant, C.D. 2003. Post-burn vegetati<strong>on</strong> development <str<strong>on</strong>g>of</str<strong>on</strong>g> rehabilitated bauxite m<strong>in</strong>es <strong>in</strong> westernAustralia. Forest Ecology and Management, 186,147-157.Guha Roy, P.K. 1991. coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> Meghalaya and its impact <strong>on</strong> envir<strong>on</strong>ment. Exposure. 4,31-33.Hall, I.G. 1957. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> disused pit heaps <strong>in</strong> England. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 45: 689-720.Ivers<strong>on</strong>, L.R. and Wali, M.K. 1982. Buried, viable seeds and their relati<strong>on</strong> to revegetati<strong>on</strong>after surface m<strong>in</strong><strong>in</strong>g. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Range Management. 35(5): 648-652.Jha, A.K. and S<strong>in</strong>gh, J.S. 1990. Revegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>e spoils: Review and case study. In: Dhar,B.B. (ed.), Envir<strong>on</strong>mental Management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> Operati<strong>on</strong>s. Ashish Publish<strong>in</strong>gHouse. New Delhi. pp. 300-326.Johns<strong>on</strong>, M.S. and Bradshaw, A.D. 1977. Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy metal polluti<strong>on</strong> from m<strong>in</strong>e wastes byvegetative stabilizati<strong>on</strong>. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> and Metallurgy. 86A:47-55.Joshi, P.K.; S<strong>in</strong>gh, S.; Agarwal, S.; Roy, P.S. and Joshi, P.C. 2003. Aerospace Technology forForest Vegetati<strong>on</strong> Characterisati<strong>on</strong> and Mapp<strong>in</strong>g <strong>in</strong> Central India. Asian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Geo<strong>in</strong>formatics 4(4), 1-8.Khoshoo, T.N. 1984. 27 th Holland Memorial Lecture. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g>, Geological and MetallurgicalInstitute <str<strong>on</strong>g>of</str<strong>on</strong>g> India. Calcutta.Kimmerer, R.W. 1984. Vegetati<strong>on</strong> development <strong>on</strong> a dated series <str<strong>on</strong>g>of</str<strong>on</strong>g> aband<strong>on</strong>ed lead and z<strong>in</strong>cm<strong>in</strong>es <strong>in</strong> southwestern Wisc<strong>on</strong>s<strong>in</strong>. American Midland Naturalist. 111, 332-341.K<strong>in</strong>g, D.G. 1993. Digital frame cameras: the next generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low cost remote sens<strong>in</strong>g. In:proc <str<strong>on</strong>g>of</str<strong>on</strong>g> ASPRS Biennial workshop <strong>on</strong> photography and videography <strong>in</strong> the plantsciences, logan, Utah.Koster, R.D. and Slob, S. 1994. An applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Geographic Informati<strong>on</strong> System for the purpose <str<strong>on</strong>g>of</str<strong>on</strong>g>m<strong>in</strong><strong>in</strong>g and rehabilitati<strong>on</strong> plann<strong>in</strong>g <strong>in</strong> the Karv<strong>in</strong>a district, Czech Republic. Memoir <str<strong>on</strong>g>of</str<strong>on</strong>g> theCentre <str<strong>on</strong>g>of</str<strong>on</strong>g> Eng<strong>in</strong>eer<strong>in</strong>g Geology <strong>in</strong> the Netherlands. No. 116. Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology.pp. 7-79.Kushwaha, S.P.S., Roy, P.S., Azeem, A., Boruah, P. and Lahan, P. 2000. Land area changeand habitat suitability analysis <strong>in</strong> Kaziranga Nati<strong>on</strong>al Park, Assam. Tigerpaper 27 (2),9-17.Kushwaha, S.P.S. 1990. Forest-type mapp<strong>in</strong>g and change detecti<strong>on</strong> from satellite imagery.ISPRS Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Photogrammetry and Remote Sens<strong>in</strong>g 45, 175 –181Kushwaha, S.P.S. and Kuntz, S.1993. Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental changes <strong>in</strong> tropical forests <str<strong>on</strong>g>of</str<strong>on</strong>g> northeasternIndia. Proc.15th Internati<strong>on</strong>al symposium, Remote Sens<strong>in</strong>g and Global Envir<strong>on</strong>mentalChange, 4-8 April, Graz, Austria, pp. 551-558.Leisman, G.A. 1957. A vegetati<strong>on</strong> and soil chr<strong>on</strong>osequence <strong>on</strong> the Mesabi ir<strong>on</strong> range spoilbanks, M<strong>in</strong>nesota. Ecological M<strong>on</strong>ograph. 27, 221-245.Liles, T.M. and Kiefer, R.W. 1999. Remote sens<strong>in</strong>g and image <strong>in</strong>terpretati<strong>on</strong>. John Wiley & S<strong>on</strong>s.New York.Lyngdoh, T. 1995. Community dynamics and edaphic changes <strong>in</strong> relati<strong>on</strong> to coal m<strong>in</strong><strong>in</strong>g <strong>in</strong>Ja<strong>in</strong>tia <strong>Hills</strong>, Meghalaya. Ph.D. Thesis, North-Eastern Hill University, Shill<strong>on</strong>g, India.72


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIALyngdoh, T.; Tripathi, R.S. and Das, A.K. 1992. Vegetati<strong>on</strong> dynamics <strong>on</strong> coal m<strong>in</strong>e spoils <str<strong>on</strong>g>of</str<strong>on</strong>g>Ja<strong>in</strong>tia <strong>Hills</strong> <strong>in</strong> Meghalaya (north-east India) undergo<strong>in</strong>g natural recovery. ActaOecologia. 13(6): 767-775.Mann, H.S. and Chatterjee, P.C. 1979. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g operati<strong>on</strong> <strong>on</strong> the ecosystem <strong>in</strong>Rajasthan, India. In: Wali, M.K. (ed.), Ecology and <str<strong>on</strong>g>Coal</str<strong>on</strong>g> Resource Development.Pergam<strong>on</strong> Press, New York. pp. 615-625.Marrs, R.H.; and Bradshaw, A.D. 1980. Ecosystem development <strong>on</strong> reclaimed ch<strong>in</strong>a-claywastes. III. Leach<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology. 17, 727-736.Marrs, R.H.; Robert, R.D. and Bradshaw, A.D. 1980. Ecosystem development <strong>on</strong> reclaimedch<strong>in</strong>a-clay wastes. I. Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> and capture <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Applied Ecology. 17, 709-717.Marrs, R.H.; Robert, R.D.; Skeff<strong>in</strong>gt<strong>on</strong>, R.A. and Bradshaw, A.D. 1981. Ecosystemdevelopment <strong>on</strong> naturally col<strong>on</strong>ized ch<strong>in</strong>a-clay wastes. II. Nutrient compartmentati<strong>on</strong>.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 69, 163-169.Mishra, S.K. and Lyngdoh, C. 1993. Socio-ec<strong>on</strong>omic pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. Studies <strong>on</strong> envir<strong>on</strong>mentalimpact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> District. Meghalaya State Polluti<strong>on</strong> C<strong>on</strong>trolBoard. F<strong>in</strong>al Technical Report. North_Eastern Hill University. Shill<strong>on</strong>g. pp. 153-178.Misra, R. 1968. Ecology Work Book. Oxford & IBH Publicati<strong>on</strong>, New DelhiMolyneux, J.K. 1963. Some ecological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> colliery waste heaps around Wiga, SouthLancashire. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 51:315-321.Moore, T.R. and Zimmermann, R.C. 1977. Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>on</strong> serpent<strong>in</strong>e asbestosm<strong>in</strong>e waste, south eastern Quebec, Canada. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology. 