10.01.2014 Views

Christoph Oberprieler The Systematics of Anthemis L. - Herbmedit.org

Christoph Oberprieler The Systematics of Anthemis L. - Herbmedit.org

Christoph Oberprieler The Systematics of Anthemis L. - Herbmedit.org

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Christoph</strong> <strong>Oberprieler</strong><br />

<strong>The</strong> <strong>Systematics</strong> <strong>of</strong> <strong>Anthemis</strong> L. (Compositae, Anthemideae) in W and<br />

C North Africa<br />

Abstract<br />

<strong>Oberprieler</strong>, Ch.: <strong>The</strong> <strong>Systematics</strong> <strong>of</strong> <strong>Anthemis</strong> L. (Compositae, Anthemideae) in W and C<br />

North Africa. - Bocconea 9: 1-328.1998. - ISSN 1120-4060.<br />

<strong>Anthemis</strong> L., a mainly Mediterranean and SW Asian genus <strong>of</strong> the Compositae-Anthemideae,<br />

is revised far the W and C North African part (Marocco, Algeria, Tunisia, Libya)<br />

<strong>of</strong> its distribution range. On the basis <strong>of</strong> detailed morphological studies ali species are fully described<br />

and illustrations <strong>of</strong> habit, leaves, involucral bracts, and pales are presented, along with<br />

photographs <strong>of</strong> mature achenes under SEM and <strong>of</strong> transverse sections <strong>of</strong> achenes under LM.<br />

Keys far the deterrnination <strong>of</strong> ali species, subspecies, and varieties are provided. Complete<br />

synonymies are given, inc1uding the typification <strong>of</strong> the names as far as possible. Oistribution<br />

maps <strong>of</strong> ali taxa studied are presented. Chromosome numbers and karyotypes far most taxa are<br />

provided and discussed.<br />

In the area covered, <strong>Anthemis</strong> is represented by 25 species belonging to two subgenera,<br />

four sections, and four series. Three taxa are described as new to science: A. maritima subsp.<br />

pseudopunctata <strong>Oberprieler</strong>, A. stiparum subsp. intermedia <strong>Oberprieler</strong>, and A. zaianiea<br />

<strong>Oberprieler</strong>. <strong>The</strong> following ten new combinations are established: A. abylaea (Font Quer &<br />

Maire) <strong>Oberprieler</strong>, A. maroeeana subsp. aguilarii (Maire & Sennen) <strong>Oberprieler</strong>,<br />

A. mauritiana subsp. faurei (Maire) <strong>Oberprieler</strong>, A. peduneulata subsp. atlantica (Pomel)<br />

<strong>Oberprieler</strong>, A. pedunculata subsp. clausonis (Pomel) <strong>Oberprieler</strong>, A. peduneulata var. discoidea<br />

(Boiss.) <strong>Oberprieler</strong>, A. peduneulata subsp. turolensis (Pau ex Caballero) <strong>Oberprieler</strong>,<br />

A. punctata subsp. kabylica (Battand.) <strong>Oberprieler</strong>, A. stiparum subsp. sabulieola (Pomel)<br />

<strong>Oberprieler</strong>, A. tenuiseeta subsp. jahandiezii (Maire) <strong>Oberprieler</strong>.<br />

Multivariate statistical methods (principal component analysis) and/or analyses <strong>of</strong> random<br />

amplified polymorphic ONAs (RAPO) were used to assess morphological and genetic variation<br />

and to address problems <strong>of</strong> species delimitation in the <strong>Anthemis</strong> boveana group and the<br />

A. pedunculata - A. punetata complex.<br />

Contents<br />

1. Introduction .......... ......... .. ......... .. .. .. .. .. .. ........... ........................... ......... ...... .. ....... .. ...... 6<br />

2. Material and methods ........................... .. ....... .. .................................... .. ... .......... ........ 7<br />

3. Taxonomic history ............. .. ...... .. ........... .. .... ......... .. ........... .. ............ ........ .. .. ..... .. ..... . 9<br />

4. Generic relationships .... ..... .. ........ .. ...... .. ....... .. .. .. ............. ....... .. ..... ....... .. . .. ........... .... lO<br />

5. Supraspecific taxonomy ............ .. ..... :................................. .. .. ... .. ..... ....... .. .. .. ........... 12<br />

6. Phytogeography .... .. ... .................................... .. ..... ....... .. ....................... .. .. ............. .. 14<br />

7. Modes <strong>of</strong> speciation within <strong>Anthemis</strong> in N Africa ................ .............. ..................... 16<br />

8. Delimitation <strong>of</strong>taxa - Concepts <strong>of</strong> species, subspecies, and varieties .... .. .... ...... .. .... 18<br />

9. Morphological features ............................................................................................ 20<br />

lO. Chromosomes ....... ....... ............................... ............. .. ...................................... ... .. ... 35<br />

Il. Pollen morphology ...... ......... .. ....... .. .......... .... .. .. ....... .......... ..... ............... .. .. ............ .. 66


6 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

12. Species delimitation in the <strong>Anthemis</strong> boveana group .............................................. 76<br />

13. Species delimitation in the <strong>Anthemis</strong> pedunculata - <strong>Anthemis</strong> punctata complex ... 85<br />

14. Systematic descriptions and keys .. ......................................................................... 107<br />

Key to the N African species .... .................. ................... ......... ..... .. ................ 109<br />

Clé des espèces de l'Afrique du Nord .......... ...... ............. ....... .................... ... 111<br />

. <strong>Anthemis</strong> subg. <strong>Anthemis</strong> ............... .......... ...................... .................. .............. 114<br />

<strong>Anthemis</strong> sect. <strong>Anthemis</strong> ..................................... .. .................. ...... ... 114<br />

<strong>Anthemis</strong> sect. Hiorthia ..................................... ....................... ....... 227<br />

<strong>Anthemis</strong> sect. Maruta ..... ................................. .......... ............... .... .. 297<br />

<strong>Anthemis</strong> subg. Cota .. .............. ......................... ............................................. 307<br />

<strong>Anthemis</strong> sect. Cota ....................................... .................................. 307<br />

15. Acknowledgements .... .. ........................................................ .................................. 313<br />

16. References ........... .................... ........................................................... ................... 314<br />

17. Index to scientific names ........... ........ .. .. ................................................. .. .... ......... 324<br />

1. Introduction<br />

<strong>The</strong> genus <strong>Anthemis</strong> belongs to the family Compositae Giseke, alternatively named Asteraceae<br />

Dumort. It is the name-giving genus <strong>of</strong> the Anthemideae Cass., a tribe which<br />

presently consists <strong>of</strong> 109 genera (Bremer & Humphries 1993; adding Castrilanthemum<br />

recently described by Vogt & <strong>Oberprieler</strong> 1996) and shows an extratropical, mainly Old­<br />

World-centred distribution. According to the most recent phylogenetic reconstruction <strong>of</strong><br />

the family (Bremer 1996), the Anthemideae are a member <strong>of</strong> the subfamily Asteroideae<br />

and form the sister group to the Astereae. While Heywood & Humphries (1977) indicate<br />

around 130 species in the genus, more recent estimates give a total <strong>of</strong> c. 210 annual,<br />

biennial, or perennial species (Bremer & Humphries 1993).<br />

Since Candolle's account <strong>of</strong> <strong>Anthemis</strong> in his Prodromus (Candolle 1838), the genus has<br />

never again been subject to a complete revisionary treatment. However, quite comprehensive<br />

regional treatments like Boissier's (1875) Flora orientalis account and Eig's (1938)<br />

studies on the orientai species <strong>of</strong> <strong>Anthemis</strong>, along with revisions made in the course <strong>of</strong> the<br />

large flora projects <strong>of</strong> the last 40 years, have resulted in our up-to-date understanding <strong>of</strong><br />

the genus over a large part <strong>of</strong> its distributional range, viz. Europe (Fernandes 1975a,<br />

1975b, 1976, 1983), E Europe and W Asia (Fedorov 1961), Turkey (Grierson & Yavin<br />

1975), the Near East (Feinbrun-Dothan 1978), the Flora iranica area (Iranshahr 1986),<br />

and Saudi Arabia (Ghafoor & AI-Turki 1997). Additional information was contributed by<br />

revisionary treatments <strong>of</strong> defined infrageneric groups (A. ammanthus group, Greuter 1968;<br />

A. sect. Maruta, Yavin 1970; A. sect. <strong>Anthemis</strong>, Yavin 1972; A. tomentosa group, Ge<strong>org</strong>iou<br />

1990) and by geographically limited biosystematic revisions (Bulgaria: Kuzmanov &<br />

al. 1981 and Thin 1983; Spain: Benedf i Gonzalez 1987).<br />

In N Africa, as compared to other regions within the distributional range <strong>of</strong> <strong>Anthemis</strong>,<br />

the taxonomy <strong>of</strong> the genus is poorly understood, and a criticaI revision is lacking. While<br />

there are flora treatments available for Algeria (Quézel & Santa 1963), Tunisia (Pottier­<br />

Alapetite 1981), Libya (Alavi 1986), and Egypt (Tackholm 1974), for Morocco there is<br />

only a checklist (Jahandiez & Maire 1934). <strong>The</strong> main aim <strong>of</strong> the present study was to fill


Bocconea 9 - 1998 7<br />

this gap by elaborating a complete taxonomic treatment <strong>of</strong> the genus for the area covered<br />

by Maire's Flore de l'Afrique du Nord (Maire & al. 1952-1987), i.e. the territories <strong>of</strong><br />

Morocco, Algeria, Tunisia, and Libya.<br />

2. Material and methods<br />

This revision is based partly on plant material collected during field trips to Morocco<br />

and Tunisia in 1992-1995, which is deposited at the herbarium <strong>of</strong> the Botanic Garden &<br />

Botanical Museum Berlin-Dahlem (B). In June 1992, the study and collection <strong>of</strong> <strong>Anthemis</strong><br />

in N Morocco was enabled by the participation in the "Iter Mediterraneum V" sponsored<br />

by the Organization for the Phyto-Taxonomic Investigation <strong>of</strong> the Mediterranean Area<br />

(OPTIMA). Further collections in Morocco (April-May 1993, May 1995) and Tunisia<br />

(May 1994) were made during field trips <strong>org</strong>anised by the Botanic Garden and Botanical<br />

Museum Berlin-Dahlem.<br />

Additionally, the study is based on herbarium material from the following public herbaria,<br />

abbreviated as in Holmgren & al. (1990) and Holmgren & Holmgren (1996), and<br />

private collections:<br />

B<br />

BC<br />

BC-Sennen<br />

BM-Clifford<br />

C-Vahl<br />

FI<br />

G<br />

GOET<br />

K<br />

LINN<br />

MA<br />

MPU-AtN<br />

MPU-Braun-Blanquet<br />

MPU-Dubuis<br />

MPU-Weiller<br />

MPU-Sauvage<br />

MSB<br />

p<br />

Botanischer Garten & Botanisches Museum Berlin-Dahlem<br />

Institut Botanic de Barcelona<br />

Institut Botanic de Barcelona (Herbarium F. Sennen)<br />

<strong>The</strong> Natural History Museum, London (Herbarium G. Clifford;<br />

micr<strong>of</strong>iche)<br />

Botanical Museum and Library, University <strong>of</strong>Copenhagen<br />

(Herbarium M. Vahl; micr<strong>of</strong>iche)<br />

Museo di Storia Naturale, Museo Botanico, Firenze<br />

Conservatoire et Jardin botaniques de la ville de Genève<br />

Systematisch-Geobotanisches Institut der Universitlit Gèittingen<br />

Royal Botanic Gardens, Kew (London)<br />

<strong>The</strong> Linnean Society <strong>of</strong> London (Herbarium C. Linné; micr<strong>of</strong>iche)<br />

Rea! Jardfn Botanico, Madrid<br />

Institut de Botanique Montpellier (Herbier de l' Afrique du<br />

Nord)<br />

Institut de Botanique Montpellier (Herbarium J. Braun­<br />

Blanquet)<br />

Institut de Botanique Montpellier (Herbarium A. Dubuis)<br />

Institut de Botanique Montpellier (Herbarium M. Weiller)<br />

Institut de Botanique Montpellier (Herbarium Ch. Sauvage)<br />

Institut filr Systematische Botanik der Ludwig-Maximilians­<br />

Universitlit, Miinchen<br />

Muséum National d'Histoire Naturelle - Laboratoire de<br />

Phanérogamie Paris


8<br />

<strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

P-DESF<br />

P-LA<br />

RNG<br />

SEV<br />

UPS-Burser<br />

Herb. Bayreuth<br />

Herb. Oberp~ieler<br />

Herb. Vogt<br />

Muséum National d'Histoire Naturelle - Laboratoire de<br />

Phanérogamie Paris (Herbarium R. L. Des fontaines)<br />

Muséum National d'Histoire Naturelle - Laboratoire de<br />

Phanérogamie Paris (Herbarium J. B. P. A. de Monet de<br />

Lamarck)<br />

University <strong>of</strong> Reading, School <strong>of</strong> Plant Sciences<br />

Departamento de Biologfa Vegetai y Ecologfa, Universidad de<br />

Sevilla<br />

Botanical Museum at Uppsala University (Herbarium 1. Burser;<br />

micr<strong>of</strong>iche)<br />

Universitiit Bayreuth, Lehrstuhl fiir Ptlanzengeographie<br />

private collection <strong>of</strong> Ch. <strong>Oberprieler</strong> (Jena)<br />

private collection <strong>of</strong> R. Vogt (Berlin)<br />

Specimens were exarnined with a stereo-microscope (Wild M5A), measurements being<br />

performed using the camera-lucida device to slot in a millimetric scale in the corresponding<br />

magnification.<br />

<strong>The</strong> description <strong>of</strong> taxa is based on measurements made on dried plants. <strong>The</strong> variation<br />

ranges cited cover the total observed variation exhibited by a particular taxon. Extreme<br />

values have been placed in parentheses, while mai n range values relate to the interval<br />

covered by the mean ± l standard deviation <strong>of</strong> a particular character distribution.<br />

A list <strong>of</strong> specimens seen is presented under each species. Localities are given countrywise<br />

from W to E in the following order: Spain (N African part), Marocco, Algeria, Tunisia,<br />

and Libya. Within each country, administrative districts (Morocco: Province; Algeria:<br />

Wilaya; Tunisia: Gouvernorat; Libya: Baladiyah) are listed in alphabetic order. Within<br />

each district, specimens are listed from N to S. Most <strong>of</strong> the specimens are given with longitude<br />

and latitude <strong>of</strong> the collecting locality, written as stated by the collector(s), or taken<br />

from various maps [when they are cited in square brackets]. Distribution maps were drawn<br />

using the public domain map projection program MICROCAM by S. A. Loomer (ftp://ftp.<br />

usma.edulg&ene/gsl/microcarn/).<br />

For comparative carpological studies, achenes were taken from herbarium specimens<br />

and soaked for two days in a mixture (6 : l) <strong>of</strong> lO % aqueous solution <strong>of</strong> dioctyl sodium<br />

sulfosuccinate and 96 % ethanol (Peterson & al. 1978). Following dehydration through a<br />

l: 1,3: 7, l : 9 incrementai series <strong>of</strong> sulfosuccinate/ethanol, with changes every 24 hours,<br />

and a final step in pure 96 % ethanol for 45 min, achenes were subsequently soaked for 4-<br />

6 weeks in a pretreatment solution <strong>of</strong> Kulzer Technovit 7100® and solidifier no. 1 at 4°C.<br />

After final embedding in a l : 15 mixture <strong>of</strong> the pretreatment solution and Kulzer solidifier<br />

no. 2, median-transverse and median-Iongitudinal sections <strong>of</strong> achenes were made using a<br />

rotary microtome. 3-5 flm thick sections from the middle half <strong>of</strong> the achenes were stained<br />

with toluidine blue and mounted in Vitroclud (Langenbrinck).<br />

For scanning electron microscopy (SEM) achenes were taken from herbarium specimens,<br />

mounted on preparation stubs, and coated with a gold-palladium layer 2 nm thick in<br />

a Polaron sputter-coater. <strong>The</strong> observations and photography were performed with a Philips<br />

SEM 515 at the Botanical Museum Berlin-Dahlem.


Bocconea 9 - 1998 9<br />

3. Taxonomic history<br />

Though mentioned already in Genera pIanta rum (Linnaeus 1737a) and Hortus Cliffortianus<br />

(Linnaeus 1737b), the generi c name <strong>Anthemis</strong> was validated by Linnaeus (1753) in<br />

the first edition <strong>of</strong> Species plantarum. By doing so, Linnaeus preferred the generi c name<br />

already used by Micheli (1729) over the name Chamaemelum which had been used by<br />

Bauhin (1623) and Tournefort (1700) for most <strong>of</strong> the Linnean <strong>Anthemis</strong> species.<br />

In contrast to definitions given in Generaplantarum (Linnaeus 1737a: 256; 1754: 381)<br />

where <strong>Anthemis</strong> and Anacyclus are described to differ in the shape <strong>of</strong> achenes which are<br />

stated to be compressed in Anacyclus and terete in <strong>Anthemis</strong>, Linneaus (1753) arranged<br />

the species <strong>of</strong> these two genera according to the rather artificial character <strong>of</strong> presence vs.<br />

absence <strong>of</strong> ray florets in Species plantarum. This led to decades <strong>of</strong> uncertainty about the<br />

correct demarcation <strong>of</strong> the two genera which was still apparent in Willdenow's fourth<br />

edition <strong>of</strong> Species plantarum (Willdenow 1803) and Persoon's Synopsis plantarum<br />

(Persoon 1807) where both mentioned authors stressed the essential fruit characters as<br />

diagnostic for Anacyclus and <strong>Anthemis</strong> but ignored them when assigning the species to<br />

genera.<br />

Shortly after Linnaeus' Species plantarum (Linnaeus 1753), Miller (1754) validated the<br />

generic name Chamaemelum (Druce 1914) to compri se some <strong>Anthemis</strong> species cultivated<br />

in English gardens. In Miller (1768), however, <strong>Anthemis</strong> is adopted and Chamaemelum<br />

treated as a synanym. A few decades later, Necker (1790), Gaertner (1791), and Moench<br />

(1794) revived the name Chamaemelum to accommodate some former <strong>Anthemis</strong> species<br />

with apically rounded achenes in a separate genus. Though initially refraining from the<br />

recognition <strong>of</strong> these two enti ti es on a level higher than subgenus (Cassini 1817: 83),<br />

Cassini (1823) contributed to the excessive dismemberment <strong>of</strong> <strong>Anthemis</strong> into a number <strong>of</strong><br />

genera by accepting <strong>Anthemis</strong> and its meanwhile described segregates Chamaemelum,<br />

Maruta, Ormenis, Cladanthus, and Lepidophorum as members <strong>of</strong> his "Anthémidées-Prototypes<br />

vraies", later (Cassini 1825) adding the monotypic genus Lyonnetia for Anacyclus<br />

creticus L. (L. pusilla Cass.; currently recognized as <strong>Anthemis</strong> rigida Sm.).<br />

Lessing and Candolle were considerably influenced by the work <strong>of</strong> Cassini when they<br />

provided their synthetic classifications for the genera <strong>of</strong> Compositae. Lessing (1832)<br />

placed <strong>Anthemis</strong> species, which, on the basis <strong>of</strong> discoid capitula, had been assigned to<br />

Necker's Hiorthia (H. orientalis = Anacyclus orientalis L.) or Cassini's Lyonnetia in the<br />

subtribe Artemisiinae, far apart from the radiate representatives in subtribe Anthemidinae.<br />

This extremely unnatural dismembering <strong>of</strong> <strong>Anthemis</strong> species was overcome by Candolle<br />

(1838) who included Lyonnetia, along with <strong>Anthemis</strong>, Ma ruta, Anacyclus, Ormenis,<br />

Cladanthus, and Lepidophorum in his "Euanthemideae " .<br />

Moris (1840-1843) was the first to note that the basally saccate disc florets observed by<br />

Cassini in his Ormenis mixta are also found in Maruta fuscata and <strong>Anthemis</strong> nobilis. He<br />

united them ali under the generic name Maruta, foreshadowing to some extent the present<br />

circumscription <strong>of</strong> the genus Chamaemelum, except by also including <strong>Anthemis</strong> cotula, the<br />

type <strong>of</strong> Maruta.<br />

A further step toward a natural arrangement <strong>of</strong> <strong>Anthemis</strong> species was made by Gay, the<br />

designated <strong>Anthemis</strong> monographer <strong>of</strong> his period, when he contributed an account <strong>of</strong> the<br />

genus in the appendix to the second volume <strong>of</strong> Gussone's Synopsis (Gussone 1844: 866-<br />

872). Here, Gay created the new genus Cota to accommodate four <strong>Anthemis</strong> species with


lO<br />

<strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

dorso-ventralIy compressed and indistinc1y ribbed achenes, while leaving the species with<br />

terete achenes and IO distinct ribs in <strong>Anthemis</strong>. He also inc1uded A. fuseata and A. eotula<br />

in <strong>Anthemis</strong>, while noting their similarity with A. mixta which he left in Ormenis.<br />

Problems relating to the correct demarcation <strong>of</strong> Ormenis against <strong>Anthemis</strong> owe their<br />

solution to Schultz's revised taxonomy <strong>of</strong> the Anthemideae (in Schnitzlein 1854: 69-70;<br />

Schultz 1860). Schultz proposed a subdivision <strong>of</strong> the tribe into six subtribes, mainly on<br />

carpological grounds, with members <strong>of</strong> <strong>Anthemis</strong> assigned to Cotinae and Anthemidinae<br />

and members <strong>of</strong> Ormenis (O. fuseata, O. mixta, O. nobilis), along with the unispecific<br />

Cladanthus forming subtribe Ormenidae.<br />

Bentham & Hooker (1873) and H<strong>of</strong>fmann (1891-1892) reacted to the excessive splitting<br />

<strong>of</strong> <strong>Anthemis</strong> by more or less re-establishing the Linnean circumscription <strong>of</strong> the genus,<br />

in which they merged such rather unrelated genera as Ormenis, Lepidophorum, or the N<br />

African Rhetinolepis described by Cosson (1856), while keeping separate other segregates<br />

<strong>of</strong> <strong>Anthemis</strong>, e.g. Ammanthus (described in Boissier 1849) and Hiorthia (containing the<br />

poorly understood Anaeyclus orientalis L.). By that time, however, Boissier (1875) had<br />

already worked out a taxonomy <strong>of</strong> <strong>Anthemis</strong> that corresponds almost completely with our<br />

present circumscription and supraspecific taxonomy <strong>of</strong> the genus. Only Ammanthus was<br />

stilI to face a long period <strong>of</strong> generic independence, or rnisplacement in Chrysanthemum,<br />

until Greuter (1968) proposed its inc1usion in <strong>Anthemis</strong>, thus completing OUT present notion<br />

<strong>of</strong> the genus.<br />

4. Generic relationships<br />

<strong>Anthemis</strong> provides the type <strong>of</strong> the name Anthemideae, used by Cassini (Ì819: 192) to<br />

designate his eleventh tribe <strong>of</strong> Compositae. Cassini (1823) divided the tribe into two major<br />

groups: "Anthérnidées-Chrysanthémées" and "Anthémidées-Prototypes", based on the<br />

absence vs. presence <strong>of</strong> paleso <strong>The</strong>se two subtribes, later-on validly named Chrysantheminae<br />

Less. and Anthemidinae Dumort., were used by most systematists concerned with the<br />

infratribal taxonomy in the folIowing decades (e.g. Candolle 1838, Boissier 1875, H<strong>of</strong>fmann<br />

1891-1892, Hegi 1928). <strong>The</strong> artificiality <strong>of</strong> this subdivision c1early stated by Merxmiiller<br />

(1954) and Wagenitz (1964) and demonstrated by Greuter (1968) when he found<br />

that in Ammanthus, up till then c1assified with Chrysantheminae, the presence or absence<br />

<strong>of</strong> scales "does not even necessarily suffice to distinguish species", which led him to trans~<br />

fer its species to <strong>Anthemis</strong>. Hybridisation experiments among members <strong>of</strong> Anthemideae<br />

made by Mitsuoka & Ehrendorfer (1972) have shown that the inheritance <strong>of</strong> pales is<br />

probably under simple oligogenic control. Further evidence carne from the ambiguous<br />

position <strong>of</strong> the unispecific genus Lepidophorum, usualIy placed in the vicinity <strong>of</strong> <strong>Anthemis</strong><br />

due to the presence <strong>of</strong> pales, but in morphological, phytochernical (Bohlmann & al. 1973,<br />

Harborne & al. 1976), and embryological features (Harling 1960) c10sely resembling palelacking<br />

members <strong>of</strong> the tribe. Observations <strong>of</strong> sporadic paleate capitula in Chrysanthemum<br />

(Napp-Zinn & Eble 1978) and inc1usion <strong>of</strong> paleate and epaleate species into Athanasia by<br />

KiilIersj6 (1991) point in the same direction.<br />

Owing to the artificiality <strong>of</strong> a c1assification based on the presence vs. absence <strong>of</strong> pales,<br />

numerous attempts have been made in the last forty years to elaborate a more satisfactory


Bocconea 9 - 1998 11<br />

taxonomy <strong>of</strong> the tribe. Thorough embryological studies <strong>of</strong> representatives <strong>of</strong> Anthemideae<br />

by Harling (1950, 1951, 1960) contributed to a natural delimitation and grouping <strong>of</strong> genera.<br />

Features <strong>of</strong> embryo sac formation can be used to set <strong>of</strong>f <strong>Anthemis</strong> against other<br />

genera that have, at one time or another, been treated as synonymous or closely related.<br />

While ali members <strong>of</strong> <strong>Anthemis</strong> were found to have a tetrasporic embryo sac development,<br />

members <strong>of</strong> the paleate genera Chamaemelum (sub Ormenis), Lepidophorum, Anacyclus,<br />

and Cladanthus showed monosporic embryo sac formation (Harling 1950, 1960). Further<br />

findings (Harling 1951) suggest close relationships <strong>of</strong> <strong>Anthemis</strong> with genera that had been<br />

considered to be unrelated due to their epaleate receptacles: A tetrasporic embryo sac<br />

development war found in representatives <strong>of</strong> Tanacetum (sub Chrysanthemum parthenium,<br />

C. millefolium), Tripleurospermum (sub Matricaria maritima, M. oreades), Heteranthemis<br />

(sub C. viscidehirtum), and, in an older embryological contribution by Martinoli<br />

(1940), also in Nananthea.<br />

Cytological (Uitz 1970) and carpological surveys (Reitbrecht 1974) yielded a subdivision<br />

<strong>of</strong> Anthemideae into seven provisional groups. <strong>Anthemis</strong> was considered to hold a<br />

'somewhat centrai position in the so-called Matricaria group, also including Chamaemelum,<br />

Cladanthus, Tripleurospermum, Matricaria, Anacyclus, Otospermum, Daveaua, and<br />

the S African Pentzia. In contrast to embryological findings mentioned above, Reitbrecht<br />

(1974) thought <strong>of</strong> the generic relationships <strong>of</strong> <strong>Anthemis</strong> to lie in two directions: with Anacyclus,<br />

due to the dorso-ventrally flattened achenes in <strong>Anthemis</strong> subg. Cota, and with<br />

Chamaemelum and Tripleurospermum. Outside the Matricaria group, additional relationships<br />

<strong>of</strong> <strong>Anthemis</strong> were suggested to exist with Tanacetum which was treated as the centrai<br />

member <strong>of</strong> the so-called Chrysanthemum complex.<br />

In Heywood & Humphries's (1977) account <strong>of</strong> Anthemideae the so-called <strong>Anthemis</strong> assemblage<br />

was but a slight modification <strong>of</strong> Reitbrecht's (1974) Matricaria group, with the<br />

exclusion <strong>of</strong> Pentzia and related S hemisphere genera. <strong>The</strong> close relationship <strong>of</strong> <strong>Anthemis</strong><br />

and Chamaemelum that had been suggested by crossing data (Mitsuoka & Ehrendorfer<br />

1972) was considered by Heywood & Humphries (1977) to be obscured by differences in<br />

fruit and corolla structure (Briquet 1916), embryo sac development (Harling (1960), and<br />

phytochemical data (Bohlmann & al. 1965, Bohlmann & Zdero 1966). Further achene<br />

morphological and anatomical studies by Hl1mphries (1977, 1979) revealed the suggested<br />

close relationship between <strong>Anthemis</strong> subg. Cota and Anacyclus to be rather superficial:<br />

While achenes <strong>of</strong> Anacyclus species were found to have only two vascular bundles in the<br />

pericarp wall, those <strong>of</strong> <strong>Anthemis</strong> species, though having ten or even more epicarpic ribs,<br />

invariably had five. Cyanogenic glycoside and flavonoid pr<strong>of</strong>iles (Greger 1977, 1978) also<br />

suggest a closer relationship <strong>of</strong> Anacyclus with Achillea than with <strong>Anthemis</strong>.<br />

Bremer & Humphries (1993) elaborated a subtribal classification <strong>of</strong> Anthemideae using<br />

ali morphological, embryological, and phytochemical information available at that ti me in<br />

a cladistic ana1ysis. <strong>The</strong>y classified <strong>Anthemis</strong> together with the unispecific Nananthea as<br />

the only members <strong>of</strong> the subtribe Anthemidinae. <strong>The</strong> subtribe Chrysantheminae with four<br />

genera (Argyranthemum, "Chrysanthemum", Ismelia, and Heteranthemis) was sister to<br />

the Anthemidinae. However, Bremer & Humphries (1993: 131) state that Nananthea was<br />

included only provisionally due to its tetrasporic embryo sac development and that "the<br />

immediate relatives <strong>of</strong> [<strong>Anthemis</strong>] are unknown". AIso, the sister group relationship <strong>of</strong><br />

Anthemidinae and Chrysantheminae remains rather uncertain since the analysis <strong>of</strong> the<br />

interrelationships <strong>of</strong> the 12 proposed subtribes yielded a number <strong>of</strong> equally parsimonious


12 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

solutions and the strict consensus tree <strong>of</strong> these solutions collapsed completely (Bremer &<br />

Humphries 1993: 90).<br />

Chloroplast restriction site studies in Anthemideae by Francisco-Ortega & al. (1995)<br />

and Watson (1996) contributed little to the solution <strong>of</strong> the problem <strong>of</strong> the position <strong>of</strong> <strong>Anthemis</strong><br />

within the tribe, due to the restricted sampling <strong>of</strong> genera or the absence <strong>of</strong> <strong>Anthemis</strong><br />

representatives in the data set, respectively. Francisco-Ortega & al. (1997), using sequence<br />

data <strong>of</strong> the internai transcribed spacer (ITS) regions <strong>of</strong> the nuc1ear ribosomal repeat to<br />

assess the intergeneric relationships <strong>of</strong> Argyranthemum, provide molecular information on<br />

32 genera <strong>of</strong> eight subtribes <strong>of</strong> Anthemideae. Phylogenetic analyses <strong>of</strong> ITS data showed<br />

that most <strong>of</strong> the subtribes suggested by Bremer & Humphries (1993) are not resolved as<br />

monophyletic c1ades. <strong>Anthemis</strong> was found to be sister to Tanacetum vulgare within a<br />

rather basaI c1ade grouping genera with predorninantly Eurasian and Mediterranean distribution.<br />

However, low bootstrap values for many <strong>of</strong> the nodes <strong>of</strong> the c1adogram suggest<br />

that caution is needed when interpreting the tree presented.<br />

As Bremer & Humphries (1993) pointed out, our further understanding <strong>of</strong> the phylogeny<br />

<strong>of</strong> the tribe depends on a better resolution <strong>of</strong> non-monophyletic taxa, e.g.<br />

Tanacetum and Tanacetinae. Solutions for these problem taxa may also have positive<br />

bearings on positioning <strong>Anthemis</strong> within the tribe. At present, information on additional<br />

interesting features (e.g. ca1cium-oxalate crystals in epicarp cells) are too sparse to allow<br />

an improved c1adistic analysis <strong>of</strong> the tribe. It is nevertheless prornising to compare the<br />

results <strong>of</strong> the c1adistic analysis <strong>of</strong> morphological data given by Bremer & Humphries<br />

(1993) with cytological data given by Uitz (1970) and Mitsuoka & Ehrendorfer (1972). As<br />

discussed later (see chapter lO), karyotype similarities appear to indicate relationships<br />

between the subtribes Anthemidinae, Tanacetinae, Chrysantheminae, Achilleinae, and<br />

Matricariinae through their predorninantly perenni al and (morphologically) basaI genera<br />

<strong>Anthemis</strong>, Tanacetum, Argyranthemum, Achillea, and Tripleurospermum. In such a<br />

scheme, <strong>Anthemis</strong> would hold a rather centrai (basaI) position within the tribe, with most<br />

<strong>of</strong> the mentioned subtribes showing sister-group relationships to it.<br />

5. Supraspecific taxonomy<br />

In the presently accepted circumscription, <strong>Anthemis</strong> comprises c. 211 species (Bremer<br />

& Humphries 1993). Traditionally, and mainly on carpological grounds, two main subgroups<br />

are distinguished within the genus (Wagenitz 1968): A. subg. <strong>Anthemis</strong> is characterised<br />

by actinomorphic achenes which are round or tetragonal in cross-section, usually<br />

have lO longitudinal epicarpic ribs and epicarpic cells filled with sand <strong>of</strong> ca1cium-oxalate<br />

crystals; A. subg. Cota exhibits disymmetrical achenes which are dorso-ventrally flattened,<br />

usually have 8-22 ribs and epicarpic cells that either lack crystals or contain single, large<br />

crystals (Fig. 3). Since Gay's treatment in Gussone (1844), the latter subgenus was sometimes<br />

considered as an independent genus on morphological and phytochemical<br />

(Reitbrecht 1974) or cytogenetical grounds (Mitsuoka & Ehrendorfer 1972). However, as<br />

discussed in the previous chapter, there is hardly any evidence for a para- or polyphyletic<br />

nature <strong>of</strong> <strong>Anthemis</strong> that would necessitate the acknowledgement <strong>of</strong> the two entities in a<br />

rank higher than subgenus.


