16.11.2014 Views

Flavonoids isolated from Medicago littoralis Rhode (Fabaceae): their ...

Flavonoids isolated from Medicago littoralis Rhode (Fabaceae): their ...

Flavonoids isolated from Medicago littoralis Rhode (Fabaceae): their ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CARYOLOGIA Vol. 63, no. 1: 106-114, 2010<br />

<strong>Flavonoids</strong> <strong>isolated</strong> <strong>from</strong> <strong>Medicago</strong> <strong>littoralis</strong> <strong>Rhode</strong> (<strong>Fabaceae</strong>):<br />

<strong>their</strong> ecological and chemosystematic significance<br />

Bertoli 1 Alessandra, Daniela Ciccarelli 2* , Fabio Garbari 2 and Luisa Pistelli 1<br />

1<br />

Alessandra Bertoli, Luisa Pistelli, Department of Bioorganic Chemistry and Biopharmaceutics, University of<br />

Pisa , via Bonanno 33, I-56126 Pisa, Italy<br />

2<br />

Daniela Ciccarelli, Fabio Garbari, Department of Biology, University of Pisa, via Luca Ghini 5, I-56126 Pisa,<br />

Italy<br />

Dedicated to the memory of Prof. Ivano Morelli.<br />

Abstract — Three flavonoids, laricitrin 3,5’-di-O-β-glucopyranoside (1), genistein 7-O-β-glucopyranoside (2),<br />

and biochanin A 7-O-β-glucopyranoside (= sissotrin) (3), were <strong>isolated</strong> for the first time <strong>from</strong> the aerial parts<br />

of <strong>Medicago</strong> <strong>littoralis</strong> <strong>Rhode</strong>. The structures of the <strong>isolated</strong> compounds were established by NMR and LC-<br />

DAD-ESI-MS analyses. The chemosystematic of flavones and isoflavones identified was useful for discriminating<br />

different taxa inside the section Spirocarpos. In addition, the phytochemical profile of M. <strong>littoralis</strong> showed a<br />

behaviour due to the ecological conditions of sandy dunes, where this plant normally grows.<br />

Key words: Chemosystematic, <strong>Fabaceae</strong>, Flavones, <strong>Flavonoids</strong>, Isoflavones, <strong>Medicago</strong>.<br />

INTRODUCTION<br />

The genus <strong>Medicago</strong> L. (<strong>Fabaceae</strong>) belongs<br />

to the subfamily Papilionoideae, tribe Trifolieae.<br />

It consists of 50 species of annual or perennial<br />

herbs, rarely shrubs, of which <strong>Medicago</strong> sativa L.<br />

(alfalfa) is well-known since it is used as a forage<br />

crop widely.<br />

Several taxonomical analyses have been carried<br />

out to establish which characters could be<br />

useful to delimit the genus, expecially regarding<br />

the generic circumscription of <strong>Medicago</strong> and<br />

Trigonella L., both belonging to the tribe Trifolieae<br />

(see SMALL et al. 1987). Investigations involving<br />

pollen morphology (SMALL 1981), floral<br />

characters (SMALL et al. 1981a), asymmetries in<br />

Trifolieae leaves (SMALL et al. 1981b), haemolytic<br />

*Corresponding author: phone: +39(0)502211327; fax:<br />

+39(0)502211309; e-mail: dciccarelli@biologia.unipi.it<br />

saponins in the seeds (JURZYSTA et al. 1992), phenolic<br />

variation (CLASSEN et al. 1982; SALEH et al.<br />

1982), stigma morphology (SMALL and BROOKES<br />

1983), pollen-ovule pattern (SMALL 1986) or seed<br />

characters (SMALL and BROOKES 1990; DJEMEL et<br />

al. 2005) were performed in order to solve these<br />

taxonomical problems. Recently, molecular phylogeny<br />

analyses (BENA et al. 1998; BENA 2001)<br />

supported the transfer of 23 Trigonella species<br />

previously known as “medicagoids” to the genus<br />

<strong>Medicago</strong>, as proposed by SMALL et al. (1987) on<br />

the base of morphological data. The infrageneric<br />

classification of <strong>Medicago</strong> is reported in the Table<br />

1 following mainly the classifications of LES-<br />

INS and LESINS (1979), SMALL and JOMPHE (1989),<br />

SMALL (1990a-b), GILLESPIE and MCCOMB (1991).<br />

In the same table is also reported the geographical<br />

distribution of each species obtained <strong>from</strong><br />

the main Floras (TUTIN 1968; HEYN and DAVIS<br />

1970; PIGNATTI 1982; GREUTER et al. 1989; SALES<br />

and HEDGE 2000; GRIN Taxonomy for plants,<br />

2006) in order to compare these taxa <strong>from</strong> an<br />

ecological point of view.