14, 589-599.Mukherjee, R. 1987. Surface m<strong>in</strong><strong>in</strong>g and land degradati<strong>on</strong> <strong>in</strong> Raniganj coal field, Barddmandistrict. Geog. Rev. <str<strong>on</strong>g>of</str<strong>on</strong>g> Ind. Vol. 49. No. 1. pp. 69.Mukherjee, R. 1988. Problem <str<strong>on</strong>g>of</str<strong>on</strong>g> land degradati<strong>on</strong> associated with underground coal m<strong>in</strong><strong>in</strong>g <strong>in</strong>Raniganj coal field, Barddman district. Indian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Landscape System andEcological Studies. Vol. 11. No. 1. pp. 54-58.Muller-Dombois, D. and Ellenberg, H. 1974. Aims and methods <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> ecology. John Wiley &S<strong>on</strong>s. New York.Newbery, D. M.; Canpbell, E.J.F.; Lee, Y.F.;Ridsdale, C.E. and Still, M.J. 1992. Primarylowland dipterocarpus forest at danum valley, Sabah, Malaysia: Structure,relativeabundance and family compositi<strong>on</strong>. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Ropyal Society.L<strong>on</strong>d<strong>on</strong>. 335:341-356.Paijmans, K. 1970. An analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> four tropical ra<strong>in</strong> forest sites <strong>in</strong> Gu<strong>in</strong>ea. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology.58: 77-356.Pandey, H.N. 1993. Studies <strong>on</strong> envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> District.Meghalaya State Polluti<strong>on</strong> C<strong>on</strong>trol Board. F<strong>in</strong>al Technical Report. North_Eastern HillUniversity. Shill<strong>on</strong>g.Pandey, H.N; Tripathi, R.S; Umashankar and Boral, L. 1993. <strong>Study</strong> site, vegetati<strong>on</strong> and soil.Meghalaya State Polluti<strong>on</strong> C<strong>on</strong>trol Board. F<strong>in</strong>al Technical Report. North_Eastern HillUniversity. Shill<strong>on</strong>g. pp. 1-63.Parthasarathi, N. and Karthikeyan. 1997. Biodiversity and populati<strong>on</strong> density <str<strong>on</strong>g>of</str<strong>on</strong>g> woodyspecies <strong>in</strong> a tropical evergreen forest <strong>in</strong> Courtallum Reserve Forest, Western Ghats,India. Tropical Ecology. 38 (2): 297-306.Paruelo, J and Epste<strong>in</strong>, H.E. 1997. ANPP estimates from NDVI for the Central GrasslandRegi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> United States. Ecology. 78(3):953-958.Pathak, R.K. and Dkhar, J.W. 1993. Anthropological and epidemiological pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> thepeople <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong>e area. Studies <strong>on</strong> envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> Ja<strong>in</strong>tia<strong>Hills</strong> District. Meghalaya State Polluti<strong>on</strong> C<strong>on</strong>trol Board. F<strong>in</strong>al Technical Report.North_Eastern Hill University. Shill<strong>on</strong>g. pp. 179-199.73


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAPoole, R.W. 1974. An <strong>in</strong>troducti<strong>on</strong> to quantitative ecology. Mc Graw Hill. Kogakusha.Tokyo.Power, J.F. 1978. Reclamati<strong>on</strong> research <strong>on</strong> strip m<strong>in</strong>ed lands <strong>in</strong> dry regi<strong>on</strong>s. In: Schaller, F.W.and Sutt<strong>on</strong>, P. (eds.), Reclamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drastically disturbed lands. American Society <str<strong>on</strong>g>of</str<strong>on</strong>g>Agr<strong>on</strong>omy, Madis<strong>on</strong>, Wisc<strong>on</strong>s<strong>in</strong>. 521-536.Prakash, A. and Gupta, R.K. 1998. Land-use mapp<strong>in</strong>g and change detecti<strong>on</strong> <strong>in</strong> a coal m<strong>in</strong><strong>in</strong>garea - a case study <strong>in</strong> the Jharia coal field, India. Internati<strong>on</strong>al journal <str<strong>on</strong>g>of</str<strong>on</strong>g> remotesens<strong>in</strong>g. vol. 19, no. 3, 391- 410.Prasad, R. 1989. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> forest cover through m<strong>in</strong><strong>in</strong>g and technology for retrieval. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g>Nati<strong>on</strong>al sem<strong>in</strong>ar <strong>on</strong> depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil and forest cover. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Tropical Forestry. 