Bocconea 9 - 1998 13<br />

<strong>The</strong> species <strong>of</strong> the former genus Ammanthus, which were transferred to <strong>Anthemis</strong> by<br />

Greuter (1968), were (at least partly) considered to be sufficiently deviating by Fernandes<br />

(1975b, 1976) to merit recognition as a third subgenus, A. subg. Ammanthus. However,<br />

acknowledgement <strong>of</strong> this subgenus will likely cause A. subg. <strong>Anthemis</strong> to become paraphyletic.<br />

Yavin' s (1972) treatment <strong>of</strong> this group as a seri es within A. sect. <strong>Anthemis</strong> is<br />

therefore preferred.<br />

<strong>The</strong> classification <strong>of</strong> <strong>Anthemis</strong> subg. <strong>Anthemis</strong> traditionally follows the common pattern,<br />

with recognition <strong>of</strong> a number <strong>of</strong> apomorphic sections in addition to more plesiomorphic<br />

and presumably paraphyletic ones. Representatives <strong>of</strong> A. sect. Hiorthia (including<br />

A. sect. Rumata), which are characterised by suffruticose or pleiocormous perennial habit,<br />

were <strong>of</strong>ten considered to form the most basai group <strong>of</strong> the subgenus (Meusel & Jager '<br />

1992). Here, in contrast to the other sections <strong>of</strong> <strong>Anthemis</strong>, polyploidy has played a significant<br />

role in the evolution <strong>of</strong> species and species groups. Mitsuoka & Ehrendorfer (1972)<br />

and Kuzmanov & al. (1981) suggested that perennial habit may enable plants to overcome<br />

the setbacks <strong>of</strong> reduced fertility caused by polyploidisation. Infrasectional taxonomies<br />

proposed by Fedorov (1961) and Thin (1983) have to be considered preliminary since they<br />

concern restricted geographical areas and are based on rather arbitrary selections <strong>of</strong> representative<br />

species.<br />

In contrast to <strong>Anthemis</strong> sect. Hiorthia, A. sect. <strong>Anthemis</strong> has received a comprehensive<br />

assessment <strong>of</strong> its infrasectional taxonomy by Yavin (1972). In addition to two series accepted<br />

by Fedorov.(1961), Yavin (1972) defined 14 new. series, .each with.one tO .l2 species,<br />

segregated 12 species with extremely slender achenes into an independent section<br />

A. sect. Rascheyanae, and . the fruit-anatomically deviating A. chia into the unispecific<br />

A. sect. Chiae. However, since besides the annual habit no other synapomorphy for members<br />

<strong>of</strong> A. sect. <strong>Anthemis</strong> is presently known and sister-group relationships <strong>of</strong> A. sect. Rascheyanae<br />

and sect. Chiae with species or species groups <strong>of</strong> A. sect. <strong>Anthemis</strong> are rather<br />

probable, the acknowledgement <strong>of</strong> these two annual sections would cause A. sect. <strong>Anthemis</strong><br />

to become paraphyletic. In the case <strong>of</strong> A. sect. Rascheyanae, sister-group relationships<br />

may exist with A. ser. Scariosae, ser. Melampodinae, ser. Haussknechtianae, or ser.<br />

Cornucopiae due to shared apomorphies (hairy tubes <strong>of</strong> ray florets and hairy disc florets)<br />

in some <strong>of</strong> their members.<br />

<strong>Anthemis</strong> sect. Maruta is characterised by the apomorphic feature <strong>of</strong> subulate pales.<br />

This morphologically rather distinct section is presumably nested within A. sect. <strong>Anthemis</strong><br />

since it shows some similarities with A. scariosa, a species grouped within A. sect. <strong>Anthemis</strong><br />

by Yavin (1972) but eonsidered to hold a transitional position between the two<br />

seetions by Grierson & Yavin (1975). A. sect. Maruta was subdivided into three series by<br />

Fedorov (1961): ser. Cotulae, ser. Microcephalae, and ser. Odontostephanae. When presenting<br />

a revision <strong>of</strong> the seetion, Yavin (1970) found the latter series distinct enough to<br />

exclude it from A. seet. Maruta and proposed its aeknowledgement as a separate section,<br />

or even genus.<br />

<strong>Anthemis</strong> subg. Cota is traditionally subdivided into two sections, A. sect. Cota and<br />

se et. Anthemaria (e.g. Fernandes 1975b, 1976, Benedf i Gonzales 1987). <strong>The</strong> main difference<br />

between the two seetions relates to life span: members <strong>of</strong> A. seet. Anthemaria are<br />

eharaeterised by a perennial, suffruticose to pleiocormously herbaeeous habit, A. seet.<br />

Cota consists <strong>of</strong> annual to biennial herbs. Fedorov (1961) proposed a different classification,<br />

subdividing the subgenus (his A. sect. Cota) into five series. Pending a comprehen-


14 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

sive morphological and c1adistic study, no deliberate choice is made here between the two<br />

proposed scenarios, but for practical purposes the c1assification proposed by Fernandes<br />

(1975b, 1976) is provisionally followed.<br />

6. Phytogeography<br />

<strong>The</strong> total geographical range <strong>of</strong> <strong>Anthemis</strong> encompasses almost the whole western Eurasia,<br />

the Mediterranean, and a small part <strong>of</strong> E Africa. According to Meusel & Higer (1992)<br />

the distribution range is very similar to those <strong>of</strong> Daucus, Cichorium, and Filago. While C<br />

Europe is inhabited by few archaeophytic species only, the mai n centre <strong>of</strong> diversity is<br />

found in SW Asia where about 150 <strong>of</strong> the c. 210 described species occur and all <strong>of</strong> the<br />

presently accepted subgenera and sections are found. <strong>The</strong> W and C North African part <strong>of</strong><br />

the distribution area, which is covered by the present revision, hosts a markedly lower<br />

number <strong>of</strong> species and certainly has played a rather peripheral role in the evolution <strong>of</strong> the<br />

genus.<br />

<strong>Anthemis</strong> sect. Hiorthia, formed by perenni al herbs and subshrubs <strong>of</strong> predominantly<br />

mountainous habitats and <strong>of</strong>ten considered to be the most primitive section <strong>of</strong> <strong>Anthemis</strong>,<br />

shows a marked centre <strong>of</strong> diversity in SW Asia (Turkey and the adjacent Caucasus countries)<br />

and the mediterranean and submediterranean parts <strong>of</strong> SE Europe. According to<br />

Kuzmanov & al. (1981), Asia Minor is considered the primary evolutionary centre <strong>of</strong> the<br />

genus in generai and <strong>of</strong> A. sect. Hiorthia in particular, since diploid representatives <strong>of</strong> this<br />

section, in which polyploidy occurs, are concentrated here. While most <strong>of</strong> the SW Asian<br />

and SE European species <strong>of</strong> A. sect. Hiorthia are restricted to small areas, the highly<br />

polymorphic A. eretica (inc1uding A. carpatica and A. saxatilis) which is represented in<br />

Turkey by not less than 12 subspecies (Grierson & Yavin 1975) extends to C and even W<br />

southern Europe, and A. eretica subsp. columnae, a subspecies which is centred on the<br />

Balkan Peninsula and Italy, even occurs in Algeria in an extremely restricted area. <strong>The</strong><br />

distribution range <strong>of</strong> three other N African members <strong>of</strong> A. sect. Hiorthia, A. maritima,<br />

A. pedunculata, and A. abylaea, contrasts markedly with the pattern just described for<br />

A. eretica. A. maritima is restricted to the W Mediterranean area and, due to its deviating<br />

ecology, presumably represents a evolutionallineage quite independent from the remainder<br />

<strong>of</strong> the section. Additionally, diploid plants are found scattered throughout the distribution<br />

range <strong>of</strong> the species (Menorca, Benedi' i Gonzales 1987; Algeria, A. maritima subsp.<br />

bolosii, present paper). Similarly, the Ibero-Maghrebine A. pedunculata is also restricted<br />

to the W Mediterranean region and occurs at the diploid and tetraploid level. <strong>The</strong> deviating<br />

fruit morphology, with achenes circular instead <strong>of</strong> rhombic in cross-section, again<br />

suggests that A. pedunculata and its c10se tetraploid relative A. abylaea evolved independently<br />

from the remainder <strong>of</strong> the section. An obvious pattern <strong>of</strong> vicariance within A. sect.<br />

Hiorthia thus emerges, with a main centre <strong>of</strong> diversity in SW Asia and a minor centre<br />

formed by the lineages <strong>of</strong> A. maritima, A. pedunculata, and the Spanish diploid<br />

A. alpestris in the W Mediterranean area. <strong>The</strong> tetraploid NE Algerian and N Tunisian<br />

A. punctata, the fifth N African species <strong>of</strong> A. sect. Hiorthia, geographically links<br />

A. pedunculata with the A. eretica group (the Sicilian endemic species A. cupaniana and<br />

A. eretica subsp. columnae), being restricted to the area where the two lineages overlap.


Bocconea 9 - 1998 15<br />

Additionally, it shows a elinal morphological variation mediating between two extremes:<br />

strongly tuberculate achenes which are round in cross-section (as in A. pedunculata) in<br />

plants from the western part <strong>of</strong> the species' distribution area and weakly tuberculate achenes<br />

tending to be rhombic in cross-section (as in A. eretica) in its eastern part.<br />

<strong>Anthemis</strong> sect. <strong>Anthemis</strong> which according to the preliminary Iist given by Yavin (1972)<br />

comprises c. 60 annual species, shows an originally Mediterranean-Oriental-Submediterranean-Pontic<br />

distribution area that was enlarged palaeosynanthropically in an Atlantic-W­<br />

Sarmatic-Scandinavian direction (Meusel & Jiiger 1992). <strong>The</strong> main concentration <strong>of</strong> species<br />

is in the E Mediterranean and SW Asian region, where Il <strong>of</strong> Yavin's (1972) 14 seri es<br />

are found . <strong>The</strong> individuaI species <strong>of</strong> the section are <strong>of</strong>ten restricted to rather small areas,<br />

and even the series, usually, grow only in a small portion <strong>of</strong>the section's total range. In the<br />

area covered by the present revision four seri es occur: A. ser. <strong>Anthemis</strong>, ser. Bourgaeinianae,<br />

ser. Chrysanthae, and ser. Secundirameae, whose members show distinct vicariant<br />

distribution patterns.<br />

In <strong>Anthemis</strong> ser. <strong>Anthemis</strong>, the elosely related species A. arvensis and A. ruthenica provide<br />

a good example <strong>of</strong> vicariance. A. arvensis is considered an originally iberic-centromediterranean-hellenic<br />

species (A. arvensis subsp. incrassata) which enlarged its areaI<br />

synanthropically into the Oceanic-Suboceanic parts <strong>of</strong> W and C Europe (subsp. arvensis);<br />

A. ruthenica is restricted to the adjacent, dryer, Pontic-Balkanic-Pannonic area (Meusel &<br />

Jiiger 1992); and the third species <strong>of</strong> this series, A. auriculata, occupies a comparably<br />

small area in the S parts <strong>of</strong> the Balkan Peninsula and the N Aegean region. N Africa is<br />

reached only by the Mediterranean-Submediterranean A. arvensis subsp. incrassata, restricted<br />

here to the rather humid regions <strong>of</strong> the Tangier peninsula and the adjacent W and<br />

C parts <strong>of</strong> the Rif mountains.<br />

<strong>Anthemis</strong> ser. Bourgaeinianae consists <strong>of</strong> five allopatric species growing in the SW­<br />

Mediterranean and N-Saharic region. A. bourgaei is known only from a small area in SW<br />

Spain, and A. mauritiana, A. zaiànica, and A. monilicostata occur locally in Morocco and<br />

Algeria. <strong>The</strong> polymorphic A. stiparum is more widespread, being distributed throughout<br />

the arid areas <strong>of</strong> W Morocco and Algeria. A. stipa rum subsp. stipa rum and subsp. intermedia<br />

grow among steppe vegetation on the High Plains between Tell Atlas and Sahara<br />

Atlas. A. stipa rum subsp. sabulicola in the even more xeric, semi-desert habitats <strong>of</strong> the<br />

northern fringe <strong>of</strong> the Algerian Sahara.<br />

Vicariant distribution pattérns are also observed in the two other species groups, which<br />

are largely centred on N Africa: <strong>Anthemis</strong> ser. Chrysanthae and ser. Secundirameae. <strong>The</strong><br />

five species <strong>of</strong> the Moroccan and NW Algerian A. ser. Chrysanthae show allopatric areas<br />

<strong>of</strong> distribution arranged in a well marked more or less linear sequence spanning NW Algeria<br />

(A . boveana, A. chrysantha), N Morocco (A. maroccana, A. gharbensis), and SW Morocco<br />

(A. tenuisecta). Like its mirror image, the N African members <strong>of</strong> A. ser. Secundiramea<br />

are distributed allopatrically between N Tunisia and N Egypt. <strong>The</strong> northernmost<br />

member <strong>of</strong> the series, A. secundiramea, covers a larger geographic area than the other<br />

species and shows a C Mediterranean distribution with some outposts in S Europe<br />

(Menorca, S France, Corsica, Sardinia). <strong>The</strong> elosely related, discoid species A. muricata is<br />

endemic to Sicily and, in contrast to A. secundiramea, is only found in inland habitats. <strong>The</strong><br />

sequence <strong>of</strong> allopatric N African endemics <strong>of</strong> the seri es starts with A. ,ubensis in NE Algeria<br />

and N Tunisia, followed by A. confusa in C and S Tunisia, A. glareosa in W Libya,


16 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

A. kruegeriana, A. cyrenaica, and A. taubertii in E Libya, and A. retusa in N Egypt, while<br />

A. rigida is found in the Aegean archipelago.<br />

<strong>Anthemis</strong> sect. Maruta consists <strong>of</strong> 14 species and, according to Meusel & Jager (1992),<br />

inhabits an E Mediterranean-SW Iranian area with one species (A. cotula, incl.<br />

A. lithuanica) being archeophytically distributed throughout Europe and SW Asia. Two<br />

representatives <strong>of</strong> the section, A. cotula and A. pseudocotula, reach N Africa, the former is<br />

presumably introduced by Man into N Morocco (Tangier peninsula, Rif mountains,<br />

Melilla peninsula) and the vicinity <strong>of</strong> cities like Oran (Algeria), Sfax, and Gabès (Tunisia),<br />

the latter reaching the SW Iimit <strong>of</strong> its natural distribution in Cyrenaica.<br />

<strong>Anthemis</strong> subg. Cota, like sect. <strong>Anthemis</strong> and sect. Hiorthia, shows a concentration <strong>of</strong><br />

its species in the SE European and SW Asian part <strong>of</strong> its distributional range. Most <strong>of</strong> its<br />

species are restricted to small areas in the submediterranean parts <strong>of</strong> Turkey and the adjacent<br />

Caucasus countries. However, some perennial members <strong>of</strong> A. sect. Anthemaria (e.g.<br />

A. tinctoria, A. triumfetti), along with monocarpic representatives <strong>of</strong> A. sect. Cota<br />

(A. altissima, A. austriaca), penetrate C and SW Europe. Since A. austriaca is known to<br />

occur synanthropically in ruderal plant cornrnunities <strong>of</strong> C Europe, its occurrence in N<br />

Africa, which is demonstrated in the present paper for the first time, is Iikely due to human<br />

activity.<br />

7. Modes <strong>of</strong> speciation within <strong>Anthemis</strong> in N Africa<br />

<strong>The</strong> N African representatives <strong>of</strong> the genus <strong>Anthemis</strong> <strong>of</strong>fer an interesting insight into the<br />

evolutionary patterns realised in this genus. Most <strong>of</strong> the observed mechanisms also occur<br />

in groups <strong>of</strong> related taxa in other parts <strong>of</strong> the generic range, and in other genera <strong>of</strong> Anthemideae.<br />

As Ehrendorfer (1970) has pointed out, main changes <strong>of</strong> evolutionary patterns<br />

and strategies in this tribe are observed in connection with the switch from perennial to<br />

annuallife formo<br />

New data on N African taxa, along with published records by Uitz (1970), Ehrendorfer<br />

(1970), Mitsuoka & Ehrendorfer (1972), and Kuzmanov & al. (1981), show that <strong>Anthemis</strong><br />

sect. Hiorthia is the only section <strong>of</strong> the genus where polyploidy has played a significant<br />

evolutionary role. Ali <strong>of</strong> the N African representatives <strong>of</strong> this section were found to exist<br />

at the tetraploid level. While A. abylaea, A. eretica subsp. columnae, and A. punctata are<br />

restricted to this level, in the widespread A. pedunculata, and according to pollen dimensions<br />

in some N African populations <strong>of</strong> A. maritima (in A. maritima subsp. bolosii) as<br />

well, diploids are found. <strong>The</strong>se populations, along with the discoid A. alpestris which is<br />

endemic to the Iberian Peninsula, are the only diploid representatives <strong>of</strong> the section in the<br />

W Mediterranean area.<br />

While in <strong>Anthemis</strong> maritima morphological differences between (presumably) diploid<br />

and tetraploid representatives were found to be marked enough to recognise the two entities<br />

as separate subspecies, there seems to exist but little correlation between ploidy level<br />

and morphology in A. pedunculata. Multivariate statistical analyses <strong>of</strong> morphological<br />

variation along with results <strong>of</strong> molecular studies (see chapter 13) indicate that most <strong>of</strong> the<br />

tetraploids have to be considered to be <strong>of</strong> autotetraploidorigin. Though the difference in<br />

ploidy leve I may act as a rather effective crossing barrier, most <strong>of</strong> the tetraploid popula-


Bocconea 9 - 1998 17<br />

tions have not developed conspicuously deviating morphological characters yet that would<br />

permit their acknowledgement at any taxonomic level. As alone exception, tetraploid<br />

populations <strong>of</strong> the limestone mountains in the E parts <strong>of</strong> the Tangiers peninsula were<br />

found to deviate morphologically from other diploid and tetraploid representatives <strong>of</strong><br />

A. pedunculata and are considered to represent an independent species, A. abylaea.<br />

As multivariate statistical analyses in the A. pedunculata - A. punctata complex<br />

(chapter 13) and in the A. boveana group (chapter 12) indicate, the geographical pattern <strong>of</strong><br />

morphological variation in perennial and annual representatives <strong>of</strong> <strong>Anthemis</strong> in N Africa<br />

shows some marked differences. Variation in perennials occurs on a larger geographical<br />

scale, morphologically divergent forms are geographically isolated but connected by morphological<br />

intermediates, resulting in a c1inal pattern <strong>of</strong> morphological variation. In contrast,<br />

annual taxa show more restricted distribution areas, morphological variation within<br />

taxa is rather small as compared to these between taxa. Evolutionary divergence appears to<br />

be more rapid in the annual representatives <strong>of</strong> the genus than in the perenni al ones. As<br />

Wright (1940) and Stebbins (1952) pointed out, the population structure most favourable<br />

for rapid evolution is that <strong>of</strong> a large or medium-sized population divided into many small<br />

subunits which are largely isolated from each other, but can occasionally interchange<br />

genes. In such a set-up, the small subunits permit new genotypes to become stabilised<br />

through natural selection or genetic drift, while migration between colonies prevents the<br />

subunit's genetic stagnation and ensure genetic coherence <strong>of</strong> the large population for a<br />

certain period <strong>of</strong> time. Since such a population structure occurs more frequently in arid or<br />

semiarid regions than in areas with abundant moisture, Stebbins (1952) considers aridity to<br />

be a stimulus for plant evolution.<br />

A further acceleration <strong>of</strong> genetic and morphological divergence may be caused by the<br />

switch from self-incompatibility and allogamy in perennials towards self-compatibility and<br />

autogamy in annuals. <strong>The</strong> combination <strong>of</strong> annuallife form and autogamy enables plants to<br />

rapidly occupy unstable or pioneer habitats and to survive unfavourable seasons as diaspores.<br />

Populations <strong>of</strong> annuals have to be built up every year from a seed-bank and, as a<br />

consequence, are affected by rapid natural selection or gene tic drift through a so-called<br />

bottleneck effect (Runemark 1970, Nei & al. 1975), since only part <strong>of</strong> the gene pool <strong>of</strong> the<br />

parent population will be maintained in the next one when conditions are suboptimal. <strong>The</strong><br />

repeated contraction <strong>of</strong> populations narrows down genetic and morphological variability<br />

within populations and increases discontinuities between them, because inbreeding and<br />

genetic drift may lead to the fixation <strong>of</strong> alleles different from those found in the parental<br />

populations, or at least to deviating allele frequencies.<br />

In contrast to the allopolyploid mode <strong>of</strong> speciation, the frequency <strong>of</strong> hybrid speciation<br />

on the diploid level, as hypothesised for <strong>Anthemis</strong> ubensis on morphological grounds in<br />

the present paper, is less well known (Rieseberg & Brouillet 1994) and its occurrence is<br />

<strong>of</strong>ten questioned (Grant 1981), although there is positive evidence for it in some plant<br />

groups (e.g. Helianthus, Rieseberg 1991; Iris, Arnold & al. 1990, 1991; Stephanomeria,<br />

Gallez & Gottlieb 1982). Since even intergeneric crosses between <strong>Anthemis</strong> species and<br />

representatives <strong>of</strong> Chamaemelum, Matricaria, and Tripleurospermum may produce fertile<br />

or semifertile <strong>of</strong>fspring (Mitsuoka & Ehrendorfer 1972), the existence <strong>of</strong> fertile or semifertile<br />

hybrids involving two <strong>Anthemis</strong> species is plausible, even if they belong to different<br />

sections, as in the case <strong>of</strong> A. pedunculata and A. secundiramea, the presumed parent species<br />

<strong>of</strong> A. ubensis. As Grant (1981) set out, the centrai problems with diploid hybrid spe-


18 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

ciation are genotype segregation in the hybrid progeny as well as backcrossing, introgression,<br />

and consequent resorption <strong>of</strong> the hybrid genotype. Grant (1981) lists seven strategies<br />

that may overcome segregation <strong>of</strong> a hybrid genome and enhance its stability. Only two<br />

such strategies, however, are connected with sexual propagation and the homoploid nature<br />

<strong>of</strong> hybrids: speciation by recombination and isolation <strong>of</strong> the hybrids from the parent species<br />

by external factors. Speciation by recombination may occur in the progeny <strong>of</strong> a sterile<br />

or semi sterile hybrid formed by hybridisation <strong>of</strong> two parent species which differ by two or<br />

more chromosomal rearrangements, when recombination types evolve that are homozygous<br />

for these rearrangements; the resulting hybrid descendants are fertile and diploid, but<br />

genetically isolated from the parent species due to a chromosomal sterility barrier. Isolation<br />

may occur when new combinations <strong>of</strong> characters lead to a mechanical, ethological, or<br />

ecological crossing barrier between descendants and their parent species. In the case <strong>of</strong><br />

A. ubensis, both possibilities exist, but evidence, which would require thorough molecular<br />

and cytological studies, is lacking.<br />

8. Delimitation <strong>of</strong> taxa - Concepts <strong>of</strong> species, subspecies, and varieties<br />

In the present revision <strong>of</strong> <strong>Anthemis</strong> in W and C North Africa the taxonomic categories<br />

<strong>of</strong> species, subspc;:cies, and variety are used to classify the encountered patterns <strong>of</strong> morphological<br />

variation at and below the species level.<br />

As noted by Jansen (1985), "much debate and little consensus exists among biologists<br />

concerning the definition <strong>of</strong> species." A number <strong>of</strong> different species concepts exist (see<br />

Rieseberg & Brouillet 1994: 24 for a comprehensive list), based on biological (e.g. the<br />

biological, better termed reproductive, species concept <strong>of</strong> Mayr 1969, 1970), phenetic<br />

(Cronquist 1988), ecological (Van Valen 1976), and phyIogenetic criteria (the phylogenetic<br />

species concept <strong>of</strong> Cracraft 1989 and the autapomorphic species concept <strong>of</strong> Mishler<br />

& Brandon 1987).<br />

A primarily morphoIogical or phenetic species concept has been used in the present<br />

study. As discussed in the previous chapter, morphological discontinuities are assumed to<br />

be due to genetic differences and, together with cytoiogical and molecular information in<br />

some taxa groups, to a certain degree are taken to reflect speciation processes and phylogenetic<br />

relationships. Since patterns <strong>of</strong> morphological variation show marked differences<br />

between different subgroups <strong>of</strong> the genus, the resulting species may not be equivalent. As<br />

noted by Lewis (1955, cited in Stuessy 1990:179), "the pattern <strong>of</strong>morphological differentiation<br />

may differ from one group <strong>of</strong> pIants to another and is a reflection <strong>of</strong> the diversity <strong>of</strong><br />

evolutionary processes. Consequently, species and subspecies are not necessariIy equivalent<br />

in different genera or different sections <strong>of</strong> the same genus." As discussed above, the<br />

prevailing modes <strong>of</strong> speciation in perenniaIs <strong>of</strong> <strong>Anthemis</strong> sect. Hiorthia are hybridisation<br />

and polypIoidy, while in annuals <strong>of</strong> A. sect. <strong>Anthemis</strong> allopatric speciation and Iocal<br />

(founder effect) speciation (Levin 1993) is usually encountered. <strong>The</strong>refore, species acknowledged<br />

in the former section tend to be wide-spread, poIymorphic, and <strong>of</strong>ten exhibit<br />

clinal variation <strong>of</strong> morphoIogical characters; while those <strong>of</strong> the latter section tend to be<br />

more local and Iess poIymorphic.


Bocconea 9 - 1998 19<br />

Both subspecies and variety were used as infraspecific categories to describe patterns <strong>of</strong><br />

infraspecific morphological variation. Since little is known on genetic divergence and<br />

reproductive behaviour, only geographical information was used to decide on the rank <strong>of</strong><br />

morphologically defined infraspecific taxa. Following suggestions made by Stuessy<br />

(1990), subspecies rank is used for a cohesive series <strong>of</strong> morphologically similar individuals<br />

forming allopatric or parapatric neighbour populations to other cohesive series <strong>of</strong><br />

morphologically deviating populations, when morphologically intermediate individuals or<br />

populations occur along the contact zones. This subspecies concept, based on phenetics<br />

and geography, dates back to Wettstein (1898) who found that similar and closely related<br />

young taxa (subspecies) show allopatric distribution patterns, since their ecological demands<br />

are too similar to allow their sympatric co-existence. Only after a further divergence<br />

involving ecological demands (and <strong>of</strong>ten correlated with further genetic and morphological<br />

divergence) taxa (species) will be able to sympatrically co-exist. Subspecies,<br />

therefore, are considered by Wettstein (1898) to represent intermediate stages in an allopatric<br />

speciation process, which modern evolutionary biologists (e.g. Stebbins 1950, Grant<br />

1981, Ehrendorfer 1984) still consider to be the prevalent mode <strong>of</strong> speciation in plants.<br />

According to Rieseberg & Brouillet (1994), allopatric speciation by subdivision (or vicariance)<br />

rather results in monophyletic (sub)species pairs, while allopatric founder effect<br />

speciation may lead to a monophyletic derivative (sub)species and leave a paraphyletic or<br />

metaphyletic progenitor behind. As Crisp & Chandler (1996) have demonstrated, the<br />

avoidance <strong>of</strong> paraphyletic or metaphyletic taxa at and below the species level is neither<br />

realistic nor reasonable and may be theoreticallY impossible. Over and above, the occurrence<br />

<strong>of</strong> reticulate evolution in <strong>Anthemis</strong> due to polyploidization and homoploid hybrid<br />

speciation also argues against a strict cladistic species concept.<br />

While subspecies have <strong>of</strong>ten been regarded as regional facies <strong>of</strong> a species, varletIes<br />

were considered to represent a local facies (Du Rietz 1930, Stuessy 1990). In the present<br />

revision the rank <strong>of</strong> variety is used for morphologically deviating populations or population<br />

groups when all individuals are uniform but do not form a geographically cohesive<br />

population or population series. For example, varietal status was used for discoid representatives<br />

<strong>of</strong> <strong>Anthemis</strong> pedunculatll subsp. pedunculata which occur nearly throughout the<br />

range <strong>of</strong> the subspecies but show no geographical integrity because they are usually neighboured<br />

by uniformly radiate representatives. Since morphological distinctions are few and<br />

presumably under a simple genetic control, one may assume that discoid plants have<br />

evolved in different populations in parallel. <strong>The</strong> resulting variety, A. pedunculata var.<br />

discoidea, is therefore quite likely <strong>of</strong> polyphyletic origino<br />

<strong>The</strong> rank <strong>of</strong> forma, perhaps bes t applied to morphologically deviating individuals appearing<br />

sporadically within normal populations <strong>of</strong> a taxon (Stuessy 1990), has not been<br />

used in the present work. Some do formallY name such minor differences to draw attention<br />

to populational variation (Valenti ne 1975), others (Burtt 1970, Jansen 1985) consider this<br />

unnecessary nomenclatural clutter. I agree with the latter authors and will refer to minor<br />

morphological variants in the discussion <strong>of</strong> taxa while denying them formaI acknowledgement.


20 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

9. MorphologicaI features<br />

Duration and life form<br />

<strong>The</strong> majority <strong>of</strong> N African representatives <strong>of</strong> <strong>Anthemis</strong> are annuals belonging to A. sect.<br />

<strong>Anthemis</strong>, sect. Maruta, and sect. Cota. <strong>The</strong> annual habit may be interpreted as an adaptation<br />

to the dry semi-desert and steppe habitats <strong>of</strong> the adjacent areas <strong>of</strong> the Sahara, and to<br />

disturbed habitats or arable fields. A. stipa rum, A. confusa, or A. glareosa are prostrate<br />

annuals with reduced main axes and procumbent stems with smallleaves, found in natural<br />

stony and sandy habitats <strong>of</strong> the deserts. <strong>The</strong> vigorous growth <strong>of</strong> A. gharbensis and<br />

A. cotula, found as weeds in arable fields and along field margins in more hurnid areas,<br />

forms the opposite extreme habit <strong>of</strong> therophytic <strong>Anthemis</strong> in N Africa.<br />

<strong>Anthemis</strong> sect. Hiorthia contains short- to long-lived perenni al herbs which are restricted<br />

in N Africa to the hurnid areas <strong>of</strong> the coasts (A. maritima) or to the mountains <strong>of</strong><br />

the Atlas ranges <strong>of</strong> Morocco, Algeria, and Tunisia (A. abylaea, A. pedunculata,<br />

A. punctata, A. eretica subsp. columnae). At least A. pedunculata is capable to flower and<br />

set fruit already in the first year, and especially diploid plants are <strong>of</strong>ten found growing as<br />

weeds in arable fields, so that the differences between annual and perenniallife form seem<br />

not to be too c1ear-cut in this species. However, in better growing conditions<br />

A. pedunculata is c1early a short-lived perennial, with annual shoots arising from a woody<br />

stock (pleiocorm) formed by the bases <strong>of</strong> the primary and subsequent annual shoots.<br />

Tetraploid plants <strong>of</strong> A. pedunculata, along with representatives <strong>of</strong> A. abylaea, A. punctata,<br />

and A. eretica subsp. columnae, also grow as pleiocormous hemicryptophytes. Observations<br />

in the field and herbarium suggest that most representatives <strong>of</strong> these species have<br />

life spans <strong>of</strong> three to five years.<br />

Roots and rhizomes<br />

<strong>The</strong> root system type is c10sely correlated with habit and duration. In ali annuals <strong>of</strong><br />

<strong>Anthemis</strong> sect. <strong>Anthemis</strong>, sect. Maruta, and sect. Cota, taproots are found. <strong>The</strong> perennials<br />

in A. sect. Hiorthia are characterized by a woody caudex formed by the lignified bases <strong>of</strong><br />

previous years' shoots fused with the basai taproot. In younger individuals the caudex may<br />

be unbranched and only partly subterranean, in older ones branched and completely subterranean<br />

caudices (pleiocorms) may be found. In the perennial species, especially in<br />

A. maritima, accessory roots bome at the basai stem nodes are frequently observed which<br />

are missing in annuals, even if procumbent.<br />

Growth habit, stems and capitulescence<br />

<strong>The</strong> most simple condition in the <strong>org</strong>anisation <strong>of</strong> stem and disposition <strong>of</strong> capitula found<br />

in <strong>Anthemis</strong> is shown in Fig. lA: the mai n axis is erect and ends in a cymose capitulescence<br />

characterised by a terminai capitulum which flowers first. This type <strong>of</strong> capitulescence<br />

<strong>org</strong>anisation is found in most N African annuals, e.g. A. austriaca, A. ubensis, or<br />

A. monilicostata. Unsuitable growing conditions like drought or malnutrition may considerably<br />

reduce the number <strong>of</strong> developing branches and lead to poor capitulescences <strong>of</strong> few<br />

or a single capitulum.<br />

A more complicated condition <strong>of</strong> stem and capitulescence <strong>org</strong>anisation results when side<br />

axes are added beneath the main capitulescence (Fig. lB). Troll (1964) and Panero (1992)<br />

use the term parac1adia to designate these accessory flowering branches, each <strong>of</strong> which


Bocconea 9 - 1998 21<br />

resembles the main structural axis <strong>of</strong> the capitulescence. <strong>The</strong> number <strong>of</strong> parac1adia<br />

depends on growth conditions. In very robust annual species it is not uncommon that the<br />

main axis produces a paracladium from every leafaxil <strong>of</strong> the main axis, down to the basaI<br />

nodes (Fig. le; e.g. A. cotula). In some species, e.g. <strong>Anthemis</strong> gharbensis, a more or less<br />

B<br />

G<br />

H<br />

Fig. l . Growth forrns and capitulescence types in N African representatives <strong>of</strong> <strong>Anthemis</strong> (see text<br />

for explanation).