RUNNING TITLE: FLAVONOIDS IN MEDICAGO LITTORALIS RHODE 107<br />

TABLE 1 — The infrageneric classification and the geographical distribution of <strong>Medicago</strong> L. <strong>from</strong> the Mediterranean<br />

region, Middle East and Asia. Evidenced in bold the species living on maritime sands or extending <strong>their</strong> area of occupancy<br />

up to the seashore.<br />

Section Subsection Species Geographical distribution<br />

Dendrotelis M. arborea L. Rocky places. Mediterranean region, Middle East and Asia.<br />

M. strasseri Greuter, Matthäs & Risse Rocky places. Europe.<br />

<strong>Medicago</strong> M. cancellata M. Bieb. Steppe. Russian Federation.<br />

M. daghestanica Rupr. Steppe. Russian Federation.<br />

M. hybrida Trautv. Woods and mountain slopes. Corbiéres and Pyrenees.<br />

M. marina L. Maritime sands. Shores of the Mediterranean, Black Sea and Atlantic.<br />

M. papillosa Boiss. Middle East and Asia.<br />

M. pironae Vis. Rocky places. Italy and Balcans.<br />

M. prostrata Jacq. Dry grassland. From Italy and Austria to the Black Sea.<br />

M. rhodopaea Velen. Rocky places. Bulgaria.<br />

M. rupestris M. Bieb. Rocky places. Krym.<br />

M. sativa L. Cosmopolitan.<br />

M. saxatilis M. Bieb. Rocky places. Bulgaria and Krym.<br />

M. suffruticosa Raymond Rocky places. Pyrenees and Morocco.<br />

Carstienses M. carstiensis Jacq. Bushy places. From Italy to Bulgaria.<br />

Spirocarpos Pachyspirae M. constricta Durieu Grasslands. Europe and Asia.<br />

M. doliata Carmign. Dry lands. Mediterranean region and Middle East.<br />

M. italica Mill. (= M. tornata (L.) Miller) Dry grasslands. Mediterranean region extending to Portugal.<br />

M. lesinsii E. Small Mediterranean region.<br />

M. <strong>littoralis</strong> Rohde Mediterranean region extending to Portugal and W. France.<br />

M. murex Willd Mediterranean region extending to Portugal.<br />

M. rigidula L. Dry grasslands. South Europe.<br />

M. rigiduloides E. Small Middle East, Caucasus and Asia.<br />

M. sinskiae Uljanova Asia.<br />

M. soleirolii Duby Dry grasslands. Krym, probably introduced in Italy and France.<br />

M. syriaca E. Small Syria.<br />

M. truncatula Gaertn. Mediterranean region.<br />

M. turbinata L. Mediterranean region.<br />

Rotatae M. blancheana Boiss. Mediterranean region.<br />

M. noeana Boiss. Iraq and Turkey.<br />

M. rotata Boiss. Eastern Mediterranean region.<br />

M. rugosa Desr. Mediterranean region living also on maritime sands.<br />

M. scutellata L. Grasslands. South Europe.<br />

M. shepardii Post Turkey.<br />

Intertextae M. ciliaris L.<br />

Mediterranean region.<br />

M. granadensis Willd. Mediterranean region.<br />

M. intertexta L. Grasslands, expecially near the sea. Mediterranean region and Portugal.<br />

M. muricoleptis Tineo Grasslands, expecially near the sea. Mediterranean region.<br />

Leptospirae M. arabica L.<br />

Cosmopolitan. Mediterranean region.<br />

M. coronata L. Stenomediterranean.<br />

M. disciformis DC. Stenomediterranean.<br />

M. laciniata L. Naturalized locally in the Mediterranean region.<br />

M. lanigera C. Winkl. Afghanistan, Tajikistan and Turkmenistan.<br />

M. laxispira Heyn Iraq.<br />

M. minima L. Living on sandy dunes. Most of Europe.<br />

M. polymorpha L. Subcosmopolitan. South Europe.<br />

M. praecox DC. Dry lands and garrigues. Mediterranean region.<br />

M. sauvagei Nègre Morocco.<br />

M. tenoreana Ser. Mediterranean region.


108<br />

BERTOLI, CICCARELLI, GARBARI and PISTELLI<br />

Table 1 Contd.<br />

Section Subsection Species Geographical distribution<br />

Geocarpa M. hypogaea E. Small Eastern Mediterranean region.<br />

Lupularia M. lupulina L. Throughout Europe.<br />

M. secundiflora Durieu Mediterranean region.<br />

Heynianae M. heyniana Greuter Europe and Middle East.<br />

Orbiculares M. orbicularis L. South Europe.<br />

Hymenocarpos M. radiata L. Afghanistan, Iran, Iraq, Israel, Jordan, Lebanon, Syria, Turkey and Caucasus.<br />