5:109-116.Prasad, R. and Pandey, R.K. 1985. Natural plant successi<strong>on</strong> <strong>in</strong> the rehabilitati<strong>on</strong>bauxite andcoal m<strong>in</strong>e overburden <strong>in</strong> Madhya Pradesh. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Tropical Forest. 1: 79-84.Rai, R. K. 2002. Implicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> envir<strong>on</strong>ment <strong>in</strong> Ja<strong>in</strong>tia Hils, Meghalaya. In:Passah, P.M. and Sarma, A.K. (eds.), Ja<strong>in</strong>tia Hiils, A Meghalaya Tribe: ItsEnvir<strong>on</strong>ment, Land and People. Reliance Publish<strong>in</strong>g House. New Delhi. pp. 113-119.Rai, R.K. 1996. Envir<strong>on</strong>mental degradati<strong>on</strong> due to coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> Meghalaya. F<strong>in</strong>al Report <str<strong>on</strong>g>of</str<strong>on</strong>g>the project sp<strong>on</strong>sored by M<strong>in</strong>istry <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment and Forests. New Delhi.Rao, P.; Barik, S.K; Pandey, H.N. and Tripathi, R.S. 1990. Community compositi<strong>on</strong> and treepopulati<strong>on</strong> structure <strong>in</strong> a sub-tropical broad-leaved forest al<strong>on</strong>g a disturbance gradient.Veget. 88:151-162.Rathore, C. S., and Wright, R., 1993, M<strong>on</strong>itor<strong>in</strong>g envir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> surface coalm<strong>in</strong><strong>in</strong>g. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sens<strong>in</strong>g. 14, 1021-1042Raven, P. H.; L<strong>in</strong>da, B. and George, B.J. 1993. Envir<strong>on</strong>ment. Saunders College Publish<strong>in</strong>g.New York. pp. 183-187.Richards<strong>on</strong>, J.A. 1975. Physical problems <str<strong>on</strong>g>of</str<strong>on</strong>g> grow<strong>in</strong>g plants o colliery wastes. In Chadwick,M.J. and Goodman, G.T. (eds.), Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> resource degradati<strong>on</strong> and renewal.Blackwell Scientific Publicati<strong>on</strong>. Oxford, England. pp. 275-285.Richards<strong>on</strong>, J.A.; Shelt<strong>on</strong>, B.K. and Dicker, R.J. 1971. Botanical studies <str<strong>on</strong>g>of</str<strong>on</strong>g> natural andplanted vegetati<strong>on</strong> <strong>on</strong> colliery spoil heaps. Landscape Reclamati<strong>on</strong>. IPC Press.Guildford, Surrey. 1: 84-99.Ricotta, C. and Avena, G. 1999. Mapp<strong>in</strong>g and m<strong>on</strong>itor<strong>in</strong>g net primary productivity withAVHRR NDVI time-series: statistical equivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulative vegetati<strong>on</strong> <strong>in</strong>dices.ISPRS Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Photogrammetry and Remote Sens<strong>in</strong>g.54(5): 325-331.Ries, R.E. and H<str<strong>on</strong>g>of</str<strong>on</strong>g>man, L. 1983. Reestablishment and use <str<strong>on</strong>g>of</str<strong>on</strong>g> grassland <strong>on</strong> reclaimed soils. In: Canland be made better than before? Bismarck. North Dakota. pp. 85-93.Rodrigues, R.R.; Mart<strong>in</strong>s, S.V. and Barros, L.C. 2004. Tropical ra<strong>in</strong> forest regenerati<strong>on</strong> <strong>in</strong> anarea degraded by m<strong>in</strong><strong>in</strong>g <strong>in</strong> Mato Grosso state, Brazil. Forest Ecology andManagement. 190, 323-333.SAC (ISRO). 1990. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g activities and superthermal power stati<strong>on</strong>s <strong>on</strong>envir<strong>on</strong>ment, Project Report No. RSAM/SAC/ENVN/PR/08/90.Sarma, K. 2002. <str<strong>on</strong>g>Coal</str<strong>on</strong>g> m<strong>in</strong><strong>in</strong>g and its impact <strong>on</strong> envir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> Nokrek Biosphere Reserve,Meghalaya. Ph.D. Thesis. North-Eastern Hill University, Shill<strong>on</strong>g. India.Saxena, S.K. 1979. Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>in</strong> the surface m<strong>in</strong>ed area <str<strong>on</strong>g>of</str<strong>on</strong>g> western Rajasthan.In: Wali, M.K. (ed.), Ecology and <str<strong>on</strong>g>Coal</str<strong>on</strong>g> Resource Development. Pergam<strong>on</strong> Press, NewYork. pp. 626-633.Schafer, W.M.; Nielsenand, G.A. and Nettlet<strong>on</strong>, W.D. 1980. M<strong>in</strong>e spoil genesis andmorphology I a spoil chr<strong>on</strong>osequence <strong>in</strong> M<strong>on</strong>tana. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> AmericanJournal. 44:802-807.74