22 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

conspicuous inhibition zone is found beneath the capitulescence <strong>of</strong> the main axis, and side<br />

axes will arise from the basaI nodes <strong>of</strong> the main axis after its capitulescence has flowered<br />

(Fig. ID). For convenience, such side axes are termed stems in the present revisiono<br />

Some annual N African representatives <strong>of</strong> <strong>Anthemis</strong> (e.g. A. tenuisecta, A. confusa, or<br />

A. glareosa) are characterised by a prostrate habit. <strong>The</strong>ir main axis is reduced and its basaI<br />

intemodes are extremely short (Fig. lE). Reduction <strong>of</strong> the main axis is <strong>of</strong>ten so complete<br />

that branching occurs directly from the taproot (Fig. lF). <strong>The</strong> larger and usually petiolate<br />

lower cauline leaves that normally make up the basaI rosette are almost totally missing;<br />

most leaves are sessile and resemble upper cauline leaves <strong>of</strong> plants with a normally developed<br />

main axis. This character may be used to distinguish between N Tunisian A. ubensis<br />

and the closely related C Tunisian A. confusa: While A. ubensis has an erect habit with a<br />

main axis and leaves that successively decrease in size and dissection from base to top,<br />

A. confusa is characterised by prostrate habit and poorly dissected leaves.<br />

In perennial N African representatives <strong>of</strong> the genus, the trend towards reduction <strong>of</strong> the<br />

main axis is well marked, but realised in a different way. <strong>The</strong> current year's shoots arise<br />

from the lignified bases <strong>of</strong> primary and subsequent shoots <strong>of</strong> the last years (Fig. lG).<br />

Sometimes the main axis is basally more or less completely fused with the taproot to form<br />

a ± subterranean rootstock (caudex) that <strong>of</strong>ten bears both non-flowering and flowering<br />

shoots (Fig. lH). <strong>The</strong> capitulescences are <strong>of</strong>ten reduced to a single capitulum, and rarely<br />

more than three (up to lO) capitula.<br />

<strong>The</strong> stems are usually herbaceous in their distaI part but conspicuously lignified basalIy,<br />

particularly in perennials. Stems formed by the main axis are usualIy straight basally,<br />

while those corresponding to side branches or bome on a rootstock are basalIy bent upwards.<br />

In species with a procumbent habit, only the capitulescence or single peduncles are<br />

lifted above the ground. In alI cases, the stems are round in cross-section and somewhat<br />

sulcate. <strong>The</strong>y are usually green, <strong>of</strong>ten tinged with redin the lower half.<br />

In <strong>Anthemis</strong> maritima in particular, and to a lesser extent in the other perennial representatives<br />

<strong>of</strong> A. sect. Hiorthia, the lower stem nodes may be beset with accessory roots.<br />

Stem length varies considerably with growth conditions: in the perennials <strong>of</strong> <strong>Anthemis</strong><br />

sect. Hiorthia it is 20-40 cm, in representatives <strong>of</strong> A. sect. <strong>Anthemis</strong> and sect. Maruta<br />

usualIy up to 25 cm, but under favourable conditions sometimes much more (e.g. in<br />

A. gharbensis 60 cm, A. cotula 90 cm). Accordingly, the diameter <strong>of</strong> stem bases may vary<br />

between less than 1 mm in poorly developed plants up to 3 or occasionalIy 6 mm in vigorously<br />

growing annuals and some perennials.<br />

Indumentum<br />

<strong>The</strong> indumentum in most N African representatives <strong>of</strong> <strong>Anthemis</strong> consists <strong>of</strong> biseriate<br />

glands and medifixed covering hairs, as already found by Napp-Zinn & Eble (1980).<br />

Medifixed hairs are usually bome on a stalk formed by 2-4 (sometimes even up to 7)<br />

more or less isodiametic celIs and a large, strongly elongated apical celI that is symmetrically<br />

or asymmetricalIy suspended at the tip <strong>of</strong> the stalk. While the stalks may reach a<br />

length <strong>of</strong> c. 50-80 !lm, the length <strong>of</strong> the apical celI is usualIy found to be 400-1000 !lm. In<br />

some species, extremely asymmetrically medifixed apical cells are found. Sometimes,<br />

especialIy on peduncles and involucral bracts, asymmetry is so marked that the apical celI<br />

is no longer medifixed and an uniseriate flagellar covering hair is formed. <strong>The</strong>se hairs are


Bocconea 9 - 1998 23<br />

referred to as basifixed hairs in the descriptions. However, their presence seems to have<br />

little taxonomic relevance.<br />

GIands are usualIy found on alI overground parts <strong>of</strong> plants, even on pales, ray florets,<br />

disc florets and achenes. <strong>The</strong>ir structure and shape is very similar in alI species studied.<br />

<strong>The</strong>y are formed by two parallel series <strong>of</strong> 3-4 isodiametrical celIs and have a knob-like<br />

appearance. <strong>The</strong>y are found in alI N African representatives <strong>of</strong> <strong>Anthemis</strong> and do not have<br />

taxonomic significance.<br />

Covering hairs are usualIy found on stems, Ieaves, peduncles, involucres, and sometimes<br />

on the peripheral pales (<strong>Anthemis</strong> mauritiana, A. monilicostata). Covering hairs on<br />

disc florets and tubular parts <strong>of</strong> ray florets occur in some species <strong>of</strong> <strong>Anthemis</strong>, but none<br />

were found N African representatives <strong>of</strong> the genus.<br />

In most N African <strong>Anthemis</strong> species, the stems are sparseIy to denseIy appressed-hairy,<br />

with medifixed hairs and interspersed glands. However, in A. maritima, A. pedunculata,<br />

A. punctata subsp. kabylica, A. secundiramea, and A. cotula completely glabrous stems<br />

were encountered.<br />

In leaves, biseriate glands are sunk in pits on the upper and lower surface. <strong>The</strong> density<br />

<strong>of</strong> the non-glandular leaf indumentum is extremely variable and has littIe taxonomic significance.<br />

CompleteIy glabrous leaves were encountered in <strong>Anthemis</strong> maritima,<br />

A. pedunculata, A. punctata subsp. kabylica, A. confusa, and A. secundiramea. AlI other<br />

species have sparsely to rarely densely hairy leaves. A. eretica subsp. columnae is characterized<br />

by an extremely dense, sericeous leaf indumentum.<br />

Peduncles are aIways furnished with at Ieast some covering hairs, except in <strong>Anthemis</strong><br />

maritima subsp. bolosii where even peduncles are devoid <strong>of</strong> covering hairs.<br />

<strong>The</strong> involucral bracts (at least the outer and middle ones) <strong>of</strong> most species studied are<br />

covered with long hairs, but are completeIy glabrous in <strong>Anthemis</strong> maritima subsp. bolosii<br />

and subsp. pseudopunctata (those <strong>of</strong> A. maritima subsp. maritima are usualIy sparsely to<br />

densely hairy) , and, contrary to the other members <strong>of</strong> A. ser. Bourgaeinianae, also in<br />

A. monilicostata. Interspersed biseriate gIands are present in alI taxa. Inside, the <strong>of</strong> invoIucral<br />

bracts are usualIy glabrous, except in some plants <strong>of</strong> A. ubensis where some hairs<br />

were found.<br />

Leaves<br />

<strong>The</strong> Ieaves . are consistently alternate, though sometimes forming basaI rosettes. <strong>The</strong><br />

shape, size and dissection <strong>of</strong> the leaves may vary considerably depending on their position.<br />

Rosette Ieaves'and Ieaves from the basaI parts <strong>of</strong> erect stems are usualIy narrowly elIipticaI<br />

to narrowly obovate in outline, while Ieaves from the upper parts <strong>of</strong> erect stems and Ieaves<br />

<strong>of</strong> prostrate sterns tend to be more ovate in outline. This is correlated with the tendency <strong>of</strong><br />

basaI and Iower cauline Ieaves to be petiolate, while the upper cauline Ieaves are usualIy<br />

sessile.<br />

In most <strong>of</strong> the species studied, the base <strong>of</strong> the petiole bears severai pairs <strong>of</strong> Iaterai teeth.<br />

In basaI Ieaves primary Iobes differ markedly from the basaI teeth in size and dissection:<br />

basaI teeth are rather smalI, entire or pinnatisect; primary Ieaf Iobes are Iarger, 1-3-pinnatisect<br />

or -pinnatipartite. AIso, basaI teeth and Ieaf Iobes are welI spaced and separated by<br />

the petiole. In the upper half <strong>of</strong> the stem Ieaf petioles become more and more reduced,<br />

basaI teeth and Ieaf Iobes become closer to each other, and as basaI teeth are Iarger and<br />

Ieaf-Iobes Iess dissected, upper Ieaves are sessile in appearance. While teeth at the leaf


24 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

base are found in all perennial and most annual species, they tend to be absent in <strong>Anthemis</strong><br />

boveana, A. chrysantha, and A. gharbesis <strong>of</strong> A. ser. Chrysanthae, and in most <strong>of</strong> the<br />

members <strong>of</strong> A. ser. Bourgaeinianae.<br />

Leave texture is usually herbaceous, but succulent leaves are common in species from<br />

maritime habitats (e.g. <strong>Anthemis</strong> maritima, A. secundiramea, A. chrysantha, A. mauritiana).<br />

Dimensions <strong>of</strong> leaves are variable and depend on growth conditions. However, in the<br />

<strong>Anthemis</strong> pedunculata - A. punctata group <strong>of</strong> species they may help in the determination<br />

<strong>of</strong> taxa: basalleaves in A. pedunculata are usually up to 45(-75) mm long and up to 20(-30)<br />

mm wide, those <strong>of</strong> A. punctata are conspicuously longer (up to 115 mm) and wider (up to<br />

53 mm). A. abylaea is also characterized by rather long (up to 80 mm) and wide (up to 35<br />

mm) basalleaves.<br />

<strong>The</strong> dissection <strong>of</strong> leaf blades proves to be taxonornically relevant, its degree depending<br />

on the position <strong>of</strong> the leaf on the stem. As a rule, the most basaI leaves are less strongly<br />

dissected than the lower cauline ones, and further upward leaf dissection is again gradually<br />

reduced. <strong>The</strong>refore, differences in Ieaf dissection are particularly important in the lower<br />

cauline leaves. In most N African <strong>Anthemis</strong> taxa the lower leaves are pinnatisect with<br />

primary lobes cut right to the axis, but in A. maritima subsp. bolosii and some plants <strong>of</strong><br />

A. punctata subsp. kabylica they are pinnatifid or pinnatipartite.<br />

2- to 3-pinnatisect or -pinnatipartite leaves are found in most species. <strong>The</strong> shape <strong>of</strong> ultimate<br />

leaf segments may vary within taxa from broadly triangular to narrowly elliptical or<br />

even linear, and their dimensions also varies. No clear-cut discontinuities between taxa<br />

could be observed, but some tendencies are sufficiently marked to be used as distinguishing<br />

features. For example, <strong>Anthemis</strong> pedunculata usually has 1.0-5.5 mm long and 0.3-1.8<br />

mm wide ultimate leaf segments, but those <strong>of</strong> A. punctata (1.4-9.0 mm x 0.6-2.3 mm) and<br />

A. eretica varo columnae (1.7-20.0 mm x 0.6-2.0 mm) are considerably larger. In most<br />

species, ultimate leaf segments end in a mucro <strong>of</strong> 0.1-0.3 mm length. No mucronate leaf<br />

segments were observed in some populations <strong>of</strong> A. secundiramea.<br />

Peduncles<br />

In the present study, the peduncle is defined as the distaI portion <strong>of</strong> the stem subtending<br />

a capitulum, from the most distaI leaf on this axis to the base <strong>of</strong> the involucre. While<br />

peduncle length was found to be very variable in all species examined and therefore unhelpful<br />

for the characterisation <strong>of</strong> taxa, the inflation <strong>of</strong> peduncles at maturity proved to be<br />

relevant. In the N Mrican representatives <strong>of</strong> <strong>Anthemis</strong> subg. Cota (A. austriaca) and <strong>of</strong><br />

A. sect. Hiorthia the peduncles usually remain slender or become only slightly inflated at<br />

maturity. In A. sect. <strong>Anthemis</strong> and sect. Maruta, strongly inflated peduncles are found in<br />

A. arvensis subsp. incrassata <strong>of</strong> A. ser. <strong>Anthemis</strong> and in A. chrysantha <strong>of</strong> A. ser. Chrysanthae.<br />

In A. secundiramea <strong>of</strong> A. ser. Secundirameae, this character is used to distinguish the<br />

two N African varieties <strong>of</strong> that species, varo secundiramea with and varo cossyrensis without<br />

conspicuously inflated peduncles. A further representative <strong>of</strong> this series, A. ubensis,<br />

and some populations <strong>of</strong> A. glareosa al so show incrassate peduncles. In contrast, all representatives<br />

<strong>of</strong> A. ser. Bourgaeinianae have peduncles remaining slender at maturity. In<br />

A. sect. Maruta, this character can be used to distinguish A. cotula (slender peduncles)<br />

from A: pseudocotula (inflated peduncles).


Bocconea 9 - 1998 25<br />

Capitula<br />

Most species are gynomonoecious, with a single row <strong>of</strong> female ray florets and a centrai<br />

mass <strong>of</strong> perfect, hermaphrodite disc florets. Monoecious plants with ali florets tubular and<br />

hermaphrodite are found in <strong>Anthemis</strong> pedunculata var. discoidea, A. cyrenaica, and<br />

A. kruegeriana. In the latter two taxa, however, radiate capitula are also found, sometimes<br />

on the same plant as discoid ones. In these cases, ray florets are minute (up to c. 5 mm<br />

long) but still fertile, and have sometimes been called hemiligules (e.g. Benedf i Gonzalez<br />

1987).<br />

<strong>The</strong> diameter <strong>of</strong> capitula (including ray florets) is a useful criterion in the <strong>Anthemis</strong><br />

pedunculata - A. punctata group <strong>of</strong> species where in radiate representatives <strong>of</strong> A. pedunculata<br />

it is 6-37 mm, while A. abylaea (30-50 mm) and A. punctata (30-55 mm) have larger and<br />

more showy capitula.<br />

<strong>The</strong> number <strong>of</strong> ray florets is correlated with the dimensions <strong>of</strong> capitula. In small-headed<br />

species it <strong>of</strong>ten scatters around the Fibonacci numbers 8 and 13, while in other species<br />

even numbers between 13 and 21 are preferred. In A. abylaea and A. punctata capitula<br />

with up to 23 ray florets were observed.<br />

Involucre and involueral bracts<br />

<strong>The</strong> involucres <strong>of</strong> N African representatives <strong>of</strong> <strong>Anthemis</strong> usually have the shape <strong>of</strong><br />

hemispherical cups. Only in A. austriaca and A. secundiramea a tendency towards a more<br />

conical shapes was observed. <strong>The</strong> dimensions <strong>of</strong> involucres are usually correlated with the<br />

diameter <strong>of</strong> capitula and are very variable within taxa. Taxonomically relevant differences<br />

in the diameter <strong>of</strong> involucres may be observed in the A. pedunculata - A. punctata complex<br />

(A. sect. Hiorthia): A. pedunculata is characterised by smallish involucres with diameters<br />

<strong>of</strong> 6-14 mm, the closely related A. abylaea and A. punctata have involucres with<br />

13-21 mm and (10-)14-22 mm in diameter, respectively. In ali other N African representatives<br />

<strong>of</strong> the genus the dimension <strong>of</strong> involucres fall within the range indicated for A. pedunculata.<br />

In most species studied, involucres, most conspicuously in <strong>Anthemis</strong> punctata,<br />

A. chrysantha, A. cyrenaica, and A. kruegeriana, become umbonate at maturity. However,<br />

taxa with conspicuously inflated peduncles andJor conical involucres like A. arvensis<br />

subsp. incrassata, A. secundiramea varo secundiramea, or A. austriaca usually have attenuate<br />

or only very slightly umbonate involucres.<br />

<strong>The</strong> involucre consists <strong>of</strong> free involucral bracts (sometimes called phyllaries). In ali<br />

species, the involucral bracts are unequal in size and shape and arranged in 3-4 imbricate ,<br />

layers and in a series <strong>of</strong> spirai parastiches (here referred to as "rows':). In <strong>Anthemis</strong> eretica<br />

subsp. columnae and A. cyrenaica up to 5 layers <strong>of</strong> involucral bracts may be observed. For<br />

convenience, involucral bracts <strong>of</strong> different positions in the parastiches will be referred to<br />

as "outer", "middle" and "inner" involucral bracts.<br />

<strong>The</strong> involucral bracts are variable in texture, but there is always a centraI, conspicuously<br />

thickened portion that is several celi layers thick and a marginaI, membranous portion<br />

<strong>of</strong> only one celi Iayer, referred to as "membranous margin". <strong>The</strong> centraI part may be<br />

rather thin and almost membranous in texture in <strong>Anthemis</strong> cotula, thickish and somewhat<br />

fleshy as in A. maritima, or hard and tough as in A. austriaca, and usually consists <strong>of</strong> a<br />

green longitudinal strip surrounding the midvein <strong>of</strong> the bract and laterally adjacent stramineous<br />

portions. At maturity, at least the base <strong>of</strong> this centrai part <strong>of</strong> the .Ìnvolucral bract


26 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

becomes indurated, and sometimes, as in A. austriaca, A. maritima, or A. chrysantha, the<br />

whole bract is sclerified.<br />

While the outer involucral bracts are invariably triangular or ovate in outline, the middle<br />

and inner ones show differences in shape between the different taxa, ranging from<br />

narrowly elliptical to narrowly obovate. Such differences are particularly useful to discriminate<br />

between the subspecies <strong>of</strong> <strong>Anthemis</strong> pedunculata and A. punctata: A. pedunculata<br />

subsp. pedunculata and subsp. clausonis, along with A. punctata subsp. kabylica<br />

have narrowly elliptical inner involucral bracts, those <strong>of</strong> A. peducnulata subsp. atlantica<br />

and A. punctata subsp. punctata are conspicuously broader and narrowly obovate in outline.<br />

This is mainly due to the membranous margins being narrow in narrowly elliptical but<br />

wider in narrowly obovate involucral bracts.<br />

Although variable in some taxa (e.g. <strong>Anthemis</strong> confusa), the colour <strong>of</strong> the membranous<br />

margins <strong>of</strong> involucral bracts is a go od criterion in others. In A. maritima subsp. maritima<br />

and subsp. bolosii the membranous margin is usually pale and only at the tip it is sometimes<br />

tinged with brown or black, while in A. maritima subsp. pseudopunctata it is brown<br />

or black throughout. In A. pedunculata subsp. pedunculata involucral bracts usually have<br />

brown and in A. pedunculata subsp. clausonis invariably pale membranous margins, in<br />

A. pedunculata subsp. atlantica the margins are brown or black in the outer but pale in the<br />

inner Ìnvolucral bracts, causing a somewhat two-coloured appearance <strong>of</strong> the involucre.<br />

A. ubensis is easily distinguished from the rather similar A. secundiramea varo cossyrensis<br />

by its involucral bracts with brown, as opposed to pale, membranous margins.<br />

As a matter <strong>of</strong> course, dimensions <strong>of</strong> involucral bracts correlate with those <strong>of</strong> the involucre<br />

and capitulum. <strong>The</strong> longest middle and inner involucral bracts are therefore found<br />

in <strong>Anthemis</strong> abylaea (to 8.0 mm) and A. punctata (to 8.2 mm) and may be used to distinguish<br />

these species from the related A. pedunculata. In the A. boveana group <strong>of</strong> species,<br />

bract size was also found to have some taxonomic importance (see chapter 12).<br />

Receptacle<br />

<strong>The</strong> receptacles <strong>of</strong> N African <strong>Anthemis</strong> taxa are usually slightly convex to hemispherical<br />

in flower, but considerable variation between taxa is found in mature capitula. In<br />

A. austriaca, the sole N African member <strong>of</strong> A. subg. Cota, the receptacle remains slightly<br />

convex during maturation, whereas in most members <strong>of</strong> A. subg. <strong>Anthemis</strong> receptacles<br />

elongate, the degree <strong>of</strong> elongation characterising the different sections. <strong>The</strong> perennials <strong>of</strong><br />

A. sect. Hiorthia usually have hemispherical to ovate or conical receptacles, in A. sect.<br />

<strong>Anthemis</strong> receptacles elongate more strongly at maturity and usually become conical or<br />

even, in some species, narrowly conical to narrowly cylindrical in shape (e.g. in<br />

A. confusa, A. secundiramea, and A. glareosa <strong>of</strong> A. sect. Secundirameae). In A. arvensis<br />

subsp. incrassata, A. secundiramea var. secundiramea, or A. ubensis, where peduncles<br />

become strongly inflated at maturity, this also affects the shape <strong>of</strong> the receptacles which<br />

become basally broadened and somewhat pyriform in outline. <strong>The</strong> two studied<br />

representatives <strong>of</strong> A. sect. Maruta, A. cotula, and A. pseudocotula, are also characterised<br />

by very slender and elongated, conical to narrowly conical or even cylindrical-fusiform<br />

receptacles.<br />

Receptacles are paleate throughout in ali species <strong>of</strong> the present ,revision, i.e. each disc<br />

floret is subtended by a bract (pale, receptacular scale), with the Ione exception <strong>of</strong> An-


Bocconea 9 - 1998 27<br />

themis cotula where pales are restricted to the apical half <strong>of</strong> the receptacIe, while the peripheral<br />

disc florets are devo id <strong>of</strong> subtending bracts.<br />

In ali representatives <strong>of</strong> <strong>Anthemis</strong> in N Africa, receptacIes were found to be filled with<br />

spongy tissue with large intercellulars; hollow receptacIes as found in Matricaria are absent.<br />

Pales<br />

<strong>The</strong> pales or receptacular scales <strong>of</strong>fer a number <strong>of</strong> characters that are diagnostic <strong>of</strong> single<br />

taxa, species groups, series, or sections. In ali N African taxa, pales were found to have<br />

a single vascular bundle. <strong>The</strong> shape <strong>of</strong> pales varies conspicuously between taxa: <strong>Anthemis</strong><br />

cotula and A pseudocotula <strong>of</strong> A. sect. Maruta, like ali other members <strong>of</strong> this section, have<br />

very narrow, subulate pales (up to 0.2-0.3 mm wide) comprising little more than the vascular<br />

bundle and the adjacent scIerenchymatous tissue. In ali other species, the midvein <strong>of</strong><br />

the pale is bordered by a flimsy and scarious membrane formed by strongly elongate cells.<br />

Usually, this membrane is only one cell-Iayer thick and stramineous (red-tinged in some<br />

populations <strong>of</strong> A confusa, A. glareosa, and A. kruegeriana). In A. pedunculata and<br />

A. punctata the shape <strong>of</strong> the pales is diagnostic <strong>of</strong> subspecies: pales are narrowly linear to<br />

almost subulate in A pedunculata subsp. pedunculata but narrowly elliptical to narrowly<br />

obovate in A pedunculata subsp. atlantica; in A punctata subsp. punctata pales are narrowly<br />

obovate, and in A punctata subsp. kabylica narrowly linear. <strong>The</strong> width <strong>of</strong> pales also<br />

contributed to the circumscription <strong>of</strong> subspecies in A stiparum, where subsp. intermedia<br />

and subsp. sabulicola have rather narrow (0.2-0.6 mm) and subsp. stipa rum broader (0.4-<br />

1.2 mm) pales. <strong>The</strong> broadest pales were observed in A. maritima subsp. maritima (1.2-1.7<br />

mm), A chrysantha (1.1-1.8 mm), A. punctata subsp. punctata (0.75-1.5 mm), and<br />

A. ubensis (0.8-1.6 mm). In these taxa, pales are usually narrowly elliptical to narrowly<br />

obovate.<br />

A further valuable character diagnostic <strong>of</strong> taxa is the shape <strong>of</strong> the tip <strong>of</strong> the pales. In<br />

most species it is formed by the protruding midrib, but in some species <strong>of</strong> <strong>Anthemis</strong> ser.<br />

Chrysanthae and ser. Secundirameae the midrib does not reach the apex, which is usually<br />

membranous, <strong>of</strong>ten tinged with yellow and somewhat hooded owing to the slightly inrolled<br />

margino In A ser. Chrysanthae this character is useful to discriminate between the Algerian<br />

taxa (A boveana and A. chrysantha, with a protruding midrib) and the Moroccan ones<br />

(A . maroccana, A gharbensis, and A tenuisecta, with membranous tips). In A. ser. Secundiramea<br />

the Libyan A kruegeriana and A glareosa are easily distinguished by the same<br />

character from their Tunisian relatives A secundiramea, A ubensis, and A confusa. Pales<br />

with a membranous tip are acuminate to bluntly rounded, in A gharbensis and A glareosa<br />

they even may be truncate or emarginate.<br />

<strong>The</strong>re are two types <strong>of</strong> pales with excurrent midrib among the N African representatives<br />

<strong>of</strong> <strong>Anthemis</strong> sect. Hiorthia: A. abylaea, A. pedunculata subsp. pedunculata and subsp.<br />

clausonis, A. maritima subsp. pseudopunctata, and A. punctata subsp. kabylica have pales<br />

which gradually taper into the tip, whereas the pales <strong>of</strong> A pedunculata subsp. atlantica,<br />

A. maritima subsp. maritima and subsp. bolosii, and A punctata subsp. punctata taper<br />

rather abruptly into a tip that may be tricuspidate due to the apical projecting lateral margins.<br />

In some cases the lateral tips are even overtopping the centraI tipo In Acretica subsp.<br />

columnae, A. arvensis subsp. incrassata, and A. cyrenaica the tips are <strong>of</strong>ten abruptly<br />

acuminate and erose.


28 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

A further character <strong>of</strong> some taxonomic importance is the colour <strong>of</strong> the pale tips. In taxa<br />

<strong>of</strong> A. sect. Hiorthia they are <strong>of</strong>ten tinged with dark brown or even black (e.g.<br />

A. pedunculata, A. eretica subsp. columnae, A. punctata), but such tinge is lacking in<br />

populations <strong>of</strong> A. maritima and some plants <strong>of</strong> A. punctata subsp. punctata. Pales <strong>of</strong><br />

A. monilicostata and some populations <strong>of</strong> A. ubensis also end in blackish tips.<br />

<strong>The</strong> strength <strong>of</strong> attachment <strong>of</strong> pales on the receptacles is also a useful character. In most<br />

<strong>of</strong> the species studied, at least the peripheral pales persist on the receptacles even after the<br />

dissemination <strong>of</strong> achenes. In A. sect. Bourgaeinianae, however, pales fall <strong>of</strong>f very easily,<br />

so that after dissemination receptacles are left completely naked.<br />

<strong>The</strong> hypothesis <strong>of</strong> Stuessy & Spooner (1988), that one <strong>of</strong> the functions <strong>of</strong> pales may be<br />

the protection <strong>of</strong> flowers, ovaries, and achenes from apical and lateral insect attack, is<br />

plausible though the adaptive significance may be less obvious in <strong>Anthemis</strong> than in the<br />

Heliantheae they had studied.<br />

Ray florets<br />

Ray florets <strong>of</strong> N African <strong>Anthemis</strong> have few taxonomically relevant characters. Corollas<br />

are divided into a lower tubular part and an upper, flat corolla limb. <strong>The</strong> tubular part is<br />

usually flattened dorso-ventrally but may get somewhat inflated and winged at maturity. In<br />

most species the tubular part and the abaxial face <strong>of</strong> the limb bear biseriate glands. Four<br />

vascular bundles are found in the tubular part <strong>of</strong> the ray florets. In the proximal region <strong>of</strong><br />

the limb, several minor traces that end blindly split <strong>of</strong>f from these main bundles which<br />

continue up to the 3-lobed apex <strong>of</strong> the limb where they anastomose. Baag0e (1977) studied<br />

four representatives <strong>of</strong> the genus and found that the adaxial epidermis <strong>of</strong> their ray florets<br />

corresponds to her "helianthoid type", consisting <strong>of</strong> more or less isodiamterical and papillose<br />

cells without thickened walls. Contrary to her indications, the corolla glands are not<br />

one-celled but correspond to the typical biseriate glands formed by usually eight cells that<br />

are found all over the vegetati ve and fiorai parts <strong>of</strong> all <strong>Anthemis</strong> species.<br />

<strong>The</strong> length and the colour <strong>of</strong> ray floret limbs may be taxonomically relevant. Most radiate<br />

species are characterised by white ray florets, but those <strong>of</strong> <strong>Anthemis</strong> ser. Chrysanthae<br />

are yellow, ranging from a saturated canary yellow (9A in Anon. 1966) in A. boveana,<br />

A. chrysantha, A. maroccana, and A. tenuisecta to a pale yellow (3A in Anon. 1966) in<br />

A. gharbensis. White ray florets are usually monochromous during flowering, but tend to a<br />

brownish tinge at the base <strong>of</strong> the limb when withered. Limb length is diagnostic for some<br />

closely related taxa, for instance A. maritima subsp. maritima (7.5-12.0 mm) and subsp.<br />

bolosii (3.8-8.0 mm); A. boveana (7.0-14.0 mm) and A. chrysantha (2.1-7.0 mm); and<br />

A. stipa rum subsp. stiparum (7.2-11.5 mm) or subsp. intermedia (7 .0-10.5 mm) and subsp.<br />

sabulicola (4.5-8.5 mm). <strong>The</strong> width <strong>of</strong> ray floret limbs being fairly constant, variation in<br />

length usually also affects the shape <strong>of</strong> the limb, which ranges from nearly circular to narrowly<br />

elliptical or narrowly oblong.<br />

Usually the florets are female and furnished with a style. In contrast to disc florets, the<br />

style branches are <strong>of</strong>ten laterally enlarged and devoid <strong>of</strong> sweeping hairs, having lost their<br />

function for pollen presentation. In <strong>Anthemis</strong> cotula, however, some plants with sterile ray<br />

florets lacking a style were observed, along with others in which they are pistillate and<br />

even fertile. Occasionally, in most species anther rudiments can be found in the tubular<br />

part <strong>of</strong> the ray florets.


30 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Fig. 2. Micrographs <strong>of</strong> details from <strong>Anthemis</strong> flowers. - A: A. tenuisecta subsp. tenuisecta, longisection<br />

through the basaI part <strong>of</strong> a disc floret showing long and interwoven celi rows causing the<br />

inflated and spongy appearance at maturity (Podlech 45076; cult. in HB Berlin No. 049-26-93-10).<br />

B: A. gharbensis, vascularisation <strong>of</strong>basal part <strong>of</strong> disc floret: A = anther trace, C = corolla trace, S =<br />

style trace (Vogt 10161 & <strong>Oberprieler</strong> 4609). C: A. gharbensis, apical anther appendage (Vogt<br />

10161 & <strong>Oberprieler</strong> 4609). D: A. gharbensis, endothecial tissue; an asterisk denotes a celi with<br />

evenly arranged wall thickenings (Vogt 10161 & <strong>Oberprieler</strong> 4609). E: A. gharbensis, filament<br />

collar (Vogt 10161 & <strong>Oberprieler</strong> 4609). F: A. gharbensis, vascularisation <strong>of</strong> an immature achene;<br />

asterisks denote the five vascular bundles (Vogt 10161 & <strong>Oberprieler</strong> 4609). - Scale bars = 0.1 mm<br />

(SEM, top Ieft, and LM).


