11.11.2014 Views

The genus Stephania - Dr. DS Kothari Postdoctoral Fellowship ...

The genus Stephania - Dr. DS Kothari Postdoctoral Fellowship ...

The genus Stephania - Dr. DS Kothari Postdoctoral Fellowship ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Journal of Ethnopharmacology 132 (2010) 369–383<br />

Contents lists available at ScienceDirect<br />

Journal of Ethnopharmacology<br />

journal homepage: www.elsevier.com/locate/jethpharm<br />

Review<br />

<strong>The</strong> <strong>genus</strong> <strong>Stephania</strong> (Menispermaceae): Chemical and pharmacological<br />

perspectives<br />

Deepak Kumar Semwal a,∗ , Ruchi Badoni b , Ravindra Semwal c , Sudhir Kumar Kothiyal b ,<br />

Gur Jas Preet Singh a , Usha Rawat b<br />

a Department of Chemistry, Punjab University, Sector-14, Chandigarh 160014, Punjab, India<br />

b Department of Chemistry, University of Garhwal, Srinagar 246174, Uttarakhand, India<br />

c Faculty of Pharmacy, Dehradun Institute of Technology, Dehradun 248009, Uttarakhand, India<br />

article<br />

info<br />

abstract<br />

Article history:<br />

Received 13 June 2010<br />

Received in revised form 22 August 2010<br />

Accepted 22 August 2010<br />

Available online 27 August 2010<br />

Key words:<br />

<strong>Stephania</strong> species<br />

S. cepharantha<br />

S. glabra<br />

S. japonica<br />

S. venosa<br />

Berberines<br />

Antiproliferative<br />

Hyperglycemia<br />

<strong>The</strong> plants of the <strong>genus</strong> <strong>Stephania</strong> (Menispermaceae) are widely distributed, and have long been used<br />

in folk medicine for the treatment of various ailments such as asthma, tuberculosis, dysentery, hyperglycemia,<br />

malaria, cancer and fever. Over 150 alkaloids together with flavonoids, lignans, steroids,<br />

terpenoids and coumarins have been identified in the <strong>genus</strong>, and many of these have been evaluated<br />

for biological activity. This review presents comprehensive information on the chemistry and pharmacology<br />

of the <strong>genus</strong> together with the traditional uses of many of its plants. In addition, this review<br />

discusses the structure–activity relationship of different compounds as well as recent developments and<br />

the scope for future research in this aspect.<br />

© 2010 Elsevier Ireland Ltd. All rights reserved.<br />

Contents<br />

1. Introduction .......................................................................................................................................... 370<br />

2. Traditional uses ...................................................................................................................................... 370<br />

3. Chemical constituents ............................................................................................................................... 371<br />

3.1. <strong>Stephania</strong> abyssinica Walp. ................................................................................................................... 371<br />

3.2. <strong>Stephania</strong> aculeata F. M. Bailey ............................................................................................................... 371<br />

3.3. <strong>Stephania</strong> bancroftii F. M. Bailey .............................................................................................................. 371<br />

3.4. <strong>Stephania</strong> brachyandra Diels .................................................................................................................. 371<br />

3.5. <strong>Stephania</strong> cepharantha Hayata ................................................................................................................ 371<br />

3.6. <strong>Stephania</strong> dinklagei Diels ..................................................................................................................... 372<br />

3.7. <strong>Stephania</strong> delovayi Diels ...................................................................................................................... 372<br />

3.8. <strong>Stephania</strong> elegans Hook.f. & Thoms. .......................................................................................................... 372<br />

3.9. <strong>Stephania</strong> erecta Craib ........................................................................................................................ 373<br />

3.10. <strong>Stephania</strong> excentrica H.S.Lo................................................................................................................. 373<br />

3.11. <strong>Stephania</strong> glabra (Roxb.) Miers .............................................................................................................. 373<br />

3.12. <strong>Stephania</strong> hernandifolia (Willd.) Walp. ...................................................................................................... 373<br />

3.13. <strong>Stephania</strong> intermedia H.S.Lo................................................................................................................ 374<br />

3.14. <strong>Stephania</strong> japonica (Thunb.) Miers .......................................................................................................... 374<br />

3.15. <strong>Stephania</strong> longa Lour ........................................................................................................................ 374<br />

3.16. <strong>Stephania</strong> miyiensis S.Y.Zhao&H.S.Lo.................................................................................................... 374<br />

∗ Corresponding author. Tel.: +91 9412947995.<br />

E-mail address: dr dks.1983@yahoo.co.in (D.K. Semwal).<br />

0378-8741/$ – see front matter © 2010 Elsevier Ireland Ltd. All rights reserved.<br />

doi:10.1016/j.jep.2010.08.047


370 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

3.17. <strong>Stephania</strong> pierrei Diels ....................................................................................................................... 375<br />

3.18. <strong>Stephania</strong> gracilenta Miers .................................................................................................................. 375<br />

3.19. <strong>Stephania</strong> rotunda Lour. ..................................................................................................................... 375<br />

3.20. <strong>Stephania</strong> sasakii Hayata .................................................................................................................... 375<br />

3.21. <strong>Stephania</strong> sinica Diels........................................................................................................................ 375<br />

3.22. <strong>Stephania</strong> suberosa L. L. Forman ............................................................................................................. 375<br />

3.23. <strong>Stephania</strong> succifera H. S. Lo & Y. Tsoong ..................................................................................................... 375<br />

3.24. <strong>Stephania</strong> sutchuenensis H.S.Lo............................................................................................................. 376<br />

3.25. <strong>Stephania</strong> tetrandra S. Moore ................................................................................................................ 376<br />

3.26. <strong>Stephania</strong> venosa (Blume) Spreng. .......................................................................................................... 376<br />

4. Biological activities................................................................................................................................... 376<br />

4.1. Anti-malarial activity ......................................................................................................................... 376<br />

4.2. Antimicrobial activity ........................................................................................................................ 376<br />

4.3. Anthelmintic activity ......................................................................................................................... 377<br />

4.4. Anti-viral activity ............................................................................................................................. 377<br />

4.5. Anti-proliferative/anti-cancer activity ....................................................................................................... 377<br />

4.6. Antipsychotic activity ........................................................................................................................ 377<br />

4.7. Apoptosis inducing effect .................................................................................................................... 377<br />

4.8. Multidrug resistance reversing activity ...................................................................................................... 377<br />

4.9. Anti-inflammatory and analgesic activity ................................................................................................... 378<br />

4.10. Immunomodulating activity ................................................................................................................ 378<br />

4.11. Antifibrotic effect ........................................................................................................................... 378<br />

4.12. Anti-hyperglycemic effect .................................................................................................................. 378<br />

4.13. Ca 2+ channel blocking activity .............................................................................................................. 378<br />

4.14. Acetylcholinesterase (AChE) inhibitory activity ............................................................................................ 379<br />

4.15. Vasodilating and hypotensive activities .................................................................................................... 379<br />

4.16. Inhibition of antinociceptive effect ......................................................................................................... 379<br />

4.17. Acute hemodynamic effect ................................................................................................................. 379<br />

4.18. Histamine release inhibition activity ....................................................................................................... 379<br />

4.19. Antioxidant activity ......................................................................................................................... 379<br />

4.20. Miscellaneous uses .......................................................................................................................... 379<br />

4.21. Toxic effects ................................................................................................................................. 380<br />

5. Future perspectives and conclusion ................................................................................................................. 380<br />

Acknowledgements .................................................................................................................................. 380<br />

References ........................................................................................................................................... 380<br />

1. Introduction<br />

<strong>The</strong> <strong>genus</strong> <strong>Stephania</strong> belongs to family Menispermaceae, a large<br />

family of about 65 genera and 350 species, distributed in warmer<br />

parts of the world. <strong>The</strong> members of this family are mostly herbs<br />

or shrubs but rarely trees. <strong>The</strong> plants of the <strong>genus</strong> <strong>Stephania</strong> are<br />

slender climbers with peltate and membranous leaves. <strong>The</strong> flowers<br />

are umbelliform cymes while inflorescence are axillary and arising<br />

from old leafless stem. <strong>The</strong>se plants have recognized medicinal values<br />

and traditionally have been used for the treatment of asthma,<br />

tuberculosis, dysentery, hyperglycemia, cancer, fever, intestinal<br />

complaints, sleep disturbances and inflammation (Chopra et al.,<br />

1958; Gaur, 1999; Kirtikar and Basu, 2004).<br />

Over the last five decades, an extensive amount of chemical<br />

work has been done on many of these plants because of their traditional<br />

uses which are of interest to researchers. <strong>The</strong>se plants are<br />

major sources of bioactive alkaloids such as morphines, hasubanalactams,<br />

hasubanans, aporphines and berberines. <strong>The</strong> majority<br />

of the chemical work has been reported on S. tetrandra S. Moore,<br />

S. cepharantha Hayata, S. glabra (Roxb.) Miers, S. japonica (Thunb.)<br />

Miers and S. venosa (Blume) Spreng, and more than 70 alkaloids<br />

along with other minor constituents have been reported from these<br />

five species alone. Many of these plants are known for their distinct<br />

biological importance including antitumor and emetine type<br />

activity (Kuroda et al., 1976; Gupta et al., 1980).<br />

In past decade, Chinese-herb nephropathy, a progressive interstitial<br />

nephropathy has been observed among women in Belgium<br />

after the intake of weight-reducing pills containing S. tetrandra<br />

S. Moore. Phytochemical analyses of these pills resulted in the<br />

identification of aristolochic acids (responsible for nephropathy)<br />

instead of tetrandrine (responsible for weight reduction), confirming<br />

the replacement of S. tetrandra (han fangji) by Aristolochia<br />

fangchi (guang fangji/fangchi). <strong>The</strong>se are different plants and the<br />

chemical composition also different. Similarity in the nomenclature<br />

of both these plants was only reason behind the substitution<br />

(Vanherweghem et al., 1993; Debelle et al., 2002; Mosihuzzaman<br />

and Choudhary, 2008).<br />

This study is an attempt to compile an up-to-date and comprehensive<br />

review of the <strong>genus</strong> <strong>Stephania</strong> that covers its traditional<br />

medicinal uses, chemistry and pharmacology. Many plants of this<br />

<strong>genus</strong> are pharmacologically known but chemically unknown and<br />

vice-versa. <strong>The</strong>refore, the scope of future research in this aspect is<br />

also discussed here.<br />

2. Traditional uses<br />

In traditional medicine, most of the plants of the <strong>genus</strong> <strong>Stephania</strong><br />

have been used to treat a wide variety of ailments such as dysentery,<br />

pyrexia, tuberculosis, diarrhea, dyspepsia, urinary diseases,<br />

abdominal ills, asthma, ascariasis, dysmenorrhea, indigestion,<br />

wounds, head-ache, sore-breasts and leprosy. <strong>The</strong> rhizome extract<br />

of S. glabra (Roxb.) Miers has long been used as antidysenteric,<br />

antipyretic, antiasthamatic and antituberculosis agent (Chopra et<br />

al., 1958; Kirtikar and Basu, 2004). <strong>The</strong> aqueous concoction of the<br />

powders of the dried rhizome of S. glabra (Roxb.) Miers and aerial<br />

root of Trichosanthes multiloba are used as an anthelmintic against<br />

intestinal worms in Meghalaya (Northeast India) (Das et al., 2004).<br />

S. venosa (Blume) Spreng is often used as a bitter tonic (Pharadai et<br />

al., 1985). <strong>The</strong> stems of S. dinklagei Diels possess vermifuge, aphrodisiac,<br />

analgesic and sedative effects whereas the leaves has been


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 371<br />

used to treat infertility in the female and impotence in the male. <strong>The</strong><br />

roots of S. hernandifolia (Willd.) Walp. were used in fever, diarrhea,<br />

dyspepsia and urinary diseases (Chopra et al., 1958). S. rotunda Lour.<br />

has been used to treat pulmonary consumption, dysentery, fever,<br />

abdominal ills (tubers), asthma (tubers and stems), ascariasis, dysmenorrhea<br />

(stems), indigestion, wounds, head-ache, sore-breasts<br />

(leaves) and leprosy (flowers) (Chopra et al., 1958; Burkill, 1966;<br />

Phaet-thanesuara, 1967; Khasiphand and Suksah, 1968; Perry,<br />

1980). <strong>The</strong> root of S. tetrandra S. Moore have been used in hepatofibrogenic<br />

disease (Chen et al., 2005), it also used as diuretic,<br />

antiphlogistic, antirheumatic (Joshi et al., 2008), antipyretic and<br />

analgesic in China for centuries (Achike and Kwan, 2002). S. cepharantha<br />

Hayata has been used to treat many acute and chronic diseases,<br />

including venomous snakebites in Japan (Kimoto et al., 1997).<br />

In Bangladesh, the vines of S. japonica (Thunb.) Miers were used for<br />

leucorrhoea, presence of semen in urine, burning sensations during<br />

urination by Chakma and Tonchonga tribes (Hossan et al., 2010).<br />

3.3. <strong>Stephania</strong> bancroftii F. M. Bailey<br />

(−)-Tetrahydropalmatine (5), (−)-stephanine (6), (−)-crebanine<br />

(7), ayuthianine (8), (+)-sebiferine and (+)-stepharine (9)<br />

(Blanchfield et al., 1993, 2003; Bartley et al., 1994).<br />

3. Chemical constituents<br />

<strong>The</strong> reported data showed that alkaloids are the main and<br />

common phytochemicals of the <strong>genus</strong> <strong>Stephania</strong>. More than<br />

200 alkaloids have been isolated from this <strong>genus</strong> together<br />

with flavonoids, lignans, steroids, terpenoids and coumarins. <strong>The</strong><br />

reported phytochemicals from different plants of the <strong>genus</strong> are<br />

given as following.<br />

3.4. <strong>Stephania</strong> brachyandra Diels<br />

Sinoacutine, stephanine (6), crebanine (7) and (−)-dicentrine<br />

(10) (Shulin et al., 1992).<br />

3.1. <strong>Stephania</strong> abyssinica Walp.<br />

4 ′ -O-methylstephavanine (1) and stephavanine (2) (Dagne et<br />

al., 1993).<br />

3.5. <strong>Stephania</strong> cepharantha Hayata<br />

3.2. <strong>Stephania</strong> aculeata F. M. Bailey<br />

7-Hydroxyaporphine, (+)-laudanidine (3) and (−)-amurine (4)<br />

(Blanchfield et al., 1993, 2003).<br />

Stephaoxocanine, stephaoxocanidine, romorphinane, cepharanthine,<br />

cepharanoline, steponine, isotetrandrine, berbamine,<br />

stecepharine, dehydroreticuline (11), magnoflorine, menisperine,<br />

oblongine, cyclanoline, cis-N-methylcapaurine, sinomenine,<br />

cephamerphinanine, D-glucopyranoside, 2 ′ -N-methylisotetrandrine,<br />

N-methyl stesakine chloride (12), stesakine 9-O--Dglucoside<br />

(13), N-methylasimilobine-2-O--D-glucopyranoside<br />

(14), cephamonine, aromoline, zippelianine, cepharamine, aknadinine<br />

(15), aknadicine (16), cephatonine, (−)-cycleanine (28),<br />

obamegine, berbamine, isocorydine, anolobine, cotypalline,<br />

stepharine (9), (+)-reticuline (17), obaberine, homoaromoline,<br />

fangchinoline, tetrandrine (18), cephamuline (Deng et al., 1992;<br />

Nakamura et al., 1992; Sugimoto et al., 1993, 1988; Kashiwaba et<br />

al., 1996, 1997, 2000, 1998, 1994; Nakaoji et al., 1997; Tanahashi<br />

et al., 2000), berbamine and aromorine (Akasu et al., 1976).