Platycarpae M. archiducis-nicolai Širj. China.<br />

M. cretacea M. Bieb. Ukraine, Krym and Asia.<br />

M. edgeworthii Širj. Asia.<br />

M. ovalis Širj. Spain, Algeria and Morocco.<br />

M. platycarpa L. Russian Federation and Asia.<br />

M. plicata Širj. Turkey.<br />

M. popovii Širj. Soviet Middle Asia.<br />

M. ruthenica (L.) Ledebour Russian Federation and Asia.<br />

Lunatae M. biflora E. Small Turkey and Caucasus.<br />

M. brachycarpa M. Bieb. Iraq, Lebanon, Turkey and Caucasus.<br />

M. huberi E. Small Turkey.<br />

M. rostrata E. Small Turkey.<br />

Buceras Erectae M. arenicola E. Small Turkey.<br />

M. astroites Trautv. Iran, Iraq, Israel, Jordan, Lebanon, Syria, Turkey, Caucasus and Soviet Middle Asia.<br />

M. carica E. Small East Aegean islands and Asiatic Turkey.<br />

M. crassipes E. Small Iran, Iraq, Lebanon, Syria and Turkey.<br />

M. fischeriana Trautv. Bulgaria.<br />

M. halophila E. Small Turkey.<br />

M. heldreichii E. Small Turkey.<br />

M. medicaginoides E. Small Europe, Middle East and Asia.<br />

M. monantha Trautv. Afghanistan, Iran, Iraq, Israel, Jordan, Lebanon, Syria, Turkey, Caucasus and Soviet<br />

Middle Asia.<br />

M. orthoceras Trautv. Iran, Iraq, Turkey, Caucasus and Soviet Middle Asia.<br />

M. pamphylica E. Small Turkey.<br />

M. persica E. Small Iran.<br />

M. phrygia E. Small Iran, Iraq, Syria and Turkey.<br />

M. polyceratia Trautv. France, Portugal, Spain, Algeria, Morocco and Tunisia.<br />

M. rigida E. Small Turkey.<br />

Deflexae M. retrorsa E. Small Afghanistan.<br />

Reflexae M. monspeliaca Trautv. Mediterranean region.<br />

Isthmocarpae M. isthmocarpa E. Small Turkey.<br />

M. rhytidiocarpa E. Small Turkey.<br />

The present report represents the first result<br />

of a phytochemical study of Italian populations<br />

of <strong>Medicago</strong> <strong>littoralis</strong> <strong>Rhode</strong> (strand medic).<br />

This species is a therophyte growing on sandy<br />

soils near the sea and distributed in the Mediterranean<br />

region extending to Portugal and<br />

West France. Whole plant is covered by hair;<br />

the leaves are ternate with obovate or cordate,<br />

cuneate, dentate towards the apex leaflets. The<br />

yellow flowers are grouped in a terminal raceme;<br />

flowering in March-May. The legumes are in a<br />

very close spiral of 3-6 turns, discoid to cilindrical,<br />

glabrous, spiny or not (TUTIN 1968).<br />

There are few photochemical studies on the


RUNNING TITLE: FLAVONOIDS IN MEDICAGO LITTORALIS RHODE 109<br />

TABLE 2 — Distribution of flavonoids in the genus <strong>Medicago</strong>. The species that living on maritime sands or extending<br />

<strong>their</strong> area up to the seashore are evidenced in bold.<br />

Species Flavonols Isoflavones Flavones Isoflavans Pterocarpans Coumestans<br />

Sec. Dendrotelis<br />

M. arborea a,b x x x<br />

Sec. <strong>Medicago</strong><br />

M. cancellata a,b x<br />

M. hybrida a,b x<br />

M. marina a,b x x<br />

M. sativa a,b,d,e,f x x x x x x<br />

Sec. Spirocarpos<br />

Subsec. Pachyspirae<br />

M. doliata a,b x x x<br />

M. <strong>littoralis</strong> a,b x x x x x<br />

M. murex a,b x<br />

M. rigidula a,b x x<br />

M. truncatula a,b,c x x x x<br />

M. turbinata a,b x<br />

Subsec. Rotatae<br />

M. blancheana a,b x<br />

M. rotata a,b x<br />

M. scutellata a,b x x x<br />

Subsec. Intertextae<br />

M. ciliaris a,b x x x x<br />

M. intertexta a,b x x x x<br />

Subsec. Leptospirae<br />

M. arabica a,b x x x x x<br />

M. coronata a,b x x<br />

M. laciniata a,b x x x<br />

M. minima a,b x x x<br />

M. polymorpha a,b x x x x<br />

Sec. Geocarpa<br />

M. hypogaea a,b x x<br />

Sec. Lupularia<br />

M. lupulina a,b x x<br />

Sec. Orbiculares<br />

M. orbicularis a,b x x x x x<br />

Sec. Hymenocarpos<br />

M. radiata a,b x x x x x<br />

Sec. Platycarpae<br />

M. cretacea a,b x<br />

M. platycarpa a,b x x<br />

Sec. Buceras<br />

Subsec. Erectae<br />

M. medicaginoides a,b x<br />

M. monantha a,b x<br />

M. polyceratia a,b x<br />

Subsec. Reflexae<br />

M. monspeliaca a,b x x x<br />

Phytochemical data source: a = Southon (1994); b = Hegnauer and Hegnauer (2001); c = Kowalska et al. (2007); d = Stochmal<br />

et al. (2001a); e = Stochmal et al. (2001b); f = Stochmal et al. (2001c).


110<br />

BERTOLI, CICCARELLI, GARBARI and PISTELLI<br />

(1) Laricitrin 3,5-O-β-diglucopyranoside<br />

(2) Genistein 7-O-β-glucopyranoside R=H<br />

(3) Biochanin A7-O-β-glucopyranoside R=Me<br />

Figure 1 — Chemical structures of the flavonoids (1-3)<br />

<strong>isolated</strong> <strong>from</strong> the aerial parts of <strong>Medicago</strong> <strong>littoralis</strong>.<br />