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIASchejbal, C. 1995. Problems <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>in</strong>es closure and reviv<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape <strong>in</strong> the m<strong>in</strong><strong>in</strong>g area.Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the Internati<strong>on</strong>al C<strong>on</strong>ference. Beij<strong>in</strong>g. Ch<strong>in</strong>a. pp. 681-691.Sharan, A.; Sharma, S. and Gov<strong>in</strong>d, P. 1994. impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> social ecology – Atentative note. In: Dhar, B.B. and Saxena, N.C. (eds.), Socio-ec<strong>on</strong>omic <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>Envir<strong>on</strong>ment. Akashi Publish<strong>in</strong>g House. New Delhi. pp. 46-65Sharma, B.K. and Das, G.S. Physico-chemical properties and dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> plankt<strong>on</strong>communities <strong>in</strong> aquatic systems. Studies <strong>on</strong> envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>in</strong>Ja<strong>in</strong>tia <strong>Hills</strong> District. Meghalaya State Polluti<strong>on</strong> C<strong>on</strong>trol Board. F<strong>in</strong>al TechnicalReport. North_Eastern Hill University. Shill<strong>on</strong>g. pp. 64-127.Shetr<strong>on</strong>, S.G. and Duffek, R. 1970. Establish<strong>in</strong>g vegetati<strong>on</strong> <strong>on</strong> ir<strong>on</strong> m<strong>in</strong>e tail<strong>in</strong>gs. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Soil and Water C<strong>on</strong>servati<strong>on</strong>. 25, 227-230.Simps<strong>on</strong>, E.H. 1949. Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> diversity. Nature. 163:688.S<strong>in</strong>gh Roy, V.H. 1995. Spectral characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> at m<strong>in</strong>e tail<strong>in</strong>gs. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> andthe envir<strong>on</strong>ment, sudbaay 95 proceed<strong>in</strong>gs, Sudbury, pp 193-200.S<strong>in</strong>gh Roy, V.H. and Kruse, F. 1991. Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metal stress <strong>in</strong> the boreal forest speciesus<strong>in</strong>g the 670µm chlorophyll band. EMIM, 8 th thematic c<strong>on</strong>f <strong>on</strong> Geologic Remotesens<strong>in</strong>g. pp 361-372.S<strong>in</strong>gh, J.S. and Jha, A.K. 1987. Ecological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> reclamati<strong>on</strong> and revegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coalm<strong>in</strong>e spoils. In: Dhar, D.D. (ed.), Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>al Workshop <strong>on</strong>Envir<strong>on</strong>mental Management <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> Operati<strong>on</strong>s <strong>in</strong> India- A status paper.Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> Eng<strong>in</strong>eer<strong>in</strong>g, B.H.U. Vanarasi. India. pp. 73-86.S<strong>on</strong>i, P.; Vasitha, H.B. and Kumar, O. 1989. Surface m<strong>in</strong><strong>in</strong>g – its role <strong>on</strong> site quality. IndianJournal <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry. 12(3), 233-235.Swer, S and Sigh, O.P. 2004. Water quality, availability and aquatic life affected by coal m<strong>in</strong><strong>in</strong>g <strong>in</strong>ecologically sensitive areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Meghalaya. Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the 3 rd Nati<strong>on</strong>al Sem<strong>in</strong>ar <strong>on</strong> InlandWater Resources and Envir<strong>on</strong>ment. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kerala. 2 nd - 4 th February 2004.Thiruvananthapuram.Tiwari, B.K. 1996. <str<strong>on</strong>g>Impact</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>on</strong> ecosystem health <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong>, Meghalaya. In:Ramakrishnan, P.S.; Purohit, A.N.; Saxena, K.G.; Rao, K.S. and Maikhuri, R.K.(eds.), C<strong>on</strong>servati<strong>on</strong> and Management <str<strong>on</strong>g>of</str<strong>on</strong>g> bIological Resources <strong>in</strong> Himalaya. G.B. PantInstitute <str<strong>on</strong>g>of</str<strong>on</strong>g> Himalayan Envir<strong>on</strong>ment and Development, Almora. Oxford IBH Co. NewDelhi. pp. 466-475.Tiwari, B.K. and Das Gupta, S. 1993. Microbial studies <strong>on</strong> soil and water bodies. Studies <strong>on</strong>envir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> coal m<strong>in</strong><strong>in</strong>g <strong>in</strong> Ja<strong>in</strong>tia <strong>Hills</strong> District. Meghalaya StatePolluti<strong>on</strong> C<strong>on</strong>trol Board. F<strong>in</strong>al Technical Report. North_Eastern Hill University.Shill<strong>on</strong>g. Meghalaya State Polluti<strong>on</strong> C<strong>on</strong>trol Board. F<strong>in</strong>al Technical Report.North_Eastern Hill University. Shill<strong>on</strong>g. pp. 129-152.Uma Shankar; Boral, L.; Pandey, H.N. and Tripathi, R.S. 1993. Degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> land due tocoal m<strong>in</strong><strong>in</strong>g and natural recovery pattern. Current Science. 65, 680-686UNESCO. 1985. Liv<strong>in</strong>g <strong>in</strong> the Envir<strong>on</strong>ment. UNESCO/UNEP.Valdiya, K.S. 1988. Envir<strong>on</strong>mental impacts <strong>on</strong> m<strong>in</strong><strong>in</strong>g activities. <str<strong>on</strong>g>M<strong>in</strong><strong>in</strong>g</str<strong>on</strong>g> and Envir<strong>on</strong>ment.J.H.R. Publishers, Na<strong>in</strong>ital. India.Veeranjaneyulu, K. and Dhanaraju, R.M. 1990. Geobotanical studies <strong>on</strong> Nallk<strong>on</strong>da complexm<strong>in</strong>e. Tropical Ecology. 33, 59-65.Webb, C.J.; Tracey, J.G.; Williums, W.T. and Lance, G.N. 1967. Studies <strong>in</strong> the numericalanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> complex ra<strong>in</strong> forest communities 1. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methods, applicableto site/ species data. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 55: 171-191.Whitford, P.B. 1948. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> woodland plants <strong>in</strong> relati<strong>on</strong> to successi<strong>on</strong> and cl<strong>on</strong>algrowth. Ecology. 30: 199-20875


IMPACT OF COAL MINING ON VEGETATION: A CASE STUDY IN JAINTIA HILLS DISTRICT OF MEGHALAYA, INDIAWhittakker, R.H. 1975. Communities and Ecosystems. Mc Milan Publish<strong>in</strong>g Company. NewYork.Wiegleb, G and Fel<strong>in</strong>k, B. 2001. Primary successi<strong>on</strong> <strong>in</strong> post-burn<strong>in</strong>g landscape <str<strong>on</strong>g>of</str<strong>on</strong>g> LowerLusatia-chance or necessity. Ecological Eng<strong>in</strong>eer<strong>in</strong>g. 17, 199-217.William, P.J. 1975. Investigati<strong>on</strong>s <strong>in</strong>to the nitrogen cycle <strong>in</strong> colliery spoils. In: Chadwick,M.J. and Goodman, G.T. (eds.), The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Resource degradati<strong>on</strong> and renewal.Blackwell Scientific Publicati<strong>on</strong>. Oxford, England. pp. 259-274.76

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!