372 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

3.6. <strong>Stephania</strong> dinklagei Diels<br />

Liriodenine (19), dicentrinone (20), (+)-corydine (21), (+)-<br />

idocorydine, (−)-roemerine, N-methylliriodendronine (22),<br />

2-O,N-dimethylliriodendronine (23), aloe-emodin (24), isocorydine,<br />

aporphines, atheroospermidine, tephalagine and<br />

dehydrostephalagine (Dwuma et al., 1980; Camacho et al.,<br />

2000; Goren et al., 2003).<br />

3.7. <strong>Stephania</strong> delovayi Diels<br />

Stephodeline (Il’inskaya et al., 1973), 16-oxodelavayine<br />

(Il’inskaya et al., 1972), delavayine (25) (Fadeeva et al., 1971a) and<br />

isostephodeline (Perel’son et al., 1975).<br />

3.8. <strong>Stephania</strong> elegans Hook.f. & Thoms.<br />

Epihernandolinol (26), N-methylcorydalmine (27), hasubanonin,<br />

aknadinin (15), cyclanoline, magnoflorine, isotetrandrine,<br />

isochondodendrine and cycleanine (28) (Singh et al., 1981).


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 373<br />

3.9. <strong>Stephania</strong> erecta Craib<br />

Cepharanthine, (+)-2-N-methyltelobine (29), (+)-1,2-<br />

dehydrotelobine (30), (+)-2-nor-isotetrandrine, (+)-isotetrandrine,<br />

(+)-2-nor-thalrugosine, (+)-thalrugosine, (+)-homoaromoline,<br />

(+)-stephibaberine, (+)-dephnandrine, (+)-2-nor-cepharanthine,<br />

(+)-nor-obaberine, (+)-obaberine (Likhitwitayawuid et al., 1993b;<br />

Tamez et al., 2005).<br />

3.11. <strong>Stephania</strong> glabra (Roxb.) Miers<br />

(+)-Pronuciferine (33), gindarine, gindaricine, gindarinine,<br />

hyndarine, magnoflorine, N-thyloxystephanine,<br />

N-methylhydoxystepharine, remerine, stephararine, cycleanine<br />

(28), rotundine, capaurine (34), corydalmine (35), stepholidine<br />

(36), stepharine (9), protoberberine, palmatine (37), dehydrocorydalmine<br />

(38), jatrorrhizine (39), stepharanine (40), columbamine<br />

(41), N-desmethycycleanine (42), corynoxidine (43) (Chaudhary<br />

and Siddiqui, 1950; Chaudhary et al., 1952; Chopra et al., 1956;<br />

Cava et al., 1964, 1968; Kin et al., 1965; Robinovich et al., 1965;<br />

Shchelchkova et al., 1965; Doskotch et al., 1967; Dhar et al.,<br />

1968; Thu and Nuhn, 1971; Khanna et al., 1972; Patra et al.,<br />

1980; Bhakuni and Gupta, 1982; Bhakuni, 1984; Mahatma et<br />

al., 1987; Anonymous, 1989; Rastogi and Mehrotra, 1991; Duke,<br />

1992; Das et al., 2004), 11-hydroxypalmatine (44) (Semwal et al.,<br />

2010b), glabradine (45) and gindarudine (46) (Semwal and Rawat,<br />

2009a,b).<br />

3.10. <strong>Stephania</strong> excentrica H. S. Lo<br />

Excentricine (31), N-methylexcentricine (32), roemerine, 4-<br />

demethylhasubanonine, oxoputerine, oxoanolobine, isoboldine,<br />

homoaromoline, (+)-coclaurine and sinococuline (Deng and Zhao,<br />

1997; Miu et al., 1998).<br />

3.12. <strong>Stephania</strong> hernandifolia (Willd.) Walp.<br />

(+)-3 ′ ,4 ′ -Dihydrostephasubine (47), (+)-epistephanine (48),<br />

(+)-stephasubine (49) (Patra et al., 1988), l-quercitol, isotrilobine,<br />

-sitosterol, aknadine, aknadinine (15), 4-demethylhasubanonine,<br />

dl-tetrandrine, fangchinoline (50), d-tetrandrine (18), d-<br />

isochondrodendrine, aknadicine (16) (Chopra et al., 1956; Moza,<br />

1960; Kupchan et al., 1961; Kunitomo et al., 1966, 1967, 1969;<br />

Moza and Basu, 1966; Moza and Bose, 1967; Kupchan et al.,<br />

1968; Moza et al., 1968; Moza et al., 1970; Anonymous, 1994),<br />

hernandoline (Fadeeva et al., 1967), hernandine (Il’inskaya et al.,<br />

1971), hernandolinol (Fadeeva et al., 1970), methylhernandine<br />

(Fadeeva et al., 1971b), 3-O-demethylhernandifoline (51)(Fadeeva<br />

et al., 1972) and hernandifoline (Fesenko et al., 1971).


374 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

3.13. <strong>Stephania</strong> intermedia H. S. Lo<br />

(−)-Stepholidine (36) (Xin et al., 1992; Ellenbroek et al., 2006).<br />

3.14. <strong>Stephania</strong> japonica (Thunb.) Miers<br />

16-Oxohasubonine, aknadicine (16), aknadine, 16-oxoprotometaphanine,<br />

aknadinine (15), cyclanoline, cycleanine (28),<br />

d-fangchinoline (50), oxostephabenine (52), stephabenine<br />

(53), lanuginosine (54), epistephanine, dehydroepistephanine,<br />

d-tetrandrine (18), trilobine, epistephamiersine, insularine,<br />

hasubanonine, hernandoline, obamegine, homoepistephanine,<br />

steponine, stephasunoline, oxostephasunoline (55), homostephanoline,<br />

hypoepistephanine, isochondrodendrine, oxostephamiersine,<br />

isotrilobine, l-quercitol, metaphanine, n-nor-1,<br />

2-dehydroepistephanine, oxostephanine, plastoquinone, protostephanaberrine,<br />

prometaphanine, stepinonine, stebisimine,<br />

oxostephasunodine, stephanaberrine, stephanine (6), prostephanaberrine<br />

(56), stephamiersine, stephanoline, stepholine,<br />

stepisimine, viburnitol, protostephanine (57), oxoepistephamiersine<br />

(58), oxostephamiersine, stephadiamine (Inubushi and Ibuka,<br />

1977; Matsui and Watanabe, 1984; Matsui et al., 1984, 1973,<br />

1982a,b; Matsui et al., 1975; Kondo et al., 1983; Taga et al., 1984;<br />

Yamamura and Matsui, 1985; Matsui and Yamamura, 1986; Duke,<br />

1992; Hall and Chang, 1997) and bebeerine (59) (Hullatti and<br />

Sharada, 2010).<br />

3.15. <strong>Stephania</strong> longa Lour<br />

Longitherine (60), stephabyssine, stephaboline (Deng and Zhao,<br />

1993), isostephaboline, stephalonines A-I, norprostephabyssine<br />

(61), isoprostephabyssine (62), isoprostephabyssine and isolonganone<br />

(Zhang and Yue, 2005).<br />

3.16. <strong>Stephania</strong> miyiensis S. Y. Zhao & H. S. Lo<br />

Tetrahydropalmatine (5), stepharine (9), corydalmine (35), jatrorrhizine<br />

(39), stepharanine (40) and 4-O-demethyljatrorrhizine<br />

(63) (Anonymous, 1999).


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 375<br />

3.20. <strong>Stephania</strong> sasakii Hayata<br />

Obaberine, thalrugosine, aknadinine (15), secocepharanthine,<br />

aknadilactam (70) and O-methylpunjabine (Moza et al., 1970;<br />

Kunitomo, 1985).<br />

3.17. <strong>Stephania</strong> pierrei Diels<br />

(−)-Asimilobine (64), (−)-asimilobine 2-O--D-glucoside,<br />

(−)-anonaine, (−)-isolaureline, (−)-xylopine, (−)-roemeroline,<br />

(−)-dicentrine (10), (−)-nordicentrine, (−)-phanostenine,<br />

cassythicine, magnoflorine, (−)-tetrahydropalmatine (5),<br />

(−)-capaurine (34), (−)-thaicanine, (−)-corydalmine (35),<br />

(−)-N-methyltetrahydropalmatine (65), (−)-xylopinine,<br />

(−)-tetrahydrostephabine, (+)-reticuline (17), (+)-codamine, (±)-<br />

oblongine, (−)-delavaine and (−)-salutaridine (Likhitwitayawuid<br />

et al., 1993a; Angerhofer et al., 1999).<br />

3.21. <strong>Stephania</strong> sinica Diels<br />

Cepharanthine (69), runanine (71) and -sitosterol (Min et al.,<br />

1985).<br />

3.18. <strong>Stephania</strong> gracilenta Miers<br />

Sinoacutine, isosinoacutine (66), magnoflorine and papaverine<br />

(67) (Khosa et al., 1987).<br />

3.22. <strong>Stephania</strong> suberosa L. L. Forman<br />

3.19. <strong>Stephania</strong> rotunda Lour.<br />

Cepharamine (68), cycleanine (28), (+)-stepharine (9), (−)-<br />

tetrahydropalmatine (5)(Chopra et al., 1958; Burkill, 1966; Tomita<br />

et al., 1966; Tomita and Kozuka, 1966, 1967; Phaet-thanesuara,<br />

1967; Perry, 1980; Kozuka et al., 1985; Luger et al., 1998), coclaurine,<br />

dehassiline, stepholidine (36), corynoxidine (43) (Thuy et<br />

al., 2006), stepharotudine (Hung et al., 2010), cepharanthine (69),<br />

fangchinoline (50)(Gulcin et al., 2010), 5-hydroxy-6,7-dimethoxy-<br />

3,4-dihydroisoquinolin-1(2H)-one, thaicanine 4-O--D-glucoside<br />

and (−)-thaicanine N-oxide (4-hydroxycorynoxidine) (Thuy et al.,<br />

2005).<br />

(+)-Cepharanthine (69), (+)-2-norcepharanthine (72),<br />

(+)-cepharanthine 2 ′ --N-oxide, (+)-stephasubine, (+)-<br />

norstephasubine, stephasubimine (73) (Patra et al., 1986),<br />

(−)-tetrahydrostephabine, (−)-kikemanine, (−)-stephabinamine,<br />

tephabine, stephnubine, (−)-discretine, 8-oxypseudopalmatine,<br />

(−)-tetrahydropalmatrubine, (−)-stepholidine (36), (−)-<br />

capaurimine, pseudopalmatine, (−)-coreximine, stephaphylline<br />

(−)-ctytenchine, (−)-xylopinine and nordelavaine (Patra et al.,<br />

1987; Patra, 1987).<br />

3.23. <strong>Stephania</strong> succifera H. S. Lo & Y. Tsoong<br />

Cepharanone D, N-formyl-asimilobine, N-formyl-annonain<br />

(Yang et al., 2010a,b), crebanine (7), crebanine-N-oxide, dehydrocrebanine,<br />

tetrahydropalmatine (5), schefferine, asimilobine (Xue<br />

et al., 1986), 7-oxodehydrocaaverine, 7-oxocrebanine and aristololactam<br />

I (Yang et al., 2010a,b).