aerial green parts of M. <strong>littoralis</strong> collected out<br />

of Italy (INGHAM 1979; SALEH et al. 1982), which<br />

show the presence of several typical compounds<br />

such as daidzein, luteolin, medicarpin, sativan,<br />

3’,4’,7-trihydroxyisoflavone and vestitol. Previous<br />

phytochemical studies on the genus <strong>Medicago</strong><br />

showed the presence of flavones, flavonols,<br />

isoflavones, isoflavans, coumestans and pterocarpans<br />

(SOUTHON 1994; HEGNAUER and HEG-<br />

NAUER 2001; STOCHMAL et al. 2001a-c; KOWALSKA<br />

et al. 2007). The aim of this paper was the isolation<br />

and the characterization of some typical<br />

flavonoids of M. <strong>littoralis</strong> aerial parts collected<br />

in sandy dunes to suggest chemosystematic considerations.<br />

MATERIALS AND METHODS<br />

Plant material - The plant grows on the back of<br />

sandy dunes of Marina di Vecchiano (Pisa, Italy)<br />

within the Natural Park of Migliarino - San Rossore<br />

- Massacciuccoli. Aerial parts of <strong>Medicago</strong><br />

<strong>littoralis</strong> were randomly collected <strong>from</strong> the same<br />

population during the flowering phase at the<br />

end of April 2004. A voucher specimen (3688/4)<br />

was deposited in the Herbarium Horti Botanici<br />

Pisani (PI), Italy.<br />

Chemicals and equipments - Acetonitrile,<br />

HCOOH and methanol were HPLC grade solvents<br />

by Baker (Netherlands). HPLC-Water was<br />

purified by a Milli-Q Plus system (Millipore Milford,<br />

MA, USA). Reference chemical material including<br />

luteolin, daidzein, and the <strong>isolated</strong> compounds<br />

(laricitrin 3,5’-di-O-β-glucopyranoside,<br />

genistein 7-O-β-glucopyranoside and biochanin<br />

A 7-O- β-glucopyranoside) were part of an<br />

home-made database where each compound<br />

was used as standard with an HPLC grade purity<br />

of 98-99%. The analysis were performed by<br />

a Surveyor Thermofinnigan liquid chromatograph<br />

pump equipped with a Thermofinnigan<br />

Photodiode Array Detector and a LCQ Advantage<br />

mass detector. The semipreparative HPLC<br />

system consisted of a Waters 600E (Millipore)<br />

pump and 990 photodiode array detector (PDA)<br />

and a column Merck LiChroCART 250RP-18<br />

column (30 x 1 cm, 10 µm) was used.<br />

Extraction and LC-DAD-MS screening - The aerial<br />

parts (184 g) of <strong>Medicago</strong> <strong>littoralis</strong>, air-dried at<br />