Bocconea 9 - 1998 31<br />

<strong>The</strong> styles are also very uniform throughout the genus. <strong>The</strong> base <strong>of</strong> the style becomes<br />

usually swollen and hardened due to enlarged and sclerified cells. Two vascular bundles<br />

run through the cylindrical and glabrous style shaft and end in the stigmatic branches,<br />

which are truncate-penicillate, bearing two separate lines <strong>of</strong> stigmatic papillae on the inside<br />

and obtuse sweeping hairs at their apex. Usually the stigmatic branches contain elongate<br />

resin ducts with a brown or orange content.<br />

Achenes<br />

Like the vast majority <strong>of</strong> Compositae, <strong>Anthemis</strong> has dry, monosperrnous fruits developed<br />

from a bicarpellate coenocarpic inferior ovary, with the seed testa adhering to but not<br />

coalescent with the pericarp. Although the ovary <strong>of</strong> Compositae is inferior, the fruit wall is<br />

generally terrned pericarp, and its structures usually been described in the terrns <strong>of</strong> epi-,<br />

meso- and endocarp, by analogy to the fruit wall in a superior ovary. Following Wagenitz<br />

(1976) and Roth (1977), the terrn "achene" as defined by Candolle (1813) is used in the<br />

present work for this type <strong>of</strong> fruits. <strong>The</strong> term "cypsela" was introduced by Mirbel (1815)<br />

and is frequently used in Anglo-Saxon and Nordic synantherologicalliterature (e.g. Humphries<br />

1979, Kiillersj6 1991, Anderberg 1991a, b, c, Bremer & Humphries 1993, Bremer<br />

1994). However, exceptions are found (e.g. Hansen 1991), and in Anglo-American literature<br />

the term "achene" still prevails (e.g. Stuessy 1968, Funk 1982, Jansen 1985, Panero<br />

1992).<br />

Dating back to the thorough studies <strong>of</strong> Briquet (1916), the paramount importance <strong>of</strong><br />

achene morphology and anatomy for the taxonomy <strong>of</strong> Anthemideae and for the delirnitation<br />

<strong>of</strong> genera in this tribe is well known. In <strong>Anthemis</strong> the achenes provide some very<br />

important diagnostic features for the subdivision <strong>of</strong> the genus and the circumscription <strong>of</strong><br />

species groups.<br />

Achenes <strong>of</strong> ray florets were found to be rather similar in most studied representatives <strong>of</strong><br />

<strong>Anthemis</strong> subg. <strong>Anthemis</strong>. <strong>The</strong>y are usually subcylindrical or fusiforrn in shape and slightly<br />

bent inward. Being tightly confined to the trigonal space between the achenes <strong>of</strong> peripheral<br />

disc florets and their pales and the flat inner surface <strong>of</strong> the inner involucral bracts, they are<br />

roundish to triangular in cross section, with a flattish abaxial and a rounded or edged adaxial<br />

face. <strong>The</strong> achenes <strong>of</strong> ray florets usually have (8-)9( -lO) ribs which are rather indistinct<br />

on the adaxial but more prorninent and in some species even tuberculate on the<br />

abaxial face. Like the achenes <strong>of</strong> disc florets, they are usually beset with mucilage cells on<br />

their ribs and by glands in the intercostal furrows. <strong>The</strong> apical plate is usually bordered with<br />

a ridge that in some species is adaxially protracted into a membranous auricle up to 0.3<br />

mm long. <strong>The</strong> achenes <strong>of</strong> ray florets in A. austriaca (A. subg. Cota), unlike those in<br />

A. subg. <strong>Anthemis</strong>, strongly resemble achenes <strong>of</strong> disc florets in being conspicuously flattened<br />

dorso-ventrally.<br />

<strong>The</strong> achenes <strong>of</strong> disc florets provide a greater number <strong>of</strong> characters <strong>of</strong> use for species<br />

delirnitation and supraspecific classification than the achenes <strong>of</strong> ray florets. While essentially<br />

homomorphic, the achenes'<strong>of</strong> disc florets tend towards heteromorphy in most <strong>of</strong> the<br />

species due to overall structural reduction from the larger peripheral to the smaller centraI<br />

achenes. In some species, the differences between achenes <strong>of</strong> marginaI and centraI disc<br />

florets are particularly well marked: In <strong>Anthemis</strong> mauritiana and A. arvensis the achenes<br />

<strong>of</strong> peripheral disc florets are extremely stout and subcylindrical or obconical, while the<br />

centraI achenes are much more slender and obconical-obovoidal. In most N African An-


32 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

themis taxa the peripheral disc achenes persist on the receptac1es at maturity, while the<br />

centrai ones fall <strong>of</strong>f readily. In A. pseudocotula even the centrai achenes persist, and the<br />

whole capitulum forms a compact, cone-like dispersal unit (synaptospermy).<br />

Achenes <strong>of</strong> <strong>Anthemis</strong> austriaca differ markedly from those <strong>of</strong> all other representatives<br />

<strong>of</strong> the genus in N Africa. As in other species <strong>of</strong> A. subg. Cota, they are dorso-ventrally<br />

flattened and rhombic in cross section. While the lateral ribs are very pronounced and<br />

acutely angled, the 3-5 ribs on the adaxial and abaxial faces are inconspicuous. In A. subg.<br />

<strong>Anthemis</strong> disc achenes are never dorso-ventrally flattened but more or less terete and provided<br />

with (9-)10(-11) conspicuous, longitudinal ribs (except in A. maritima, A. eretica<br />

subsp. columnae, and A. punctata subsp. punctata where they are usually tetragonal in<br />

cross section and inconspicuously ribbed). <strong>The</strong> ribs may be sharply angled as in<br />

A. gharbensis or rounded and shallow as in A. cyrenaica and A. taubertii.<br />

<strong>The</strong> sculpturing <strong>of</strong> the achene surface is a very important character taxonomically. Most<br />

<strong>of</strong> the N African representatives <strong>of</strong> <strong>Anthemis</strong> have tuberculate achenes, and the degree <strong>of</strong><br />

tuberculation may vary considerably within most taxa. Nevertheless, this character may be<br />

<strong>of</strong> use in several species groups. Achenes <strong>of</strong> A. maritima subsp. maritima, A. punctata<br />

subsp. punctata, and A. eretica subsp. columnae are usually smooth, those <strong>of</strong> A. maritima<br />

subsp. bolosii and A. punctata subsp. kabylica, as in the other N African representatives <strong>of</strong><br />

A. sect. Hiorthia, are tuberculate. In A. ser. Chrysanthae, A. gharbensis, A. tenuisecta<br />

subsp. jahandiezii, and some populations <strong>of</strong> A. tenuisecta subsp. tenuisecta have rather<br />

smooth achenes, in all other taxa <strong>of</strong> this series achenes are strongly tuberculate.<br />

A. taubertii and A. cyrenaica <strong>of</strong> A. ser. Secundiramea have smooth to feebly tuberculate<br />

achenes, those <strong>of</strong> the superficially very similar A. glareosa and A. kruegeriana are prominently<br />

tuberculate. A. cotula <strong>of</strong> A. sect. Maruta has strongly tuberculate achenes, those <strong>of</strong><br />

A. pseudocotula are smooth or moderately tuberculate. Extremely tuberculate achenes are<br />

sometimes found in A. pedunculata, but other populations <strong>of</strong> this species have moderately<br />

tuberculate or nearly smooth achenes.<br />

An important character observed in all species is the shape and size <strong>of</strong> mucilage celli; <strong>of</strong><br />

the achene surface. <strong>The</strong>se specialised epidermal cells are usually confined to the ribs or<br />

tuberc1e tips (Fig. 3A). In most species mucilage cells are small, isodiametrical or only<br />

moderately elongate longitudinally, but in <strong>Anthemis</strong> monilicostata they are drastically<br />

enlarged and protrude from the achene surface (Fig. 39). Achenes <strong>of</strong> A. gharbensis are<br />

characterised by strongly elongate mucilage cells that form continuous slime ribbons on<br />

the ridges <strong>of</strong> the ribs (Fig. 3B). Additionally, in most species with ribbed achenes sessile,<br />

biseriate glands are found in the intercostal furrows (Fig. 2F, 3B, 3C).<br />

In most species the apical plate is flat or slightly convex, circular or quadrangular in<br />

outline, and bears a relatively large, bowl-shaped discus ("coronet" in KynClova 1970,<br />

"Nektarium" in Vogt 1991, "stylopodium" in Bremer & Humphries 1993 and Kiillersjo<br />

1991) in its centre. In <strong>Anthemis</strong> tenuisecta subsp. jahandiezii the apical plate is strongly<br />

convex, in A. austriaca it is rhombic. <strong>The</strong> apical plate is bordered by a corona ("border'.' in<br />

Kynclova 1970), which in some species (e.g. A. arvensis, A. cotula, A. pseudocotula) may<br />

be an inconspicuous, rounded and crenulate rim formed by the apically protruding ribs <strong>of</strong><br />

the achene, but in others is adaxially protracted into an up to l mm long, membranous<br />

auric1e.


Bocconea 9 - 1998 33<br />

Fig. 3. SEM micrographs from <strong>Anthemis</strong> achenes. - A: A. maroccana subsp. maroccana, epicarp<br />

with mucilage celi (Jahandiez 159). B: A. gharbensis, epicarp with glands and extremely elongated<br />

mucilage cells (Podlech 43409, cult. in HB Berlin No. 049-27-93-10). C: <strong>Anthemis</strong> tenuisecta<br />

subsp. tenuisecta, longisection <strong>of</strong> achene wall showing epicarpic cells with a strongly wrinkled<br />

cuti cui a and a longisectioned gland (Podlech 45076; cult. in HB Berlin No. 049-26-93-10). D:<br />

A. mauritiana subsp. faurei, epicarpic cell filled with sand <strong>of</strong> needle-like ca1cium oxalate crystals<br />

(Vogt 10872 & <strong>Oberprieler</strong> 5320). E: A. austriaca, epicarpic cells with single, large, octahedral<br />

crystals (Vogt 13151 & <strong>Oberprieler</strong> 7456). F: A. altissima, epicarpic cells with single, large,<br />

prismatic crystals (HB Liège, cult. in HB Berlin No. 194-17-92-10). - Scale bars = 100 flm (A-C,<br />

E-F) or lO flm (D).


34 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

<strong>The</strong> epicarpic cells (i.e. the epiderrnis <strong>of</strong> the pericarp) <strong>of</strong> N African species usually have<br />

strongly cutinised outer walls and wide celi lurnina. In transverse section the cells are<br />

isodiametric, while they are usually elongate and rectangular in longisection. In ali cases<br />

studied, the epicarpic cells remain unsclerified and parenchymatous. Often they were<br />

found to collapse during maturation. Marked differences in shape and number <strong>of</strong> ca1cium<br />

oxalate crystals in the epicarpic cells were observed. In <strong>Anthemis</strong> austriaca, the single<br />

studied representative <strong>of</strong> A. subg. Cata, cells contain single, large, octahedral crystals (Fig.<br />

3E); in ali species <strong>of</strong> A. subg. <strong>Anthemis</strong>, epicarpic cells contain crystal sand formed by<br />

large numbers <strong>of</strong> needle-like crystals (Fig. 3D). While in the case <strong>of</strong> A. austriaca the<br />

crystals are responsible for the rninutely punctulate macroscopic appearance <strong>of</strong> achenes,<br />

the crystal sand in the other subgenus causes an more or less intensive whitish tinge <strong>of</strong><br />

achenes.<br />

<strong>The</strong> mesocarp exhibits considerable variation, its thickness and degree <strong>of</strong> sclerification<br />

showing specific differences. <strong>The</strong> sclerenchymatic tissue is formed by two kinds <strong>of</strong> elements,<br />

libriform fibre cells and sclereids, which can be best distinguished in longisection.<br />

Libriform fibre cells are strongly elongate longitudinally, have strongly sclerified cell<br />

walls with small pits, and extremely restricted cell lurnina with large ca1cium oxalate<br />

crystals at maturity. Sclereids are usually much larger, more or less isodiametric in cross<br />

section, moderately elongate longitudinally, and less sclerified. Initially parenchymatous,<br />

these cells become progressively sclerified during maturation due to continuous thickening<br />

<strong>of</strong> their walls, so that sclereids eventually have thick, concentrically multi-layered cell<br />

walls, but retain large pits and cell lurnina not as restricted as in fibre cells, which only<br />

occasionally contain ca1cium oxalate crystals.<br />

Vascularisation <strong>of</strong> the achene wall is very sirnilar in all species studied. About lO<br />

(<strong>Anthemis</strong> subg. <strong>Anthemis</strong>) or more (A. subg. Cata) sclerenchymatic ribs are formed in the<br />

mesocarp <strong>of</strong> the achenes, but only 5 vascular bundles can be found (Fig. 2F), contrary to<br />

the indications <strong>of</strong>Wagenitz (1968), Kynclova (1970), and Reitbrecht (1974) who assumed<br />

that each rib <strong>of</strong> the achenes has its vascular strand, but in accordance with the findings <strong>of</strong><br />

Rumphries (1979). Especially in young, immature achenes it is easy to observe that only<br />

every second sclerenchymatic bundle in the pericarp contains one or several vessel elements<br />

with spirally arranged wall thickenings.<br />

In most species studied, libriform fibre cells, in cross sections <strong>of</strong> achenes, form a continuous<br />

ring at the inner side <strong>of</strong> the mesocarp. This ring is 1-5 celllayers thick between the<br />

ribs, but conspicuously thicker in the vascularised and non-vascularised ribs. Between this<br />

inner layer <strong>of</strong> sclerenchyma, formed by fibre cells, and the exocarp, the mesocarp usually<br />

consists <strong>of</strong> 1-5(-10) cell layers <strong>of</strong> sclereids. <strong>The</strong> sèereid layer may either be continuous or<br />

restricted to the ribs, when in the furrows the epicarp is in direct contact with the mesocarpic<br />

fibre celllayer.<br />

In <strong>Anthemis</strong> austriaca the sclereids are regularly rectangular in transverse section and<br />

form a continuous, palisade-like layer under the exocarp. In the rather smooth and inconspicuously<br />

ribbed achenes <strong>of</strong> A. eretica subsp. calumnae, A. maritima subsp. maritima,<br />

and A. punctata subsp. punctata the furrows between the ribs formed by the mesocarpic<br />

fibre cell layer are filled out by the sclereid layer. Rere, sclereids are <strong>of</strong>ten found to be<br />

radially elongate and somewhat pyriform, separated by large intercellulars and propping<br />

the somewhat lifted-<strong>of</strong>f epicarpo In most other cases, when achenes are conspicuously


Bocconea 9 - 1998 35<br />

ribbed, the large sc1ereids are found on top <strong>of</strong> and/or along the sides <strong>of</strong> the internaI ribs <strong>of</strong><br />

the fibre cell layer, accentuating the external ribs and their sculpturing with tuberc1es.<br />

However, achenes <strong>of</strong> A. arvensis and related species <strong>of</strong> A. ser. <strong>Anthemis</strong> display a quite<br />

differently patterned mesocarp: <strong>The</strong> inner cylinder <strong>of</strong> libriform fibre cells is conspicuously<br />

ribbed, as in all other species <strong>of</strong> A. sect. <strong>Anthemis</strong>, but the external ribs <strong>of</strong> the achene are<br />

placed on top <strong>of</strong> the internaI furrows. This is caused by a parenchymatous outer mesocarpic<br />

layer <strong>of</strong> cells that divide intensively during maturation. Since the parenchyma is thicker<br />

above the internaI furrows <strong>of</strong> the sc1erenchymatic cylinder than above its ribs, the latter<br />

will eventually coincide with the furrows <strong>of</strong> the achene.<br />

From peripheral disc achenes to centraI ones, one may note a trend to reduction <strong>of</strong><br />

sc1erenchymatic mesocarp tissue. This trend is particularly obvious in some representatives<br />

<strong>of</strong> <strong>Anthemis</strong> ser. Chrysanthae and ser. Bourgaeinianae. Unlike other taxa in<br />

A. sect. Chrysanthae, A. tenuisecta subsp. tenuisecta has achenes that usually lack a continuous<br />

layer <strong>of</strong> sc1erenchymatic mesocarp tissue. Libriform fibre cells are confined to<br />

bundles in the ribs, and the outer mesocarpic cell layer remains parenchymatous. Same is<br />

true for all achenes <strong>of</strong> A. monilicostata and the centraI achenes <strong>of</strong> A. stiparum and<br />

A. mauritiana <strong>of</strong> A. sect. Bourgaeinianae.<br />

<strong>The</strong> cells <strong>of</strong> the endocarp remai n parenchymatous and soon become compressed during<br />

achene maturation. In ripe achenes they cannot usually be identified. <strong>The</strong> testa consists <strong>of</strong><br />

an epiderrnis and 2-3 layers <strong>of</strong> large, parenchymatous cells that soon disintegrate during<br />

maturity. Cells <strong>of</strong> the testa epiderrnis are characterised by curved and conspicuously thickened<br />

radiai walls. <strong>The</strong> testa epiderrnis and the endosperm layer surrounding the cotyledons<br />

are still visible in mature achenes.<br />

lO. Chromosomes<br />

Material and methods<br />

Far the study <strong>of</strong> pollen mother cell (PMC) meiosis, buds <strong>of</strong> capitula were fixed in 96 %<br />

ethanol/glacial acetic acid (3 : l) in the field and stored in a refrigerator after return to<br />

Berlin. For chromosome staining several buds <strong>of</strong> disc florets were removed from the capitula,<br />

coarsely crushed, and squashed in aceto-orcein.<br />

For the study <strong>of</strong> rnitosis, root tips were obtained either by growing plants in the Botanic<br />

Garden Berlin~Dahlem or by gerrninating achenes in petri dishes. In both cases root tip<br />

meristems were pre-treated with hydroxyquinoline (0.002 molar aqueous solution) for 4<br />

hours, fixed in 96 % ethanol/glacial acetic acid (3 : l) and refrigerated. Hydrolysis was<br />

performed with 1-2n hydrochloric acid for lO rninutes at 60°C. For chromosome staining<br />

root tips were squashed in aceto-orcein.<br />

Camera lucida drawings <strong>of</strong> chromosomes were made with a Zeiss Standard 16 rnicroscope<br />

and measured with an ocular rnicrometer <strong>of</strong> a Wild M5A stereornicroscope for arm<br />

lengths. <strong>The</strong> PC program CHROMEX described by Voss & al. (1994) was used to transfer<br />

measurements to a karyological database, to sort chromosomes automatically according to<br />

their length and arm ratios, to find homologous chromosomes interactively, to construct<br />

idiograms, and to calculate means <strong>of</strong> multiple probes. For the description <strong>of</strong> karyotypes the


Bocconea 9 - 1998 35<br />

ribbed, the large sc1ereids are found on top <strong>of</strong> and/or along the sides <strong>of</strong> the internai ribs <strong>of</strong><br />

the fibre cell layer, accentuating the external ribs and their sculpturing with tuberc1es.<br />

However, achenes <strong>of</strong> A. arvensis and related species <strong>of</strong> A. ser. <strong>Anthemis</strong> display a quite<br />

differently patterned mesocarp: <strong>The</strong> inner cylinder <strong>of</strong> libriform fibre cells is conspicuously<br />

ribbed, as in all other species <strong>of</strong> A. sect. <strong>Anthemis</strong>, but the external ribs <strong>of</strong> the achene are<br />

placed on top <strong>of</strong> the internai fUITows. This is caused by a parenchymatous outer mesocarpie<br />

layer <strong>of</strong> cells that divide intensively during maturation. Since the parenchyma is thicker<br />

above the internai fUITOWS <strong>of</strong> the sc1erenchymatic cylinder than above its ribs, the latter<br />

will eventually coincide with the fUITOWS <strong>of</strong> the achene.<br />

From peripheral disc achenes to centrai ones, one may note a trend to reduction <strong>of</strong><br />

sc1erenchymatic mesocarp tissue. This trend is particularly obvious in some representatives<br />

<strong>of</strong> <strong>Anthemis</strong> ser. Chrysanthae and ser. Bourgaeinianae. Unlike other taxa in<br />

A. sect. Chrysanthae, A. tenuisecta subsp. tenuisecta has achenes that usually lack a continuous<br />

layer <strong>of</strong>. sc1erenchymatic mesocarp tissue. Libriforrn fibre cells are confined to<br />

bundles in the ribs, and the outer mesocarpic cell layer remains parenchymatous. Same is<br />

true for all achenes <strong>of</strong> A. monilicostata and the centrai achenes <strong>of</strong> A. stipa rum and<br />

A. mauritiana <strong>of</strong> A. sect. Bourgaeinianae.<br />

<strong>The</strong> cells <strong>of</strong> the endocarp remain parenchymatous and soon become compressed during<br />

achene maturation. In ripe achenes they cannot usually be identified. <strong>The</strong> testa consists <strong>of</strong><br />

an epiderrnis and 2-3 layers <strong>of</strong> large, parenchymatous cells that soon disintegrate during<br />

maturity. Cells <strong>of</strong> the testa epiderrnis are characterised by curved and conspicuously thickened<br />

radiai walls. <strong>The</strong> testa epiderrnis and the endosperm layer sUITounding the cotyledons<br />

are still visible in mature achenes.<br />

lO. Cbromosomes<br />

Material and methods<br />

For the study <strong>of</strong> pollen mother cell (PMC) meiosis, buds <strong>of</strong> capitula were fixed in 96 %<br />

ethanoVglacial acetic acid (3 : 1) in the field and stored in a refrigerator after return to<br />

Berlin. For chromosome staining several buds <strong>of</strong> disc florets were removed from the capitula,<br />

coarsely crushed, and squashed in aceto-orcein.<br />

For the study <strong>of</strong> rnitosis, root tips were obtained either by growing plants in the Botanic<br />

Garden Berlin-Dahlem or by gerrninating achenes in petri dishes. In both cases root tip<br />

meristems were pre-treated with hydroxyquinoline (0.002 molar aqueous solution) for 4<br />

hours, fixed in 96 % ethanoVglacial acetic acid (3 : 1) and refrigerated. Hydrolysis was<br />

performed with 1-2n hydrochloric acid for lO rninutes at 60°C. For chromosome staining<br />

root tips were squashed in aceto-orcein.<br />

Carnera lucida drawings <strong>of</strong> chromosomes were made with a Zeiss Standard 16 rnicroscope<br />

and measured with an ocular rnicrometer <strong>of</strong> a Wild M5A stereornicroscope for arm<br />

lengths. <strong>The</strong> PC prograrn CHROMEX described by Voss & al. (1994) was used to transfer<br />

measurements to a karyological database, to sort chromosomes automatically according to<br />

their length and arrn ratios, to find homologous chromosomes interactively, to construct<br />

idiograrns, and to ca1culate means <strong>of</strong> multiple probes. For the description <strong>of</strong> karyotypes the


36 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 1. Summary <strong>of</strong> karyotype asymmetry analyses. Intrachromosomal and<br />

interchromosomal asymmetry were calculated as defined by Romero Zarco<br />

(1986: A, and A 2<br />

) and Barghi & al. (1989: Asl and R).<br />

Taxon<br />

Origin<br />

Collection<br />

2n A, A 2<br />

Asl R<br />

2<br />

<strong>Anthemis</strong> sect. Hiorthia<br />

A. maritima<br />

subsp. maritima<br />

3 A. pedunculata<br />

varo pedunculata<br />

4<br />

5 var. discoidea<br />

<strong>Anthemis</strong> sect. <strong>Anthemis</strong><br />

6 A. arvensis<br />

subsp. incrassata<br />

7<br />

8<br />

9 A. confusa<br />

10<br />

11 A. gharbensis<br />

12 A. melampodina<br />

13 A. secundiramea<br />

varo cossyrensis<br />

14 A. tenuisecta<br />

15 A. ubensis<br />

Ga: Narbonne<br />

Co: Alistro<br />

HB Liège<br />

HB Liège<br />

36 .370 .166 60.0 1.80<br />

36 .361 .139 59.4 1.75<br />

Ma: Tazzeka Vogt & <strong>Oberprieler</strong> 37 .397 .119 60.4 1.63<br />

3937<br />

Ma: Taza Vogt & <strong>Oberprieler</strong> 18 .388 .132 60.9 1.55<br />

3945<br />

Ma: Tidighin Oeil4867 18 .397 .135 61.4 1.59<br />

Ma: Bab Taza Vogt 9652 & Ober- 18 .395 .107 60.4 1.42<br />

prieler 4088<br />

Hs: Sierra de las Vogt 9229 18 .341 .133 58 .6 1.52<br />

Nieves<br />

Ma: Tidirhine Vogt 9592 & <strong>Oberprieler</strong><br />

18 .388 .109 60.9 1.35<br />

Tn: Tataouine 4028<br />

Vogt 13131 & 18 .433 .133 62.4 1.57<br />

Tn: Remada<br />

<strong>Oberprieler</strong> 7436<br />

Vogt 13049 & 20 .416 .136 61 .7 1.64<br />

Ma: Mamora<br />

<strong>Oberprieler</strong> 7354<br />

Podlech 43489 18 .388 .143 60.7 1.58<br />

Eg: ElArish Podlech 49968 18+ 1 B .435 .131 62.9 1.58<br />

Tn: Cap Blanc Vogt 13791 & 18 .391 .125 60.7 1.56<br />

<strong>Oberprieler</strong> 8096<br />

Ma: Tiznit Podlech 45076 18 .402 .118 61.3 1.34<br />

Tn: Kesra<br />

Vogt 13524 &<br />

<strong>Oberprieler</strong> 7829<br />

19 .351 .116 59.2 1.46<br />

<strong>Anthemis</strong> sect. Maruta<br />

16 A. cotula<br />

HB Dijon<br />

18 .327 .119 57.7 1.53<br />

17 A. pseudocotula<br />

Cy: Paphos<br />

Vogt9000<br />

18+1B .362 .112 60.8 1.42<br />

<strong>Anthemis</strong> sect. Gota<br />

18 A. altissima<br />

Ga: Alzonne<br />

HB Liège<br />

18<br />

.350 .148 59.8 1 .53<br />

19<br />

Ga: Montolieu<br />

HB Liège<br />

18<br />

.355 .157 60.1 1.53<br />

20<br />

Ga: Sigean<br />

HB Liège<br />

18<br />

.339 .158 59.3 1.76<br />

21<br />

Ga: Villedubert<br />

HB Liège<br />

18<br />

.342 .152 59.5 1.49<br />

22<br />

It: Perinaldo<br />

HB Genua<br />

18<br />

.348 .144 59.5 1.55<br />

23<br />

Ga: Montolieu<br />

HB Liège<br />

18<br />

.342 .135 59.6 1.69<br />

<strong>Anthemis</strong> sect. Anthemaria<br />

24 A. tinctoria<br />

Au: Persenberg<br />

HB Univo Salzburg<br />

18 .373 .148 60.2 1.61


Bocconea 9 - 1998 37<br />

Table 2. Data on karyotype asymmetry (as defined by Barghi & al. 1989) used in<br />

our analysis <strong>of</strong> Anthemideae, in addition to the originai data <strong>of</strong> Table 1.<br />

Taxon Asl R Source<br />

Chrysantheminae<br />

25 Argyranthemum frutescens (L.) Schultz-Bip. 60.5 1.65 Uitz (1970: Table 7)<br />

26 Chrysanthemum segetum L. 56.2 1.69 Uitz (1970: Table 8)<br />

27 C. coronarium L. 54.7 1.46 Uitz (1970: Table 8)<br />

28 Ismelia vesicolor Casso 53.7 1.33 Uitz (1970: Table 8, sub<br />

Chrysanthemum carinatum)<br />

Achilleinae<br />

29 Achillea asplenifolia Vent. 60.8 1.55 Uitz (1970: Table 5)<br />

30 A. setacea Wildst. & Kit. 60.2 1.41 Uitz (1970: Table 5)<br />

31 Anacyclus clavatus (Dest.) Perso 57.7 1.44 Uitz (1970: Table 5)<br />

32 A. radiatus Loisel. 59.9 1.37 Uitz (1970: Table 5)<br />

33 A. pyrethrum (L.) Lagasca 56.5 1.33 Uitz (1970: Table 5)<br />

34 Chamaemelum nobile (L.) Ali. 57.7 1.21 Uitz (1970: Table 10, sub<br />

Ormenis nobilis)<br />

35 C. fuscatum (Brot.) Vasco 58.9 1.60 Uitz (1970: Table 10, sub<br />

Ormenis fuscata)<br />

36 C. mixtum (L.) Ali. 59.9 1.63 Uitz (1970: Table 10, sub<br />

Ormenis mixta)<br />

37 Cladanthus arabicus (L.) Casso 55.1 1.45 Uitz (1970: Table 8)<br />

Tanacetinae<br />

38 Tanacetum vulgare L. 59.3 1.53 Uitz (1970: Table 11)<br />

39 T. parthenium (L.) Schultz-Bip. 58 .0 1.23 Uitz (1970: Table 11)<br />

40 T. annuumL. 60.8 1.93 Uitz (1970: Table 11)<br />

Matricariinae<br />

41 Tripleurospermum perforatum (Merat) Lainz 62.6 1.56 Uitz (1970: Table 11 , sub<br />

T. inodorum)<br />

42 T. maritmum (L.) K. Koch 60.7 1.47 Uitz (1970: Table 12)<br />

43 T. disciforme (C. Meyer) Schultz-Bip. 60.4 1.63 Uitz (1970: Table 11)<br />

44 Matricaria recutita (L.) Rauschert 60.7 1.68 Uitz (1970: Table 10)<br />

45 M. matricarioides Porter ex Britton 56.1 1.93 Uitz (1970: Table 10)<br />

Leucantheminae<br />

46 Rhodanthemum arundanum (Boiss.) Wilcox & al. 56.4 1.51 Vogt(1991 : 67, sub<br />

Leucanthemum arundanum)<br />

47 Leucanthemum vulgare Lam. 59.3 1.24 Uitz (1970: Table 9)<br />

48 L. vulgare subsp. pujiulae Sennen 54.1 1.24 Vogt (1991: 67)<br />

49 Coleostephus myconis (L.) Reichenb. f. 57.3 1.30 Uitz (1970: Table 9, as<br />

Leucanthemum myconis)<br />

50 Lepidophorum repandum (L.) DC. 54.1 1.51 Uitz (1970: Table 9)<br />

51 Nivel/ea nivel/ei (Br.-BI. & Maire) Wilcox & al. 57.7 1.48 Vogt & <strong>Oberprieler</strong> (1996: 124)<br />

terminology <strong>of</strong> Levan & al. (1964) is used. Arm ratios <strong>of</strong> single chromosomes are expressed<br />

by the ratio long arm to short armo Karyotype asymmetry was assessed using the<br />

indices (Ah A 2 ) proposed by Romero Zarco (1986).<br />

Alternatively, for purposes <strong>of</strong> comparison <strong>of</strong> karyotype asymmetries <strong>of</strong> the present<br />

study with measurements given by Uitz (1970), the asymmetry indices Asl and R as de-


38 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

fined by Barghi & al. (1989) were computed. Here, intrachromosomal asymmetry (Asl) is<br />

expressed by the ratio <strong>of</strong> long arms in chromosome set to total chromosome length in the<br />

set multiplied by 100, and interchromosomal asymmetry (R) by the ratio <strong>of</strong> longest pair to<br />

shortest pair in the chromosome set.<br />

In the folIowing lists, specimens used for karyotype analysis are marked with an asterisk.<br />

Results <strong>of</strong> karyotype analyses are summarised in Table l, and morphometric chromosome<br />

data for each karyotype studied are given in Tables 3-16, where n is the number <strong>of</strong><br />

different metaphase plates studi ed.<br />

Results<br />

<strong>Anthemis</strong> (subg. <strong>Anthemis</strong>, sect. <strong>Anthemis</strong>) ser. <strong>Anthemis</strong><br />

<strong>Anthemis</strong> arvensis subsp. arvensis<br />

2n = 18<br />

-Ge, Sachsen-Anhalt, Brachwitz, HB Halle (cult. in HB Berlin No. 153-02-93-10).<br />

Numerous counts <strong>of</strong> the cosmopolitan <strong>Anthemis</strong> arvensis have been published, most <strong>of</strong><br />

them without a mention <strong>of</strong> subspecies. Counts relating to A. arvensis subsp. arvensis were<br />

given by Kuzmanov & al. (1980) and Kuzmanov & al. (1981) for Bulgarian, Fernandes &<br />

Queir6s (1971, sub A. arvensis varo arvensis) for Portuguese, and Benedf i Gonziilez<br />

(1987) for Spanish plants. AlI counts yielded a diploid chromosome number <strong>of</strong> n = 9 or<br />

2n = 18. Kuzmanov & al. (1981) found the karyotype <strong>of</strong> this subspecies to consist <strong>of</strong> 2<br />

metacentric, 12 submetacentric and 4 satellited subtelocentric chromosomes (2m + 12sm +<br />

4st-sat).<br />

<strong>Anthemis</strong> arvensis subsp. incrassata<br />

n=9<br />

-Ma, Rif, Djebel Tassaot, 1600m, 25 Jun 1992, Vogt & <strong>Oberprieler</strong>4078.<br />

-Ma, Rif, Souk-Tleta-Taghramet - Ceuta, 450-500 m, 17 Apr 1993, Vogt 9854 & <strong>Oberprieler</strong><br />

4302 (Fig. 4A).<br />

-Ma, Rif, Monts de Beni Hosmar, 1200 m, 21 Apr 1993, Vogt 10001 & <strong>Oberprieler</strong> 4449.<br />

-Ma, Rif, Chefchaouene, 730 m, 30 May 1993, Vogt 12037.<br />

-Ma, Rif, Monts de Beni Hosmar, 1200 m, 30 May 1993, Vogt 12038.<br />

2n = 18<br />

* - Ma, Rif, Djebel Tidirhine, 1550 m, 20 Jun 1992, Vogt 9592 & <strong>Oberprieler</strong> 4028.<br />

-Ma, Rif, Bab Berret, 1450 m, 25 Jun 1992, Vogt 9632 & <strong>Oberprieler</strong> 4068.<br />

*- Ma, Rif, Bab Taza - Djebel Talamssantane, 1420 m, 26 Jun 1992, Vogt 9652 & <strong>Oberprieler</strong> 4088<br />

(Fig. 4B).<br />

*- Hs, Malaga, Sierra de las Nieves, 900-1250 m, 26 May 1992, Vogt 9229.<br />

-Hs, Cadiz, El Puerto de Sta. Maria - Jerez de la Frontera, 30 m, 17 Apr 1993, Vogt 9711 &<br />

<strong>Oberprieler</strong> 4159.<br />

-Hs, Cadiz, Benolup, 20 m., 16 Apr 1989, Deil3603.<br />

-Si, Palermo, Scillato - Collesano, 520-800 m, 25 May 1994, Vogt 13885 & <strong>Oberprieler</strong> 8190.<br />

-lt, Grosseto, Monte Labbro, l Sep 1992, Marchetti (HB Siena) (cult. in HB Berlin No. 103-02-<br />

93-10).