376 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

3.24. <strong>Stephania</strong> sutchuenensis H. S. Lo<br />

1-Nitroaknadinine (74) and aknadinine (15)(Wang et al., 1994).<br />

3.25. <strong>Stephania</strong> tetrandra S. Moore<br />

Stephadione (75), oxonantenine (76), cassameridine, nantenine,<br />

cassythicine, corydione, aristolochic acid I and II, fangchinoline<br />

A-D (Chen and Chen, 1935; Chen et al., 1937; Si et al., 1992; Zhu<br />

and Philipson, 1996; Kwan et al., 1996; Kim et al., 1997; Ogino et<br />

al., 1998b; Wong, 1998; Kim et al., 1999; Nan et al., 2000; Liang<br />

et al., 2002; Tsutsumi et al., 2003; Fang et al., 2005; Chiou et al.,<br />

2006), fenfangjine A-C (Ogino et al., 1998a), stephaflavone A and<br />

B(Si et al., 2001), fangchinoline (50), tetrandrine (18) (Lijin et al.,<br />

2009), 2-N-methyltetrandrine and (+)-2-N-merhylfangchinoline<br />

(77) (Deng et al., 1990).<br />

well as aqueous extract (SA) and dichloromethane extracts (SD1<br />

and SD2) from S. rotunda Lour. were tested against Plasmodium falciparum<br />

W2 in vitro. DN, CN and SD1 were the most active against W2<br />

with IC 50 values of 0.36, 0.61 M and 0.7 g/mL, respectively. <strong>The</strong>ir<br />

IC 50 values on human monocytic THP1 cells were 10.8, 10.3 M<br />

and >250 g/mL, respectively. CN, SD1 and SA were selected for in<br />

vivo antimalarial testing against Plasmodium berghei in mice. <strong>The</strong><br />

results of SD1 and SA at a dose of 150 mg/kg showed a decrease of<br />

89 and 74% of parasitaemia by intra-peritoneal injection and 62.5<br />

and 46.5% of parasitaemia by oral administration, respectively. <strong>The</strong><br />

results for CN at a dose of 10 mg/kg showed a decrease of 47% of<br />

parasitaemia by intra-peritoneal injection and 50% of parasitaemia<br />

by oral administration. <strong>Dr</strong>ug interaction of chloroquine (CL) and<br />

major alkaloids indicates that CN–CL and TN–XN associations<br />

are synergistic (Chea et al., 2007). <strong>The</strong> bisbenzylisoquinoline<br />

alkaloids from S. erecta Craib and tetrahydroprotoberberine alkaloids<br />

from S. pierrei Diels showed anti-malarial activity against<br />

the D6 (ED, 1540 ng/mL) and W2 (ED, 3130 ng/mL) strains of<br />

Plasmodium falciparm having ED values of 950 and 470 ng/mL<br />

in the D6 and W2 strains, respectively. <strong>The</strong> antimalarial activity<br />

of S. pierrei Diels was attributed to the nonquaternary aporphine<br />

alkaloids and the tetrahydroprotoberberines possessing a<br />

phenolic functionality. None of the isolates showed a degree of<br />

selectivity comparable to that of antimalarial drugs such as chloroquine,<br />

quinine, mefloquine, and artemisinin (Likhitwitayawuid<br />

et al., 1993a,b). Six compounds from S. dinklagei Diels<br />

3.26. <strong>Stephania</strong> venosa (Blume) Spreng.<br />

(−)-O-acetylsukhodianine (78), kamaline, oxoaporphin,<br />

oxostephanosine (79), (−)-crebanine (7), dehydrocrebanine,<br />

(+)-N-carboxamidostepharine (80), (−)-kikemanine,<br />

(−)-tetrahydropalmatine (5), (−)-stepharinosine (81), (+)-<br />

stepharine (9), liriodenine (19), (−)-O-methylstepharinosine,<br />

oxocrebanine, dehydrostephanine, (−)-ushinsunine, oxostephanine,<br />

(−)-sukhodiamine, (−)-sukhodianine--N-oxide,<br />

(−)-stephadiolamine--N-oxide (Guinaudeau et al., 1981, 1982;<br />

Pharadai et al., 1985; Charles et al., 1987; Banerji et al., 1994;<br />

Likhitwitayawuid et al., 1999), stepharanine, cyclanoline and<br />

N-methyl stepholidine (Ingkaninan et al., 2006).<br />

including, two zwitterionic oxoaporphine alkaloids [Nmethylliriodendronine<br />

(22) and 2-O,N-dimethylliriodendronine<br />

(23)], two oxoaporphine alkaloids [liriodenine (19) and dicentrinone<br />

(20)], one aporphine alkaloid [corydine (21)] and one<br />

anthraquinone [aloe-emodine (24)] were tested for antiprotozoal<br />

and cytotoxic activity in vitro. N-methylliriodendronine was most<br />

active against Leishmania donovani amastigotes (IC 50 = 36.1 M).<br />

Liriodenine showed the highest activity against L. donovani, and<br />

P. falciparum with IC 50 values of 26.16 and 15 M, respectively.<br />

Aloe-emodin (24) was the only compound active (IC 50 =14M)<br />

against T.b. brucei (Camacho et al., 2000). <strong>The</strong> aqueous extract of<br />

leaves of S. abyssinica Walp. showed significant anti-plasmodial<br />

activity in vitro against chloroquine sensitive and resistant laboratory<br />

adapted strains of P. falciparum with IC 50 values >30 gmL −1<br />

(Muregi et al., 2004).<br />

4.2. Antimicrobial activity<br />

4. Biological activities<br />

4.1. Anti-malarial activity<br />

Four major alkaloids dehydroroemerine (DN), tetrahydropalmatine<br />

(TN) (5), xylopinine (XN) and cepharanthine (CN) (69) as<br />

A hasubanalactam alkaloid, glabradine (45) isolated from the<br />

tubers of S. glabra (Roxb.) Miers was evaluated for antimicrobial<br />

activity against Staphylococcus aureus, S. mutans, Microsporum<br />

gypseum, M. canis and Trichophyton rubrum and displayed potent<br />

antimicrobial activity superior to those of novobiocin and erythromycin<br />

with IZD values of 19–27 cm (Semwal and Rawat,<br />

2009a,b). An ethanolic extract was also evaluated for its antimicrobial<br />

activity against five bacterial species (S. aureus, S. mutans, S.<br />

epidermidis, Escherichia coli and Klebsiella pneumonia) and six fungal<br />

species (Aspergillus niger, A. fumigatus, Penicillum citranum, M. gypseum,<br />

M. canis and T. rubrum) and found to be active against most


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 377<br />

of the tested microorganisms with MIC range of 50–100 g/mL<br />

(Semwal et al., 2009). <strong>The</strong> methanolic root extract of S. japonica<br />

(Thunb.) Miers showed significant in vitro activity together with<br />

Cissampelos pareira and Cyclea peltata (Hullatti and Sharada, 2007).<br />

Cepharanone D, N-formyl-asimilobine and N-formylannonain isolated<br />

from S. succifera H. S. Lo & Y. Tsoong showed significant<br />

antimicrobial activity in vitro (Yang et al., 2010a,b).<br />

4.3. Anthelmintic activity<br />

<strong>The</strong> alcoholic extract of the dried rhizome of S. glabra (Roxb.)<br />

Miers was tested against various helminth parasites, i.e. nematode<br />

(Heterakis gallinarum, Ascaridia galli, Ancylostoma ceylanicum and<br />

Ascaris suum), cestode (Raillietina echinobothrida) and trematode<br />

(Fasciolopsis buski) in dosages ranging between 25 and 100 mg/mL<br />

in 0.9% phosphate buffered saline (PBS, pH 7.2) at 38 ± 1 ◦ C. <strong>The</strong><br />

controls, kept in PBS, survived for an average 22 h (trematode),<br />

72 h (cestode) and 55 > 380 h (nematodes). <strong>The</strong> results showed pronounced<br />

effect on the cestode and trematode, i.e. a dose-dependent<br />

gradual decline in physical motility was observed in R. echinobothrida<br />

and F. buski (Das et al., 2004).<br />

4.4. Anti-viral activity<br />

<strong>The</strong> antiviral activity of methanolic extract of S. cepharantha<br />

Hayata tubers, its chloroform soluble fraction (alkaloid fraction)<br />

and the major alkaloid FK-3000 were investigated in BALB/c mice<br />

cutaneously infected with HSV-1 strain 7401H. At oral doses of<br />

125 and 250 mg/kg body weight, the methanol extract significantly<br />

delayed skin lesions on score 2 (vesicles in the local region), limited<br />

the development of further lesions on score 6 (mild zosteriform<br />

lesion) and prolonged the mean survival time of HSV-1 infected<br />

mice. After administration of the alkaloid fraction at doses of 25<br />

and 50 mg/kg or FK-3000 at 10 and 25 mg/kg, similar results were<br />

obtained. Although the alkaloid improved the survival of infected<br />

mice, it had a narrow therapeutic index (Nawawi et al., 2001; Liu<br />

et al., 2004; Zhang et al., 2005).<br />

4.5. Anti-proliferative/anti-cancer activity<br />

Four alkaloids (dl-tetrandrine, fangchinoline (50), d-tetrandrine<br />

and d-isochondrodendrine) isolated from S. hernandifolia (Willd.)<br />

Walp. showed significant cytotoxicity against human carcinoma<br />

of the nasopharynx carried in tissue culture (KB), and that dltetradrine<br />

and d-tetrandrine showed significant inhibitory activity<br />

in vivo against the Walker 256 intramuscular carcinosarcoma in the<br />

rat (Kupchan et al., 1968). Ethanolic extract of S. venosa (Blume)<br />

Spreng. bulb was tested for antiproliferative activity against SKBR3<br />

human breast adenocarcinoma cell line using MTT assay and<br />

showed activity in potential range for further investigation on cancer<br />

cells (Moongkarndi et al., 2004). Aporphine alkaloid isolated<br />

from S. venosa (Blume) Spreng. exhibited antiproliferation activity<br />

on SKOV3 human ovarian cancer cell line using MTT assay.<br />

Aporphine showed strong inhibition activity with an ED 50 value<br />

of 6 g/mL (Montririttigri et al., 2008). Four bisbenzylisoquinoline<br />

alkaloids (cepharanthine (69), cepharanoline, isotetrandrine<br />

and berbamine) from S. cepharantha Hayata showed significant<br />

effects on proliferation of culture cell from the murine skin in<br />

the range of 0.01–0.1 g/mL (Nakaoji et al., 1997). Cepharanthine<br />

(CN) inhibits tumor promotion after topical application<br />

in two-stage carcinogenesis in mouse skin. Epidermal ornithine<br />

decarboxylase activities inhibited by topical application of CN,<br />

with 5 mg/mouse) and mezerein (5 mg/mouse) were found to<br />

be inhibited by topical application of CN, with a ED 50 values of<br />

1.2 mM and 1.4 mM, respectively. A diet containing 0.005% CN<br />

slightly suppressed the two-stage promotion of skin tumors by<br />

twice-weekly applications of 2.5 Mg TPA for 2 weeks (first stage)<br />

followed by twice-weekly applications of 2.5 Mg mezerein for<br />

23 weeks (second stage) in ICR mice following initiation by 50<br />

Mg 7,12-dimethylbenz[a]anthracene. Oral administration of CN<br />

inhibits the tumor promotion in two-stage carcinogenesis in mouse<br />

skin (Yasukawa et al., 1991). S. tetrandra S. Moore demonstrated<br />

antiproliferative and proapoptotic activities in a rat hepatic stellate<br />

cell line, HSC-T6 (Chor et al., 2005). <strong>The</strong> extract, as well as<br />

two aporphine alkaloids, (−)-asimilobine-2-O--D-glucoside and<br />

(−)-nordicentrine from S. pierrei Diels, and (+)-2-N-methyltelobine<br />

from S. errecta Craib showed potent cytotoxic activity against<br />

the KB (ED 50 3.6 g/mL) and P-388 (ED 50 0.8 g/mL) cell systems.<br />

It was found that the cytotoxicity of S. pierrei Diels was<br />

mainly due to the presence of the aporphine alkaloids containing<br />

the 1,2-methylenedioxy group (Likhitwitayawuid et al., 1993a,b;<br />

Angerhofer et al., 1999). Five compounds (7-oxodehydrocaaverine,<br />

7-oxocrebanine, dehydrocrebanine, crebanine and aristololactam<br />

I) from the tuber of S. succifera H. S. Lo & Y. Tsoong were evaluated<br />

for their cytotoxic activity by MTT assay. Dehydrocrebanine<br />

and crebanine showed inhibitory activity towards chronic myelogenous<br />

leukemia (K562), human gastric carcinoma (SGC-7901)<br />

and human hepatoma (SMMC-7721) cell lines (Yang et al., 2010a,b).<br />

Aqueous extract of S. venosa (Blume) Spreng. tubers was studied for<br />

cytotoxic activity on human peripheral blood mononuclear cells<br />

(PBMCs) and showed activity with IC 50 value of 300 mg/mL. <strong>The</strong><br />

effect of the extract on apoptotic induction was also evaluated at the<br />

concentration of 300 mg/mL on PMBCs from healthy subjects and<br />

from cervical cancer patients and significantly induced apoptosis of<br />

the PBMCs from both healthy subjects and from the patients. <strong>The</strong><br />

antiproliferative effect was also evaluated on the cells from healthy<br />

subjects and demonstrated activity with IC 50 value of 40 mg/mL<br />

(Sueblinvong et al., 2007).<br />

4.6. Antipsychotic activity<br />

(−)-Stepholidine (SPD) isolated from S. intermedia H. S. Lo, which<br />

binds to the dopamine D 1 and D 2 like receptors has been evaluated<br />

for its antipsychotic effects in animal models. <strong>The</strong> effects of<br />

SPD, clozapine and haloperidol in increasing forelimb and hindlimb<br />

retraction time in the paw test and in reversing the apomorphine<br />

and MK801-induced disruption of prepulse inhibition was investigated.<br />

In the paw test, clozapine and SPD increased the hind limb<br />

retraction time. In the prepulse inhibition paradigm, all three drugs<br />

reverse the apomorphine-induced disruption in prepulse inhibition,<br />

while none of the drugs could reverse the MK801-induced<br />

disruption. SPD even slightly, but significantly potentiated the<br />

effects of MK801 (Ellenbroek et al., 2006).<br />

4.7. Apoptosis inducing effect<br />

Apoptosis inducing effect of tetrandrine (TN), a bisbenzylisoquinoline<br />

alkaloid derived from S. tetrandra S. Moore on activated<br />

hepatic stellate cells of rat has been examined. <strong>The</strong> hepatic stellate<br />

cells transformed by Simian virus 4 (T-HSC/CL-6) to overcome<br />

the limitations inherent in studying primary cultures of hepatic<br />

stellate cells. TN treatment at doses of 25 and 50 g/mL for<br />

12 h induced apoptosis as confirmed by DNA fragmentation and<br />

increased sub-G1 DNA content. TN also induced the activation<br />

of capase-3 protease and subsequent proteolytic cleavage of poly<br />

(ADP-ribose) polymerase (Zhao et al., 2004).<br />

4.8. Multidrug resistance reversing activity<br />

An alkaloidal extract of the vines of S. japonica (Thunb.) Miers<br />

showed multidrug resistance reversing activity as demonstrated<br />

by the bicinchoninic acid assay. Insotrilobine and trilobine from


378 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

the plant were shown to be as active as verapamil (standard)<br />

in reversing doxorubicin resistance in human breast cancer cells<br />

(MCF-7 cells). Isotrilobine has MDR-reversing activity comparable<br />

to verapamil at concentrations less than the ED 20 of isotrilobine<br />

on MCF-7/ADR cells. Trilobine has low activity with a slope of 28<br />

as compared with slopes of 211 and 232 for isotrilobine and verapamil,<br />

respectively. <strong>The</strong> greater efficacy of isotrilobine to trilobine<br />

appears to be a result of the methyl group at N-2 ′ . This is the only<br />

structural difference between the two compounds and suggests<br />

that a tertiary amine is preferred at this position to a secondary<br />

amine. <strong>The</strong> slightly increased lipophilicity induced by the addition<br />

of another methyl group may also contribute to the increased<br />

activity (Hall and Chang, 1997).<br />

4.9. Anti-inflammatory and analgesic activity<br />

To investigate the anti-inflammatory effects of S. tetrandra<br />

S. Moore in vitro and in vivo, its effects on the production of<br />

IL-6 and inflammatory mediators were analyzed. When human<br />

monocytes/macrophages (stimulated with silica) were treated<br />

with 0.1–10 g/mL the plant, the production of IL-6 was inhibited<br />

up to 50%. It also suppressed the production of IL-6 by<br />

alveolar macrophages. In addition, it inhibited the release of<br />

superoxide anion and hydrogen peroxide from human monocytes/macrophages.<br />

To assess the anti-fibrosis effects of S. tetrandra,<br />

its effects on in vivo experimental inflammatory models were evaluated.<br />

In the experimental silicosis model, IL-6 activities in the<br />

sera and in the culture supernatants of pulmonary fibroblasts were<br />

also inhibited by it. In vitro and in vivo treatment with S. tetrandra<br />

reduced collagen production by rat lung fibroblasts and lung<br />

tissue. It also reduced the levels of serum GOT and GPT in the<br />

rat cirrhosis model induced by CCl 4 , and was effective in reducing<br />

hepatic fibrosis and nodular formation (Kang et al., 1996). <strong>The</strong> antiinflammatory<br />

constituents, tetrandrine (18) and fangchinoline (50)<br />

from S. tetrandra have been shown to decrease IL-1beta, IL-6, IL-8<br />

and TNF-alpha as well as decrease leukotriene and prostaglandin<br />

generation. Furthermore, tetrandrine has been shown to inhibit the<br />

production of TNF-alpha and IL-6 by microglial cells (Teh et al.,<br />

1990; Xue et al., 2008). <strong>The</strong> combined analgesic effect of aconitum<br />