room temperature and powdered, were extracted<br />

in a Soxhlet apparatus with n-hexane, CHCl 3<br />

and<br />

MeOH in turn. After removal of solvent under<br />

vacuum, the following residues were obtained:<br />

R H<br />

(5.49 g), R C<br />

(6.53 g), and R M<br />

(25.81 g).<br />

R M<br />

(3.73 g) was chromatographed on a Merck<br />

Lichroprep RP-8 column (40-63 mm) eluted<br />

with MeOH-H 2<br />

O (7:3) to obtain 19 crude fractions<br />

(M 1<br />

-M 19<br />

). Fractions were checked by TLC<br />

[RP-18, MeOH-H 2<br />

O (7:3)], Merck Kieselgel 60<br />

F 254<br />

. TLC chromatograms were visualized under<br />

UV light at 254 and 366 nm and sprayed with<br />

Naturstoffreagents-PEG. The most interesting<br />

purified fractions were screened by LC-DAD-<br />

ESI-MS using an analytical Lichrosorb RP-18<br />

column (250 x 4.6 mm i.d., 5μm, Merck). The<br />

analyses (20 μl, 2 mg/ml methanolic extract solution)<br />

were carried out by a linear gradient using<br />

water with 0.1% HCOOH (solvent A), CH-<br />

CN (solvent B) and MeOH (solvent C) at flow<br />

3<br />

rate of 1.0 ml/min in the following conditions:<br />

<strong>from</strong> 20:80 v/v (B-A) to 40:60 (B-A) in 20 min,<br />

then to 40:60 v/v (B-A) (20 min), and then conditioning<br />

to the initial condition (20:80 v/v B-A)<br />

for 10 min. The total analytical run time was 50<br />

min for each sample. The spectral data <strong>from</strong> the<br />

PDA detector were collected during the whole<br />

run in the range 210-500 nm and the peaks were<br />

detected at 330 nm for all analysed compounds.<br />

LC-ESI-MS analyses were performed in the same<br />

chromatographic conditions using these specific


RUNNING TITLE: FLAVONOIDS IN MEDICAGO LITTORALIS RHODE 111<br />

electrospray ionization values: sheath gas flowrate<br />

72 psi, auxilary gas flow 10 psi, capillary<br />

voltage -16 V and capillary temperature 280°C<br />

. Full scan spectra <strong>from</strong> m/z 200 to 500 amu in<br />

the negative ion mode were obtained. The identification<br />

of each constituents was carried out by<br />

the comparison of each peak in the extracts with<br />

the retention times, UV and MS spectra of an<br />

home-made database of flavonoid compounds.<br />

Isolation and purification of flavonoids - The filtered<br />

solution of fraction M 2<br />

(1 g) was subjected<br />

to column chromatography over a Merck Lichroprep<br />

RP-8 column (40-63 µm) eluted with<br />

MeOH-H 2<br />

O (3:7) to obtain 11 subfractions<br />

(E 1<br />

-E 11<br />

). Subfraction E 7<br />

(30 mg) was purified<br />

by semipreparative HPLC-PDA. The gradient<br />

profiles were based on two solvents, denoted<br />

A (CH 3<br />

CN) and B (H 2<br />

O), were employed. Initial<br />

conditions were 20% A, 80% B with a linear<br />

gradient reaching 40% A, 60% B; this was<br />

followed by isocratic elution, after which the<br />

programme returned to the initial solvent composition<br />

(t = 40 min). Column was mantained<br />

at room temperature, and the flow rate was 1.3<br />

ml/min. Injection volumes were 100 μl, and UV<br />

detection was at 330 nm. This semipreparative<br />

HPLC/UV gave 4 subfractions (E 7.1<br />

-E 7.4<br />

). Fraction<br />

M 4<br />

was subjected to column chromatography<br />

under the same conditions of fraction M 2<br />

to<br />

obtain 2 subfractions (M 4.1<br />

-M 4.2<br />

).<br />

The nuclear magnetic resonance (NMR)<br />

spectra of the <strong>isolated</strong> flavonoids were registered<br />

on a Bruker AC-200 spectrometer and a<br />

Bruker Avance 400 spectrometer using CD 3<br />

OD<br />

or DMSO-d 6<br />

as solvent. TMS was used as internal<br />

standard. All the 1D and 2D NMR experiments<br />

were carried on using the standard<br />

Bruker library of microprograms. MS spectra of<br />

the <strong>isolated</strong> compounds were registered by direct<br />

infusion in LCQ Advantage ion trap mass<br />

spectrometer using a methanolic solution (1 μg/<br />

ml, 5 μl/min) with the following ESI parameters:<br />

sheath gas flow-rate 72 arbitrary units, auxilary<br />

gas flow 10 arbitrary units, capillary voltage -16<br />

V and capillary temperature 280°C.<br />

RESULTS AND DISCUSSION<br />

The preliminary screening by LC-DAD-ESI-<br />

MS analyses of <strong>Medicago</strong> <strong>littoralis</strong> (aerial parts)<br />

collected during the flowering phase on the<br />

sandy dunes of Marina di Vecchiano (Pisa, Italy)<br />

showed the presence of some characteristic flavonoids<br />

such as lutein and daidzein previously<br />

reported in the literature (SOUTHON 1994; HEG-<br />

NAUER and HEGNAUER 2001).<br />

However, our phytochemical investigation<br />

on this species showed also laricitrin 3,5’-di-<br />

O-β-glucopyranoside (1), genistein 7-O-βglucopyranoside<br />

(2), and biochanin A 7-O-β<br />

-glucopyranoside (= sissotrin) (3) as characteristic<br />

compounds (Fig. 1). These flavonoids were<br />

<strong>isolated</strong> for the first time in <strong>Medicago</strong> <strong>littoralis</strong>.<br />

After the extraction, the methanolic extract<br />

was chromatographed by semi-preparative<br />

HPLC to isolate the constituents. Subfractions<br />

E 7.2<br />

(2 mg) and E 7.4<br />

(2 mg) gave pure compounds<br />

(1) and (2), respectively. Compound (3) was<br />

identified as pure constituent of subfraction M 4.1<br />

(2.8 mg). The structural elucidation of the <strong>isolated</strong><br />

compounds were performed on the basis<br />

of NMR and ESI-MS experiments.<br />

The signals in the 1 H and 13 C NMR spectra<br />

of the isolates were superimposable on those reported<br />

in the literature for laricitrin 3,5’-di-O-βglucopyranoside<br />

(1) (TORCK et al. 1983; KOWAL-<br />

SKA et al. 2007), genistein 7-O-β-glucopyranoside<br />

(2) (AGRAVAL 1989), and biochanin A 7-O-βglucopyranoside<br />

(= sissotrin) (3) (GUGGOLZ et<br />

al. 1961).<br />

Except for laricitrin 3,5’-di-O-β-glucopyranoside,<br />

<strong>isolated</strong> in the floral parts of M. arborea<br />

L. (TORCK et al. 1983), M. lupulina L. (BURDA<br />

and JURZYSTA 1988) and M. truncatula Gaertn.<br />

(KOWALSKA et al. 2007), the other flavonoids<br />

had never been recorded in the genus <strong>Medicago</strong>.<br />

Previous phytochemical studies showed the<br />

presence of luteolin, daidzein and 3’,4’,7-trihydroxyisoflavone<br />

in the hydrolized plant of M. <strong>littoralis</strong><br />

(SALEH et al. 1982), while sativan, vestitol<br />

and medicarpin were <strong>isolated</strong> <strong>from</strong> the leaves of<br />

the same species (INGHAM 1979).<br />

<strong>Flavonoids</strong> are well accepted as chemical<br />

markers in plant taxonomy as a useful tool for<br />

the characterization and classification of higher<br />

plants, because of <strong>their</strong> widespread occurrence<br />

and chemical stability (HARBORNE and TURNER<br />

1984; HEGNAUER and HEGNAUER 2001).<br />

Regarding a significant connection between<br />

the distribution of secondary metabolites and<br />

the infrageneric classification of <strong>Medicago</strong> (Table<br />

2), it seems clear that flavones and isoflavones<br />

may be particularly useful for discriminating different<br />

taxa inside the section Spirocarpos Ser. Isoflavones,<br />

in fact, occur in the subsections Intertextae<br />

(Urb.) Heyn and Leptospirae (Urb.) Heyn,<br />

but they are absent in Pachyspirae (Urb.) Heyn<br />

(except for M. <strong>littoralis</strong>). In the same way as re-


112<br />

BERTOLI, CICCARELLI, GARBARI and PISTELLI<br />

TABLE 3 — <strong>Flavonoids</strong> <strong>from</strong> M. <strong>littoralis</strong> and <strong>their</strong> occurrence in the genus <strong>Medicago</strong>. The species that living on maritime<br />

sands or extending <strong>their</strong> area up to the seashore are evidenced in bold.<br />