Bocconea 9 - 1998 39<br />

Table 3. Chromosomes <strong>of</strong> <strong>Anthemis</strong> arvensis subsp. incrassata<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio Chromosome<br />

some pair (~m) (~m) (~m) (%) type<br />

Oì'U 6 (n = 4)<br />

I 3.43 2.62 6.05 13.8 1.30 m<br />

Il 3.06 2.33 5.39 12.3 1.31 m<br />

III 2.74 2.27 5.01 11.4 1.20 m<br />

IV 3.12 1.71 4.83 11.0 1.82 sm<br />

V 3.12 0.91 4.81 11.0 3.42 st-sat<br />

VI 2.71 1.98 4.69 10.7 1.36 m<br />

VII 3.13 1.36 4.49 10.3 2.30 sm<br />

VIII 2.42 1.94 4.36 10.0 1.24 m<br />

IX 2.76 0.72 4.26 9.7 3.83 st-sat<br />

OTU 7 (n = 3)<br />

I 3.97 3.11 7.08 13.9 1.27 m<br />

Il 3.44 2.95 6.39 12.6 1.16 m<br />

III 3.28 2.83 6.11 12.0 1.15 m<br />

IV 3.23 2.52 5.75 11 .3 1.28 m<br />

V 3.47 2.16 5.63 11.1 1.60 m<br />

VI 3.59 0.93 5.30 10.4 3.86 st-sat<br />

VII 2.97 2.29 5.26 10.4 1.29 m<br />

VIII 2.67 2.02 4.69 9.2 1.32 m<br />

IX 3.19 0.68 4.65 9.2 4.69 st-sat<br />

OTU 8 (n = 3)<br />

I 4.02 2.97 6.99 13.3 1.35 m<br />

Il 3.57 2.97 6.54 12.4 1.20 m<br />

III 4.16 1.19 6.13 11 .6 3.49 sl-sat<br />

IV 3.32 2.76 6.08 11 .5 1.20 m<br />

V 3.95 2.13 6.08 11.5 1.85 sm<br />

VI 3.06 2.51 5.57 10.6 1.21 m<br />

VII 3.81 0.80 5.39 10.2 4.76 st-sat<br />

VIII 3.51 1.67 5.18 9.8 2.10 sm<br />

IX 2.75 2.08 4.83 9.2 1.32 m<br />

<strong>Anthemis</strong> arvensis subsp. incrassata was studied cytologically by Brullo & al. (1978b)<br />

from Sicily and Benedi i Gonzalez (1987) from Spain, who found n = 9 or 2n = 18, respectively.<br />

Additionally, many counts published for A. arvensis concern this subspecies,<br />

e.g. those <strong>of</strong> Dahlgren & al. (1971) for Balearic or Pavone & al. (1981) for Sicilian plants<br />

because A. arvensis subsp. arvensis is rnissing there. Counts on N African plant material<br />

<strong>of</strong> "A. arvensis" were made by Humphries & al. (1978) who found 2n = 18 chromosomes,<br />

but the identity <strong>of</strong> the plants, originating from "Jbel Ayachi, cirque de Jaffar" in the High<br />

Atlas mountains where A. arvensis was never found to grow, is questionable.<br />

A deviating and presumably wrong count <strong>of</strong> n = 8 was published by Blanché & al.<br />

(1985) for plants from the Sierra Nevada in S Spain identified as A. granatensis which<br />

according to Benedi i Gonzalez (1987) is a synonym <strong>of</strong> A. arvensis subsp. arvensis and in<br />

my opinion, <strong>of</strong> A. arvensis subsp. incrassata. A triploid chromosome number <strong>of</strong> 2n = 27<br />

was found in B ulgarian plants by Kuzmanov & al. (1981), who found the karyotype <strong>of</strong> this<br />

population to consist <strong>of</strong> 7 metacentric, 14 submetacentric and 6 satellited subtelocentric


40 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

chromosomes. A further karyotype analysis was performed by Benedf i Gonzalez (1987)<br />

who indicates the chromosome formula 12m + 2M + 2st-sat + 2t-sat for plants from near<br />

Barcelona. Karyotype analyses performed for the present study yielded a chromosome<br />

formula <strong>of</strong> 10m + 4sm + 4st-sat for two Moroccan populations and a more symrnetric<br />

karyotype with 14m + 4st-sat for a S Spanish population (Table 3).<br />

<strong>Anthemis</strong> arvensis subsp. sphacelata<br />

n=9<br />

- It, Reggio Calabria, Montalto, 1600 m, 27 May 1994, Vogt 13983 & <strong>Oberprieler</strong> 8288.<br />

This interesting biennial to perennial subspecies <strong>of</strong> <strong>Anthemis</strong> arvensis endemie to the<br />

mountains <strong>of</strong> Sicily and S Italy, had been studied cytologically only once, by Brullo & al.<br />

(1978a) who found a diploid chromosome set <strong>of</strong> 2n = 18 chromosomes (12m + 4sm + 2tsat)<br />

in a Sicilian population. <strong>The</strong> present count from the Calabrian mountains corroborates<br />

this data.<br />

<strong>Anthemis</strong> (subg. <strong>Anthemis</strong>, sect. <strong>Anthemis</strong>) ser. Chrysanthae<br />

<strong>Anthemis</strong> gharbensis<br />

n=9<br />

-Ma, Arbaoua - Moulay Bousselham, lO m, 24 Apr 1993, Vogt 10161 & <strong>Oberprieler</strong> 4609.<br />

-Ma, Forèt de la Mamora, 120 m, 27 Apr 1993, Vogt 10259 & <strong>Oberprieler</strong> 4707.<br />

2n = 18<br />

* - Ma, Forèt de la Mamora, 120 m, 2 May 1987, Podlech 43489.<br />

<strong>The</strong> haploid and diploid chromosome numbers mentioned above were already reported<br />

earlier (<strong>Oberprieler</strong> 1994). <strong>The</strong> karyotype was found to be very symrnetrical, consisting <strong>of</strong><br />

5 pairs <strong>of</strong> metacentic, 2 pairs <strong>of</strong> submetacentric, and 2 pairs <strong>of</strong> satel\ited subtelocentric<br />

chromosomes (10m + 4sm + 4st-sat, Table 4).<br />

Table 4. Chromosomes <strong>of</strong> <strong>Anthemis</strong> gharbensis (OTU 11; n = 8).<br />

Chromo- Long arm Short arm Totallength Relative length Arm ralio Chromosome<br />

some pair (IJm) (IJm) (IJm) (%) type<br />

4.54 3.60 8.14 14.4 1.26 m<br />

Il 3.95 3.18 7.13 12.6 1.24 m<br />

III 4.63 2.28 6.91 12.2 2.03 sm<br />

IV 3.44 2.93 6.37 11.2 1.17 m<br />

V 4.33 1.00 6.11 10.8 4.33 sI-saI<br />

VI 3.32 2.65 5.97 10.5 1.25 m<br />

VII 3.69 1.94 5.63 9.9 1.90 sm<br />

VIII 3.02 2.31 5.33 9.4 1.30 m<br />

IX 3.55 0.84 5.17 9.1 4.22 sI-saI


Bocconea 9 - 1998 41<br />

Fig. 4. Metaphase plates in <strong>Anthemis</strong>. - A: A. arvensis subsp. incrassata, PMC meiosis, n = 9 (Vogt<br />

9854 & <strong>Oberprieler</strong> 4302). B: A. arvensis subsp. incrassata, root tip mitosis, 2n = 18 (Vogt 9652 &<br />

<strong>Oberprieler</strong> 4088). C: A. maroccana subsp. maroccana, PMC meiosis, n = 9 + IB, arrowhead<br />

indicating B chromosome (Vogt 10181 & <strong>Oberprieler</strong> 4729). D: A. tenuisecta subsp. tenuisecta,<br />

root tip mitosis, 2n = 18 (?odlech 45076). E: A. confusa, root tip mitosis, 2n = 20 (Vogt 13049 &<br />

<strong>Oberprieler</strong> 7354). F: A. secundiramea var. secundiramea, root tip mitosis, 2n = 18 (HE Catania).<br />

- Scale bars = IO J.lm.


42 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

<strong>Anthemis</strong> maroccana subsp. maroccana<br />

n=9+0-1B<br />

-Ma, A1n-Cheggag, 620 m, 27 Apr 1993, Vogt 10181 & <strong>Oberprieler</strong> 4729. (Fig. 4C).<br />

-Ma, Middle At1as, Sefrou, 1060 m, 27 Apr 1993, Vogt 10284 & <strong>Oberprieler</strong>4732.<br />

-Ma, Middle Atlas, Sefrou, 1150m, 28 Apr 1993, Vogt 10296 & <strong>Oberprieler</strong>4744.<br />

<strong>Anthemis</strong> maroccana had never been investigated cytologically before. <strong>The</strong> three<br />

populations studied here ali belong to subsp. maroccana and proved to be diploid with n =<br />

9 chromosomes.<br />

<strong>Anthemis</strong> tenuisecta subsp. tenuisecta<br />

n=9<br />

-Ma, Agadir, Tiznit - Agadir, 180 m, 19 May 1993, Vogt 11905 & <strong>Oberprieler</strong> 6353.<br />

- Ma, Agadir, Agadir - Essaouira, 160m, 21 May 1993, Vo g t 11 924.<br />

2n = 18<br />

* - Ma, Agadir, Tiznit - Agadir, 25 Apr 1989, Podlech 45076. (Fig. 4D).<br />

-Ma, Agadir, Agadir- Essaouira, 120 m, 22 May 1993, Vogt 11930.<br />

<strong>The</strong> chromosome number <strong>of</strong> <strong>Anthemis</strong> tenuisecta, a species cIosely related to A. gharbensis,<br />

is reported here for the first time. A ~ in A. gharbensis and A. maroccana, a diploid<br />

chromosome set was found, with n = 9 and 2n = 18, respectively. <strong>The</strong> karyotype is a little<br />

more asymmetrical than in A. gharbensis due to the occurrence <strong>of</strong> an additional pair <strong>of</strong><br />

submetacentric instead <strong>of</strong> metacentric chromosomes (8m + 6sm + 4st-sat, Table 5).<br />

Table 5. Chromosomes <strong>of</strong> <strong>Anthemis</strong> tenuisecta (OTU 14; n = 11).<br />

Chromo- Long arm Short arm Totallength Relative length<br />

some pair (lJm) (lJm) (lJm) (%)<br />

4.16 3.58 7.74 13.7<br />

Il 4.55 2.60 7.15 12.7<br />

III 3.64 3.12 6.76 12.0<br />

IV 3.99 2.27 6.26 11.1<br />

V 3.40 2.68 6.08 10.8<br />

VI 4.05 1.02 5.85 10.4<br />

VII 3.87 1.92 5.79 10.3<br />

VIII 3.08 2.42 5.50 9.8<br />

IX 3.93 0.71 5.42 9.6<br />

Arm ratio<br />

1.16<br />

1.75<br />

1.16<br />

1.75<br />

1.26<br />

3.97<br />

2.01<br />

1.27<br />

5.53<br />

Chromosome<br />

type<br />

m<br />

sm<br />

m<br />

sm<br />

m<br />

st-sat<br />

sm<br />

m<br />

st-sat<br />

<strong>Anthemis</strong> (subg. <strong>Anthemis</strong>, sect. <strong>Anthemis</strong>) ser. Melampodinae<br />

<strong>Anthemis</strong> melampodina<br />

2n = 18 + lB<br />

*-Eg, Sinai, Nizzana - El Arish, 130 m, 2 May 1991, Podlech 49968.


Bocconea 9 - 1998 43<br />

Fig. 5. Metaphase plates in <strong>Anthemis</strong>. - A: A. secundiramea var. cossyrensis. root tip mitosis, 2n =<br />

18 (Vogt 13791 & <strong>Oberprieler</strong> 8096). B: A. ubensis. PMC meiosis, n = 9, arrowhead indicating a<br />

bivaIent forrned by chromosomes differing markedly in length (Vogt 12216 & <strong>Oberprieler</strong> 6521). C:<br />

A. ubensis. root tip mitosis, 2n = 19 (Vogt 13524 & <strong>Oberprieler</strong> 7829). D: A. mauritiana subsp.<br />

faurei. PMC mitosis, n = 9 (Vogt 10927 & <strong>Oberprieler</strong> 5375). E: A. zaianica. PMC meiosis, n = 9<br />

(Vogt 14840 & <strong>Oberprieler</strong> 9149). F: A. abylaea. PMC meiosis, n = 18 (Vogt 10023 & <strong>Oberprieler</strong><br />

4471). - Scale bars = lO ~m.


44 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

This seems to be the first count not only for this species but for <strong>Anthemis</strong> ser. Melampodina<br />

e as a whole. It coincides with nearly all records for A. sect. <strong>Anthemis</strong>. All cells<br />

checked proved to have a small accessory B-chromosome. <strong>The</strong> karyotype resembles that<br />

<strong>of</strong> other species <strong>of</strong> the section, with 5 pairs <strong>of</strong> metacentric, 2 pairs <strong>of</strong> submetacentric, and 2<br />

pairs <strong>of</strong> satellited subtelocentric chromosomes (Table 6). <strong>The</strong> intrachromosomal asymmetry<br />

index AI yielded the highest value <strong>of</strong> all species studied here. A comparably high<br />

value was found only in one population <strong>of</strong> A. confusa from S Tunisia.<br />

Table 6. Chromosomes <strong>of</strong> <strong>Anthemis</strong> melampodina (OTU 12; n = 5).<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio Chromosome<br />

some pair (Ilm) (Ilm) (Ilm) (%)<br />

type<br />

4.20 3.57 7.77 13.9<br />

Il 3.89 2.97 6.86 12.3<br />

III 4.49 2.19 6.68 12.0<br />

IV 4.86 0.96 6.60 11 .8<br />

V 3.48 2.50 5.98 10.7<br />

VI 3.32 2.41 5.73 10.3<br />

VII 4.11 0.81 5.70 10.2<br />

VIII 3.79 1.79 5.58 10.0<br />

IX 2.98 1.94 4.92 8.8<br />

1.17<br />

1.30<br />

2.05<br />

5.06<br />

1.39<br />

1.37<br />

5.07<br />

2.11<br />

1.53<br />

m<br />

m<br />

sm<br />

st-sat<br />

m<br />

m<br />

st-sat<br />

sm<br />

m<br />

<strong>Anthemis</strong> (subg. <strong>Anthemis</strong>, sect. <strong>Anthemis</strong>) ser. Secundirameae<br />

<strong>Anthemis</strong> confusa<br />

n=9<br />

- Tn, Gafsa, Redeyef - Tamerza, 680 m, 9 May 1994, Vogt 12747 & <strong>Oberprieler</strong> 7052.<br />

- Tn, Sidi-Bouzid, Jelma, 370 m, 17 May 1994, Vogt 13333 & <strong>Oberprieler</strong> 7638.<br />

2n = 18<br />

- Tn, Gafsa, Tozeur - El Oued, 45 m, 9 Apr 1980, Podlech 34145.<br />

*-Tn, Tataouine - Ghomrassen, 340 m, 14 May 1994, Vogt 13131 & <strong>Oberprieler</strong> 7436.<br />

2n = 20<br />

*- Tn, Tataouine - Remada, 450 m, 13 May 1994, Vogt 13049 & <strong>Oberprieler</strong> 7354 (Fig. 4E).<br />

This seems to be the first report <strong>of</strong> chromosome numbers for this species. <strong>The</strong> indications<br />

<strong>of</strong> n = 9 and 2n = 18 agree with all previous reports for members <strong>of</strong> <strong>Anthemis</strong> ser.<br />

Secundirameae. Plants from a population in S Tunisia were found to have an aneuploid<br />

chromosome number <strong>of</strong> 2n = 20, but other plants from that area had the normal chromosome<br />

set with 2n = 18 chromosomes (Table 7). As discussed in the taxonornic part <strong>of</strong> the<br />

present work, Le Houérou (1962) considered plants from this area to be morphologically<br />

intermediate between his A. pedunculata var. decumbens [= A. confusa] and the W Libyan<br />

A. glareosa. However, in the present revision they are assigned to A. confusa not to<br />

A. glareosa. <strong>The</strong> aneuploid chromosome number found in one <strong>of</strong> these plants may be due<br />

to the past or recent interbreeding <strong>of</strong> the two cIosely related species in SE Tunisia.


Bocconea 9 - 1998 45<br />

Table 7. Chromosomes <strong>of</strong> <strong>Anthemis</strong> confusa.<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio Chromosome<br />

some pair (~m) (~m) (~m) (%) type<br />

OTU 9 (n = 2)<br />

I 3.37 2.54 5.91 14.1 1.32 m<br />

Il 3.64 0.66 5.08 12.1 5.51 st-sat<br />

III 2.81 2.23 5.04 12.0 1.26 m<br />

IV 2.58 2.13 4.71 11 .2 1.21 m<br />

V 3.16 1.55 4.71 11.2 2.03 sm<br />

VI 3.18 0.58 4.54 10.8 5.48 st-sat<br />

VII 2.46 1.94 4.40 10.5 1.26 m<br />

VIII 2.79 1,.07 3.86 9.2 2.60 sm<br />

IX 2.23 1.53 3.76 9.0 1.45 m<br />

OTU 10 (n = 5)<br />

I (3x) 3.60 2.91 6.51 14.3 1.23 m<br />

Il 3.08 2.42 5.50 12.1 1.27 m<br />

III 3.68 1.76 5.44 11.9 2.09 sm<br />

IV 3.76 0.80 5.34 11.7 4.69 st-sat<br />

V 2.88 2.22 5.10 11.2 1.29 m<br />

VI 3.25 0.67 4.70 10.3 4.85 st-sat<br />

VII 3.09 1.54 4.63 10.2 2.00 sm<br />

VIII (3x) 2.60 1.92 4.52 9.9 1.35 m<br />

IX 2.29 1.69 3.98 8.7 1.35 m<br />

<strong>Anthemis</strong> secundiramea varo secundiramea<br />

2n = 18<br />

-Si, Noto, Vendicari, 16 Jun 1990, HB Catania (eult. in HB Berlin No. 301-04-92-10 & 298-06-<br />

91-10) (Fig. 4F).<br />

<strong>The</strong> chromosome number presented here for this variety <strong>of</strong> <strong>Anthemis</strong> secundiramea<br />

agrees with indications by Capi neri & al. (1976, sub A. secundiramea) for Sicilian materiai<br />

and Benedf i Gonzalez (1987) for plants from Menorca. One pair <strong>of</strong> satellite chromosomes<br />

was found in the studied plants <strong>of</strong> A. secundiramea var. secundiramea, whereas<br />

Brullo (in Bartolo & al. 1979) found none, and A. secundiramea varo cossyrensis (see<br />

below) has two. No Algerian or Tunisian plant material was available for cytological investigations.<br />

<strong>Anthemis</strong> secundiramea varo cossyrensis<br />

n=9<br />

- Tn, Bizerte, Cap Blanc, 10-30 m, 22 May 1994, Vogt 13791 & <strong>Oberprieler</strong> 8096.<br />

2n = 18<br />

* - Tn, Bizerte, Cap Blane, 10-30 m, 22 May 1994, Vogt 13791 & <strong>Oberprieler</strong> 8096 (Fig. 5A)<br />

-Si, Isole Egadi, Fariguana, 15 Sep 1990, HB Catania (eult. in HB Berlin No. 298-05-91-10 &<br />

301-02-92-10).


46 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

<strong>The</strong> finding <strong>of</strong> n = 9 and 2n = 18 chromosomes for this variety <strong>of</strong> <strong>Anthemis</strong> secundiramea<br />

agrees with a report by Brullo & al. (1977, sub A. secundiramea subsp. intermedia)<br />

. Brullo (in Bartolo & al. 1979) later found two pairs <strong>of</strong> satellited chromosomes in<br />

plants from Lampedusa which he considered to represent a separate subspecies,<br />

A. secundiramea subsp. lopadusana, on account <strong>of</strong> its karyogram (12m + 2sm + 4st-sat),<br />

as he had found that A. secundiramea subsp. secundiramea lacked satellites. <strong>The</strong> Tunisian<br />

plant material studied here shows two pairs <strong>of</strong> satellited subtelocentric chromosomes<br />

(Table 8), exaetly as the morphologieally similar plants from Lampedusa. This supports<br />

the inc1usion <strong>of</strong> A. secundiramea subsp. lopadusana in A. secundiramea varo cossyrensis<br />

deseribed from Pantellaria.<br />

Table 8. Chromosomes 01 <strong>Anthemis</strong> secundiramea var. cossyrensis (OTU 13;<br />

n = 6).<br />

Chromo- Long arm Short arm Totallength<br />

some pair (~m) (~m) (~m)<br />

Relative length<br />

(%)<br />

Arm ratio<br />

Chromosome<br />

type<br />

3.38 2.76 6.14<br />

Il 2.98 2.36 5.34<br />

III 3.58 0.76 5.12<br />

IV 2.67 2.34 5.01<br />

V 3.29 1.67 4.96<br />

VI 3.24 0.59 4.61<br />

VII 2.51 2.04 4.55<br />

VIII 2.73 1.52 4.25<br />

IX 2.29 1.64 3.93<br />

14.0 1.22<br />

12.2 1.26<br />

11.7 4.71<br />

11.4 1.14<br />

11.3 1.97<br />

10.5 5.49<br />

10.4 1.23<br />

9.7 1.79<br />

9.0 1.39<br />

m<br />

m<br />

st-sat<br />

m<br />

sm<br />

st-sat<br />

m<br />

sm<br />

m<br />

<strong>Anthemis</strong> secundiramea varo urvilleana<br />

n=9<br />

-Me, Paradise Bay, 27 Feb 1994, Mevert & Seifert s.n. (Herb. <strong>Oberprieler</strong>).<br />

This taxon, endemie to Malta, had been studied eytologically by Brullo & al. (1997).<br />

<strong>The</strong> ehromosome number reported here is in agreement with their findings.<br />

<strong>Anthemis</strong> ubensis<br />

n=9<br />

- Tn, Beja, Djebel Goraa, 730 m, 3 May 1994, Vogt 12216 & <strong>Oberprieler</strong> 6521 (Fig. 5B).<br />

- Tn, Beja, Djebel Goraa, 960 m, 3 May 1994, Vogt 12291 & <strong>Oberprieler</strong>6596.<br />

- Tn, Beja, Djebel Goraa, 960 m, 3 May 1994, Vogt 12305 & <strong>Oberprieler</strong>6610.<br />

- Tn, El Kef, Djebel Dyr, 1000 m, 4 May 1994, Vogt 12352 & <strong>Oberprieler</strong> 6657.<br />

- Tn, El Kef, Table de Jughurta, 1200-1270 m, 5 May 1994, Vogt 12467 & <strong>Oberprieler</strong> 6772.<br />

2n= 19<br />

*-Tn, FOfl~t de Kesra, 18 May 1994, Vogt 13524 & <strong>Oberprieler</strong> 7829 (Fig. 5C).<br />

- Tn, Zaghouan, Djebel Zaghouan, 23 May 1994, Vogt 13824 & <strong>Oberprieler</strong> 8129.


Bocconea 9 - 1998 47<br />

This interesting species from E Algeria and N Tunisia had not yet been studied cytologically.<br />

In morphological respects it holds a somewhat intermediate position between<br />

<strong>Anthemis</strong> pedunculata and A. secundiramea. <strong>The</strong> occurrence <strong>of</strong> accessory chromosomes in<br />

two <strong>of</strong> the seven plants studied (Table 9) may be a consequence <strong>of</strong> hybrid speciation.<br />

Meiosis, studied in five other plants, was found to be regular, with the formation <strong>of</strong> nine<br />

bivalents. In one such population I was able to observe the formation <strong>of</strong> a bivalent by two<br />

chromosomes differing markedly in length (Fig. 5B). This again suggests that the chromosome<br />

set <strong>of</strong> this species is relatively unbalanced.<br />

Table 9. Chromosomes <strong>of</strong> <strong>Anthemis</strong> ubensis (OTU 15; n = 3).<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio<br />

some pair (IJm) (IJm) (IJm) (%)<br />

3.60 2.80 6.40 13.5 1.28<br />

Il 3.18 2.57 5.75 12.2 1.23<br />

III 3.75 1.12 5.65 12.0 3.34<br />

IV 3.58 1.95 5.53 11.7 1.83<br />

V 2.91 2.43 5.34 11.3 1.19<br />

VI 2.82 2.17 4.99 10.6 1.29<br />

VII 3.10 0.98 4.86 10.3 3.16<br />

VIII 2.47 2.00 4.47 9.5 1.23<br />

IX (3x) 2.65 1.73 4.38 9.3 1.53<br />

Chromosome<br />

type<br />

m<br />

m<br />

st-sat<br />

sm<br />

m<br />

m<br />

st-sat<br />

m<br />

m<br />

<strong>Anthemis</strong> (subg. <strong>Anthemis</strong>, sect. <strong>Anthemis</strong>) ser. Bourgaeinianae<br />

<strong>Anthemis</strong> mauritiana subsp.faurei<br />

n=9<br />

-Ma, Saidia, lO m, 5 May 1993, Vogt 10872 & <strong>Oberprieler</strong> 5320.<br />

-Ma, Ras-el-Ma, 40 m, 5 May 1993, Vogt 10927 & <strong>Oberprieler</strong> 5375 (Fig. 5D)<br />

This seems to be the frrst report <strong>of</strong> a chromosome number for this species endemie to<br />

the Mediterranean coast <strong>of</strong> E Morocco. Bivalent formation in pollen mother celi meiosis<br />

was found to be regular.<br />

<strong>Anthemis</strong> stiparum subsp. sabulicola<br />

2n = 18<br />

- Ag, Laghouat, Ghardaia - El Golea, 400 m, 28 Mar 1981 , Podlech 35529.<br />

-Ag, Laghouat, Zelfana, 360 m, 30 Mar 1981 , Podlech 35571 .<br />

This subspecies <strong>of</strong> <strong>Anthemis</strong> stipa rum was studied by Podlech (1986, sub<br />

A. monilicostata subsp. stipa rum) who found the same chromosome number <strong>of</strong> 2n = 18<br />

using one <strong>of</strong> the specimens (Podlech 35571) <strong>of</strong> the present study.<br />

<strong>Anthemis</strong> zaianica<br />

n=9<br />

-Ma, Oulmès, 1310 m, 12 May 1995, Vogt 14840 & <strong>Oberprieler</strong> 9149. (Fig. 5E).


48 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Fig. 6: Metaphase plates in <strong>Anthemis</strong>. - A: <strong>Anthemis</strong> abylaea, root tip mitosis, 2n = 36 (Vogt<br />

12045). B: A. maritima subsp. maritima, root tip mitosis, 2n = 36 (HB Liège). C: A. pedunculata<br />

var. pedunculata, PMC meiosis, n = 9 (Vogt 9414 & <strong>Oberprieler</strong> 3852). D: A. pedunculata var.<br />

pedunculata, root tip mitosis, 2n = 18 (Vogt 9414 & <strong>Oberprieler</strong> 3852). E: A. pedunculata varo<br />

pedunculata, PMC meiosis, n = 18 (Vogt & <strong>Oberprieler</strong>4026). F: A. pedunculata var. pedunculata,<br />

PMC meiosis, n = 18 (Vogt 14962 & <strong>Oberprieler</strong> 9271). - Scale bars = lO 11m.


Bocconea 9 - 1998 49<br />

No previous report <strong>of</strong> a chromosome number for this species newly described exists.<br />

<strong>The</strong> number <strong>of</strong> n = 9 chromosomes reported here agrees with that found in other species <strong>of</strong><br />

<strong>Anthemis</strong> ser. Bourgeinianae and most members <strong>of</strong> A. sect. <strong>Anthemis</strong>.<br />

<strong>Anthemis</strong> (subg. <strong>Anthemis</strong>) sect. Hiorthia<br />

<strong>Anthemis</strong> abylaea<br />

n = 18<br />

-Ma, Djebel Fahies, 550-660 m, 20 Apr 1993, Vogt 9897 & <strong>Oberprieler</strong>4345.<br />

-Ma, Monts de Beni Hosmar, 1200 m, 21 Apr 1993, Vogt 10023 & <strong>Oberprieler</strong>4471 (Fig. 5F).<br />

-Ma, Monts de Beni Hosmar, 1200 m, 30 May 1993, Vogt 12039.<br />

2n = 36<br />

-Ma, Djebel Fahies, 550-660 m, 31 May 1993, Vogt 12045 (Fig. 6A).<br />

<strong>The</strong> chromosome number for this species endemie to the limestone mountains <strong>of</strong> the<br />

Tangier peninsula is reported here for the first time.<br />

<strong>Anthemis</strong> eretica subsp. columnae<br />

2n= 36<br />

- It, Avellino, Monte Vergine, 1220 m, 28 May 1994, Vogt 14004 & <strong>Oberprieler</strong> 8309.<br />

It was not possible to study N African plant material <strong>of</strong> this taxon cytologically, so a<br />

chromosome count from the locus cIassicus <strong>of</strong> this subspecies in S Italy is provided instead.<br />

<strong>The</strong> tetraploid level found confirms counts by Strid & Franzén (1983, sub <strong>Anthemis</strong><br />

carpatica) and Papanicolaou (1984, sub A. eretica) on Greek plants that were later assigned<br />

to A. eretica subsp. columnae by Franzén (1986).<br />

<strong>Anthemis</strong> maritima subsp. maritima<br />

n = 18<br />

- Tn, Bizerte, Cap Blane, 10-30 m, 22 Jun 1994, Vogt 13792 & <strong>Oberprieler</strong> 8097.<br />

-Ga, Col de Tende, 270 m, 23 May 1995, Vogt 15352 & <strong>Oberprieler</strong> 9661 .<br />

2n= 36<br />

- Tn, Bizerte, Cap Blane, 20 m, 22 May 1994, Vogt 13813 & <strong>Oberprieler</strong> 8118.<br />

-Hs, Cab ° Roehe, 5-JOm, 17 Apr 1993, Vogt 9733 & <strong>Oberprieler</strong>4181.<br />

*-Ga, Aude, Narbonne, HB Liège (eult. in HB Berlin No. 194-25-92-10).<br />

*-Co, Alistro, HB Liège (eult. in HB Berlin No. 194-27-92-10) (Fig. 6B).<br />

<strong>The</strong> tetraploid chromosome numbers found in Tunisian, Spanish and French material<br />

(Table lO) confirms counts <strong>of</strong> n = 18 or 2n = 36, respectively, made on plants <strong>of</strong> the same<br />

taxon from the Mediterranean coasts <strong>of</strong> France (Larsen 1954, Rashid 1974), Italy<br />

(Capi neri & al. 1976), Sicily (Brullo & Pavone 1978, Brullo & al. 1988), and Mallorca<br />

(Benedf i Gonzalez 1987), and from the Atlantic coasts <strong>of</strong> Portugal (Fernandes & Queir6s<br />

1970, 1971) and Spain (Luque 1984, Benedf i Gonzalez 1987).