(Ac) and S. tetrandra (St) was found superior to that of Ac and St<br />

when used alone. <strong>The</strong> combined Ac-St showed remarkable analgesic<br />

activity within 3 h (p < 0.01) in rabbits and mice models (Li et<br />

al., 2000).<br />

4.10. Immunomodulating activity<br />

S. tetrandra S. Moore has been used to treat autoimmune<br />

diseases such as rheumatoid arthritis and systemic lupus erythe<br />

matosus. Tetrandrine (18) has potential immunomodulating<br />

and anti-inflammatory effects. T-lymphocytes play a critical<br />

role as autoactive and pathogenic population in autoimmune<br />

and inflammatory diseases. Some experimental data showed<br />

that, through down-regulating the protein kinase C (PKC) signaling,<br />

interleukin-2 secretion and the expression of the T<br />

cell activation antigen (CD71), tetrandrine inhibited phorbol<br />

12-myristate 13-acetate (PMA)+ionomycin-induced T cell proliferation<br />

dependent on interleukin-2 receptor chain and CD69,<br />

such an action was unrelated to Ca 2+ channel blockade (Ho<br />

et al., 1999). Tetrandrine (0.1–10 ML −1 ) significantly inhibited<br />

neutrophil-monocyte chemotactic factor-1 upregulation and<br />

adhesion to fibrinogen induced by N-formyl-methionyl-leucylphenylalanine<br />

and PMA. Tetrandrine at 0.1–100 ML −1 caused<br />

dose and time-dependent loss of cell viability of mouse peritoneal<br />

macrophages, guinea-pig alveolar macrophages and mouse<br />

macrophage-like J774 cells, reduced production of oxygen free<br />

radical, down-regulated synthesis and release of some proinflammatory<br />

cytokines (Pang and Hoult, 1997; Shen et al.,<br />

1999).<br />

4.11. Antifibrotic effect<br />

Antifibrotic effect of a methanol extract from S. tetrandra S.<br />

Moore on experimental liver fibrosis has been investigated. Liver<br />

fibrosis was induced by bile duct ligation and scission (BDL/S) in<br />

rats. In BDL/S rats, activity levels of aspirate transaminase, alanine<br />

transaminase, alkaline phosphatase, concentration of total<br />

bilirubin in serum, and 100 mg/kg/day or 200 mg/kg/day, (p.o. for<br />

4 weeks) in BDL/S rats reduced the serum aspirate transaminase,<br />

alanine transaminase, alkaline phosphatase activity levels significantly<br />

(p < 0.01) (Nan et al., 2000).<br />

4.12. Anti-hyperglycemic effect<br />

<strong>The</strong> ethanolic extract of the tubers of S. glabra (Roxb.) Miers<br />

was evaluated for its hyperglycemic effects against alloxan-induced<br />

diabetic and significantly decreased the blood sugar level in experimental<br />

animals (Semwal et al., 2010a). A palmatine derivative,<br />

11-hydroxypalmatine (44) isolated from this plant was also evaluated<br />

for its anti-hyperglycemic activity. <strong>The</strong> test compound was<br />

administered at doses of 25, 50, and 100 mg/kg, p.o., 36 h after<br />

alloxan injection (60 mg/kg, i.v.). <strong>The</strong> alloxan-induced diabetic mice<br />

showed significant reduction in blood glucose after treatment with<br />

the test compound by 52% as compared to the positive control<br />

glibenclamide (54%) and the diabetic control (27%) (Semwal et al.,<br />

2010b). S. tetrandra S. Moore roots increases the blood insulin level<br />

and reduces the blood glucose level in streptozotocin diabetic mice.<br />

Actions of bisbenzylisoquinoline alkaloids isolated from the plant<br />

were investigated in the hyperglycemia of diabetic mice. A main<br />

bisbenzylisoquinoline alkaloid fangchinolin (0.3–3 mg/kg) significantly<br />

reduced blood glucose level of the diabetic mice. <strong>The</strong> effect<br />

of fangchinoline was 3.9 fold greater than that of water extract<br />

(Tsutsumi et al., 2003). S. tetrandra has a direct effect on the retinal<br />

capillary of posterior ocular region and suppressed neovascularization<br />

of retinal capillary in streptozotocin diabetic rats through<br />

the activation of tetrandrine (Liang et al., 2002). <strong>The</strong> oral administration<br />

of ethanol and aqueous extract (400 mg/kg body weight) of<br />

powdered corm of S. hernandifolia significantly (p < 0.05) decreased<br />

the blood glucose of normal and Streptozotocin-induced diabetic<br />

rats up to 12 h. Glibenclamide was used as a standard drug at a dose<br />

of 0.25 mg/kg (Sharma et al., 2010).<br />

4.13. Ca 2+ channel blocking activity<br />

Abnormal Ca 2+ signaling and elevated concentration of intracellular<br />

free Ca 2+ are the basic pathophysiological events involved<br />

in various diseases. As a Ca 2+ antagonist, tetrandrine (S. tetrandra)<br />

can inhibit extracellular Ca 2+ entry, int ervene in the distribution<br />

of intracellular Ca 2+ , maintain intracellular Ca 2+ homeostasis, and<br />

then disrupt the pathological processes. As shown in whole cell<br />

patch-clamp recordings, tetrandrine blocked bovine chromaffin<br />

cells voltage-operated Ca 2+ channel current in a time and concentration<br />

dependently manner. In rat phaeochromocytoma PC 12<br />

cells, 100 mol L −1 tetrandrine abolished high K + (30 mmol L −1 )<br />

-induced sustained increase in cytoplasmic Ca 2+ concentration,<br />

inhibited bombesin-induced inositol triphosphate accumulation in<br />

NIH/3T3 fibroblast and abolished Ca 2+ entry (Takemura et al., 1996).<br />

Tetrandrine can affect cardiovascular electrophysiologic properties<br />

by inhibit the contractility, ±dt/dp max , and automaticity of<br />

myocardium, prolong the FRP, and exert concentration-dependent<br />

negative inotropic and chronotropic effects without altering cardiac<br />

excitability. Tetrandrine directly blocks both T-type and L-type<br />

calcium current in ventricular cells and vascular smooth muscle


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 379<br />

cells, but it does not shift the I–V relationship curve of I Ca . All its<br />

effects would be beneficial in the treatment of angina, arrhythmias,<br />

and other cardiovascular disorders. It also directly inhibits<br />

the activity of BK Ca channel in endothelial cell line and also inhibits<br />

Ca 2+ -release-activated channels in vessel endothelial cells, which<br />

might significantly contribute to the change of endothelial cell<br />

activity (Qian, 2002; Yao and Jiang, 2002).<br />

4.14. Acetylcholinesterase (AChE) inhibitory activity<br />

Three quaternary protoberberine alkaloids, stepharanine,<br />

cyclanoline and N-methyl stepholidine from S. venosa (Blume)<br />

Spreng. tuber expressed inhibitory activity on AChE with IC 50 values<br />

of 14.10, 9.23 and 31.30 M, respectively. <strong>The</strong> AChE inhibitory<br />

(potential drugs for Alzheimer’s disease) activity of these compounds<br />

was compared with those of the related compounds,<br />

palmatine, jatrorrhizine and berberine, as well as with tertiary protoberberine<br />

alkaloids, stepholidine and corydalmine isolated from<br />

the same plant. <strong>The</strong> results suggest that the positive charge at the<br />

nitrogen of the tetrahydroisoquinoline portion, steric substitution<br />

at the nitrogen, planarity of the molecule or substitutions at C-2,<br />

-3, -9, and -10 affect the AChE inhibitory activity of protoberberine<br />

alkaloids (Ingkaninan et al., 2006). <strong>The</strong> ethanolic extract of roots<br />

along with the alkaloids isolated from S. rotunda Lour. showed significant<br />

AChE inhibitory activity (in vitro) using a rat cortex AChE<br />

enzyme (Hung et al., 2010).<br />

4.15. Vasodilating and hypotensive activities<br />

Comparative studies of the effects of tetrandrine (TN) and<br />

fangchinoline (FN), two major components of the Radix of S.<br />

tetrandra S. Moore, on vasodilations and on calcium movement<br />

in vascular smooth muscle, and studies of hypotensive effects<br />

on stroke-prone spontaneously hypertensive rats (SHRSP) were<br />

performed. TN and FN inhibited high K + (65.4 mM) and induced<br />

sustained contraction in the rat aorta smooth muscle strips. IC 50<br />

values for TN and FN were 0.27 ± 0.05 M and 9.53 ± 1.57 m,<br />

respectively, and this inhibition was antagonized by increasing<br />

the Ca 2+ concentration in the medium. <strong>The</strong> IC 50 of TN<br />

for norepinephrine (NE)-induced contraction (0.86 ± 0.04 g) was<br />

3.08 ± 0.05 m, and the IC 50 of FN for NE-induced contraction<br />

(0.88 ± 0.07 g) was 14.20 ± 0.40 M. At the molecular level, radiolabelled<br />

45 Ca 2+ uptake tests revealed that TN and FN also inhibited<br />

high K + (65.4 mM) and 1 M NE-stimulated Ca 2+ influx in rat aorta<br />

strips at the maximal concentration was needed to inhibit the<br />

contraction. TN (3 mg/kg) and FN (30 mg/kg) administered by i.v.<br />

bolus injection also lowered the mean arterial pressure (MAP) significantly<br />

during the period of observation in conscious SHRSP,<br />

respectively. <strong>The</strong>se results showed that TN was more potent than<br />

FN in blocking calcium channels and antihypertensive activity. <strong>The</strong><br />

compounds were also shown to have hypotensive effects on stroke<br />

prone spontaneously hypertensive rats (Kim et al., 1997).<br />

4.16. Inhibition of antinociceptive effect<br />

Fangchinoline (FN), a non-specific calcium antagonist, from S.<br />

tetrandra S. Moore showed antagonistic activity on morphineinduced<br />

antinociception in mice. It has been found that FN (IP)<br />

attenuated morphine (SC)-induced antinociception in a dosedependent<br />

manner with significant effect at doses of 30 and<br />

60 mg/kg body wt (IP) in the tail-flick test but not the tailpinch<br />

tests. This antagonism was abolished by pretreatment<br />

with a serotonin precursor, 5-hydroxytryptophan (5-HTP, IP),<br />

but not by pretreatment with a noradrenaline precursor, L-<br />

dihydroxyphenylalanine (L-DOPA, IP) in the tail-flick test. <strong>The</strong><br />

serotonergic pathway may be involved in the antagonism of<br />

morphine-induced antinociception by FN and, in agreement with<br />

other reports, also indicates the possible dissociation of the morphine<br />

analgesic effect from its tolerance-development mechanism<br />

(Fang et al., 2005).<br />

4.17. Acute hemodynamic effect<br />

Acute hemodynamic effect of tetrandrine, isolated from S.<br />

tetrandra was assessed in anesthetized cirrhotic rats. Tetrandrine<br />

decreases of PVP and MAP, the maximum percentage reduction of<br />

PVP after drug was 5.4 ± 1.0%, 9.2 ± 0.8% and 23.7 ± 1.2% of base<br />

line, respectively, for the doses given 2.0, 6.6 and 20.0 mg/kg. Total<br />

peripheral resistance was also reduced by the drug (Huang et al.,<br />

1999).<br />

4.18. Histamine release inhibition activity<br />

Bisbenzylisoquinoline alkaloids from S. cepharantha Hayata<br />

roots and tubers were tested for histamine release inhibition<br />

assay. <strong>The</strong> order of the potency of inhibitory effect was ranked<br />

as homoaromoline, aromoline, isotetrandrine, cepharanthine (69),<br />

fangchinoline (50), obaberine and tetrandrine (Nakamura et al.,<br />

1992).<br />

4.19. Antioxidant activity<br />

Fangchinoline (50) and cepharanthine (69) isolated from S.<br />

rotunda Lour. performing different in vitro antioxidant assays,<br />

including 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical<br />

scavenging, 2,2 ′ -azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)<br />