Species Flavonols Isoflavones Flavones Isoflavans Pterocarpans<br />

1 2 3 4 5 6 7 8 9<br />

Sec. Dendrotelis<br />

M. arborea x x x<br />

Sec. <strong>Medicago</strong><br />

M. cancellata<br />

M. hybrida<br />

M. marina x x<br />

M. sativa x x x x x x<br />

Sec. Spirocarpos<br />

Subsec. Pachyspirae<br />

M. doliata x x x<br />

M. <strong>littoralis</strong> x x x x x x x x x<br />

M. murex<br />

M. rigidula x x<br />

M. truncatula x x x x<br />

M. turbinata<br />

Subsec. Rotatae<br />

M. blancheana<br />

M. rotata<br />

M. scutellata x<br />

Subsec. Intertextae<br />

M. ciliaris x x x<br />

M. intertexta x x x x<br />

Subsec. Leptospirae<br />

M. arabica x x x x<br />

M. coronata x x x<br />

M. laciniata x x<br />

M. minima x x x<br />

M. polymorpha x x x<br />

Sec. Geocarpa<br />

M. hypogaea<br />

Sec. Lupularia<br />

M. lupulina x x<br />

Sec. Orbiculares<br />

M. orbicularis x x x x x x<br />

Sec. Hymenocarpos<br />

M. radiata x x x<br />

Sec. Platycarpae<br />

M. cretacea<br />

M. platycarpa x<br />

Sec. Buceras<br />

Subsec. Erectae<br />

M. medicaginoides<br />

M. monantha<br />

M. polyceratia<br />

Subsec. Reflexae<br />

M. monspeliaca x x x<br />

1 = Laricitrin 3,5’-O-glc; 2 = Genistein 7-O-glc; 3 = Sissotrin; 4 = Daidzein; 5 = 3’,4’,7-trihydroxyisoflavone; 6 = Luteolin; 7<br />

= Sativan; 8 = Vestitol; 9 = Medicarpin.


RUNNING TITLE: FLAVONOIDS IN MEDICAGO LITTORALIS RHODE 113<br />

gards flavones, it is interesting that these compounds<br />

occur in the subsection Leptospirae, but<br />

they are absent in Pachyspirae except again for<br />

M. <strong>littoralis</strong>. Our results are partially in accordance<br />

with molecular phylogenetic studies (BENA<br />

et al. 1998) and biochemical analyses of seed<br />

composition that show M. truncatula and M. <strong>littoralis</strong><br />

as very closely related species (DJEMEL et<br />

al. 2005). M. truncatula, in fact, shows the same<br />

phytochemical profile of M. <strong>littoralis</strong> except for<br />

isoflavones (KOWALSKA et al. 2007).<br />

Moreover, this study was carried out in order<br />

to find relationships between the phytochemical<br />

profile of M. <strong>littoralis</strong> and the ecological conditions<br />

of sandy dunes, where the plants grows.<br />

M. <strong>littoralis</strong> is able to synthesise flavonols, isoflavones,<br />

flavones, isoflavans and pterocarpans<br />

(SOUTHON 1994; HEGNAUER and HEGNAUER<br />

2001). This behaviour is also found in M. sativa,<br />

M. arabica, M. orbicularis and M. radiata (Table<br />

2), which belong to different sections or subsections<br />

and live in different habitats. Anyway, if<br />

we consider the specific flavonoid and not the<br />

chemical class (see Table 3), the mentioned species<br />

produce different flavonoids.<br />

All the plants that live on maritime sands<br />

were able to synthesize flavonols (except for M.<br />

marina L., M. coronata L. and M. minima L.) and<br />

most of them produced isoflavones and flavones<br />

depending on the subsection considered. On the<br />

other hand, considering flavonoids <strong>isolated</strong> <strong>from</strong><br />