50 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Deviating, diploid chromosome numbers for <strong>Anthemis</strong> maritima were given by Harling<br />

(1950) and Mitsuoka & Ehrendorfer (1972) who studied plant material from botanical<br />

gardens, without documented provenance. Aneuploid chromosome numbers <strong>of</strong> n = 10 and<br />

2n = 20 for a population <strong>of</strong> A. maritima from Menorca were reported by Benedf i GonzaIez<br />

(1987), which suggests that diploid chromosome numbers can indeed be found in<br />

natural populations <strong>of</strong> A. maritima.<br />

Table 10: Chromosomes <strong>of</strong> <strong>Anthemis</strong> maritima subsp. maritima.<br />

Chromo- Long arm $hort arm Totallength Relative length Arm ratio Chromosome<br />

some pair (11m) (11m) (11m) (%) type<br />

OTU 1 (n = 1)<br />

I 4.07 3.91 7.98 14.6 1.04 m<br />

4.38 3.41 7.79 14.2 1.28 m<br />

Il 4.77 2.71 7.48 13.6 1.76 sm<br />

Il 4.19 2.95 7.14 13.0 1.42 m<br />

III 3.88 2.83 6.71 12.2 1.37 m<br />

III 3.76 2.67 6.43 11.7 1.40 m<br />

IV 3.60 2.64 6.24 11.4 1.36 m<br />

IV 3.60 2.48 6.08 11 .1 1.45 m<br />

V 3.10 2.91 6.01 11 .0 1.06 m<br />

V 3.37 2.52 5.89 10.7 1.33 m<br />

VI 3.99 1.28 6.05 11.0 3.11 st-sat<br />

VI 3.99 0.85 5.62 10.3 4.69 st-sat<br />

VII 3.84 1.90 5.74 10.5 2.02 sm<br />

VII 3.06 2.48 5.54 10.1 1.23 m<br />

VIII 3.72 0.78 5.28 9.6 4.76 st-sat<br />

VIII 3.26 0.74 4.78 8.7 4.40 st-sat<br />

IX 2.33 2.09 4.42 8.1 1.11 m<br />

IX 2.83 1.63 4.46 8.1 1.73 sm<br />

OTU 2 (n=4)<br />

I 3.53 2.64 6.17 14.7 1.33 m<br />

I 3.56 1.85 5.41 12.9 1.92 sm<br />

Il 2.99 2.42 5.41 12.9 1.23 m<br />

Il 2.95 2.18 5.13 12.2 1.35 m<br />

III 3.31 1.15 5.24 12.5 2.87 sm-sat<br />

III 3.34 0.93 5.05 12.0 3.59 st-sat<br />

IV 2.68 2.20 4.88 11 .6 1.21 m<br />

IV 2.65 2.13 4.78 11.4 1.24 m<br />

V 2.55 2.01 4.56 10.9 1.26 m<br />

V 2.96 1.76 4.72 11.2 1.68 m<br />

VI 2.96 0.89 4.63 11 .0 3.32 st-sat<br />

VI 2.49 0.86 4.13 9.8 2.89 sm-sat<br />

VII 2.73 1.64 4.37 10.4 1.66 m<br />

VII 2.36 1.91 4.27 10.2 1.23 m<br />

VIII 2.1 9 1.84 4.03 9.6 1.19 m<br />

VIII 2.51 1.37 3.88 9.2 1.83 sm<br />

IX 2.08 1.76 3.84 9.1 1.18 m<br />

IX 2.03 1.49 3.52 8.4 1.36 m


Bocconea 9 - 1998 51<br />

<strong>Anthemis</strong> pedunculata (subsp. pedunculata) varo pedunculata<br />

n=9<br />

-Ma, Middle Atlas, Azrou - AIn Leuh, 1585 ID, Il Jun 1992, Vogt 9414 & <strong>Oberprieler</strong> 3852 bis<br />

(Fig. 6C).<br />

-Ma, Middle Atlas, Azrou - Ain Leuh, 1580 ID, Il Jun 1992, <strong>Oberprieler</strong> 3849.<br />

-Ma, Middle Atlas, FOUID Kheneg, 1880 ID, 12 Jun 1992, Vogt 9440 & <strong>Oberprieler</strong> 3878.<br />

-Ma, Djebel Tazzeka, Gouffe de Friovato, 1200 ID, 15 Jun 1992, Vogt 9468 & <strong>Oberprieler</strong> 3905.<br />

- Ma, Rif, Djebel Tizirene, 1700 ID, 24 Jun 1992, Vogt 9628 & <strong>Oberprieler</strong> 4064.<br />

-Ma, Rif, Djebel Lakraa, 1900-2000 ID, 26 Jun 1992, Vogt & <strong>Oberprieler</strong>4115.<br />

-Ma, Monts des Beni Snassen, Tanezzert - Taforalt, 900-950 ID, 9 May 1993, Vogt 11448 &<br />

<strong>Oberprieler</strong> 5896.<br />

-Ma, Middle Atlas, Source de l'OuID-er-Rbia, 1630 ID, 28 May 1993, Vogt 12002.<br />

-Ma, Middle Atlas, AIn-Leuh - Azrou, 1900 ID, 13 May 1995, Vogt 14949 & <strong>Oberprieler</strong> 9258<br />

bis.<br />

-Ma, Middle Atlas, AIn-Leuh - Azrou, 1980 ID, 13 May 1995, Vogt 14927 & <strong>Oberprieler</strong> 9236.<br />

-Ma, Monts des Beni-Snassen, Djebel Foughal, 1280 ID, 16 May 1995, Vogt 15264 & <strong>Oberprieler</strong><br />

9573.<br />

2n = 18<br />

-Ma, Taza, AhermouIDou (Ribat-el-Kheyr) - Jebel Bou Iblane, 1430-1550 ID, 25 Jun 1989,<br />

Podlech 46964.<br />

-Ma, ibid., 1680 ID, 25 Jun 1989, <strong>Oberprieler</strong> 1908.<br />

-Ma, Middle Atlas, Azrou - AIn Leuh, 1585 ID, Il Jun 1992, Vogt 9414 & <strong>Oberprieler</strong> 3852 bis<br />

(Fig. 6D).<br />

-Ma, Middle Atlas, FOUID Kheneg, 1880 ID, 12 Jun 1992, Vogt 9440 & <strong>Oberprieler</strong> 3878.<br />

-Ma, Middle Atlas, Col du Zad, 2100 ID, 12 Jun 1992, Vogt 9442 & <strong>Oberprieler</strong> 3880.<br />

-Ma, Djebel Tazzeka, Gouffe de Friovato, 1200 ID, 15 Jun 1992, Vogt 9468 & <strong>Oberprieler</strong> 3905.<br />

*- Ma, Djebel Tazzeka, Taza - Bab-Bou-Idir, 1420 ID, 17 Jun 1992, Vogt & <strong>Oberprieler</strong> 3945.<br />

-Ma, Rif, Djebel Tizirene, 1700 ID, 24 Jun 1992, Vogt 9628 & <strong>Oberprieler</strong>4064.<br />

n = 18<br />

-Ma, Djebel Tazzeka, 1900 ID, 16 Jun 1992, Vogt 9487 & <strong>Oberprieler</strong> 3923.<br />

-Ma, Rif, KetaIDa - Djebel Tidirhin, 1750 ID, 20 Jun 1992, Vogt & <strong>Oberprieler</strong>4026 (Fig. 6E).<br />

-Ma, Rif, TaleIDbote - Djebel Tassaot, 1565 ID, 25 Jun 1992, Vogt 9647 & <strong>Oberprieler</strong> 4083.<br />

-Ma, Rif, Djebel TalaIDssantane, 1765-1900 ID, 26 Jun 1992, Vogt 9668 & <strong>Oberprieler</strong>4105.<br />

. I<br />

-Ma, Monts des Beru Snassen, Tanezzert - Taforalt, 900 ID, 9 May 1993, Vogt 11466 & <strong>Oberprieler</strong><br />

5914.<br />

- Ma, Anti-Atlas, Djebel Lekst, 1500 ID, 15 May 1993, Vogt 11766 & <strong>Oberprieler</strong> 6214.<br />

-Ma, Anti-Atlas, Djebel Lekst, 1550-1570 ID, 16 May 1993, Vogt 11829 & <strong>Oberprieler</strong> 6277.<br />

-Ma, Middle Atlas, Col du Zad, 2125 ID, 26 May 1993, Vogt 11988.<br />

-Ma, Tahout-ou-Fillali, 1990 ID, 26 May 1993, Vogt 11948.<br />

-Ma, Middle Atlas, AIn-Leuh - Source de l'OuID-er-Rbia, 1790 ID, 28 May 1993, Vogt 12006.<br />

-Ma, Middle Atlas, Ain-Leuh - Azrou, 1900 ID, 13 May 1995, Vogt 14949 & <strong>Oberprieler</strong> 9258.<br />

-Ma, Middle Atlas, Ain-Leuh - Azrou, 1900 ID, 13 May 1995, Vogt 14949 & <strong>Oberprieler</strong><br />

9258 ter.<br />

-Ma, Middle Atlas, AIn-Leuh - Azrou, 1830 ID, 13 May 1995, Vogt 14962 & <strong>Oberprieler</strong> 9271<br />

(Fig. 6F).<br />

-Ma, Middle Atlas, Ain-Leuh - Azrou, 1720 ID, 14 May 1995, Vogt 15005 & <strong>Oberprieler</strong> 9314.<br />

-Ma, Middle Atlas, AIn-Leuh - Azrou, 1700 ID, 14 May 1995, Vogt 15010 & <strong>Oberprieler</strong> 9319.


52 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 11. Chromosomes <strong>of</strong> <strong>Anthemis</strong> pedunculata varo pedunculata.<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio Chromosome<br />

some pair (11m) (11m) (11m) (%) type<br />

OTU 3 (n = 5)<br />

I 2.90 2.33 5.23 13.4 1.24 m<br />

2.53 2.29 4.82 12.3 1.10 m<br />

Il 2.67 1.96 4.63 11.8 1.36 m<br />

Il 2.46 2.03 4.49 11.5 1.21 m<br />

III 3.03 0.77 4.58 11.7 3.93 st-sat<br />

III 2.74 0.66 4.18 10.7 4.15 st-sat<br />

IV 2.78 1.52 4.30 11 .0 1.82 sm<br />

IV 2.65 1.40 4.05 10.4 1.89 sm<br />

V 2.44 1.83 4.27 10.9 1.33 m<br />

V 2.29 1.79 4.08 10.4 1.27 m<br />

VI 2.49 0.62 3.89 10.0 4.01 st-sat<br />

VI 2.66 0.54 3.98 10.2 4.92 st-sat<br />

VII 2.13 1.81 3.94 10.1 1.17 m<br />

VII 2.13 1.59 3.72 9.5 1.33 m<br />

VIII 2.00 1.54 3.54 9.1 1.29 m<br />

VIII 2.07 1.40 3.47 8.9 1.47 m<br />

IX 2.54 1.12 3.66 9.4 2.26 sm<br />

IX 2.22 0.97 3.19 8.2 2.28 sm<br />

+ (V) 2.50 1.66 4.16 10.6 1.50 m<br />

OTU4(n=14)<br />

I 3.90 3.28 7.18 14.2 1.18 m<br />

Il 4.13 2.14 6.27 12.4 1.92 sm<br />

III 3.39 2.72 6.11 12.1 1.24 m<br />

IV 2.99 2.53 5.52 11.0 1.18 m<br />

V 3.96 0.78 5.52 11 .0 5.07 st-sat<br />

VI 3.46 1.75 5.21 10.3 1.97 sm<br />

VII 2.88 2.26 5.14 10.2 1.27 m<br />

VIII 3.42 0.72 4.92 9.8 4.75 st-sat<br />

IX 2.60 2.03 4.63 9.2 1.28 m<br />

-Ma, Middle Atlas, Azrou - Ifrane, 1750 m, 14 May 1995, Vogt 15016 & <strong>Oberprieler</strong> 9325.<br />

-Ma, Monts des Beni-Snassen, G<strong>org</strong>e du Zegzel - Nn-Almou, 800-900 m, 15 May 1995, Vogt<br />

15123 & <strong>Oberprieler</strong> 9432.<br />

-Ma, Monts des Beni-Snassen, Nn Almou, 1180 m, 16 May 1995, Vogt 15188 & <strong>Oberprieler</strong><br />

9497.<br />

-Ma, Monts des Beni-Snassen, Djebel Foughal, 1200 m, 16 May 1995, Vogt 15227 & <strong>Oberprieler</strong><br />

9536.<br />

-Ma, Monts des Beni-Snassen, Oulad Jabein-Fouaga, 11 80 m, 16 May 1995, Vogt 15280 &<br />

<strong>Oberprieler</strong> 9589.<br />

2n = 36<br />

-Ma, Taza, Ahermoumou (Ribat-el-Kheyr) - Jbel Bou-Iblane 1680 m, 25 Jun 1989, <strong>Oberprieler</strong><br />

1895.<br />

-Ma, Jebel Bou Iblane, Tizi Bouzabel, 2040 m, 26 Jun 1989, <strong>Oberprieler</strong> 1967.<br />

- Ma, Tizi-n-Tahout-ou-Fillali, 2070 m, 4 lui 1989, Podlech 47622.


Bocconea 9 - 1998 53<br />

-Ma, Middle Atlas, Foum Kheneg, 1880 m, 12 Jun 1992, Vogt 9440 & <strong>Oberprieler</strong> 3878bis.<br />

-Ma, Djebel Tazzeka, 1780 m, 16 Jun 1992, Vogt & <strong>Oberprieler</strong> 3937.<br />

-Ma, Rif, Talembote - Djebel Tassaot, 1600 m, 25 Jun 1992, Vogt 9638 & <strong>Oberprieler</strong> 4074 (Fig.<br />

7A).<br />

-Ma, Rif, Talembote" Djebel Tassaot, 1565 m, 25 Jun 1992, Vogt 9647 & <strong>Oberprieler</strong> 4083.<br />

-Ma, Rif, Talembote - Djebel Tassaot, 1565 m, 25 Jun 1992, Vogt & <strong>Oberprieler</strong> 4084.<br />

-Ma, Rif, Djebel Talarnssantane, 1765-1900 m, 26 Jun 1992, Vogt 9668 & <strong>Oberprieler</strong> 4105.<br />

2n = 37<br />

* - Ma, Djebel Tazzeka, 1780 m, 16 Jun 1992, Vogt & <strong>Oberprieler</strong> 3937 (Fig. 7B).<br />

Vogt & <strong>Oberprieler</strong> (1993, sub <strong>Anthemis</strong> pedunculata subsp. tuberculata) were the first<br />

to find tetraploid chromosome numbers in A. pedunculata. Before, only diploid numbers<br />

had been reported, both for N African (Galland 1985, sub A. pedunculata; Galland 1991,<br />

sub A. pedunculata subsp. pedunculata) and Spanish populations (Aparicio & Silvestre<br />

1985; Blanché & al. 1985, sub A. tuberculata; Benedf i Gonzaléz 1987, sub A. tuberculata<br />

subsp. tuberculata). <strong>The</strong> counts listed above demonstrate that in Morocco both cytotypes<br />

grow not only in the same geographical region but in close proximity, even in the<br />

same locality (Table Il).<br />

<strong>Anthemis</strong> pedunculata (subsp. pedunculata) varo discoidea<br />

n=9<br />

-Ma, Rif, Djebel Tidirhin, 2200 m, 20 Jun 1992, Vogt & <strong>Oberprieler</strong>4012 (Fig. 7C, D).<br />

2n = 18<br />

-Ma, Rif, Bab Bagla, 2000 m, 8 Jun 1987, Deil2648 (Fig. 7E).<br />

*-Ma, Rif, Djebel Tidighin, 2000 m, lO Ju11989, Deil4867 (Fig. 7F).<br />

This is the first report <strong>of</strong> a chromosome number for this variety, found in the W parts <strong>of</strong><br />

the Betic Range in S Spain as well as in the C Rif and C High Atlas mountains <strong>of</strong> Morocco.<br />

Unlike <strong>Anthemis</strong> pedunculata varo pedunculata, only diploid chromosome numbers<br />

were found (Table 12).<br />

Table 12. Chromosomes <strong>of</strong> <strong>Anthemis</strong> pedunculata varo discoidea (OTU 5; n = 3).<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio Chromosome<br />

some pair (11m) (11m) (11m) (%) type<br />

4.99 4.16 9.15 13.4 1.19 m<br />

Il 5.75 3.05 8.80 12.9 1.88 sm<br />

III 4.59 3.85 8.44 12.4 1.19 m<br />

IV 5.37 2.57 7.94 11 .6 2.08 sm<br />

V 4.25 3.15 7.40 10.9 1.34 m<br />

VI 5.27 1.14 7.19 10.5 4.62 st-sat<br />

VII 4.06 3.06 7.12 10.4 1.32 m<br />

VIII 3.69 2.85 6.54 9.6 1.29 m<br />

IX 4.02 0.97 5.77 8.5 4.14 st-sat


54<br />

<strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

<strong>Anthemis</strong> pedunculata subsp. atlantica<br />

n=9<br />

- Tn, Kasserine, Djebel Chambi, 1540 m, 7 May 1994, Vogt 12606 & <strong>Oberprieler</strong> 6911.<br />

n = 18<br />

- Tn, Siliana, Forèt de Kesra, 1030-1100 m, 18 May 1994, Vogt 13510 & <strong>Oberprieler</strong> 7815.<br />

- Tn, Siliana, Forèt de Kesra, 1040-1100 m, 18 May 1994, Vogt 13523 & <strong>Oberprieler</strong> 7828.<br />

This is the first report <strong>of</strong> a chromosome number for this taxon, endemie to the mountainous<br />

areas <strong>of</strong> E Algeria and N Tunisia.<br />

<strong>Anthemis</strong> pedunculata subsp. turolensis<br />

n=9<br />

-Hs, Cuenca, Beteta, 1350 m, 20 May 1995, Vogt 15350 & <strong>Oberprieler</strong> 9659.<br />

This taxon, endemie to the mountains <strong>of</strong> C Spain, had been studied cytologically only<br />

once (Benedf i Gonz,Hez 1987), and found to be diploid. <strong>The</strong> present count corroborates<br />

these data.<br />

<strong>Anthemis</strong> punctata subsp. punctata<br />

n = 18<br />

- Tn, Beja, Djebel Goraa, 780 m, 3 May 1994, Vogt 12238 & <strong>Oberprieler</strong> 6543.<br />

- Tn, El Kef, Djebel Dyr, 1000 m, 4 May 1994, Vogt 12353 & <strong>Oberprieler</strong> 6658.<br />

- Tn, El Kef, TabIe de Jughurta, 1200-1270 m, 5 May 1994, Vogt 12466 & <strong>Oberprieler</strong> 6771 .<br />

- Tn, Zaghouan, Djebel Zaghouan, 750-850 m, 23 May 1994, Vogt 13823 & <strong>Oberprieler</strong> 8128.<br />

2n= 36<br />

- Tn, El Kef, Djebel Dyr, 1000 m, 4 May 1994, Vogt 12353 & <strong>Oberprieler</strong> 6658.<br />

This species, confined to the mountains <strong>of</strong> NE Algeria and N Tunisia, had not been<br />

studied cytologically. <strong>The</strong> four specimens studied were all found to be tetraploid, same as<br />

the closely related <strong>Anthemis</strong> cupaniana from Sicily (see below).<br />

<strong>Anthemis</strong> cupaniana<br />

2n= 36<br />

-Si, Madonie, Collesano - Petralia, 1590 m, 26 May 1994, Vogt 13938 & <strong>Oberprieler</strong> 8243.<br />

-Si, Madonie, Quacella, 28 Jul 1990, HB Catania (cult. in HB Berlin No. 298-04-91-10).<br />

<strong>The</strong> findings <strong>of</strong> a tetraploid chromosome number confrrrns earlier reports by Brullo &<br />

al. (1978a), Brullo & al. (1988), and Devesa & al. (1988). Though no locality is given, it<br />

is probable that Capineri' s (1968) report <strong>of</strong> 2n = 36 for "A. punctata" was based on Sicilian<br />

material and also relates to A. cupaniana.


Bocconea 9 - 1998 55<br />

c<br />

D<br />

Fig. 7. Metaphase plates in <strong>Anthemis</strong>. - A: A. pedunculata varo pedunculata, root tip mitosis, 2n =<br />

36 (Vogt 9638 & <strong>Oberprieler</strong> 4074). B: A. pedunculata varo pedunculata, root tip mitosis, 2n = 37<br />

(Vogt & <strong>Oberprieler</strong> 3937). C: A. pedunculata varo discoidea, PMC meiosis, n = 9 (Vogt &<br />

<strong>Oberprieler</strong> 4012). D: A. pedunculata varo discoidea, PMC meiosis, n = 9 (Vogt & <strong>Oberprieler</strong><br />

4012). E: A. pedunculata varo discoidea, root tip mitosis, 2n = 18 (Deil 2648). F: A. pedunculata<br />

varo discoidea, mot tip mitosis, 2n = 18 (Deil4867). - Scale bars = lO ~m .


56 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

<strong>Anthemis</strong> (subg. <strong>Anthemis</strong>) sect. Maruta<br />

<strong>Anthemis</strong> cotula<br />

2n = 18<br />

*-Ga, HB Dijon (cui t. in HB Berlin No. 116-02-93-10).<br />

<strong>The</strong> report <strong>of</strong> 2n = 18 chromosomes for <strong>Anthemis</strong> cotula fits the numerous previous<br />

counts published for this wide-spread species. 1-2 accessory B-chromosomes were observed<br />

by Yavin (1970) on Greek and Yugoslavian material. <strong>The</strong> French plants studied<br />

here were found to have two paiis <strong>of</strong> satellited subtelocentric chromosomes, which agrees<br />

with observations by Yavin (1970), Mitsuoka & Ehrendorfer (1972), Bartolo & al. (1978),<br />

Kuzmanov & al. (1981), and Benedf i Gonzalez (1987). In Portuguese populations, Fernandes<br />

& Queir6s (1971) found karyotypes with tandem satellites but also one population<br />

with only one pair <strong>of</strong> satellited chromosomes; while Uitz (1970) figures a karyotype without<br />

any satellites. <strong>The</strong> karyotype found in the present study consists <strong>of</strong> 6 pairs <strong>of</strong> metacentric,<br />

1 pair <strong>of</strong> submetacentric, and 2 pairs <strong>of</strong> satellited subtelocentric chromosomes<br />

(Table 13). Interchromosomal asymmetry (Al) has the lowermost value <strong>of</strong> alI samples <strong>of</strong><br />

the present study. No plants from N Africa were available for study.<br />

Table 13. Chromosomes <strong>of</strong> <strong>Anthemis</strong> cotula (OTU 16; n = 14).<br />

Chromo- Long arm Short arm<br />

some pair (IJm) (IJm)<br />

Totallength Relative length<br />

(IJm) (%)<br />

Arm ratio<br />

Chromosome<br />

type<br />

2.71<br />

Il 2.42<br />

III 2.69<br />

IV 2.22<br />

V 2.44<br />

VI 2.06<br />

VII 2.24<br />

VIII 1.97<br />

IX 1.77<br />

2.19<br />

1.97<br />

0.75<br />

1.82<br />

1.40<br />

1.71<br />

0.66<br />

1.57<br />

1.43<br />

4.90 13.8<br />

4.39 12.4<br />

4.22 11 .9<br />

4.04 11.4<br />

3.84 10.8<br />

3.77 10.6<br />

3.68 10.4<br />

3.54 10.0<br />

3.20 9.0<br />

1.23<br />

1.22<br />

3.58<br />

1.21<br />

1.74<br />

1.20<br />

3.39<br />

1.25<br />

1.23<br />

m<br />

m<br />

st-sat<br />

m<br />

sm<br />

m<br />

st-sat<br />

m<br />

m<br />

<strong>Anthemis</strong> pseudocotula<br />

2n = 18 + 1B<br />

*-Cy, Paphos-Harbour, 3-20 m, 2 May 1991, Vogt 9000.<br />

Same as Yavin (1970) who studied plants from Palestine, we found a chromosome<br />

number <strong>of</strong> 2n = 18 plus a small accessional B-chromosome on a Cyprian representative <strong>of</strong><br />

this species. N African plants <strong>of</strong> Libyan provenance were studied by Brullo & al. (1990),<br />

who found no B-chromosome. <strong>The</strong> karyotype <strong>of</strong> <strong>Anthemis</strong> pseudocotula had not yet been<br />

studied. Unlike A. cotula, only one <strong>of</strong> its two subtelocentric chromosome pairs is satellited<br />

(Table 14), but as discussed above for A. cotula, this character may show considerable<br />

variation.


Bocconea 9 - 1998<br />

57<br />

Table 14. Chromosomes <strong>of</strong> <strong>Anthemis</strong> pseudocotula (OTU 17; n = 3).<br />

Chromo- Long arm Short arm<br />

some pair (I.lm) (I.lm)<br />

3.49 2.71<br />

Il 3.16 2.69<br />

III 2.98 2.47<br />

IV 3.47 1.06<br />

V 3.58 1.51<br />

VI 2.75 2.26<br />

VII 3.66 1.14<br />

VIII 2.82 1.60<br />

IX 2.38 2.00<br />

Totallength Relative length Arm ratio<br />

(I.lm) (%)<br />

6.20 13.4 1.28<br />

5.85 12.62 1.17<br />

5.45 11 .7 1.20<br />

5.31 11.4 3.27<br />

5.09 11 .0 2.37<br />

5.01 10.8 1.21<br />

4.80 10.3 3.21<br />

4.42 9.5 1.76<br />

4.38 9.4 1.19<br />

Chromosome<br />

type<br />

m<br />

m<br />

m<br />

st-sat<br />

sm<br />

m<br />

st<br />

sm<br />

m<br />

<strong>Anthemis</strong> (subg. Cota) sect. Cota<br />

<strong>Anthemis</strong> altissima<br />

2n = 18<br />

*-Ga, Aude, Alzonne, HB Liège (cult. in HB Berlin No. 194-17-92-10).<br />

*-Ga, Aude, Montolieu, HB Liège (cult. in HB Berlin No. 194-18-92-10).<br />

*-Ga, Aude, Sigean, HB Liège (cult. in HB Berlin No. 194-19-92-10).<br />

*-Ga, Aude, Villedubert, HB Liège (cult. in HB Berlin No. 194-20-92-10).<br />

*-Ga, Aude, Montolieu, HB Liège (cult. in HB Berlin No. 152-07-93-10).<br />

*-It, Imperia, Perinaldo, 520 m, HB Genova (cult. in HB Berlin No. 268-01-92-10).<br />

My chromosome counts for <strong>Anthemis</strong> altissima agree with all previous indications, by<br />

Delay (1971) for French, Capineri & al. (1978) for Italian, Stephanou & Ge<strong>org</strong>iadis<br />

(1982) for Greek, Kuzmanov & Ge<strong>org</strong>ieva (1977) and Kuzmanov & al. (1980) for Bulgarian,<br />

Strid (1980) for Turkish, and Podlech & Dieterle (1969) for Afghanian material.<br />

Karyotypes have been reported by Uitz (1970) and Kuzmanov & al. (1981). As they correctly<br />

indicate, the karyotype <strong>of</strong> A. altissima differs markedly from those <strong>of</strong> the other <strong>Anthemis</strong><br />

species studied by me (Table 15): <strong>The</strong> two · pairs <strong>of</strong> satellite chromosomes are not<br />

subtelocentric but submetacentric, the arm ratio being on average 2.48 (vs. 4.03) for the<br />

long and 2.68 (vs. 4.36) for the short pair <strong>of</strong> satellited chromosomes. With relative lengths<br />

<strong>of</strong> (on average) 12.5 % for the long and 11.6 % for the short satellited pair they are among<br />

the long or medium chromosomes <strong>of</strong> the set, not among the medium to short ones (11 .2%<br />

and 9.8% on average, respectively) as in the other <strong>Anthemis</strong> species<br />

<strong>Anthemis</strong> austriaca<br />

2n = 18<br />

-Au, Niederosterreich, Erlauftal, 220 m, HB Salzburg (cult. in HB Berlin No. 007-11-93-10).<br />

No N African plants were available for study. <strong>The</strong> diploid chromosome number <strong>of</strong> 2n =<br />

18 chromosomes found on material <strong>of</strong> Austrian provenance agrees with most previous<br />

reports for this species, e.g. by Kuzmanov & Kozuharov (1970), Kuzmanov & al. (1980),<br />

and Kuzmanov & al. (1981) for Bulgarian, Stephanou & Ge<strong>org</strong>iadis (1982) for Greek, and


58 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Vachova & Majovsky (1980) for Slovakian plants. Uitz (1970) reports diploid chromosome<br />

numbers for several garden provenances <strong>of</strong> <strong>Anthemis</strong> austriaca, along with a<br />

tetraploid number for material from Turkey. Although A. austriaca supposedly belongs to<br />

the same section as A. altissima, both Uitz (1970) and Kuzmanov & al. (1981) found its<br />

satellited chromosomes to be subtelocentric not submetacentric.<br />

Table 15. Chromosomes <strong>of</strong> <strong>Anthemis</strong> altissima.<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio Chromosome<br />

some pair (11m) (11m) (11m) (%) type<br />

OTU18(n=4)<br />

I 4.95 4.04 8.99 14.4 1.22 m<br />

Il 4.99 2.20 7.97 12.7 2.26 sm-sat<br />

III 5.11 1.88 7.77 12.4 2.71 sm-sat<br />

IV 3.82 3.31 7.13 11.4 1.15 m<br />

V 3.71 3.02 6.73 10.8 1.22 m<br />

VI 3.31 2.85 6.16 9.9 1.16 m<br />

VII 3.53 2.61 6.14 9.8 1.35 m<br />

VIII 3.87 2.03 5.90 9.4 1.90 sm<br />

IX 4.20 1.68 5.88 9.4 2.50 sm<br />

OTU 19 (n = 13)<br />

I 5.35 4.16 9.51 14.7 1.28 m<br />

Il 5.45 2.06 8.29 12.8 2.64 sm-sat<br />

III 4.24 3.59 7.83 12.1 1.18 m<br />

IV 5.06 1.75 7.59 11.7 2.89 sm-sat<br />

V 3.84 3.15 6.99 10.8 1.21 m<br />

VI 4.24 2.26 6.50 10.0 1.87 sm<br />

VII 3.42 2.86 6.28 9.7 1.19 m<br />

VIII 4.22 2.00 6.22 9.6 2.10 sm<br />

IX 3.26 2.52 5.78 8.9 1.29 m<br />

OTU 20 (n = 6)<br />

I 4.78 4.09 8.87 15.0 1.16 m<br />

Il 4.66 1.79 7.23 12.2 2.60 sm-sat<br />

III 3.72 3.17 6.89 11.7 1.17 m<br />

IV 4.52 2.31 6.83 11.6 1.95 sm<br />

V 4.16 1.59 6.53 11 .1 2.61 sm-sat<br />

VI 3.50 2.81 6.31 10.7 1.24 m<br />

VII 3.24 2.51 5.75 9.7 1.29 m<br />

VIII 3.76 1.97 5.73 9.7 1.90 sm<br />

IX 2.73 2.31 5.04 8.5 1.18 m<br />

OTU 21 (n = 12)<br />

I 4.98 4.02 9.00 14.5 1.23 m<br />

Il 4.94 2.19 7.91 12.8 2.25 sm-sat<br />

III 3.99 3.40 7.39 11 .9 1.17 m<br />

IV 4.77 1.81 7.36 11.9 2.63 sm-sat<br />

V 3.67 2.97 6.64 10.7 1.23 m<br />

VI 4.05 2.20 6.25 10.1 1.84 sm<br />

VI I 3.29 2.75 6.04 9.8 1.19 m<br />

VIII 4.24 1.79 6.03 9.7 2.36 sm<br />

IX 3.03 2.45 5.48 8.8 1.23 m


Bocconea 9 - 1998 59<br />

Table 15 (continued).<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio Chromosome<br />

some pair (11m) (11m) (11m) (%) type<br />

OTU 22 (n = 12)<br />

I 4.58 3.78 8.36 14.6 1.21 m<br />

Il 4.48 1.87 7.13 12.4 2.39 sm-sat<br />

III 3.69 3.12 6.81 11.9 1.18 m<br />

IV 4.26 1.59 6.63 11.6 2.67 sm-sat<br />

V 3.44 2.85 6.29 11.0 1.20 m<br />

VI 3.84 1.97 5.81 10.1 1.94 sm<br />

VII 3.18 2.53 5.71 10.0 1.25 m<br />

VIII 3.74 1.67 5.41 9.4 2.23 sm<br />

IX 2.95 2.35 5.30 9.3 1.25 m<br />

OTU 23 (n = 3)<br />

I 5.04 3.94 8.98 14.4 1.27 m<br />

Il 4.90 1.78 7.46 11.9 2.75 sm-sat<br />

III 3.89 3.46 7.35 11.8 1.12 m<br />

IV 4.78 2.34 7.12 11.4 2.04 sm<br />

V 3.71 3.20 6.91 11.1 1.15 m<br />

VI 4.37 1.72 6.87 11.0 2.54 sm-sat<br />

VII 3.49 2.85 6.34 10.1 1.22 m<br />

VIII 4.17 2.14 6.31 10.1 1.94 sm<br />

IX 2.97 2.35 5.32 8.5 1.26 m<br />

<strong>Anthemis</strong> (subg. Cota) sect. Anthemaria<br />

<strong>Anthemis</strong> tinctoria<br />

2n = 18<br />

*-Au: Niederosterreich, Persenberg, 200 m, HB Salzburg (cult. in HB Berlin No. 007-14-93-10).<br />

<strong>The</strong> present count agrees with the many previous reports for this species, e.g. by Strid<br />

(1980) for Turkish, Strid & Franzén (1981) for Greek, Capineri (1971) for Italian, Kuz-<br />

Table 16. Chromosomes <strong>of</strong> <strong>Anthemis</strong> tinctoria (OTU 25; n = 4).<br />

Chromo- Long arm Short arm Totallength Relative length Arm ratio Chromosome<br />

some pair (11m) (11m) (11m) (%) type<br />

5.23 4.30 9.53 14.5 1.21 m<br />

Il 4.60 3.99 8.59 13.1 1.15 m<br />

III 4.08 3.49 7.57 11 .5 1.16 m<br />

IV 4.10 3.17 7.27 11.1 1.29 m<br />

V 4.74 2.29 7.03 10.7 2.06 sm<br />

VI 4.79 1.39 6.96 10.6 3.44 st-sat<br />

VII 3.76 3.06 6.82 10.4 1.22 m<br />

VIII 4.04 2.04 6.08 9.3 1.98 sm<br />

IX 4.24 0.89 5.91 9.0 4.76 st-sat


60 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

manov & Kozuharov (1970) and Van Loon & Van Setten (1982) for Bulgarian, and Rostovceva<br />

(1983) for Sibirian plant material. <strong>The</strong> karyotype was described by Kuzmanov &<br />

al. (1981) to consist <strong>of</strong> one pair <strong>of</strong> metacentric, six pairs <strong>of</strong> submetacentric, and two pairs<br />

<strong>of</strong> satellited subtelocentric chromosomes. I found 5 pairs <strong>of</strong> metacentric, 2 pairs <strong>of</strong> submetacentric,<br />

and 2 pairs <strong>of</strong> satelIited subtelocentric chromosomes (Table 16).<br />

Discussion<br />

Karyotypes pr.oved to be rather uniform throughout the genus. Most species have five<br />

pairs <strong>of</strong> metacentric, two pairs <strong>of</strong> submetacentric, and two pairs <strong>of</strong> satellited subtelocentric<br />

chromosomes in the diploid chromosome sets. <strong>The</strong> most deviating karyotype was found in<br />

<strong>Anthemis</strong> altissima <strong>of</strong> A. sect. Cota, where satelIited chromosomes are submetacentric<br />

rather than subtelocentric. Following Stebbins' s (1971) classification <strong>of</strong> karyotypes with<br />

respect to interchromosomal and intrachromosomal asymmetry, ali species studied, even<br />

A. altissima, falI into class 2A. As Romero Zarco (1986) has shown usirig karyotypes <strong>of</strong><br />

representatives <strong>of</strong> Aveneae (Gramineae), Stebbins's classification is rather coarse when<br />

taxa with minute differences in karyotype asymmetry are studied. He therefore proposed a<br />

more sensitive method to assess interchromosomal and intrachromosomal asymmetry,<br />

using two indices. <strong>The</strong> results for the 24 OTUs studied are shown in Fig. 8. <strong>The</strong> x axis is<br />

formed by Romero's Al and indicates intrachromosomal asymmetry increasing from left to<br />

right, while Romero's A 2 is reported on the y axis and shows interchromosomal<br />