(ABTS) radical scavenging, N,N-dimethyl-p-phenylenediamine<br />

dihydrochloride (DMPD) radical scavenging, superoxide anion<br />

(O 2 •− ) radical scavenging, hydrogen peroxide scavenging, total<br />

antioxidant activity, reducing power, and ferrous ion (Fe 2+ ) chelating<br />

activities. Cepharanthine and fangchinoline showed 94.6 and<br />

93.3% inhibition on lipid peroxidation of linoleic acid emulsion<br />

at 30 g/mL concentration, respectively. On the other hand,<br />

butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT),<br />

-tocopherol, and trolox indicated inhibitions of 83.3, 92.2, 72.4,<br />

and 81.3% on peroxidation of linoleic acid emulsion at the same<br />

concentration (30 g/mL), respectively (Gulcin et al., 2010). <strong>The</strong><br />

ethanol and aqueous extracts (400 mg/kg body weight) of powdered<br />

corm of S. hernandifolia (Willd.) Walp. strongly scavenged<br />

DPPH radicals with IC 50 values of 265.33 and 217.90 g/mL, respectively<br />

in vitro whereas the superoxide radical were scavenged with<br />

IC 50 values of 526.87 and 440.89 g/mL, respectively. Ascorbic acid,<br />

a natural antioxidant, was used as positive control (Sharma et al.,<br />

2010).<br />

4.20. Miscellaneous uses<br />

Tetrandrine (TN) from the root of S. tetrandra S Moore has been<br />

used to treat silicosis. Except for its antiinflammatory, antifibrogenetic,<br />

immunomodulating effects and antioxidant effects, TN<br />

shows antiallergic effects, inhibitory effects on pulmonary vessels<br />

and airway smooth muscle contraction, and platelet aggregation<br />

via its nonspecific calcium channel antagonism that suggested its<br />

potential in the treatment of asthma, pulmonary hypertension and<br />

chronic obstructive pulmonary disease (Xie et al., 2002). TN has<br />

been used to treat silicosis, autoimmune disorders, and hypertension<br />

in Mainland China for decades. <strong>The</strong> accumulated studies<br />

both in vitro and in vivo reveal that it preserves a wide variety<br />

of immunosuppressive effects. Importantly, the TN-mediated<br />

immunosuppressive mechanisms are evidently different from<br />

some known DMARDs. <strong>The</strong> synergistic effects have also been<br />

demonstrated between TN and other DMARDs like FK506 and


380 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

cyclosporin. TN is a very potential candidate to be considered as one<br />

of DMARDs in the treatment of autoimmune diseases, especially<br />

rheumatoid arthritis (Lai, 2002). <strong>The</strong> stem extract of S. cepharantha<br />

Hayata (SC) was evaluated for its toxicity, bacteriostatic, antiphlogistic<br />

and antalgic activity. For toxicity, SC administered to mice by<br />

i.v. and i.p. routes in solution in physiological serum (water containing<br />

9 g/L of NaCl) is well tolerated and LD 0 (maximum non-lethal<br />

dose) was found higher than 500 mg/kg. SC exhibits a bacteriostatic<br />

activity against Gram (+) and Gram (−) bacteria. For instance<br />

the MIC values are 2 mg/mL on Staphylococcus aureus London and<br />

44 mg/mL on a strain of Proteus. <strong>The</strong> antiphlogistic activity of SC<br />

was studied on female rats by using phenylbutazone as a positive<br />

control and inhibits in a statistically significant manner the development<br />

of the carrageen oedema at 100 mg/kg, the action being<br />

maximum 3 h after administration. <strong>The</strong> antalgic activity was carried<br />

out by i.p. administration of SC and aspirin (standard) to male<br />

mice of 0.2 mL of an aqueous solution of acetic acid (30 g/L) and<br />

showed significant results (Debat et al., 1980). Two aporphine alkaloids,<br />

corydine (21) and atherospermidine isolated from ethanolic<br />

extract of the stems of S. dinklagei Diels showed DNA damaging<br />

activity (Goren et al., 2003). Levo-tetrahydropalmatine (l-THP), an<br />

alkaloid constituent found in many plants of <strong>genus</strong> <strong>Stephania</strong> produced<br />

a rightward and downward shift in the dose–response curve<br />

for cocaine self-administration and attenuated cocaine-induced<br />

reinstatement. l-THP also reduced food-reinforced responding and<br />

locomotor activity (Mantsch et al., 2007). <strong>The</strong> effects of a leaf extract<br />

of S. hernandifolia on testicular activities in albino rats at the dose<br />

of 2 g or 4 g of leaves/mL distilled water/100 g body weight/day<br />

for 28 days was studied. Treatment with both doses resulted in<br />

significant reduction in relative weight in the testis, the seminal<br />

vesicles, the prostate, and the epididymis without any significant<br />

change in the liver and kidney weight. <strong>The</strong> extract reduced the<br />

activities of testicular androgenic key enzymes and plasma level of<br />

testosterone along with inhibition of spermatogenesis without any<br />

induction of hepatic and renal toxicity (Ghosh et al., 2002; Jana et al.,<br />

2003).<br />

4.21. Toxic effects<br />

Apart from various medicinal uses, rare plants of the <strong>genus</strong><br />

<strong>Stephania</strong> have been reported for their acute toxic effects. <strong>The</strong><br />

oral administration of aqueous extract of wet and dry root tuber<br />

of <strong>Stephania</strong> cepharantha Hayata showed acute toxicity with LD 50<br />

value of 41.4 g/kg and 22.9 g/kg, respectively (Chen et al., 1999). S.<br />

cephalantha Hayata (root tubers) and S. epigaea H.S. Lo (root tubers)<br />

have been recognized as toxic plants in China (Huai et al., 2010). S.<br />

sinica (an shu ling) was shown to have hepatotoxicity (Haller et al.,<br />

2002).<br />

5. Future perspectives and conclusion<br />

Although, an extensive amount of research work has been done<br />

on some plants of this <strong>genus</strong> to date, but a large number of species<br />

are still chemically and/or pharmacologically unknown such as<br />

S. brevipes Craib, S. tomentella Forman, S. glandulifera Miers and<br />

S. capitata (Blume) Spreng. Consequently, a broad field of future<br />

research remains possible in which the isolation of new active principles<br />

from these species would be of great scientific merit. <strong>The</strong><br />

alkaloids are of particular interest as many are highly potent bioactives<br />

and perhaps responsible for most of activities shown by<br />

the plants of this <strong>genus</strong>. However, the mechanism of their action<br />

is still unknown. Hence, a detailed study is required to understand<br />

the structure–activity relationship of these constituents. As literature<br />

showed, many plant extracts having cytotoxic activity, hence,<br />

the particular constituent responsible for the activity may be isolated<br />

for further process. In addition, some plant extracts were only<br />

screened for their preliminary in vitro activities, so, the advance<br />

clinical trial of them deserves to be further investigated. Herein,<br />

we described the possible applications in clinical research but further<br />

investigations on phytochemical discovery and subsequent<br />

screening are needed for opening new opportunities to develop<br />

pharmaceuticals based on <strong>Stephania</strong> constituents.<br />

Acknowledgements<br />

This work was financially supported by UGC New Delhi under<br />

the <strong>Dr</strong>. D.S. <strong>Kothari</strong> Post Doctoral <strong>Fellowship</strong> Scheme. <strong>The</strong> authors<br />

pay their sincere thanks to editor and referees of the journal, for<br />

their valuable suggestions to improve this article.<br />

References<br />

Achike, F.I., Kwan, C.Y., 2002. Characterization of a novel tetrandrine-induced contraction<br />

in rat tail artery. Acta Pharmacologica Sinica 23, 698–704.<br />

Akasu, M., Itokawa, H., Fujita, M., 1976. Biscoclaurine alkaloids in callus tissues of<br />

<strong>Stephania</strong> cepharantha. Phytochemistry 15, 471–473.<br />

Angerhofer, C.K., Guinaudeau, H., Wongpanich, V., Pezzuto, J.M., Cordell, G.A., 1999.<br />

Antiplasmodial and cytotoxic activity of natural bisbenzylisoquinoline alkaloids.<br />

Journal of Natural Products 62, 59–66.<br />

Anonymous, 1989. <strong>The</strong> Wealth of India, Row Materials vol. X (Sp-W), Publication<br />

and Information Directorate CSIR, New Delhi, India, p. 41.<br />

Anonymous, 1994. Indian Medicinal Plants, vol. 2, Arya Vaidya Sala, Orient Longman,<br />

India, p. 280.<br />

Anonymous, 1999. Zhongcaoyao, 30, 250.<br />

Banerji, J., Chatterjee, A., Patra, A., Bose, P., Das, R., Das, B., Shamma, M., Tantisewie,<br />

B., 1994. Kamaline, an unusual aporphine alkaloid, from <strong>Stephania</strong> venosa. Phytochemistry<br />

36, 1053–1056.<br />

Bartley, J.P., Baker, L.T., Carvalho, C.F., 1994. Alkaloids of <strong>Stephania</strong> bancroftii. Phytochemistry<br />

36, 1327–1331.<br />

Bhakuni, D.S., 1984. Some aspects of protoberberine alkaloids. Journal of the Indian<br />

Chemical Society 61, 1016–1022.<br />

Bhakuni, D.S., Gupta, S., 1982. <strong>The</strong> alkaloids of <strong>Stephania</strong> glabra. Journal of Natural<br />

Products 45, 407–411.<br />

Blanchfield, J.T., Kitching, W., Sands, D.P.A., Thong, Y.H., Kennard, C.H.L., Byriel, K.A.,<br />

1993. Alkaloids from some Australian <strong>Stephania</strong> (Menispermaceae) species. Natural<br />

Product Letters 3, 305–312.<br />

Blanchfield, J.T., Sands, D.P.A., Kennard, C.H.L., Byriel, K.A., Kitching, W., 2003.<br />

Charecterisation of alkaloids from some Australian <strong>Stephania</strong> (Menispermaceae)<br />

species. Phytochemistry 63, 711–720.<br />

Burkill, I.H., 1966. A Dictionary of the Economic Products of the Malay Peninsula,<br />

Kuala Lumpur. <strong>The</strong> Ministry of Agriculture and Co-operatives, Malaysia, p. 2113.<br />

Camacho, M.R., Kirby, G.C., Warhurst, D.C., Croft, S.L., Phillipson, J.D., 2000. Oxoaporphine<br />

alkaloids and quinines from <strong>Stephania</strong> dinklagei and evalution of their<br />

antiprotozoal activity. Planta Medica 66, 478–480.<br />

Cava, M.P., Nomura, K., Schlessinger, R.H., Buck, K.T., Douglas, B., Raffauf, R.F.,<br />

Weisbach, J.A., 1964. Chemical determination of the absolute configuration of<br />

aporphines-reductive cleavage of proaporphines. Chemistry and Industry (London),<br />

282–283.<br />

Cava, M.P., Nomura, K., Talapatra, S.K., Mitchell, M.J., Schlessinger, R.H., Buck, K.T.,<br />

Beal, J.L., Douglas, B., Raffauf, R.F., Weisbach, J.A., 1968. Alkaloids of <strong>Stephania</strong><br />

glabra. Direct chemical correlation of the absolute configuration of some<br />

benzyltetrahydroisoquinoline, proaporphine, and aporphine alkaloids, New<br />

protoberberine alkaloid. Journal of Organic Chemistry 33, 2785–2788.<br />

Charles, B., Bruneton, J., Pharadai, K., Tantisewie, B., Guinaudeau, H., Shamma, M.,<br />

1987. Some unusual proaporphine and aporphine alkaloids from <strong>Stephania</strong><br />

venosa. Journal of Natural Products 50, 1113–1117.<br />

Chaudhary, G.R., Sharma, V.N., Dhar, M.L., 1952. <strong>The</strong> alkaloid of <strong>Stephania</strong> glabra<br />

Miers. Identity of aindarine and gindarimine with tetrahydropalmatine (5) and<br />

palmatine respectively. Journal of Scientific and Industrial Research B 11, 337.<br />

Chaudhary, G.R., Siddiqui, S., 1950. <strong>The</strong> alkaloids of Indian <strong>Stephania</strong>s. Pt. I. Isolation<br />

of three crystalline alkaloids from the tubers of <strong>Stephania</strong> glabra Miers. Journal<br />

of Scientific and Industrial Research B 9, 79.<br />

Chea, A., Hout, S., Bun, S.S., Tabatadze, N., Gasquet, M., Azas, N., Elias, R., 2007.<br />

Antimalarial activity of alkaloids isolated from <strong>Stephania</strong> rotunda. Journal of<br />

Ethnopharmacology 102, 132–137.<br />

Chen, J., Tong, Y., Zhang, X., Tian, H., Chang, Z., 1999. Acute toxicity of <strong>Stephania</strong><br />

cepharantha. Journal of Chinese Medicinal Materials 22, 468–469.<br />

Chen, K., Chen, A., 1935. <strong>The</strong> alkaloids of han-fang-chi. <strong>The</strong> Journal of Biological<br />

Chemistry 109, 681–685.<br />

Chen, K., Chen, A., Anderson, R., Rose, C., 1937. <strong>The</strong> pharmacological action of tetrandrine,<br />

an alkaloid of han-fang-chi. Chinese Journal of Physiology 11, 13–34.<br />

Chen, Y.W., Li, D.G., Wu, Z.X., Chen, Y.W., Lu, H.M., 2005. Tetrandrine inhibits<br />

activation of rat hepatic stellate cells stimulated by transforming growth factorbeta<br />

in-vitro via up-regulation of Smad 7. Journal of Ethnopharmacology 100,<br />

299–305.