M. <strong>littoralis</strong> samples and <strong>their</strong> occurrence in the<br />

genus <strong>Medicago</strong> (see Table 2-3), a so large variety<br />

in the flavonoidic composition has never been<br />

observed for plants living near the sea yet.<br />

In conclusion, this study showed laricitrin<br />

3,5’-di-O-β-glucopyranoside (1), genistein<br />

7-O-β-glu co pyra noside (2), and sissotrin (3) as<br />

characteristic flavonoids of the aerial parts of M.<br />

<strong>littoralis</strong> collected on the sandy dunes during the<br />

flowering period. Therefore, the list of chemotaxonomic<br />

markers of M. <strong>littoralis</strong> can be added<br />

by these flavonoids (1-3). To evaluate more<br />

deeply the flavonoidic production in this species,<br />

the authors plan to study its phytochemical<br />

profile also during seasonal and growth-phase<br />

variations.<br />

REFERENCES<br />

AGRAVAL P.K., 1989 — Carbon-13 NMR of <strong>Flavonoids</strong>.<br />

Elsevier, Amsterdam.<br />

BENA G., 2001 — Molecular Phylogeny supports the<br />

morphologically based taxonomic transfer of the<br />

“medicagoid” Trigonella species to the genus <strong>Medicago</strong><br />

L. Plant Systematics and Evolution, 229:<br />

217-236.<br />

BENA G., LEJEUNE B., PROSPERI J.M. and OLIVIERI I.,<br />

1998 — Molecular phylogenetic approach for studying<br />

life-history evolution: the ambiguous example<br />

of the genus <strong>Medicago</strong>. Proceedings of the Royal<br />

Society London B, 265: 1141-1151.<br />

BURDA S. and JURZYSTA M., 1988 — Isolation and<br />

identification of flavonoids <strong>from</strong> <strong>Medicago</strong> lupulina<br />

L. flowers. Acta Societatis Botanicorum Poloniae,<br />

57: 563-571.<br />

CLASSEN D., NOZZOLILLO C. and SMALL E., 1982 — A<br />

phenolic-taxometric study of <strong>Medicago</strong> (Leguminosae).<br />

Canadian Journal of Botany, 60: 2477-<br />

2495.<br />

DJEMEL N., GUEDON D., LECHEVALIER A., SALON C.,<br />

MIQUEL M., PROSPERI J.-M., ROCHAT C. and BOU-<br />

TIN J.-P., 2005 — Development and composition of<br />

the seeds of nine genotypes of the <strong>Medicago</strong> truncatula<br />

species complex. Plant Physiology and Biochemistry,<br />

43: 557-566.<br />

GILLESPIE D.J. and MCCOMB J.A., 1991 — Morphology<br />

and distribution of species in the <strong>Medicago</strong><br />

murex complex. Canadian Journal of Botany, 69:<br />

2655-2662.<br />

GREUTER W., BURDET H.M. and LONG G., 1989 —<br />

Med-Checklist, vol. 4, pp 136-147. Conservatoire<br />

et Jardin botaniques, Genéve.<br />

GRIN Taxonomy for Plants. 2006. URL: http://www.<br />

ars-grin.gov/<br />

GUGGOLZ J., LIVINGSTON A.L. and BICKOFF E.M.,<br />

1961 — Detection of Daidzein, Formononetin,<br />

Genistein and Biochanin A in forages. Journal of<br />

Agricultural and Food Chemistry, 9: 330-332.<br />

HARBORNE J.B. and TURNER B.L., 1984 — Plant chemiosystematics.<br />

Harcourt Brace Jovanovich Publishers,<br />

Academic Press, London.<br />

HEGNAUER R. and HEGNAUER M., 2001 — Chemotaxonomie<br />

der Pflanzen. Band XIb-2: Leguminosae.<br />

Teil 3: Papilionoideae. Birkhäuser Verlag, Basel.<br />

HEYN C.C. and DAVIS P.H., 1970 — <strong>Medicago</strong> L. In:<br />

P.H. Davis (Ed.) “Flora of Turkey and the East<br />

Aegean Islands”, vol. 3, pp 483-511. Edinburgh<br />

University Press, Edinburgh.<br />

INGHAM J.L., 1979 — Isoflavonoid phytoalexins of<br />

the genus <strong>Medicago</strong>. Biochemical Systematics and<br />

Ecology, 7: 29-34.<br />

JURZYSTA M., BURDA S., OLESZEK W., PLOSZYNSKI M.,<br />

SMALL E. and NOZZOLILLO C., 1992 — Chemical<br />

composition of seed saponins as a guide to the classification<br />

of <strong>Medicago</strong> species. Canadian Journal of<br />

Botany, 70: 1384-1387.<br />

KOWALSKA I., STOCHMAL A., KAPUSTA I., JANDA B.,<br />

PIZZA C., PIACENTE S. and OLESZEK W., 2007 —<br />

<strong>Flavonoids</strong> <strong>from</strong> barrel medic (<strong>Medicago</strong> truncatula)<br />

aerial parts. Journal of Agricultural and Food<br />

Chemistry, 55: 2645-2652.<br />

LESINS K.A. and LESINS I., 1979 — Genus <strong>Medicago</strong><br />

(Leguminosae), a taxogenetic study. The Hague,<br />

Junk.<br />

PIGNATTI S., 1982 — Flora d’Italia, vol. 1, pp 711-720.<br />

Edagricole, Bologna.