(karyotype) asymmetry increasing from bottom to top. In this diagram we find A. altissima<br />

welI separated from the other representatives <strong>of</strong> the genus, which is caused by the combination<br />

<strong>of</strong> low Al and high A 2 values, i.e. high intrachromosomal and low interchromosomal<br />

symmetry. A. sect. <strong>Anthemis</strong> proves to be very variable in respects to karyotype symmetry:<br />

While populations <strong>of</strong> A. confusa and A. melampodina show a pronounced intrachromosomal<br />

asymmetry, chromosomes are much more symmetrical in A. ubensis<br />

(OTU 15) and the Spanish population <strong>of</strong> A. arvensis (OTU 7), which reach the same values<br />

<strong>of</strong> intrachromosomal symmetry as A. altissima. <strong>The</strong> karyotypes <strong>of</strong> A. sect. Hiorthia are<br />

less variable in their intrachromosomal but more variable in interchromosomal symmetry.<br />

<strong>The</strong> plants <strong>of</strong> A. pedunculata (OTU 3, 4, 5) and one <strong>of</strong> A. maritima (OTU 2) falI within<br />

the range <strong>of</strong> A. sect. <strong>Anthemis</strong>, but the other population <strong>of</strong> A. maritima (OTU 1) has a<br />

karyotype with a very high interchromosomal asymmetry. <strong>The</strong> perennial representative <strong>of</strong><br />

A. subg. Cota, A. tinctoria (OTU 24), is welI nested within the group <strong>of</strong> the perennials <strong>of</strong><br />

A. subg. <strong>Anthemis</strong> (OTUs 1-5). <strong>The</strong> annuals <strong>of</strong> A. sect. Maruta, A. pseudocotula and<br />

A. cotula (OTUs 16 and 17), show rather low interchromosomal and interchromosomal<br />

asymmetry, but are stili close to the representatives <strong>of</strong> A. sect. <strong>Anthemis</strong>.<br />

According to Heywood & Humphries (1977) and Bremer & Humphries (1993), x = 9 is<br />

the commonest base number in the Anthemideae. Other base numbers occur only in a few<br />

genera. Descending dysploidy is found in Cancrinia (x = 7) <strong>of</strong> the Cancriniinae, Pentzia<br />

(x = 8, 6) <strong>of</strong> the Matricariinae, Ursinia (x = 8, 7) and Athanasia (x = 8, KalIersjo 1991) <strong>of</strong><br />

the Ursiniinae, and Artemisia (x = 9, 8, 7, 6) <strong>of</strong> the Artemisiinae. Ascending dysploidy is<br />

reported for Lasiospermum (x = 9, lO), Osmitopsis, Inezia, and Thaminophyllum (x = lO)<br />

<strong>of</strong> the Thaminophyllinae, and Hilliardia, Cotula sect. Cotula, Soliva (x = lO), Leptinella<br />

(x = 13), and Cotula sect. Strongylosperma (x = 17) <strong>of</strong> the Cotula group in Matricariinae<br />

(Bremer & Humphries 1993). Until now, approximately 280 chromosome number reports


Bocconea 9 - 1998 61<br />

had been published for <strong>Anthemis</strong> species. All indicate that the base chromosome number<br />

in this genus is x = 9 and most chromosome counts in the present study are in agreement<br />

with this assumption. <strong>The</strong> deviating counts <strong>of</strong> 2n = 19, 20, 37 reported for plants <strong>of</strong> <strong>Anthemis</strong><br />

ubensis, A. confusa, and A. pedunculata, respectively, are interpreted as resulting<br />

from aneuploid changes.<br />

Polyploidy is common in the tribe. Extensive polyploid complexes are found in Achillea<br />

(2-lOx), Artemisia (2-12x), Dendranthema (2-lOx), Leptinella (-I2x), and Leucanthemum<br />

(2-22x, Vogt 1991). Polyploid series in <strong>Anthemis</strong> are less marked, and only members<br />

<strong>of</strong> the A. eretica group reach the hexaploid (A. carpatica, Kiipfer 1974, Baltisberger 1993;<br />

A. eretica subsp. pontica, <strong>Oberprieler</strong> unpubl.) or octoploid level (A . carpatica, Kiipfer<br />

1974). Polyploidy is almost exclusively found in the perennials <strong>of</strong> A. sect. Hiorthia. Reports<br />

<strong>of</strong> polyploids in the other sections are sparse and confined to triploids in A. arvensis<br />

(Kuzmanov & al. 1981) and A. triumfetti (Gonzalez Zapatero & Elena Rossell6 1986) and<br />

one reported occurrence <strong>of</strong> a tetraploid in A. austriaca (Uitz 1970). Five N African taxa <strong>of</strong><br />

<strong>Anthemis</strong>, all members <strong>of</strong> A. sect. Hiorthia, were found to be tetraploid: A. abylaea,<br />

,17<br />

A 2<br />

,1 6<br />

20 19<br />

4----- -- -- 8<br />

,15<br />

\ 21 ./<br />

\6<br />

,14<br />

,13<br />

i<br />

2rJ!<br />

-,d<br />

~ ... ,<br />

4<br />

<br />

13<br />

'V<br />

...........................<br />

~.<br />

·········'i7.12<br />

...................<br />


62 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

A. punctata, and A. eretica subsp. columnae consistently so, A. pedunculata (present<br />

study) and A. maritima (Benedf i Gonzalez 1987) comprising both diploid and tetraploid<br />

cytotypes. All other N African representatives <strong>of</strong> <strong>Anthemis</strong> studied cytologically are<br />

diploids.<br />

Aneuploid changes in the chromosome number were observed in three N African species.<br />

Plants from two populations <strong>of</strong> <strong>Anthemis</strong> ubensis were found to have 2n = 19 chromosomes,<br />

2n = 20 chromosomes were counted in a population <strong>of</strong> A. confusa, and 2n = 37<br />

chromosomes were found in plants from a tetraploid population <strong>of</strong> A. pedunculata in Morocco.<br />

In all cases, the accessory chromosomes were metacentric or submetacentric. <strong>The</strong><br />

occurrence <strong>of</strong> aneuploidy on a diploid level contrasts with Vogt's (1991) observations on<br />

Spanish Leucanthemum, that aneuploid chromosome numbers occur only at the tetraploid<br />

and higher polyploid levels but never among diploids. Aneuploidy on a diploid level in<br />

<strong>Anthemis</strong>, however, had already been reported by Uitz (1970; A. ruthenica, 2n = 20),<br />

Kuzmanov & al. (1981; A. orbelica, 2n = 22; A. stribrnyi, 2n = 21), and Benedf i Gonzalez<br />

(1987; A. maritima, 2n = 20). Hypertetraploid chromosome numbers, found once in<br />

the present study, had been reported also by Kuzmanov & al. (1981; A. hinkovae, 2n = 39)<br />

and Kiipfer (1974; A. saxatilis, 2n = 37, 38, 39). It is plausible that ascending aneuploid<br />

changes are better tolerated than descending ones, since the gai n <strong>of</strong> an extra chromosome<br />

affects viability less ser10us than a loss (Grant 1981 : 363). Hypodiploids (monosomics or<br />

nullisomics), therefore, are unlikely to be found under natural conditions. Unlike in diploids,<br />

however, aneuploidy at higher ploidy levels may al so be due to the loss <strong>of</strong> chromosomes.<br />

Hypotetraploid numbers were reported by Benedf i Gonzalez (1987; A. saxatilis,<br />

2n = 35) and Kiipfer (1974; A. saxatilis, 2n = 35). Hypohexaploidy was found by Baltisberger<br />

(1993; A. carpatica, 2n = 53), and hypo-octoploidy by Kiipfer (1974; A. carpatica,<br />

2n = 66, 68, 70). According to Grant (1981: 363) this "polyploid drop", i.e. the loss <strong>of</strong> one<br />

or more chromosomes in a polyploid, is <strong>of</strong>ten tolerated because <strong>of</strong> the duplication <strong>of</strong> genetic<br />

material in the homologous chromosomes. Gottschalk (1976: 356) and Khush (1973:<br />

Il) explained aneuploid chromosome numbers by uneven distribution <strong>of</strong> chromosomes<br />

during mitotic or meiotic cell divisions. When non-disjunction events in the germ line <strong>of</strong><br />

somatic tissues or during meiosis affects the chromosome number <strong>of</strong> gametes, the accessory<br />

chromosome(s) will be found in alI cells <strong>of</strong> the <strong>of</strong>fspring. In higher polyploids, especially<br />

autopolyploids, the uneven distribution <strong>of</strong> chromosomes during meiosis is likely<br />

enhanced by the formation <strong>of</strong> multivalents, whereas in diploids it may be caused by distorted<br />

pairing <strong>of</strong> homologous chromosomes and the formation <strong>of</strong> univalents during meiosis,<br />

consequent to hybridisation. It is hardly a fortuitous coincidence that the two hyperdiploid<br />

chromosome numbers reported here were found in populations which belong to<br />

species likely to be <strong>of</strong> hybrid ori gin (A. ubensis) or supposedly influenced by hybridisation<br />

in the corresponding area (A. confusa).<br />

B chromosomes are accessory chromosomes that differ from the basic chromosomal<br />

complement (A chromosomes) by their smaller size, varying number, and greater degree<br />

<strong>of</strong> heterochromatisation (Stebbins 1971). <strong>The</strong>y are considered to be fragments homologous<br />

to parts <strong>of</strong> A chromosomes, and suspected to originate from them through disturbance<br />

during cell divisions, but they do not pair with the homologous A chromosomes<br />

during meiosis (Nagl 1980). B chromosomes may vary in number during ontogeny or in<br />

different tissues <strong>of</strong> the same plant and are considered to have but limited taxonomic significance<br />

(Stuessy 1990). In the present study, B chromosomes were observed in <strong>Anthemis</strong>


Bocconea 9 - 1998 63<br />

maroccana, A. melampodina, and A. pseudocotula. B chromosomes in <strong>Anthemis</strong> species<br />

had been reported previously by Yavin (1970) for A. cotula (1-2 B) and A. pseudocotula<br />

(1 B), Uitz (1970) for A. carpatica (1-4 B), Benedf i Gonzalez (1987) for A. pedunculata<br />

varo pedunculata (1 B; sub A. tuberculata varo tuberculata) and A. pedunculata subsp.<br />

turolensis (1 B; sub A. tuberculata subsp. turolensis), and Ge<strong>org</strong>iou (1990) for A. werneri<br />

subsp. werneri (1 B) and A. peregrina subsp. peregrina (1-4 B).<br />

Karyotypes were studied comprehensively in the present work. Comparable surveys<br />

were made previously only by Uitz (1970) who studied 8 and Kuzmanov & al. (1981) who<br />

studied 21 <strong>Anthemis</strong> species. Mitsuoka & Ehrendorfer (1972) also presented detailed<br />

analyses <strong>of</strong> karyotypes and furthermore studied experimental hybrids and their meiotic<br />

chromosome pairing. Uitz (1970) found prominent differences in structure and total size <strong>of</strong><br />

karyotypes among Anthemideae, in parallel to phylogenetic relationships between species,<br />

sections and genera as deduced from other characters.<br />

1,9<br />

R<br />

1,8<br />

1,7<br />

1,6<br />

1,5<br />

1,4<br />

1,3<br />

1,2<br />

52<br />

26<br />

,.+-- - - - ___ _<br />

50 ,. 46<br />

•.........../- ... .................*....<br />

.,.<br />

: i<br />

j<br />

1J/'/<br />

.'<br />

51<br />

... ~<br />

48 .... ~7<br />

.. .. u ......u .... e<br />

49<br />

23<br />

6<br />

25<br />

-----:(><br />

/~40<br />

/,/


64 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

When compared with other genera <strong>of</strong> the Anthemideae (Fig. 9, lO), the sections <strong>of</strong> <strong>Anthemis</strong><br />

cluster together due to their asymmetrical chromosomes (intrachromosomal asymmetry,<br />

Asl) and moderately bimodal karyotype (interchromosomal asymmetry, R). Most<br />

other genera have a more symmetrical karyotype, but in some representatives <strong>of</strong> Matricaria<br />

and Tanacetum even greater asymmetry is found.<br />

Some interesting patterns emerge when one compares karyotype differentiation in the<br />

different subtribes <strong>of</strong> Anthemideae, as defined by Bremer & Humphries (1993) on morphological<br />

grounds.<br />

<strong>The</strong> Chrysantheminae, which Bremer & Humphries (1993) considered to be the sister<br />

group <strong>of</strong> Anthemidinae, are represented by three genera (Fig. 9). While the perennial Argyranthemum<br />

(OTU 25) was found to have quite similar symmetry values to <strong>Anthemis</strong>, the<br />

annual Chrysanthemum (OTUs 26 and 27) and Ismelia (OTU 28) show very low intrachromosomal<br />

asymmetry.<br />

<strong>The</strong> Achilleinae, as defined by Bremer & Humphries (1993), also exhibit a considerable<br />

increase <strong>of</strong> chromosomal symmetry from perennial to annual life form (Fig. lO): <strong>The</strong><br />

perennial species <strong>of</strong> Achillea (OTUs 29 and 30) fall within the range <strong>of</strong> <strong>Anthemis</strong>, the<br />

perennial (OTU 33) and annual species (OTUs 31 and 32) <strong>of</strong> Anacyclus and the unispecific<br />

annual genus Cladanthus (OTU 37) stand apart, with Chamaemelum (OTUs 34-<br />

36) linking <strong>Anthemis</strong> to Anacyclus and exhibiting considerable intrageneric variation. Of<br />

the three Chamaemelum species studied, the perennial C. nobile (OTU 34) has the karyotype<br />

least similar to <strong>Anthemis</strong>, although Mitsuoka & Ehrendorfer (1972) reported that it is<br />

easily crossed with A. cotula, and found frequent chromosome pairing during meiosis and<br />

high pollen fertility in the resulting hybrid. <strong>The</strong>y therefore considered the two genera to be<br />

cJosely related. However, since only a single intergeneric cross was made, and bearing in<br />

mind that crossability is considered a primitive trait and the formation <strong>of</strong> reproductive<br />

barriers progressive (Funk 1985, but see discussion in Stuessy 1990: 201), crossability <strong>of</strong><br />

C. nobile and A. cotula may be a symplesiomorphic feature rather than reflecting true<br />

phy logenetic affinity.<br />

In the Leucantheminae (Fig. 9), a considerable shift is detectable from the moderately<br />

asymmetrical karyotype <strong>of</strong> the long-lived perennial Rhodanthemum (OTU 46) to the very<br />

symmetrical karyotypes <strong>of</strong> the short-lived perennials <strong>of</strong> Leucanthemum (OTU 47 and 48)<br />

and the annual Coleostephus myconis (OTU 49). Lepidophorum (OTU 50), a unispecific<br />

annual genus considered by Bremer & Humphries (1993) to be a basai member <strong>of</strong> their<br />

Leucantheminae, shows largely symmetrical chromosomes and on karyological, but also<br />

on fruit morphological grounds (Uitz 1970), may rather belong to the Chrysantheminae.<br />

Tanacetum, as the only representative <strong>of</strong> Bremer & Humphries's (1993) provisional<br />

subtribe "Tanacetinae ", was represented in Uitz's (1973) studies by three species, the<br />

perennials T. vulgare (OTU 38) and T. parthenium (OTU 39) and the annual T. annuum<br />

(OTU 40). <strong>The</strong>y show similar intrachromosomal symmetry values (Fig. lO) but differ<br />

markedly from each other in their interchromosomal asymmetry, the two perennials having<br />

a moderately to extremely symmetrical karyotype, the annual an extremely bimodal one.<br />

<strong>The</strong> same trend is noted in Bremer& Humphries's (1993) subtribe Matricariinae (Fig.<br />

lO), represented by the perennials <strong>of</strong> Tripleurospermum (OTUs 41-43) and the annuals <strong>of</strong><br />

Matricaria (OTUs 44 and 45): Tripleurospermum falls within range <strong>of</strong> <strong>Anthemis</strong>, Matricaria<br />

(at least the species M. recutita OTU 44) shows highly symmetrical chromosomes<br />

but a very asymmetrical karyotype.


Bocconea 9 - 1998 65<br />

<strong>The</strong> relatively similar karyotypes found in the predominantly perennial genera <strong>Anthemis</strong>,<br />

Achillea, Argyranthemum, Tanacetum, and Tripleurospermum led both Uitz<br />

(1970) and Mitsuoka & Ehrendorfer (1972) to consider these genera as rather centrai<br />

(basaI) within the Anthemideae. From these, progressive karyotype divergence led to<br />

mostly more symmetrical, but sometimes to more asymmetrical (e.g. Matricaria) karyotypes.<br />

This assumption is supported by morphology. <strong>The</strong> mentioned genera ali belong to<br />

different subtribes in Bremer & Humphries's (1993) classification, and it is more parsimonious<br />

to consider similarities <strong>of</strong> karyotypes as the sympiesiomorphic condition rather than<br />

suppose an independent origin <strong>of</strong> similar karyotypes from quite dissimilar ones within<br />

each subtribe. <strong>Anthemis</strong>, therefore, wouId beiong to the basaI stock <strong>of</strong> genera in the Anthemideae,<br />

showing reiations to Tanacetum as well as to Achilleinae, Chrysantheminae,<br />

and Matricariinae through their basaI genera Achillea, Argyranthemum, and Tripleurospermum,<br />

respectiveIy.<br />

2,0r--------------------------------------------------,<br />

1 ,8<br />

1,6<br />

R<br />

45<br />

+.<br />

".<br />

...........<br />

.....<br />

......... ..............<br />

............ ......<br />

...•, ......<br />

.....<br />

........<br />

40<br />

.11<br />

........<br />

.................<br />

. ...• /<br />

. ......... 44<br />

.+<br />

/36 .........<br />

............<br />

······· ..... 41<br />

.. :t><br />

............<br />

1,4<br />

37<br />

31<br />

O<br />

.....<br />

33<br />

//<br />

i<br />

34<br />

3~i<br />

56<br />

58<br />

60 62 64<br />

Fig. lO. Intrachromosomal (Asl) and interchromosomal (R) asymmetry in representatives <strong>of</strong><br />

Achilleinae (solid line; O = Achillea, O = Anacyclus, bo. = Chamaemelum, V = Cladanthus),<br />

Tanacetinae (broken line; = Tripleurospermum,<br />

+ = Matricaria). OTU numbers and data sources are expicited in Table l and 2. <strong>The</strong><br />

indices Asl and R were assessed using the formulae <strong>of</strong> Barghi & al. (1989).


66 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Indications <strong>of</strong> gross structural differences in the karyotypes <strong>of</strong> Anthemideae are very<br />

sparse. Small structural changes, along with karyotype differentiation due to hybridisation,<br />

are considered as the main mechanism underlying karyotype divergence (Mitsuoka &<br />

Ehrendorfer 1972). As Nagl & Ehrendorfer (1974) found, karyotype differentiation is<br />

more rapid in annuals than in perennials perhaps because annuals show shorter celI cycles<br />

and enhanced celI elongation, thus a more rapid development.<br />

Mitsuoka & Ehrendorfer (1972) stated that structural differentiation <strong>of</strong> chromosomes in<br />

the Anthemideae, aIready occurs at the infraspecific level. <strong>The</strong>y gave <strong>Anthemis</strong> cotula as<br />

an example <strong>of</strong> a species in which the number and formation <strong>of</strong> satellites is very variable.<br />

<strong>The</strong> same is observed in A. secundiramea where Brullo (in Bartolo & al. 1979) found a<br />

Sicilian population <strong>of</strong> A. secundiramea varo secundiramea to lack satellited chromosomes,<br />

our own material from Sicily revealed one pair, and plants <strong>of</strong> A. secundiramea var.<br />

cossyrensis from Tunisia, two pairs <strong>of</strong> satellited chromosomes. In A. arvensis subsp. incrassata,<br />

considerable differences in karyotype symmetry between N African and S Spain<br />

populations were detected in the present study.<br />

11. Pollen morphology<br />

First detailed light rnicroscopic studies <strong>of</strong> Anthemideae pollen were made by W odehouse<br />

(1926, 1935) on <strong>Anthemis</strong> cotula and Chamaemelum nobile. He described the pollen<br />

as echinate, having a co arse-granular, two-Iayered exine. <strong>The</strong> thicker inner layer appeared<br />

to him to be built <strong>of</strong> coarse radiaI striae, while the outer, much thinner layer was<br />

found to have very fine radiaI striae. He considered the exine sculpturing as a mai n difference<br />

within the tribe, with echinate pollen grains with sharply pointed spines characterising<br />

<strong>Anthemis</strong> together with other insect-pollinated genera (Leucanthemum, Chrysanthemum,<br />

Tanacetum) and non-echinate pollen grains with vesti gal or entirely absent spines<br />

being typical for wind-pollinated genera like Artemisia (Woodhouse 1935).<br />

Fig. Il. <strong>Anthemis</strong> gharbensis (Vogt 10161 & <strong>Oberprieler</strong> 4609). - A: Acetolysed pollen grain in<br />

polar view; equatorial inside diameter (E) as measured far the comparative analysis <strong>of</strong> pollen size<br />

indicated. B: Acetolysed pollen grain in equatorial view; inside length <strong>of</strong> polar axis (P) indicated.


Bocconea 9 - 1998 67<br />

Stix (1960), in her comprehensive light microscopical work on pollen morphology <strong>of</strong><br />

Compositae, described her "<strong>Anthemis</strong> type", to which she also assigned representatives <strong>of</strong><br />

Achillea, Chamaemelum, Chrysanthemum, Leucanthemum, Cotula, and Matricaria, as<br />

having a tegillate sexine. She found the inner, coarsely striate layer <strong>of</strong> the sexine to consist<br />

<strong>of</strong> rather thick and distally branched infrategillary baculae, while the outer, finely striate<br />

layer is formed <strong>of</strong> fine pila with heads mostly fused together (intertegillary baculae). Her<br />

findings were later corroborated by transmission electron microscopy (TEM) and scanning<br />

electron microscopy (SEM) (e.g. Skvarla & al. 1977, Vezey & al. 1994; the latter authors<br />

use the term "double tectum" for the outer layer <strong>of</strong> baculae which they misleadingly call<br />

"infratectal columellae", while the infrategillary baculae are called "basaI columellae").<br />

Besides the mentioned authors, pollen <strong>of</strong> <strong>Anthemis</strong> was studied by Cigurjaeva & Tereskova<br />

(1983), Benedf i Gonzalez (1987), Fedoroncuk & Savitskii (1988), and De Leonardis<br />

& al. (1991). In all species studied, pollen grains were found to be rather uniformly<br />

spheroidal, trizonocolporate and spiny, with tenuimarginate, sharply pointed colpi and<br />

lalongate, tenuimarginate, sharply pointed ora. No qualitative features were found to define<br />

subgroups. However, pollen dimensions vary markedly between species. Benedf i<br />

Gonzaléz (1987) found annual representatives <strong>of</strong> A. subg. <strong>Anthemis</strong> to have conspicuously<br />

smaller pollen than the perennial representatives <strong>of</strong> this subgenus.<br />

Vogt (1991) has demonstrated that dimensions <strong>of</strong> pollen grains are correlated with<br />

ploidy level in Leucanthemum. I therefore aimed to find out whether diploids and<br />

tetraploids in <strong>Anthemis</strong> as well can be separated by pollen measurements, i.e. whether<br />

pollen dimensions can help to assess <strong>of</strong> chromosome numbers, e.g. for types and other<br />

herbarium specimens, especially from presently inaccessible areas. For that purpose, it was<br />

thought desirable to exclude variation <strong>of</strong> exine thickness and spine length by using inside<br />

measures <strong>of</strong> equatorial diameter and length <strong>of</strong> polar axis rather than total equatori al diameter<br />

and totallength <strong>of</strong> polar axis (Fig. Il).<br />

Material and methods<br />

A total <strong>of</strong> 104 pollen samples (Table 17) were taken from herbarium specimens representing<br />

35 N African <strong>Anthemis</strong> taxa. All 25 species accepted in the present revision were<br />

included in the survey. Pollen was treated with the acetic anhydride/sulfuric acid<br />

(acetolysis) mixture <strong>of</strong>Erdtman (1960), washed with destilled water, mounted in glycerine<br />

jelly, and the slides were sealed with Paraplast. <strong>The</strong> material was studied with an Leitz<br />

Dialux 20 microscope, and measurements were made using an eyepiece micrometer.<br />

Equatorial inside diameter (E) <strong>of</strong> pollen grains was measured in polar view in at least 50<br />

grains per sample; inside length <strong>of</strong> the polar axis (P) was measured in equatorial view in at<br />

least 30 grains per sample. In both cases, the inner boundary <strong>of</strong> the nexine was used as<br />

starting and ending points for the measurements (Fig. Il).<br />

Results and discussion<br />

Pollen grains <strong>of</strong> all studied representatives <strong>of</strong> the genus were found to be uniformly<br />

spiny, spheroidal, and trizonocolporate. Dimensions <strong>of</strong> pollen grains vary conspicuously.<br />

Equatorial inside diameters (E) were found to range between 12.5 fIm and 25.4 fIm, and<br />

the inside length <strong>of</strong> polar axis (P), between 13.3 fIm and 27.5 fIm. <strong>The</strong> index <strong>of</strong> equatorial<br />

diameter and polar axis (PIE), however, was found to be fairly constant and usually falls


68 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 17. Pollen grain dimensions (mean ± standard deviation) in <strong>Anthemis</strong>. - E:<br />

Equatorial inside diameter; P: Inside length <strong>of</strong> polar axis; ploidy, when inferred<br />

fram pollen measurements, is given in square brackets.<br />

OTU specimen ploidy E (IJm) P (IJm) PIE<br />

<strong>Anthemis</strong> sect. Hiorthia<br />

A. abylaea<br />

1 Ma: Beni Hosmar, 29.6.1930, Maire (P) [4x) 19.51 t 0.92 21.15t 1.04 1.08<br />

A. eretica subsp. columnae<br />

2 Ag: Dj. Tamesguida, 6. 1890, Battandier(G) [Type <strong>of</strong> [?) 19.61 t 0.84 20.31 t 1.04 1.04<br />

A. numidica)<br />

A. maritima subsp. maritima<br />

3 Hs: Cabo Roche, Vogt 9733 & <strong>Oberprieler</strong>4181 (B) 4x [?) 18.83 t 0.69 18.86tO.61 1.00<br />

4 Tn: Cap Blanc, Vogt 13792 & <strong>Oberprieler</strong> 8097 (B) 4x 22.01 t 1.50 21 .29 t 1.27 0.97<br />

5 Ga: Col du Tende, Vogt 15352 & <strong>Oberprieler</strong> 9661 (B) 4x 20.67 t 0.55 22.36 t 1.14 1.08<br />

6 Ag: La Calle, 2.5. 1914, Clavé (G) [?) 18.18tO.73 19.38 t 0.96 1.07<br />

7 Ag: Bone, 14.5.1906, Romieux(G) [4x) 20.21 t 0.83 22.24 t 0.89 1.10<br />

8 Sa: Su Palloon, 31.5. 1983, Charpin (G) [?) 18.60t 1.50 19.57 t 1.54 1.05<br />

A. maritima subsp. bolosii<br />

9 Ag: Philippeville, 11.5. 1853, Cosson (P) [2x] 17.50t 0.62 17.68 t 0.58 1.01<br />

10 Ag: Slora, 23.6. 1930, Maire (P) [2x] 17.01 t 0.70 18.14±0.91 1.07<br />

11 Ag: Philippeville, 5. 1858, Choulette (MPU) [2x] 16.77 ± 0.67 18.50± 0.56 1.10<br />

12 Ag: Slora, 5. 1913, Battandier(MPU) [2x) 16.58 t 0.77 17.00tO.77 1.03<br />

A. maritima subsp. pseudopunctata<br />

13 ~g : Cap Aokas, 5. 1896, Reverchon (B) [Type) [?) 19.31 t 0.76 20.50 t 1.01 1.06<br />