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 381<br />

Chiou, W.F., Lee, W.S., Yeh, P.H., 2006. Tetrandrine selectively protects against<br />

amyloid--protein but not against MPTP-induced cytotoxicity in SK-N-SH neuroblastoma<br />

cells. Planta Medica 72, 1300–1304.<br />

Chopra, R.N., Chopra, I.C., Handa, K.L., Kapur, L.D., 1958. Chopra’s Indigenous <strong>Dr</strong>ugs<br />

of India, 2nd ed. Char UN and Sons, Ltd., Calcutta, India, p. 412.<br />

Chopra, R.N., Nayar, S.L., Chopra, I.C., 1956. Supplementary to Glossary of Indian<br />

Medicinal Plants. PID, New Delhi, India.<br />

Chor, S.Y., Hui, A.Y., To, K.F., 2005. Antiproliferative and proapoptotic effects of herbal<br />

medicine on hepatic stellate cells. Journal of Ethanapharmacology 100, 180–186.<br />

Dagne, E., Gunatilaka, A.A.L., Kingston, D.G.I., Alemu, M., 1993. 4 ′ -O-<br />

Methylstephavanine from <strong>Stephania</strong> abyssinica. Journal of Natural Products 56,<br />

2022–2025.<br />

Das, B., Pal, P., Tandon, V., Lyndem, L.M., Kar, P.K., Rao, H.S.P., 2004. Anthelmintic<br />

efficacy of extract of <strong>Stephania</strong> glabra and aerial root extract of Trichosanthes<br />

multiloba in vitro: two indigenous plants in Shillong, India. Journal of Parasitic<br />

Diseases 28, 37–44.<br />

Debat, J., Lemoine, J., Gabillault, F.L., 1980. <strong>Stephania</strong> cepharantha extract, its method<br />

of preparation and its use as pharmaceutical. United States Patent 4235890.<br />

Debelle, F.D., Nortier, J.L., De Prez, E.G., Garbar, C.H., Vienne, A.R., Salmon, I.J.,<br />

Deschodt-Lanckman, M.M., Vanherweghem, J.L., 2002. Aristolochic acids induce<br />

chronic renal failure with interstitial fibrosis in salt-depleted rats. Journal of the<br />

American Society of Nephrology 13, 431–436.<br />

Deng, J.Z., Zhao, S.X., 1993. Alkaloids from aerial parts of <strong>Stephania</strong> longa. Phytochemistry<br />

33, 941–942.<br />

Deng, J.Z., Zhao, S.X., 1997. 2-N-methylexcentricine, a new alkaloid from root of<br />

<strong>Stephania</strong> excentrica. Journal of Natural Products 60, 294–295.<br />

Deng, J.Z, Zhao, S.X., Lou, F., 1990. A new monoquaternqry bisbenzylisoquinoline<br />

alkakoid from <strong>Stephania</strong> testrandra. Journal of Natural Products 53, 993–994.<br />

Deng, J.Z., Zhao, S.X., Miu, Z.C., 1992. Morphinane alkaloid from roots of <strong>Stephania</strong><br />

cepharantha. Phytochemistry 31, 1448–1450.<br />

Dhar, M.L., Dhar, M.M., Dhawan, B.N., Ray, C., 1968. Screening of Indian plants for<br />

biological activity: Part I. Indian Journal of Experimental Biology 6, 232–247.<br />

Doskotch, R.W., Malik, M.Y., Beal, J.L., 1967. <strong>The</strong> identification of dehydrocorydalmine<br />

and a new protoberberine alkaloid, Stepharanine, in Stephnnia glabra<br />

tubers. Journal of Organic Chemistry 32, 3253.<br />

Duke, J.A, 1992. Handbook of Phytochemical Constituents of GRAS Herbs and Other<br />

Economic Plants. CRC Press, Boca Raton, FL, USA.<br />

Dwuma, B.D., Ayim, J.S.K., Withers, S.F., Agyemang, N.O., Ateya, A.M., El-Azizi, M.M.,<br />

Knapp, J.E., Slatkin, D.J., Schiff, P.L., 1980. Constituents of West African Medicinal<br />

Plants. XXVII. Alkaloids of Rhigiocarya racemifera and <strong>Stephania</strong> dinklagei. Journal<br />

of Natural Products 43, 123–129.<br />

Ellenbroek, B.A., Zhang, X.X., Jin, G.Z., 2006. Effects of (−)stepholidine in animal<br />

models for schizophrenia. Acta Pharmacologica Sinica 27, 1111–1118.<br />

Fadeeva, I.I., Fesenko, D.A., II’inskaya, T.N., Perel’son, M.E., Tolkachev, O.N., 1971b.<br />

Alkaloids of <strong>Stephania</strong> hernandifolia VIII. Methylhernandine. Chemistry of Natural<br />

Compounds 7, 432–434.<br />

Fadeeva, I.I., Il’inskaya, T.N., Perel’son, M.E., 1970. Alkaloids of <strong>Stephania</strong> hernandifolia<br />

V. Structure of hernandolinol. Chemistry of Natural Compounds 6, 516.<br />

Fadeeva, I.I., Il’inskaya, T.N., Perel’son, M.E., Kuzovkov, A.D., 1971a. <strong>The</strong> structure<br />

of delavayine. An alkaloid from <strong>Stephania</strong> delovayi. Chemistry of Natural Compounds<br />

7, 756–761.<br />

Fadeeva, I.I., Kuzovkov, A.D., Il’inskaya, T.N., 1967. Alkaloids of <strong>Stephania</strong> hernandifolia<br />

III. Chemistry of Natural Compounds 3, 88–89.<br />

Fadeeva, I.I., Perel’son, M.E., Tolkachev, O.N., 1972. Alkaloids of <strong>Stephania</strong> hernandifolia<br />

IX. 3-O-demethylhernandifoline. Chemistry of Natural Compounds 8,<br />

136–137.<br />

Fang, L.H., Zhang, Y.H., Ku, B.S., 2005. Fangchinoline inhibited the antinociceptive<br />

effect of morphine in mice. Phytomedicine 12, 183–188.<br />

Fesenko, D.A., Fadeeva, I.I., Il’inskaya, T.N., Perel’son, M.E., Tolkachev, O.M., 1971.<br />

Alkaloids of <strong>Stephania</strong> hernandifolia VI. Hernandifoline. Chemistry of Natural<br />

Compounds 7, 150–154.<br />

Gaur, R.D., 1999. Flora of District Garhwal North West Himalaya (With ethno botanical<br />

notes), 1st ed. TransMedia Srinagar Garhwal, India, pp. 76–77.<br />

Ghosh, D., Jana, D., Debnath, J.M., 2002. Effects of leaf extract of <strong>Stephania</strong> hernandifolia<br />

on testicular gametogenesis and androgenesis in albino rats: a<br />

dose-dependent response study. Contraception 65, 379–384.<br />

Goren, A.C., Zhou, B.N., Kingston, D.G.I., 2003. Cytotoxic and DNA damaging activity<br />

of some aporphine alkaloids from <strong>Stephania</strong> dinklagei. Planta Medica 69,<br />

867–868.<br />

Guinaudeau, H., Shamma, M., Tantisewie, B., Pharadai, K., 1981. 4,5,6,6a-<br />

Tetradehydro-N-methyl-7-oxoaporphinium salts. Journal of the Chemical<br />

Society, Chemical Communications, 1118.<br />

Guinaudeau, H., Shamma, M., Tantisewie, B., Pharadai, K., 1982. Aporphine alkaloids<br />

oxygenated at C-7. Journal of Natural Products 45, 355–357.<br />

Gulcin, I., Elias, R., Gepdiremen, A., Chea, A., Topal, F., 2010. Antioxidant activity<br />

of bisbenzylisoquinoline alkaloids from <strong>Stephania</strong> rotunda: cepharanthine<br />

and fangchinoline. Journal of Enzyme Inhibition and Medicinal Chemistry 25,<br />

44–53.<br />

Gupta, R.S., Krepinsky, J.J., Siminovitch, L., 1980. Structural determinants responsible<br />

for the biological activity of (−)-emetine (−)-crytopleurine, and<br />

(−)-tylocrebrine: structure-activity relationship among related compounds.<br />

Molecular Pharmacology 18, 136.<br />

Hall, A.M., Chang, C.J., 1997. Multidrug resistance modulators from <strong>Stephania</strong> japonica.<br />

Journal of Natural Products 60, 1193–1195.<br />

Haller, C.A., Dyer, J.E., Ko, R.J., Olson, K.R., 2002. Making a diagnosis of herbal-related<br />

toxic hepatitis. <strong>The</strong> Western Journal of Medicine 176, 39–44.<br />

Ho, L.J., Chang, D.M., Lee, T.C., Chang, M.L., Lai, J.H., 1999. Plant alkaloid tetrandrine<br />

down reg ulates protein kinase C-dependent signaling pathway in T cells.<br />

European Journal of Pharmacology 367, 389–398.<br />

Hossan, M.S., Hanif, A., Agarwala, B., Sarwar, M.S., Karim, M., Rahman, M.T., Jahan,<br />

R., Rahmatullah, M., 2010. Traditional use of medicinal plants in Bangladesh to<br />

treat urinary tract infections and sexually transmitted diseases. Ethnobotany<br />

Research & Applications 8, 61–74.<br />

Huai, H., Dong, Q., Liu, A., 2010. Ethnomedicinal analysis of toxic plants from five<br />

ethnic groups in China. Ethnobotany Research & Applications 8, 169–179.<br />

Huang, Y.T., Chang, F.C., Chen, K.J., Hong, C.Y., 1999. Acute hemodynamic effects<br />

of tetramethylpyrazine and tetrandrine on Cirrhotic rats. Planta Medica 65,<br />

130–134.<br />

Hullatti, K.K., Sharada, M.S., 2007. Antimicrobial activity of Cissampelos pareira.<br />

Cyclea peltata and <strong>Stephania</strong> japonica methanolic root extracts. Advances in<br />

Pharmacology and Toxicology 8, 105–108.<br />

Hullatti, K.K., Sharada, M.S., 2010. Comparative phytochemical investigation of the<br />

sources of ayurvedic drug Patha: a chromatographic fingerprinting analysis.<br />

Indian Journal of Pharmaceutical Sciences 72, 39–45.<br />

Hung, T.M., Dang, N.H., Kim, J.C., Jang, H.S., Ryoo, S.W., Lee, J.H., Choi, J.S., Bae, K., Min,<br />

B.S. 2010. Alkaloids from roots of <strong>Stephania</strong> rotunda and their cholinesterase<br />

inhibitory activity. Planta Medica. PMID: 20391319, in press.<br />

Il’inskaya, T.N., Perel’son, M.E., Fadeeva, I.I., Fesenko, D.A., Tolkachev, O.N., 1972.<br />

Alkaloids of <strong>Stephania</strong> delovayi II. 16-Oxodelavayine. Chemistry of Natural Compounds<br />

8, 134–135.<br />

Il’inskaya, T.N., Perel’son, M.E., Fesenko, D.A., Tolkachev, O.N., 1973. Alkaloids<br />

of <strong>Stephania</strong> delovayi III. Stephodeline. Chemistry of Natural Compounds 9,<br />

613–615.<br />

Il’inskaya, T.N., Fesenko, D.A., Fadeeva, I.I., Perel’son, M.E., Tolkachev, O.N., 1971.<br />

Alkaloids of <strong>Stephania</strong> hernandifolia VII. Hernandine. Chemistry of Natural Compounds<br />

7, 171–174.<br />

Ingkaninan, K., Phengpa, P., Yuenyongsawad, S., Khorana, N., 2006. Acetylcholinesterase<br />

inhibitors from <strong>Stephania</strong> venosa tuber. <strong>The</strong> Journal of Pharmacy<br />

and Pharmacology 58, 695–700.<br />

Inubushi, Y., Ibuka, T., 1977. In: Manske, R.H.F. (Ed.), <strong>The</strong> Alkaloids, vol. 16. Academic<br />

Press, New York, USA, pp. 393–430.<br />

Jana, D., Maiti, R., Gosh, D., 2003. Effects of <strong>Stephania</strong> hernandifolia leaf extract on<br />

testicular activity in rats. Asian Journal of Andrology 5, 125–129.<br />

Joshi, V.C., Avula, B., Khan, I.A., 2008. Authentication of <strong>Stephania</strong> tetrandra S. Moore<br />

(Fang Ji) and differentiation of its common adulterants using microscopy and<br />

HPLC analysis. Journal of Natural Medicines 62, 117–121.<br />

Kang, H.S., Kim, Y.H., Lee, C.S., Lee, J.J., Choi, I., Pyun, K.H., 1996. Anti-inflammatory<br />

effects of <strong>Stephania</strong> tetrandra S. Moore on interleukin-6 production and<br />

experimental inflammatory disease models. Mediators of Inflammation 5,<br />

280–291.<br />

Kashiwaba, N., Morooka, S., Kimura, M., Murakoshi, Y., Toda, J., Sano, T., 1994. Two<br />

new morphinane alkaloids from <strong>Stephania</strong> cepharantha Hayata (Menispermaceae).<br />

Chemical and Pharmaceutical Bulletin 42, 2452–2454.<br />

Kashiwaba, N., Morooka, S., Kimura, M., Ono, M., 1996. Stephaoxocanine, a noble<br />

dihydroisoquinoline alkaloid from <strong>Stephania</strong> cepharantha. Journal of Natural<br />

Products 59, 803–805.<br />

Kashiwaba, N, Morooka, S., Kimura, M., Ono, M., 1997. Stephaoxocanidine, a new<br />

isoquinolin alkaloid from <strong>Stephania</strong> cepharantha. Natural Products Letters 9,<br />

177–180.<br />

Kashiwaba, N., Ono, M., Toda, J., Suzuki, H., Sano, T., 1998. Alkaloidal constituents of<br />

vines of <strong>Stephania</strong> cepharantha. Natural Medicines 52, 541.<br />

Kashiwaba, N., Ono, M., Toda, J., Suzuki, H., Sano, T., 2000. Aporphine glycosides from<br />

<strong>Stephania</strong> cepharantha seeds. Journal of Natural Products 63, 477–479.<br />

Khanna, N.K., Madan, B.R., Mahatma, O.P., Surana, S.C., 1972. Some psychopharmacological<br />

actions of <strong>Stephania</strong> glabra (Roxb) Miers: an Indian indigenous herb.<br />

Indian Journal of Medical Research 60, 472–480.<br />

Khasiphand, C., Suksah, T.P., 1968. Textbook of Medicinal Education, Thonburi. Ministry<br />

of Public Health, Nakornthon Phaesat, Thailand, p. 239.<br />

Khosa, R.L., Mohan, Y., Wahi, A.K., 1987. Chemical studies on roots of <strong>Stephania</strong><br />

gracilenta. Indian Journal of Natural Products 3, 8–9.<br />

Kim, H.S., Zhang, Y.H., Fang, L.H., Yun, Y.P., Lee, H.K., 1999. Effect of tetrandrine and<br />

fangchinoline on human platelet aggregation and thromboxane B2 formation.<br />

Journal of Ethnopharmacology 66, 241–246.<br />

Kim, H.S., Zhang, Y.H., Oh, K.W., Ahn, H.Y., 1997. Vasodilating and hypotensive effects<br />

of fangchinoline and tetrandrine on the rat aorta and the stroke prone spontaneously<br />

hypertensive rat. Journal of Ethnopharmacology 58, 117–123.<br />

Kimoto, T., Suemitsu, K., Nakayama, H., Komori, E., Ohtani, M., Ando, S., 1997. <strong>The</strong>rapeutic<br />

experience of venomous snakebites by the Japanese viper (Agkistrodon<br />

halys blomhoffii) with low dose of antivenin: report of 43 consecutive cases.<br />