114<br />

BERTOLI, CICCARELLI, GARBARI and PISTELLI<br />

SALEH N.A.M., BOULOS L., EL-NEGOUMY S.I. and AB-<br />

DALLA M.F., 1982 — A comparative study of the<br />

flavonoids of <strong>Medicago</strong> radiata with other <strong>Medicago</strong><br />

and related Trigonella species. Biochemical<br />

Systematics and Ecology, 10: 33-36.<br />

SALES F. and HEDGE I.C., 2000 — <strong>Medicago</strong> L. In: S.<br />

TALAVERA, C. AEDO, S. CASTROVIEJO, A. HERRERO,<br />

C. ROMERO ZARCO, F.J. SALGUEIRO and M. VELAYOS<br />

(Eds.) “Flora Iberica”, vol. 7(2), pp 741-774. Real<br />

Jardín Botánico, Madrid.<br />

SMALL E., 1981 — Numerical analysis of major groupings<br />

in <strong>Medicago</strong> employing traditionally used<br />

characters. Canadian Journal of Botany, 59: 1553-<br />

1577.<br />

SMALL E., 1986 — Pollen-ovule patterns in tribe Trifolieae<br />

(Leguminosae). Plant Systematics and Evolution,<br />

160: 195-205.<br />

SMALL E., 1990a — <strong>Medicago</strong> syriaca, a new species.<br />

Canadian Journal of Botany, 68: 1473-1478.<br />

SMALL E., 1990b — <strong>Medicago</strong> rigiduloides, a new species<br />

segregated <strong>from</strong> M. rigidula. Canadian Journal<br />

of Botany, 68: 2614-2617.<br />

SMALL E., BASSETT I.J. and CROMPTON C.W., 1981a<br />

— Pollen variation in tribe Trigonelleae (Leguminosae)<br />

with special reference to <strong>Medicago</strong>. Pollen<br />

et Spores, 23: 295-320.<br />

SMALL E. and BROOKES B.S., 1983 — The systematic<br />

value of stigma morphology in the legume-tribe Trifolieae<br />

with particular reference to <strong>Medicago</strong>. Canadian<br />

Journal of Botany, 61: 2388-2404.<br />

SMALL E. and BROOKES B.S., 1990 — Circumscriptium<br />

of the genus <strong>Medicago</strong> (Leguminosae) by seed characters.<br />

Canadian Journal of Botany, 67: 613-629.<br />

SMALL E., CROMPTON C.W. and BROOKES B.S., 1981a<br />

— The taxonomic value of floral characters in tribe<br />

Trigonelleae (Leguminosae) with special reference<br />

to <strong>Medicago</strong>. Canadian Journal of Botany, 59:<br />

1578-1598.<br />

SMALL E., LEFKOVITCH L.P. and BROOKES B.S., 1981b<br />

— Remarkable asymmetries in trifoliolate leaves<br />

with particular reference to <strong>Medicago</strong>. Canadian<br />

Journal of Botany, 59: 662-671.<br />

SMALL E. and JOMPHE M., 1989 — A synopsis of the<br />

genus <strong>Medicago</strong>. Canadian Journal of Botany, 67:<br />

3260-3294.<br />

SMALL E., LASSEN P. and BROOKES B.S., 1987 — An<br />

expanded circumscriptium of <strong>Medicago</strong> (Leguminosae,<br />

Trifoliae) based on explosive flower tripping.<br />

Willdenowia, 16: 415-437.<br />

SOUTHON I.W., 1994 — In: F.A. BISBY, J. BUCKINGHAM<br />

and J.B. HARBORNE (Eds.) “Phytochemical Dictionary<br />

of the Leguminosae”, vol. 1, pp 449-468.<br />

Chapman & Hall, London.<br />

STOCHMAL A., PIACENTE S., PIZZA C., DE RICCARDIS F.,<br />

LEITZ R. and OLESZEK W., 2001 — Alfalfa (<strong>Medicago</strong><br />

sativa L.) flavonoids. 1. Apigenin and Luteolin<br />

glycosides <strong>from</strong> aerial parts. Journal of Agricultural<br />

and Food Chemistry, 49: 753-758.<br />

STOCHMAL A., SIMONET A.M., MACIAS F.A. and<br />

OLESZEK W., 2001b — Alfalfa (<strong>Medicago</strong> sativa<br />

L.) flavonoids. 2. Tricin and Chrysoeriol glycosides<br />

<strong>from</strong> aerial parts. Journal of Agricultural and Food<br />

Chemistry, 49: 5310-5314.<br />

STOCHMAL A., SIMONET A.M., MACIAS F.A., OLIVEI-<br />

RA M.A., ABREU J.M., NASH R. and OLESZEK W.,<br />

2001c — Acylated apigenin glycosides <strong>from</strong> alfalfa<br />

(<strong>Medicago</strong> sativa L.) var. Artal. Phytochemistry,<br />

57: 1223-1226.<br />

TORCK M., PINKAS M., JAY M. and FAVRE-BONVIN J.,<br />

1983 — Heterosides flavoniques de <strong>Medicago</strong> arborea<br />

L. Pharmazie, 38:783.<br />

TUTIN T.G., 1968 — <strong>Medicago</strong> L. In: T.G. Tutin,<br />

V.H. Heywood, N.A. Burges, D.M. Moore, D.H.<br />

Valentine, S.M. Walters and D.A. Webb (Eds.)<br />

“Flora Europaea”, vol. 2, pp 153-157. Cambridge<br />

University Press, Cambridge.<br />

Received October 20 th 2009; accepted February 2 th 2010<br />

Published May 30 th 2010<br />

Editore: Università degli Studi di Firenze<br />

Registrazione Tribunale di Firenze n. 478 del 13/7/1951<br />

Redazione: Dipartimento di Biologia Vegetale<br />

Via La Pira, 4 - 50121 FIRENZE<br />

Direttore Responsabile: Dr. ALESSIO PAPINI<br />

Stampato a Firenze da Edizioni Tassinari - Firenze - May 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!