Nippon Geka Hokan [Archiv f r japanische Chirurgie] 66, 71–77.<br />

Kin, F.K., Fadeeva, I.I., Il’inskaya, T.N., 1965. A study of the alkaloids of plants of<br />

the <strong>genus</strong> <strong>Stephania</strong> II. <strong>The</strong> alkaloids of <strong>Stephania</strong> glabra. Chemistry of Natural<br />

Compounds 1, 308–309.<br />

Kirtikar, K.R., Basu, B.D., 2004. Indian Medicinal Plants, vol. 1., 2nd ed. L. M. Basu,<br />

Allahabad, India, p. 94.<br />

Kondo, S., Matsui, M., Watanabe, Y., 1983. Alkaloids from the Fruits of <strong>Stephania</strong><br />

japonica MIERS. I. Structure of stephabenine: a new hasubanan ester-ketal alkaloid.<br />

Chemical and Pharmaceutical Bulletin 31, 2574–2577.<br />

Kozuka, M., Miyaji, K., Sawada, T., Tomita, M., 1985. A major alkaloid of the leaves<br />

and stems of <strong>Stephania</strong> rotunda. Journal of Natural Products 48, 341–342.<br />

Kunitomo, J., 1985. O-methyl deoxopunjabin, a secobisbenzylisoquinoline alkaloid<br />

bearing and aryl methyl group and three other secobisbenzylisoquinoline alka-


382 D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383<br />

loids O-methylpunjabin secocepharanthine and dihydrosecocepharanthine.<br />

Chemical and Pharmaceutical Bulletin 33, 135–143.<br />

Kunitomo, J., Nagai, Y., Yuge, E., 1967. Studies on the Alkaloids of Menispermaceous<br />

Plants. CCXXXIV: Alkaloids of <strong>Stephania</strong> sasakii Hayata 7, Isolation of water<br />

soluble quaternary base, Steponine. Yakugaku Zasshi 87, 1010–1011.<br />

Kunitomo, J., Okamoto, Y., Yuge, E., Nagai, Y., 1969. <strong>The</strong> characterization and<br />

structures of aknadilactam and steporphine from <strong>Stephania</strong> sasakii, Hayata.<br />

Tetrahedron Letters 10, 3287–3289.<br />

Kunitomo, J., Yuge, E., Nagai, Y., 1966. Studies on the alkaloids of Menispermaceous<br />

plants. CCXXII: Alkaloids of <strong>Stephania</strong> sasakii Hayata 6, isolation of<br />

N-methylpapaveraldinium (N-methylxanthalinium), a new water soluble quaternary<br />

base. Yakugaku Zasshi 86, 456–460.<br />

Kupchan, S.M., Asbun, W.L., Thyagarajan, B.S., 1961. Menispermaceae alkaloids III.<br />

Alkaloids of <strong>Stephania</strong> hernandifolia. Journal of Pharmaceutical Sciences 50,<br />

819–822.<br />

Kupchan, S.M., Suffness, M.I., White, D.N.J., McPhail, A.T., Sim, G.A., 1968. Isolation<br />

and structural elucidation of 4-demethylhasubanonine, a new alkaloid from<br />

<strong>Stephania</strong> hernandifolia. Journal of Organic Chemistry 33, 4529–4531.<br />

Kuroda, H, Nakazawa, S., Katagiri, K., Shiratori, O., Konuka, M., Fujitani, K., Tomita, M.,<br />

1976. Antitumor effect of bisbenzylisoquinoline alkaloids. Chemical and Pharmaceutical<br />

Bulletin 24, 2413–2420.<br />

Kwan, C.Y., Chen, Y.Y., Ma, M.F., Daniel, E.E., Hui, S.C., 1996. Tetrandrine, a calcium<br />

antagonist of Chinese herbal origin, interacts with vescular muscles<br />

-adrenoceptor. Life Sciences 59, 359–364.<br />

Lai, J.H., 2002. Immunomodulatory effects and mechanisms of plant alkaloid tetrandrine<br />

in autoimmune diseases. Acta Pharmacologica Sinica 23, 1093–1101.<br />

Li, X., Zhang, S., Qin, L., Song, Z., Mao, C., Zhang, Q., 2000. Experimental study of<br />

analgesic effect of combined aconitum and <strong>Stephania</strong> tetrandra. Chinese Journal<br />

of Integrative Medicine 6, 111.<br />

Liang, X.C., Hagino, N., Guo, S.S., Tsutsumi, T., Kobayashi, S., 2002. <strong>The</strong>rapeutic<br />

efficacy of <strong>Stephania</strong> tetrandra S. Moore for treatment of neovascularization<br />

of retinal capillary (retinopathy) in diabetes-in-vitro study. Phytomedicine 9,<br />

377–384.<br />

Lijin, Z., Xiao, W., Jianhua, L., Wenjuan, D., Daijie, W., Yanling, G., 2009. Use of<br />

pH-zone refining countercurrent chromatography for preparative separation of<br />

fangchinoline and tetrandrine from <strong>Stephania</strong> tetrandra. Chromatographia 69,<br />

959–962.<br />

Likhitwitayawuid, K., Angerhofer, C.K., Chai, H., Pezzuto, J.M., Cordell, G.A., 1993a.<br />

Cytotoxic and antimalarial alkaloids from the tubers of <strong>Stephania</strong> pierrei. Journal<br />

of Natural Products 56, 1468–1478.<br />

Likhitwitayawuid, K., Angerhofer, C.K., Cordell, G.A., Pezzuto, J.M., Ruangrungsi, N.,<br />

1993b. Cytotoxic and antimalarial bisbenzylisoquinoline alkaloids from <strong>Stephania</strong><br />

errecta. Journal of Natural Products 56, 30–38.<br />

Likhitwitayawuid, K., Dej-ajisai, S., Jong-bunprasert, V., 1999. Antimalarials from<br />

<strong>Stephania</strong> venosa, Prismatomeris sessiliflora Diospyros montana and Murraya siamensis.<br />

Planta Medica 65, 754–756.<br />

Liu, X.J., Wang, Y.F., Zhang, M.Y., 2004. Study on the inhibitory effect of cepharanthine<br />

on herpes simplex type 1 virus (HSV-1) in vitro. Journal of Chinese Medicinal<br />

Materials (Chin) 27, 107–110.<br />

Luger, P., Weber, M., Dung, N.X., Moi, L.D., Khoi, T.T., Phuong, D.L., 1998. (−)-<br />

Tetrahydropalmatine monohydrate. Acta Crystallographica C 54, 1977–1980.<br />

Mahatma, O.P., Rathore, D.S., Pancholi, N.S., 1987. Further studies on some pharmacological<br />

action of gindarin hydrochloride, an alkaloid of <strong>Stephania</strong> glabra (Rox.)<br />

Miers. Indian <strong>Dr</strong>ugs 24, 537–541.<br />

Mantsch, J.R., Li, S.J., Risinger, R., Awad, S., Katz, E., Baker, D.A., Yang, Z., 2007.<br />

Levo-tetrahydropalmatine attenuates cocaine self-administration and cocaineinduced<br />

reinstatement in rats. Psychopharmacology 192, 581–591.<br />

Matsui, M., Kabashima, T., Ishida, K., Takebayashi, T., Watanabe, Y., 1982a. Alkaloids<br />

of the leaves of <strong>Stephania</strong> japonica. Journal of Natural Products 45,<br />

497–500.<br />

Matsui, M., Watanabe, Y., 1984. Structure of Oxostephasunoline, a new hasubanalactam<br />

alkaloid from <strong>Stephania</strong> japonica. Journal of Natural Products 47, 465–469.<br />

Matsui, M, Watanabe, Y., Hinomoto, T., 1982b. Carbon-13 NMR spectra of some<br />

hasubanan alkaloids. Journal of Natural Products 45, 247–251.<br />

Matsui, M., Watanabe, Y., Ibuka, T., Tanaka, K., 1975. Constitution of four new hasubanan<br />

alkaloids from <strong>Stephania</strong> japonica Miers. Chemical and Pharmaceutical<br />

Bulletin 23, 1323–1335.<br />

Matsui, M., Watanabe, Y., Ibuka, T., Tanaka, K., 1973. Constitution of four new<br />

hasubanan alkaloids from <strong>Stephania</strong> Japonica Miers. Tetrahedron Letters 14,<br />

4263–4266.<br />

Matsui, M., Yamamura, Y., 1986. Alkaloids from the Fruits of <strong>Stephania</strong> japonica.<br />

3. Structures of prostephanaberrine and stephanaberrine, two new hasubanan<br />

alkaloids. Journal of Natural Products 49, 588–592.<br />

Matsui, M., Yamamura, Y., Takebayashi, T., Iwaki, K., Takami, Y., Kunitake, K., Koga,<br />

F., Urasaki, S., Watanabe, Y., 1984. Oxoepistephamiersine, a new hasbanalactam<br />

alkaloid from <strong>Stephania</strong> japonica. Journal of Natural Products 47, 858–861.<br />

Min, Z.D, Lin, G., Xu, G.X., Munekazu, I., Toshiyuki, T., Mizuo, M., 1985. Alkaloids of<br />

<strong>Stephania</strong> sinica. Phytochemistry 24, 3084–3085.<br />

Miu, Z.C., Deng, J.H., Zhao, S.X., Feng, R., Du, Z., 1998. Structural determination and<br />

spectral assignment of an alkaloid with a novel skeleton by selective long-range<br />

DEPT and 1D multiple relay Cosy NMR techniques. Chinese Journal of Organic<br />

Chemistry 18, 243–245.<br />

Montririttigri, K., Moongkarndi, P., Joongsomboonkusol, S., Chitkul, B., Pattanapanyasat,<br />

K., 2008. Apoptotic activity of aporphine from <strong>Stephania</strong> venosa on<br />

human ovarian cancer cells. Mahidol University Journal of Pharmaceutical Sciences<br />

35, 52–56.<br />

Moongkarndi, P., Kosem, N., Luanratana, O., Jongsomboonkusol, S., Pongpan, N.,<br />

2004. Antiproliferative activity of Thai medicinal plant extracts on human breast<br />

adenocarcinoma cell line. Fitoterapia 75, 375–377.<br />

Mosihuzzaman, M., Choudhary, M.I., 2008. Protocols on safety, efficacy, standardization,<br />

and documentation of herbal medicine. Pure and Applied Chemistry 80,<br />

2195–2230.<br />

Moza, B.K., 1960. Investigations on <strong>Stephania</strong> hernandifolia. Indian Journal of Pharmacy<br />

22, 63–65.<br />

Moza, B.K., Basu, D.K., 1966. Investigations on <strong>Stephania</strong> hernandifolia. Indian Journal<br />

of Pharmacy 28, 338.<br />

Moza, B.K., Bhaduri, B., Basu, D.K., Kunitomo, J., Okamoto, Y., Yuge, E.,<br />

Nagai, Y., Ibuka, T., 1970. Constitution of three new alkaloids, aknadinine<br />

(4-demethylhasubanonine), aknadicine (4-demethylnorhasubanonine), and<br />

aknadilactam (4-demethyl-16-oxohasubanonine). Tetrahedron 26, 427–433.<br />

Moza, B.K., Bose, A.K., 1967. Investigations on <strong>Stephania</strong> hernandifolia. Indian Journal<br />

of Pharmacy 29, 342.<br />

Moza, B.K., Bose, A.N., Chaudhry, P.K., 1968. Investigations on <strong>Stephania</strong> hernandifolia.<br />

Indian Journal of Pharmacy 30, 179.<br />

Muregi, F.W., Chhabra, S.C., Njagi, E.N.M., Lang‘at-Thoruwa, C.C., Njue, W.M.,<br />

Orago, A.S.S., 2004. Anti-plasmodial activity of some Kenyan medicinal plant<br />

extracts singly and in combination with chloroquine. Phytotherapy Research<br />

18, 379–384.<br />

Nakamura, K., Tsuchiya, S., Sugimoto, Y., Sugimura, Y., Yamada, Y., 1992. Histamine<br />

release inhibition activity of bisbenzylisoquinoline alkaloids. Planta Medica 58,<br />

505–508.<br />

Nakaoji, K., Nayeshiro, H., Tanahashi, T., Su, Y., Nagakura, N., 1997. Bisbenzylisoquinoline<br />

alkaloid from <strong>Stephania</strong> cepharantha and their effects on<br />

proliferation of culture cell from the Murine hair apparatus. Planta Medica 63,<br />

425–428.<br />

Nan, J.X., Park, E.J., Lee, S.H., Park, P.H., Kim, J.Y., Ko, G., Sohn, D.H., 2000. Antifibrotic<br />

effect of <strong>Stephania</strong> tetrandra on experimental liver fibrosis induced by<br />

bile duct ligation and scission in rats. Archives of Pharmacal Research 23,<br />

501–506.<br />

Nawawi, A., Nakamura, N., Meselhy, M.R., Hattori, M., Kurokawa, M., Shiraki,<br />

K., Kashiwaba, N., Ono, M., 2001. In vivo antiviral activity of <strong>Stephania</strong><br />

cepharantha against herpes simplex virus type-1. Phytotherapy Research 15,<br />

497–500.<br />

Ogino, T., Sato, T., Sasaki, H., Okada, M., Maruno, M., 1998b. Studies on the crude drug<br />

containing angiotensin I converting enzyme inhibitors (III). On the activity of<br />

principle in <strong>Stephania</strong> tetrandra S. moor and their derivatives. Natural Medicines<br />

52, 172–178.<br />

Ogino, T., Sato, T., Sasaki, H., Sugama, K., Okada, M., 1998a. Four new bisbenzylisoquinoline<br />

alkaloids from roots of <strong>Stephania</strong> tetrandra. Natural Medicines 52,<br />

124–129.<br />

Pang, L., Hoult, J.R., 1997. Cytotoxicity to macrophages of tetrandrine, an antisili<br />

cosis alkaloid, accompanied by an overproduction of prostaglandins. Biochemical<br />

Pharmacology 53, 773–782.<br />

Patra, A., 1987. Promorphinane and hasubanane alkaloids of <strong>Stephania</strong> suberosa.<br />

Phytochemistry 26, 2391–2395.<br />

Patra, A., Freyer, A.J., Guinaudeau, H., Shamma, M., Tantisewie, B., Pharadai, K., 1986.<br />

<strong>The</strong> bisbenzylisoquinoline alkaloids of <strong>Stephania</strong> Suberosa. Journal of Natural<br />

Products 49, 424–427.<br />

Patra, A., Ghosh, A., Mitra, A.K., 1980. Alkaloids of <strong>Stephania</strong> glabra. Planta Medica<br />

40, 333–336.<br />

Patra, A., Montgomery, C.T., Freyer, A.J., Guinaudeau, H., Shamma, M., Tantisewie,<br />

B., Pharadai, K., 1987. <strong>The</strong> protoberberine alkaloids of <strong>Stephania</strong> suberosa. Phytochemistry<br />

26, 547–549.<br />

Patra, M., Mandal, T.K., Mukhopadhyay, P.K., Ranu, B.C., 1988. (+)-3 ′ ,4 ′ -<br />

dihydrostephasubine, a bisbenzylisoquinoline alkaloid from <strong>Stephania</strong> hernandifolia.<br />

Phytochemistry 27, 653–655.<br />

Perel’son, M.E., Fadeeva, I.I., Il’inskaya, T.N., 1975. Alkaloids of <strong>Stephania</strong> delavayi IV.<br />

Isostephodeline 11, 197–201.<br />

Perry, L.M., 1980. Medicinal Plants of East and Southeast Asia. MIT Press, Cambridge,<br />

UK, p. 267.<br />

Phaet-thanesuara, P., 1967. Pramua Sapphakhun Ya Thai, (Medicinal Uses of Thai<br />

<strong>Dr</strong>ugs), vol. 2, Samakhon Rongrien Phaet Phaen Boran, Bangkok, Thailand, p.<br />

208.<br />

Pharadai, K., Pharadai, T., Tantisewie, B., Guinaudeau, H., 1985. (−)-O-<br />

Acetylsukhodianine and oxostephanosine: two new aporphinoids from<br />

<strong>Stephania</strong> venosa. Journal of Natural Products 48, 658–659.<br />

Qian, J.Q., 2002. Cardiovascular pharmacological effects of bisbenzylisoquinoline<br />

alkaloid derivatives. Acta Pharmacologica Sinica 23, 1086–1092.<br />

Rastogi, R.P., Mehrotra, B.N., 1991. Compendium of Indian Medicinal Plants, vol. 1.<br />

CDRI Lucknow and PID New Delhi, India, pp. 387–390.<br />

Robinovich, I.M., Kibalchich, P.N., Fadeeva, I.I., 1965. <strong>Stephania</strong> plants as a source of<br />

new drugs. Aptechn Delo 14, 19–23.<br />

Semwal, D.K., Rawat, U., 2009a. Antimicrobial hasubanalactam alkaloid from <strong>Stephania</strong><br />

glabra. Planta Medica 75, 378–380.<br />

Semwal, D.K., Rawat, U., 2009b. Gindarudine, a novel morphine alkaloid from <strong>Stephania</strong><br />

glabra. Chinese Chemical Letters 20, 823–826.<br />

Semwal, D.K., Rawat, U., Badoni, R., Semwal, R., Singh, R., 2010a. Anti-hyperglycemic<br />

activity of <strong>Stephania</strong> glabra tubers in alloxan induced diabetic mice. Journal of<br />

Medicine 11, 17–19.<br />

Semwal, D.K., Rawat, U., Bamola, A., Semwal, R., 2009. Antimicrobial activity of<br />

Phoebe lanceolata and <strong>Stephania</strong> glabra; preliminary screening studies. Journal<br />

of Scientific Research 1, 662–666.


D.K. Semwal et al. / Journal of Ethnopharmacology 132 (2010) 369–383 383<br />

Semwal, D.K., Rawat, U., Semwal, R., Singh, R., Singh, G.J.P., 2010b. Antihyperglycemic<br />

effect of 11-hydroxypalmatine, a palmatine derivative from<br />

<strong>Stephania</strong> glabra tubers. Journal of Asian Natural Products Research 12, 99–105.<br />

Sharma, U, Sahu, R.K., Roy, A., Golwala, D.K., 2010. In vivo antidiabetic and antioxidant<br />

potential of <strong>Stephania</strong> hernandifolia in streptozotocin-induced-diabetic<br />

rats. Journal of Young Pharmacists 2, 255–260.<br />

Shchelchkova, I.I., Ilinskaya, T.N., Kuzovkov, A.D., 1965. <strong>The</strong> alkaloids of <strong>Stephania</strong><br />

glabra. Chemistry of Natural Compounds 1, 210–212.<br />

Shen, Y.C., Chen, C.F., Wang, S.Y., Sung, Y.J., 1999. Impediment to calcium influx and<br />

reactive oxygen production accounts for the inhibition of neutrophil Mac-1 Upregulat<br />

ion and adhesion by tetrandrine. Molecular Pharmacology 55, 186–193.<br />

Shulin, P., Lei, C., Guolin, Z., 1992. Studies on medicinal isoquinoline alkaloids III:<br />

alkaloids of <strong>Stephania</strong> brachyandra. Natural Product Research and Development<br />

4, 11–15.<br />

Si, D., Zhong, D., Sha, Y., Li, W., 2001. Two biflavonoids from the aerial part of <strong>Stephania</strong><br />

tetrandra. Phytochemistry 58, 563–566.<br />

Si, D.Y., Zhao, S.X., Deng, J.Z., 1992. A 4,5-dioxoaporphine from the aerial parts of<br />

<strong>Stephania</strong> tetrandra. Journal of Natural Products 55, 828–829.<br />

Singh, R.S., Kumar, P., Bhakuni, D.S., 1981. <strong>The</strong> Alkaloids of <strong>Stephania</strong> elegans. Journal<br />

of Natural Products 44, 664–667.<br />

Sueblinvong, T., Plumchai, T., Leewanich, P., Limpanasithikul, W., 2007. Cytotoxic<br />

effects of water extract from <strong>Stephania</strong> venosa tubers. Thai Pharmaceutical and<br />

Health Science Journal 2, 203–208.<br />

Sugimoto, Y., Kawaminami, S., Yamada, Y., 1993. Biosynthetic relationship of aromoline<br />

and berbamine in cultured roots of <strong>Stephania</strong> cepharantha. Phytochemical<br />

Analysis 4, 100–102.<br />

Sugimoto, Y., Sugimura, Y., Yamada, Y., 1988. Production of bisbenzylisoquinoline<br />

alkaloid in cultured roots of <strong>Stephania</strong> cepharantha. Phytochemistry 27,<br />

1379–1381.<br />

Taga, T., Akimoto, N., Ibuka, T., 1984. Stephadiamine, a new skeletal alkaloid from<br />

<strong>Stephania</strong> japonica, the first example of a C-norhasubanan alkaloid. Chemical<br />

and Pharmaceutical Bulletin 32, 4223–4226.<br />

Takemura, H., Imoto, K., Ohshika, H., Kwan, C.Y., 1996. Tetrandrine as a calcium<br />

antagonist. Clinical and Experimental Pharmacology and Physiology 23,<br />

751–753.<br />

Tamez, P.A., Lantvit, D., Lim, E., Pezzuto, J.M., 2005. Chemosensitizing action of<br />

cepharenthine against drug-resistant human malaria, Plasmodium falciparum.<br />

Journal of Ethnopharmacology 98, 137–142.<br />

Tanahashi, T., Su, Y.S., Nagakura, N., Nayeshiro, H., 2000. Quaternary isoquinoline<br />

alkaloids from <strong>Stephania</strong> cepharantha. Chemical and Pharmaceutical Bulletin 48,<br />

370–373.<br />

Teh, B.S., Seow, W.K., Li, S.Y., Thong, Y.H., 1990. Inhibition of prostaglandin and<br />

leukotriene generation by the plant alkaloids tetrandrine and berbamine. International<br />

Journal of Immunopharmacology 12, 321–326.<br />

Thu, N.V., Nuhn, P., 1971. Studies of alkaloids of <strong>Stephania</strong> glabra (Roxb.) Miers.<br />

Pharmazie 26, 504–505.<br />

Thuy, T.T., Porzel, A., Franke, K., Wessjohann, L., Sung, T.V., 2005. Isoquinolone and<br />

protoberberine alkaloids from <strong>Stephania</strong> rotunda. Pharmazie 60, 701–704.<br />

Thuy, T.T., Sung, T.V., Franke, K., Wessjohann, L., 2006. Benzyl isoquinoline and<br />

tetrahydroprotoberberine alkaloids from <strong>Stephania</strong> rotunda Lour. Journal of<br />

Chemistry 44, 372–376.<br />

Tomita, M., Kozuka, M., 1966. Studies on the Alkaloids of Menispermaceous<br />

Plants, CCXXVII.: Alkakloids of <strong>Stephania</strong> rotunda Loureiro. Yakugaku Zasshi 86,<br />

871–873.<br />

Tomita, M., Kozuka, M., 1967. Studies on the Alkaloids of Menispermaceous Plants.<br />

CCXLV: alkaloids of <strong>Stephania</strong> cepharantha Hayata 7. Structure of Cepharamine.<br />

Yakugaku Zasshi 87, 1203–1208.<br />

Tomita, M., Kozuka, M., Uyeo, S., 1966. Studies on the alkaloids of Menispermaceous<br />

plants. CCXXIII: Alkaloids of <strong>Stephania</strong> rotunda Loureiro. Yakugaku Zasshi 86,<br />

460–466.<br />

Tsutsumi, T., Kobayashi, S., Liu, Y.Y., 2003. Anti-hyperglycemic effect of fangchinoline<br />

isolated from <strong>Stephania</strong> tetrandra Radix in streptozotocin-diabetic mice.<br />

Biological and Pharmaceutical Bulletin 26, 313–317.<br />

Vanherweghem, J.L., Depierreux, M., Tielemans, C., Abramowicz, D., <strong>Dr</strong>awta, M.,<br />

Jadoul, M., Richard, C., Vendervelde, D., Verbeelen, D., Vanhaelen-Fastre, R.,<br />

Vanhaelen, M., 1993. Rapidly progressive interstitial renal fibrosis in young<br />

women: association with slimming regimen including Chinese herbs. Lancet<br />

341, 387–391.<br />

Wang, X.K., Zhao, Y.R., Zhao, T.F., Lai, S., Che, C.T., 1994. 1-Nitroaknadinine from<br />

<strong>Stephania</strong> sutchuenensis. Phytochemistry 35, 263–265.<br />

Wong, K.K., 1998. Differential effect of tetrandrine on aortic relaxation and chronotopic<br />

activity in rat isolated aorta and atria. Planta Medica 64, 663–665.<br />

Xie, Q.M., Tang, H.F., Chen, J.Q., Bian, R.L., 2002. Pharmacological actions of tetrandrine<br />

in inflammatory pulmonary diseases. Acta Pharmacologica Sinica 23,<br />

1107–1113.<br />

Xin, G., Li-Juan, C., Buda, M., Guo-Zhang, J., 1992. Effects of l-stepholidine on tyrosine<br />

hydroxylase activity in rat corpus striatum. Acta Pharmacologica Sinica 13,<br />

289–292.<br />

Xue, Y., Wang, Y., Feng, D.C., Xiao, B.G., Xu, L.Y., 2008. Tetrandrine suppresses<br />

lipopolysaccharide induced microglial activation by inhibiting NF-kappaB pathway.<br />

Acta Pharmacologica Sinica 29, 245–251.<br />

Xue, Z., Zhang, P.L., Ma, J.M., 1986. Alkaloids from <strong>Stephania</strong> succifera H.S. Lo et Y-<br />

Tsoong. Acta Pharmacologica Sinica 21, 223–225.<br />

Yamamura, Y., Matsui, M., 1985. Alkaloids from the fruits of <strong>Stephania</strong> japonica 2.<br />

Structure of oxospephabenine and N,O-dimethyloxostephine. Journal of Natural<br />

Products 48, 746–750.<br />

Yang, D.L., Mei, W.L., Dai, H.F., 2010a. Cytotoxic alkaloids from the tuber of <strong>Stephania</strong><br />

succifera. Chinese Journal of Medicinal Chemistry 20, 206–210.<br />

Yang, D.L., Mei, W.L., Wang, H., Dai, H.F., 2010b. Antimicrobial alkaloids from the<br />

tubers of <strong>Stephania</strong> succifera. Zeitschrift für Naturforschung B 65, 757–761.<br />

Yao, W.X., Jiang, M.X., 2002. Effects of tetrandrine on cardiovascular electrophysiologic<br />

properties. Acta Pharmacologica Sinica 23, 1069–1074.<br />

Yasukawa, K., Takido, M., Takeuchi, M., Akasu, M., Nakagawa, S., 1991. Cepharanthine<br />

inhibits two-stage tumor promotion by 12-O-tetradecanoylphorbol<br />

13-acetate and mezerein on skin tumor formation in mice initiated with 7, 12-<br />

dimethylbenz[a]anthracene. Journal of Cancer Research and Clinical Oncology<br />

117, 421–424.<br />

Zhang, C., Wang, Y., Liu, X., Lu, J., Qian, C.W., Wan, Z., Yan, X., Zheng, H., Zhang, M.,<br />

Xiong, S., Li, J., Qi, S., 2005. Antiviral activity of cepharanthine against severe<br />

acute respiratory syndrome coronavirus in vitro. Chinese Medical Journal 118,<br />

493–496.<br />

Zhang, H., Yue, J.M., 2005. Hasubanan type alkaloids from <strong>Stephania</strong> longa. Journal<br />

of Natural Products 68, 1201–1207.<br />

Zhao, Y.Z., Kim, J.Y., Park, E.J., Lee, S.H., Woo, S.W., Ko, G., Sohn, D.H., 2004. Tetrandrine<br />

induces apoptosis in hepatic stellate cells. Phytotherapy Research 18, 306–309.<br />

Zhu, M., Philipson, J.D., 1996. Hong Kong samples of the traditional Chinese medicine<br />

Fang Ji contain aristolochic acid toxins. International Journal Pharmacognosy 34,<br />

283–289.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!