A. pedunculata varo pedunculata<br />

14 Herb. Desfontaines (P) [Type) [2x) 16.12 t 0.62 18.99t 0.72 1.18<br />

15 Hs: Sierra Nevada (G) [4x) 19.66 ± 0.69 20.81 t 0.97 1.06<br />

16 Ag: Tiarel, Pomel (P) [Type <strong>of</strong> A. granulata) [?) 17.90 t 1.03 19.56t 1.13 1.09<br />

17 Ag: Miliana, 6. 1856, Pomel(MPU) [Type <strong>of</strong> A. tenuisecta) [2x) 17.21 t 1.07 17.97 t 0.97 1.04<br />

18 Ma: Tazzeka, 6. 1925, Maire (P) [Type <strong>of</strong> A. laeviscula) [?) 18.43 t 0.55 18.90tO.71 1.03<br />

19 Hs: Sierra Nevada (G) [Type <strong>of</strong> A. tuberculata varo [2x] 19.27tO.81 16.74 t 0.66 0.87<br />

microcephala)<br />

20 Ma: Dj. Touchka, 1876, Ibrahim (MPU) [Type <strong>of</strong> [?) 19.51 t O.71 20.07 t 0.83 1.03<br />

A. punctata varo maroccana)<br />

21 Ag: Bossuel, 6.6. 1927, Faure (MPU) [Type <strong>of</strong> [?) 18.58 t 0.86 20.13 t 0.83 1.08<br />

A. punctata varo microcepha/a)<br />

22 Hs: Sa. de los Filabres, 28.7. 1995, Rico (SALA 59886) [2x) 18.58 t 0.93 18.26 t 1.22 0.98<br />

23 Ag: Yakouren, Podlech 39294 (G) [2x) 16.37 t 0.45 16.13 t 0.55 0.99<br />

24 Ag: Aurès, Podlech 38937 (MSB) [2x] 17.75 t 0.60 18.17 t 0.57 1.02<br />

25 Ag: Tizi N'Kouilal, Podlech 39137 (MSB) [?) 18.94t 0.85 18.63 t 0.81 0.98<br />

26 Ag: Takerbouzl, Podlech 3899


Bocconea 9 - 1998 69<br />

Table 17. (continued)<br />

OTU specimen ploidy E (IJm) P (IJm) PIE<br />

42 Ma: Foum Kheneg, Vogt 9440 & Oberprie/er 3878b (B) 4x 18.44 ± 0.65 23.90± 0.93 1.30<br />

43 Ma: Tahout·ou·Fillali, Vogt 11948 (B) 4x 18.67 ± 0.87 22.39 ± 0.97 1.20<br />

44 Ma: Dj. Lekst, Vogt 11829 & Oberprie/er 6277 (B) 4x 20.47 ± 1.08 20.43 ± 1.33 1.00<br />

45 Ma: Col du Zad, Vogt 11988 (B). 4x 18.64 ± 0.75 23.50 ± 0.89 1.26<br />

46 Ma: Ain Leuh, Vogt 14949 & Oberprie/er 9258 (B) 4x 21 .12 ± 0.91 21.38 ± 0.90 1.01<br />

47 Ma: Azrou . Ilrane, Vogt 15016 & Oberprie/er 9325 (B) 4x 21 .99± 0.95 25.07 ± 1.06 1.14<br />

48 Ma: Ain Leuh, Vogt 14927 & Oberprie/er 9236 (B) 2x[4xj 20.83 ± 1.42 22.79± 1.37 1.09<br />

A. peduncu/ata var. discoidea<br />

49 Ma: Ril, Azrou, 26.6. 1926, Maire(MPU) [Type 01 [2xj 17.00 ± 0.77 16.92 ± 0.79 1.00<br />

A. peduncu/ata I. eradiata)<br />

50 Hs: Sa. de las Nieves (G) [Type) [4xj 20.24 ± 0.78 20.65 ± 0.95 1.02<br />

51 Ma: Assil·n·Arous, Grane 170 (RNG) [2xj 18.23 ± 0.94 17.99 ± 0.99 0.99<br />

A. peduncu/ata subsp. atlantica<br />

52 Ag : Dj. Tougour, Ba/ansa 967 (G) [?) 17.68± 1.08 19.54± 1.23 1.11<br />

53 Ag : Kenchala, Pome/ (MPU) [Type) [?) 18.24 ± 0.88 21.14± 1.29 1.16<br />

54 Ag: Dj. Babor, Pod/ech 39380 (MSB) [2x) 16.47 ± 1.07 16.42± 1.01 1.00<br />

55 Ag : Dj. Gouffi, 10.7.1861, Gosson (P) [2x) 16.44 ± 0.56 17.62±0.66 1.07<br />

56 Ag : Dj. Gouffi, 10.7.1861, Gosson (P) [2x) 16.42 ± 0.68 18.25± 1.00 1.11<br />

57 Ag: Dj. Babor, 20.7.1880, Gosson (P) [4x) 19.86 ± 1.26 21.64 ± 1.15 1.09<br />

58 Ag: Dj. Babor, 7.1897, Reverchon (P) [2xj 17.48 ± 0.76 18.85±0.86 1.08<br />

59 Ag: Roumel, Reboud 1677 (G) [?) 18.38 ± 0.47 19.11 ±0.72 1.04<br />

60 Ag : Oued Zenati, 27.5.1911, G/ay (P) [4xj 20.02 ± 0.92 20.94 ±0.86 1.05<br />

61 Agl Rummel, 28.5.1840, Durieu (P) [?) 18.75±0.99 19.15± 1.63 1.02<br />

62 Ag: Dj. Chelia, Pod/ech 38760 (MSB) [2xj 17.95± 1.34 18.94± 1.04 1.06<br />

63 Ag: Oued Abdi, 4.6. 1853, Gosson (P) [2xj 17.77 ± 0.85 18.44 ± 0.64 1.04<br />

64 Ag: Dj. Cheliah, 11.6.1853, Gosson (P) [4x) 21.20± 1.12 21.32 ± 0.97 1.01<br />

65 Ag: Adghar Amellal, 1.7. 1880, Gosson (P) [2x) 15.27± 0.65 16.08±0.91 1.05<br />

66 Tn: Dj. Semata, 21.5.1887, Letourneux(P) [?) 19.67 ± 0.84 20.19±0.76 1.03<br />

67 Tn: Souk el Djema, 28.5.1887, Letourneux (P) [?) 19.92 ± 0.69 20.01 ± 0.83 1.00<br />

68 Tn: Dj. Meghila, 16.5.1887, Letourneux (P) [4x] 20.63 ± 1.22 22.03± 1.25 1.07<br />

A. peduncu/ata subsp. cJausonis<br />

69 Ag: Castiglione, G/auson (MPU) (Type] [?) 18.61 ± 1.17 18.39± 1.38 0.99<br />

70 Ag: Zeralda, Battandier(MPU) [2xj 16.66 ± 0.75 17.08 ± 1.09 1.03<br />

A. peduncu/ata subsp. turo/ensis<br />

71 Hs: Beteta, Vogt 15350 & Oberprie/er 9659 (B) 2x 15.98 ± 0.53 15.72 ± 0.74 0.98<br />

A. punctata subsp. punctata<br />

72 Ag: Tamesguida, Battandier(P) [Type 01 A. punctata [?) 18.33 ± 0.70 19.03 ± 0.66 1.04<br />

varo baborensis)<br />

73 Tn: Dj. Zaghouan, Vogt 13823 & Oberprie/er 8128 (B) [?) 19.05 ± 0.68 18.10±0.71 0.95<br />

74 Tn: Dj. Dyr Vogt 12353 & Oberprie/er 6658 (B) [?) 18.67 ± 0.59 18.76± 1.11 1.00<br />

75 Ag: Mecid Sidi Aicha, 8.1880, Reboud(P) [?) 18.10±0.75 19.17 ± 0.93 1.06<br />

A. punctata subsp. kaby/ica<br />

76 Ag : Tirourda, 6.1882, Battandier[Type) [?) 18.41 ±0.67 19.24 ± 0.62 1.05<br />

77 Ag: Tala Guilel, Davis 53190 (RNG) [?] 18.73 ± 0.96 18.61 ± 1.10 0.99<br />

78 Ag : Tirourda, 7.1896, Reverchon (G) [?) 19.76 ± 0.66 20.47± 0.66 1.04<br />

79 Ag: Tirourda, 9.7. 1909, Saint-Lager(G) [2xj 17.95 ± 0.98 18.10± 1.31 1.01<br />

Anthemls sect. <strong>Anthemis</strong><br />

<strong>Anthemis</strong> ser. <strong>Anthemis</strong><br />

A. arvensis subsp. incrassata<br />

80 Ma: Tetouan, Vogt 10061 & Oberprie/er4509 (B) [2xj 16.42 ± 0.90 16.35 ± 0.69 1.00<br />

<strong>Anthemis</strong> ser. Chrysanthae<br />

A. boveana<br />

81 Ag: Oran, 9.5.1907, Faure (B) [2x) 16.83 ± 0.76 17.22 ± 0.73 1.02


70 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 17. (continued).<br />

OTU specimen ploidy E (IJm) P (IJm) PIE<br />

A. chtysantha<br />

82 Ag: Bou-Sler, Dubuis n° 10733 (MSB) [?) 18.95 ± 1.38 19.32 ± 0.86 1.02<br />

A. gharbensis<br />

83 Ma: Arbaoua, Vogi 10161 & Oberprie/er4609(8) [Type) [2x) 17.48 ± 0.88 16.93 ± 0.82 0.97<br />

A. maroccana subsp. maroccana<br />

84 Ma: Selrou, Vogt 10296 & Oberprie/er4744 (B) [2x) 16.22 ± 0.73 16.01 ± 0.65 0.99<br />

A. maroccana subsp. aguilarii<br />

85 Ma: Azib de Ktama, Font Quer441 (G) [2x) 17.04 ± 0.90 17.07±0.83 1.00<br />

A. tenuisecta subsp. tenuisecta<br />

86 Ma: Essaouira. Vogt 11930 (B) [2x) 16.75± 1.09 17.99 ± 0.99 1.07<br />

87 Ma: Tiznit, Vogi 11905 & Oberprie/er 6353 (B) [2x) 15.26 ± 1.78 16.56±2.19 1.09<br />

A. tenuisecta subsp. jahandiezii<br />

88 Ma: Sali, Jahandiez 115 (8) [2x) 15.04 ± 0.56 15.39±0.75 1.02<br />

<strong>Anthemis</strong> ser. Secundirameae<br />

A. confusa<br />

89 Tn: Gabès, Kralik 356 (G) [Type) [2x) 16.94 ± 0.97 16.44 ± 0.64 0.97<br />

90 Tn: Galsa. Vogt 12712 & Oberprie/er 7017(B) [2x) 16.22 ± 1.31 16.01 ± 1.06 0.99<br />

A. cyrenaica<br />

91 Li: Benghasi, Ruhmer 182 (GOET) [2x) 16.11 ±0.68 16.12 ± 0.67 1.00<br />

A. g/areosa<br />

92 Li: Misurata. Davis 49829 (RNG) [2x) 15.33±0.83 15.50± 0.59 1.01<br />

A. secunairamea varo secundiramea<br />

93 Tn: La Haouaria. Davis 56896 & Lamond (RNG) [?) 19.42 ± 1.45 19.90 ± 1.22 1.03<br />

A. taubertii<br />

94 Li: Baiada. Davis 49985 (RNG) [2x) 16.23± 0.72 16.00±0.69 0.99<br />

A. ubensis<br />

95 Tn: Kesra, Vogt 13524 & Oberprie/er 7829 (B) 2x 17.22± 1.22 16.56± 0.98 0.96<br />

<strong>Anthemis</strong> ser. Bourgaelnlanae<br />

A. mauritiana subsp. faurei<br />

96 Ma: Saidia, Vogi 10872 & Oberprie/er 5320 (B) 2x[?) 19.88 ± 1.04 19.89 ± 0.95 1.00<br />

A. monilicostata<br />

97 Ag: Sa"ida, 20.3.1872, Warion (G) [?) 19.58± 1.07 20.79± 1.14 1.06<br />

A. stiparum subsp. stiparum<br />

98 Ag: Allou, Pod/ech 34022 (MSB) [?) 18.67± 0.89 18.60 ± 0.75 1.00<br />

A. stiparum subsp. sabulico/a<br />

99 Ag: Ghardaia, Podlech 35529 (MSB) [2x) 17.58 ± 1.28 17.32 ± 1.19 0.99<br />

A. stiparum subsp. intermedia<br />

100 Ag: Ain Ben Khelil, Kralik n° 194 (GO ET) [Type) [2x) 16.93 ± 0.95 16.65 ± 0.98 0.98<br />

A. zaianica<br />

101 Ma: Tougroulmès, Vogt 14840 & Oberprie/er 9149 (B). 2x 18.21 ±0.93 18.04±0.94 0.99<br />

Anthemls sect. MaTuta<br />

A. cotula<br />

102 Ma: Imasinen, 13.6. 1929. Maire (P) [2x) 16.58 ± 0.75 16.17 ± 0.64 0.98<br />

A. pseudocotu/a<br />

103 Li: Timimi, Davis 50308 (RNG) [2x) 17.09±0.99 16.96± 1.02 0.99<br />

Anthemls sect. Cata<br />

A. austriaca<br />

104 Tn: Tataouine, Vogi 13151 & <strong>Oberprieler</strong> 7456 (B) [2x) 16.13±0.96 16.28 ± 0.80 1.01


Bocconea 9 - 1998 71<br />

within the range <strong>of</strong> 0.9-1.1 (see Table 17). Deviating, prolate-spheroidal pollen grains with<br />

indices <strong>of</strong> 1.2-1.3 were observed only in three tetraploid populations <strong>of</strong> <strong>Anthemis</strong> peduneulata<br />

varo peduneulata from the Middle Atlas mountains <strong>of</strong> Morocco (OTUs 42, 43, 45).<br />

Pollen size differences between diploids and tetraploids are well marked: equatorial inside<br />

diameter (E) is (12.5-)15.3-19.9(-22.5) 11m in diploids, (16.7-)18.4-22.0(-25.4) 11m in<br />

tetraploids. (Values in brackets denote the range <strong>of</strong> single pollen grains, non-bracketed<br />

values, the range <strong>of</strong> means.) <strong>The</strong> inside length <strong>of</strong> the polar axis (P) was found to be<br />

(13.3-)15.7-20.6(-22.5) 11m in diploids and (16.6-)18.1-25.1(-27.5) 11m in tetraploids. In<br />

spite <strong>of</strong> considerable overlap <strong>of</strong> values, the combination <strong>of</strong> both measures makes it possible<br />

to discriminate between diploids and tetraploids (Fig. 12). <strong>The</strong> overlap zone corresponds<br />

to three representatives <strong>of</strong> tetraploid <strong>Anthemis</strong> maritima (OTU 3) and A. punetata<br />

(OTUs 73-74) and two diploid representatives <strong>of</strong> A. peduneulata (OTU 35) and A. mauritiana<br />

(OTU 96). Within this overlap zone pollen measurements do not permit to assess<br />

with confidence the ploidy level <strong>of</strong> the OTUs. Another exceptional case is OTU 48, found<br />

to have a diploid chromosome number but whose pollen dimensions fall fully within the<br />

range <strong>of</strong> tetraploid representatives <strong>of</strong> A. peduneulata. This is explained by the fact that at<br />

the locality in question - as in many places in Morocco - one finds a mixture <strong>of</strong> diploid<br />

24<br />

23<br />

E<br />

47<br />

22 o 40 o<br />

o<br />

21<br />

20 o<br />

73 35<br />

46<br />

o 48<br />

o<br />

41 44 o<br />

o o<br />

19 o 3 o<br />

7~ 43 45<br />

o o o 42<br />

o<br />

o<br />

18 99 38 39<br />

83 00 38<br />

95 o o o<br />

o<br />

17 86<br />

o<br />

71 80 37<br />

16<br />

000<br />

15<br />

87<br />

o<br />

14 P<br />

14 16 18 20 22 24 26<br />

Fig. 12. Pollen dimensions <strong>of</strong> OTUs with known chromosome number (O diploids;<br />

= tetraploids). E = equatorial inside diameter (~m); P = inside length <strong>of</strong> polar axis (~m).<br />

Numbers <strong>of</strong> OTU s refer to numbers gi ven in Table 17.


72 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

and tetraploid plants <strong>of</strong> A. pedunculata, and the plant studied palynologically was not the<br />

same individuai studied cytologically. In the following, the range <strong>of</strong> pollen dimensions <strong>of</strong><br />

known diploids and tetraploids was used to assess ploidy levels in cytologically unchecked<br />

specimens.<br />

In contrast to Benedi i Gonzalez (1987), who had studied Spanish representatives <strong>of</strong><br />

<strong>Anthemis</strong>, I could detect no difference between pollen sizes <strong>of</strong> annual and perennial diploids.<br />

Since Benedi i Gonzalez (1987) included spines in his measurements <strong>of</strong> equatorial<br />

diameter and length <strong>of</strong> polar axis, this seerning contradiction obviously reflects differences<br />

in the thickness <strong>of</strong> the exine or the length <strong>of</strong> spine s, between the annuals and perennials.<br />

Further measurements <strong>of</strong> exine thickness and spine length in annuals and perennials <strong>of</strong><br />

<strong>Anthemis</strong> are needed to confirm this assumption. However, since the annual representatives<br />

<strong>of</strong> <strong>Anthemis</strong> are usually considered to be autogamous while the perennial representatives<br />

are allogamous, the reduction <strong>of</strong> exine thickness and, moreover, the reduction <strong>of</strong><br />

spine length in annuals is plausible.<br />

Fig. 13 displays pollen dimensions <strong>of</strong> annuals <strong>of</strong> <strong>Anthemis</strong> sect. <strong>Anthemis</strong>, sect. Maruta,<br />

and sect. Cota. AH representatives <strong>of</strong> the two latter sections and most <strong>of</strong> sect. <strong>Anthemis</strong><br />

Fig. 13. Pollen dimensions in <strong>Anthemis</strong> sect. <strong>Anthemis</strong> (O = A. ser. <strong>Anthemis</strong>; O = A. ser.<br />

Bourgaeinianae; a = A. ser. Chrysanthae; V = A. ser. Secundirameae), A. sect. Cota (


Bocconea 9 - 1998 73<br />

clearly fall within the range <strong>of</strong> typical diploids, but five OTUs are found in the overlap<br />

zone between diploids and tetraploids: A. secundiramea var. secundiramea (OTU 93) <strong>of</strong><br />

A. ser. Secundirameae, A. chrysantha (OTU 82) <strong>of</strong> A. ser. Chrysanthae, and A. mauritiana<br />

(OTU 96), A. monilicostata (OTU 97), and A. stipa rum subsp. stipa rum (OTU 98) <strong>of</strong><br />

A. ser. Bourgaeinianae. <strong>The</strong> last mentioned series seems to be characterised by distinctly<br />

larger pollen grains than most other annual representatives <strong>of</strong> the genus.<br />

In <strong>Anthemis</strong> maritima (Fig. 14), representatives <strong>of</strong> A. maritima subsp. maritima and subsp.<br />

pseudopunctata were found to fall within the pollen size range <strong>of</strong> tetraploids or in the<br />

overlap zone between diploids and tetraploids, while the four studied specimens <strong>of</strong><br />

A. maritima subsp. bolosii have conspicuously smaller pollen grains. Since this subspecies<br />

also has smaller achenes, capitula, ray florets, etc. than A. maritima subsp. maritima and<br />

subsp. pseudopunctata, it is reasonable to assume that A. maritima subsp. bolosii is a<br />

diploid taxon. Diploid chromosome numbers in A. maritima have been indicated by<br />

Benedf i GonzaIez (1987) from Menorca (Balearic Islands) and by Harling (1950) and<br />

Mitsuoka & Ehrendorfer (1972) for plants <strong>of</strong> unstated provenance.<br />

24<br />

23<br />

E<br />

22<br />

o<br />

21<br />

20<br />

o<br />

7<br />

o<br />

19<br />

o<br />

18<br />

17<br />

12<br />

o<br />

o<br />

10<br />

o 11<br />

o<br />

16<br />

15<br />

14<br />

14 16<br />

18<br />

20<br />

22<br />

p<br />

24 26<br />

Fig. 14. Pollen dimensions in <strong>Anthemis</strong> maritima subsp. maritima (O), subsp. bolosii CO), and<br />

subsp. pseudopunctata (L::.).E = equatorial inside diameter (Jlm); P = inside length <strong>of</strong> polar axis<br />

(Jlm). Dotted lines delimit the area <strong>of</strong> overlap between diploid (bottom left) and tetraploid (top<br />

right) OTUs (see Fig. 12).


74 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Fig. 15 and Fig. 16, plotting pollen dimensions found in the perennial <strong>Anthemis</strong> pedunculata<br />

- A. punctata complex and A. eretica subsp. columnae, suggest ploidy levels for<br />

some <strong>of</strong> the studied herbarium specimens. As found by cytological study, A. pedunculata<br />

varo pedunculata is represented by diploids and tetraploids. <strong>The</strong> type specimens <strong>of</strong><br />

A. pedunculata (OTU 14) and A. tuberculata varo microcephala (OTU 19) definitively fall<br />

within the group <strong>of</strong> diploids by their pollen size. <strong>The</strong> type specimens <strong>of</strong> A. granulata<br />

(OTU 16), A. laeviuscula (OTU 18), A. punctata varo maroccana (OTU 20), and<br />

A. punctata varo microcephala (OTU 21) were found to have intermediate pollen dimerisions,<br />

so that no suggestion on their ploidy level is possible. A specimen from the Sierra<br />

Nevada (OTU 15), labelled as "neotype" <strong>of</strong> A. tuberculata by Benedf i Gonzalez in 1984<br />

(but not designated neotype in Benedf i Gonzalez 1987), has rather large pollen suggesting<br />

tetraploidy. No concrete data on tetraploidy in Spanish representatives <strong>of</strong> A. pedunculata<br />

(= A. tuberculata) yet exist, but counts for this taxon are very scarce (Aparicio & Silvestre<br />

1985, BIanché & al. 1985, Benedf i Gonzalez 1987), and further cytological studies <strong>of</strong><br />

Spanish plants may welI yield similar results as for Morocco, where both cytotypes were<br />

found to grow side by side in most populations studied. <strong>The</strong> same may apply for A. pedunculata<br />

varo discoidea, since the pollen dimensions <strong>of</strong> the type <strong>of</strong> that name from the Sierra<br />

24<br />

23<br />

E<br />

.. ........•.<br />

..................... ..<br />

34<br />

°<br />

22 '. '.<br />

21<br />

20<br />

19<br />

18<br />

17<br />

......<br />

..................<br />

............•...........<br />

...............................<br />

~"<br />

...... ......•..<br />

.........<br />

41 44<br />

..... ° 050<br />

······6.7 o 60<br />

i~ .. 1!f<br />

o" ;~?<br />

21 °<br />

..... ~28 61<br />

··.... 2J9 . ..... ........<br />

53<br />

"<br />

40<br />

°<br />

sa<br />

"<br />

57<br />

"<br />

48<br />

°<br />

43<br />

............•. °<br />

......<br />

45<br />

° 42<br />

°<br />

47<br />

°<br />

16<br />

15<br />

14<br />

14<br />

65<br />

" " ~ ......... .<br />

16 18 20<br />

.......<br />

........<br />

....•.<br />

22<br />

... ....<br />

..........<br />

24<br />

p<br />

.......<br />

26<br />

Fig. 15. Pollen dimensions in <strong>Anthemis</strong> pedunculata varo pedunculata (O), varo discoidea (O),<br />

subsp. atlantica (..6.), subsp. clausonis (V), and subsp. turolensis (


Bocconea 9 - 1998 75<br />

de Grazalerna in S Spain (OTU 50), also fall within the range <strong>of</strong> the tetraploids, aIthough<br />

no tetraploid chrornosome count yet exists for this taxon, ali its studied Moroccan representatives<br />

being unequivocally diploid. Pollen dirnensions suggest that A. pedunculata<br />

subsp. atlantica (OTUs 52-68) similarly occurs on two ploidy levels, but ali representatives<br />

<strong>of</strong> A. pedunculata subsp. clausonis (OTUs 69-70) and subsp. turolensis (OTU 71)<br />

fall within the pollen size range <strong>of</strong> the diploids, which in the latter case confirrns the results<br />

<strong>of</strong> cytological studies by Benedf i Gonzalez (1987) and rnyself.<br />

In <strong>Anthemis</strong> punctata, A. abylaea, and A. eretica subsp. columnae, even in plants suspected<br />

to be tetraploid due to their morphological characteristics, or known to be tetraploid<br />

(OTUs 73-74), pollen dimensions did not normally reach the dimensions typical for<br />

tetraploids, but fell within the overlap zone between diploids and tetraploids, or even within<br />

diploid values (OTU 79). Obviously, pollen dirnensions are not unrestrictedly comparab1e<br />

between different species groups <strong>of</strong> <strong>Anthemis</strong>.<br />

24<br />

23<br />

E<br />

.......•.<br />

.. ...•.<br />

....<br />

22<br />

21<br />

20<br />

19<br />

.......<br />

.... ......<br />

.......•. .....<br />

73<br />

..•..•. ....<br />

........ 78<br />

2 ...<br />

v ··· ....... o<br />

..........<br />

................•.<br />

18<br />

o<br />

.............................•<br />

17<br />

......•.<br />

.....<br />

16<br />

.....•.<br />

15<br />

14<br />

14<br />

16<br />

18<br />

20<br />

22<br />

24<br />

p<br />

26<br />

Fig. 16. Pollen dimensions in <strong>Anthemis</strong> abylaea (O), A. eretica subsp. columnae (V), A. punctata<br />

subsp. punctata (O), and subsp. kabylica (.D.). E = equatorial inside diameter (flm); P = inside<br />

length <strong>of</strong> polar axis (flm) . Dotted lines delimit area <strong>of</strong> overlap between diploid (bottom left) and<br />

tetraploid (top right) OTUs (see Fig. 12).


76 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

12. Species delimitation in tbe <strong>Anthemis</strong> boveana group<br />

<strong>The</strong> <strong>Anthemis</strong> boveana group, together with the more remote species A. chrysantha,<br />

forms A. ser. Chrysanthae within sect. <strong>Anthemis</strong>, being characterised by the yellow colour<br />

<strong>of</strong> the ray florets and endemic to the W Mediterranean region. While A. chrysantha is<br />

restricted to the surroundings <strong>of</strong> Oran (Algeria) and Cartagena (Spain), the A. boveana<br />

group - formerly treated as a single species, A. boveana - is also found in the vicinity <strong>of</strong><br />

Oran but is furthermore scattered throughout Morocco, especially in the N and W parts <strong>of</strong><br />

the country. <strong>The</strong> species group varies considerably throughout its range, which has led to<br />

the description <strong>of</strong> several species, varieties and forms. Gay (in Bory & Durieu 1848-1850)<br />

described A. boveana from the coastal areas around Oran. Ball (1873: 365) added<br />

A. tenuisecta from the N foothills <strong>of</strong> the High Atlas S <strong>of</strong> Marrakech in Morocco. Battandier<br />

& Pitard (in Pitard 1918, 1931) considered plants collected in the surroundings <strong>of</strong> Fès<br />

in N Morocco to be rather similar to A. boveana but distinct enough to deserve the status<br />

<strong>of</strong> a new species, A. maroccana. Maire (1923) found it impossible to separate the Moroccan<br />

taxa from the Algerian ones on the specific level and, together with his new<br />

A. boveana varo jahandiezii, treated them as varieties <strong>of</strong> A. boveana. Further infraspecific<br />

taxa were added by Maire & Sennen (in Maire 1933: A. boveana varo aguilarii) to accornrnodate<br />

plants from the Rif mountains, and Maire (in Jahandiez & Maire 1934:<br />

A. boveana [varo tenuisecta] f. elongata) for deviating populations in the F6ret de la<br />

Mamora near Rabat. Anticipating the result presented here, the latter taxon was raised to<br />

specific'rank by <strong>Oberprieler</strong> (1994) as A. gharbensis.<br />

To assess morphological variability within and between populations <strong>of</strong> the <strong>Anthemis</strong><br />

boveana group and to assist in defining taxonomic limits, numerical techniques were used.<br />

Additionally, attention was paid to qualitative morphological and anatomical features <strong>of</strong><br />

the achene, which are known to be <strong>of</strong> considerable importance for taxon delimitation in<br />

this group.<br />

Material and methods<br />

33 specimens (OTUs) representative <strong>of</strong> the entire morphological and geographical<br />

range <strong>of</strong> the <strong>Anthemis</strong> boveana group (Table 18) were measured or scored for 26 morphological<br />

characters (Table 19, Fig. 17). <strong>The</strong> OTUs were either single herbarium specimens<br />

or sets <strong>of</strong> duplicates from the same gathering. On each specimen 3-10 measurements<br />

were made for each character, the results averaged, and the mean values used in the .<br />

multivariate analysis (Table 20). Principal component analysis (PCA) was performed<br />

using the SPSS FOR WINDOWS s<strong>of</strong>tware package. Missing values (marked by a question<br />

mark in Table 20) were replaced by the mean value <strong>of</strong> ali other OTUs for the corresponding<br />

character.<br />

Results and discussion<br />

Principal component analysis (PCA) based on the complete data set (Table 20) yielded<br />

six components with eigenvalues higher than 1, accounting for 77.6 % <strong>of</strong> the total variance<br />

in the data set. Loadings <strong>of</strong> characters on the first three components, which explain 58.8 %<br />

<strong>of</strong> the total variance, are presented in Table 21. <strong>The</strong> frrst principal component (PC 1; 28.6<br />

% <strong>of</strong> the total variance) is dominated by variables describing the dimensions <strong>of</strong> involucres<br />

(invol, oibl, mibl, iibl), ray and disc florets (rayl, rayw, discl, discm), and the shape <strong>of</strong> pale


Bocconea 9 - 1998 77<br />

Table 18. OTUs used in the multivariate analysis <strong>of</strong> the <strong>Anthemis</strong> boveana<br />

group.<br />

No.<br />

Location<br />

Specimen<br />

A. boveana<br />

1 Ag: Oran, au Cagneret.<br />

2 Ag: Oran, Cap Canastel, 100 m.<br />

3 Ag : Broussailles avoisinant le pont de la Macta.<br />

4 Ag: Pelouses rocailleuses à Gambetta.<br />

5 Ag: Oran.<br />

6 Ag : Oran, au Cagneret.<br />

7 Ag: Canastel, près Oran.<br />

8 Ag: [ ... ) ad promontorium Canastel, 100 m.<br />

A. maroccana subsp. aguilé!rii<br />

9 Ma: Alias Rifain, Azib de Ketama, 1600 m.<br />

10 Ma: Rif SW: Suberain de Rhomara, 1450 m.<br />

11 Ma: Atlas Rifain, à Isaguen, 1650 m.<br />

A. maroccana subsp. maroccana<br />

12 Ma: Middle Atlas, Massif du Kandar S Sefrou.<br />

13 Ma: Meknès, vers D'Khissa, bords des champs.<br />

14 Ma: entre Kasbet el Hadjeb et Dar Ca'id Ito.<br />

15 Ma: In lapidosis calcareis prope jugum Zegotta.<br />

A. gharbensis<br />

16 Ma: Casablanca.<br />

17 Ma: Mamora, 5km N Sidi-Allal-Bahraoui.<br />

18 Ma: Mamora.<br />

19 Ma: La Mamora.<br />

20 Ma: Mamora, Sidi-Allal-el-Babraui.<br />

21 Ma: Rharb, Arbaoua - Moulay Bousselham.<br />

22 Ma: C. El Araix.<br />

23 Ma: circa Tingidem: Charf-el-Agab.<br />

A. tenuisecta subsp. jahandiezii<br />

24 Ma: entre l'Oued Tensift & Souk et Tleta.<br />

25 Ma: Safi.<br />

A. tenuisecta subsp. tenuisecta<br />

26 Ma: Djebileh, au N de Marrakech.<br />

27 Ma: c. 10km N Tamri.<br />

28 Ma: Safi, Tamanar, loco dicto Tamri.<br />

29 Ma: 6 km S Ait-ou-Mribeta.<br />

30 Ma: 15 km N Tiznit.<br />

31 Ma: c. 14.3 km N Tiznit.<br />

32 Ma: route d'Agadir à Tiznit.<br />

33 Ma: à l'embouchure de l'O. Massa.<br />

9/30 May 1907, Faure (B)<br />

Maire n° 7489 (B)<br />

Balansa n° 13 (GOET; P; G)<br />

13 May 1909, Faure (G)<br />

May 1889, s. coli. (Herb. Girod) (G)<br />

9/30 May 1907, Faure (G)<br />

13 May 1936, Faure (G)<br />

23 Apr 1934, Maire (B, G)<br />

20 Jun 1934, Sennen & Mauricio n°<br />

9406 (MPU-AtN, G)<br />

11 Jul 1959, Sauvage (MPU-AfN)<br />

6 Ju11932, Sennen & Mauricio (MPU-AfN)<br />

Vogt 10296 & <strong>Oberprieler</strong>4744 (B)<br />

Jahandiez 159 (G)<br />

Benoist 550 (P)<br />

21 Apr 1926, Maire (P)<br />

May 1887, Méllerio (P)<br />

Podlech 43489 (MSB, G)<br />

15 May 1939, Sauvage (MPU-Sauvage)<br />

23 Apr 1928, Braun-Blanquet (MPU­<br />

Braun-Blanquet)<br />

Vogt 10259 & <strong>Oberprieler</strong> 4707 (B)<br />

Vogt 10161 & <strong>Oberprieler</strong> 4609 (B)<br />

Font Quer n° 666 (G)<br />

27 Apr 1924, Maire (MPU-AfN, P, G)<br />

Romieux 1348 (G)<br />

Jahandiez 115(B, G)<br />

21 Apr 1921, Wilczek(G)<br />

Vogt 11930 (B)<br />

Fernandez Casas & al. 9171 (B, G)<br />

Podlech 42958 (MSB)<br />

Podlech 45076 (MSB)<br />

Vogt 11905 & <strong>Oberprieler</strong> 6353 (B)<br />

Maire & Wilczek 551 (G)<br />

Sauvage 3998 & al. (MPU-Sauvage)<br />

tips (pa\et), whereas PC 2 (21.1 % <strong>of</strong> total variance) is dominated by variabIes describing<br />

the Iength/width ratio <strong>of</strong> invo\ucral bracts (oibi, mibi, iibi) and Ieaves (Ieafi), and the number<br />

<strong>of</strong> ray florets (rayno). On PC 3, which exp\ains onIy 9.0 % <strong>of</strong> the total variance (and


78 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

therefore strongly falls back behind the first two principal components), there are only few<br />

variables with high loadings describing length and shape <strong>of</strong> ultimate leaf segments (ulsl,<br />

ulsi) and dimensions <strong>of</strong> achenes (acheI, achew).<br />

Table 19. Characters used in the numerical analysis <strong>of</strong> the <strong>Anthemis</strong> boveana<br />

group (Ieafl and coron not used) and the A. punctata - A. pedunculata complex<br />

(rayw and discm omitted). See Fig. 17 for details <strong>of</strong> measurements.<br />

Symbol<br />

Leaves<br />

leafl<br />

leafi<br />

ulsl<br />

ulsi<br />

Capitula<br />

invol<br />

rayno<br />

Characters (unit <strong>of</strong> measure / character states)<br />

length <strong>of</strong> basai leaves (m m)<br />

length-width ratio <strong>of</strong> basalleaves (Ieafl / leafw)<br />

length <strong>of</strong> ultimate leaf segments <strong>of</strong> basalleaves (mm)<br />

length-width ratio <strong>of</strong> ultimate leaf segments <strong>of</strong> basalleaves (ulsl / ulsw)<br />

diameter <strong>of</strong> involucrum (mm)<br />

number <strong>of</strong> ray florets per capitulum<br />

Involucral bracts<br />

oibl length <strong>of</strong> outer involucral bracts (mm)<br />

oibi length-width ratio <strong>of</strong> outer involucral bracts (oibl /oibw) .<br />

oibs shape <strong>of</strong> outer involucral bracts (1 = ovate, 2 = elliptical, 3 = obovate)<br />

mibl length <strong>of</strong> middle involucral bracts (mm)<br />

mibi length-width ratio <strong>of</strong> middle involucral bracts (mibl / mibw)<br />

mibs shape <strong>of</strong> middle involucral bracts (1 = ovate, 2 = elliptical, 3 = obovate)<br />

iibl length <strong>of</strong> inner involucral bracts (mm)<br />

iibi length-width ratio <strong>of</strong> inner involucral bracts (iibi / iibw)<br />

iibs shape <strong>of</strong> inner involucral bracts (1 = ovate, 2 = elliptical, 3 = obovate)<br />

Pales<br />

palel<br />

palei<br />

pales<br />

palet<br />

length <strong>of</strong> pales (mm)<br />

length-width ratio <strong>of</strong> pales (pale I / palew)<br />

shape <strong>of</strong> outer pales (1 = ovate, 2 = elliptical, 3 = obovate)<br />

shape <strong>of</strong> tip <strong>of</strong> pales (1 = tricuspidate, 2 = acute, 3 = acuminate, 4 = blunt,<br />

5 = emarginate)<br />

Ray florets<br />

rayl length <strong>of</strong> ray florets, including tubular part (mm)<br />

rayw width <strong>of</strong> ray florets (m m)<br />

rayi length-width ratio <strong>of</strong> ray floret limbs (raylb / rayw)<br />

Disc florets<br />

discl totallength <strong>of</strong> disc florets (mm)<br />

disci ratio totallength / basai part <strong>of</strong> disc florets (discl / discb)<br />

discm length <strong>of</strong> distai appendages <strong>of</strong> corolla lobes (mm)<br />

Achenes <strong>of</strong> peripheral disc florets<br />

achei length <strong>of</strong> achenes, eXcluding corona (m m)<br />

achew width <strong>of</strong> achenes (mm)<br />

coron maximal length <strong>of</strong> corona (mm)


Bocconea 9 - 1998<br />

79<br />

leafl<br />

lulsw<br />

r11(f\mmm<br />

1 2 3 4 5<br />

palet<br />

coron<br />

acheI<br />

Fig. 17. Measurements made for the numerical analysis <strong>of</strong>the <strong>Anthemis</strong> boveana group and the<br />

A. pedunculata - A. punctata complex (Table 19).


80 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 20. Data far the multivariate analysis af the <strong>Anthemis</strong> boveana group<br />

(character symbals are explained in Table 19 and Fig. 17).<br />

OTU lesti ulsl ulsl Invol rayno olbl olbl oibs mlbl mlbl mibs iibl iibi<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

1.80 1.90 2.80 9.17<br />

1.70 2.00 2.80 10.33<br />

2.10 2.20 3.50 9.67<br />

1.70 2.50 3.80 10.67<br />

1.90 3.10 4.30 10.00<br />

1.70 2.40 2.70 10.83<br />

1.70 1.90 2.60 10.33<br />

8 2.40 2.30 2.40 11 .67<br />

9 2.20 1.60 3.10 9.10<br />

10 1.60 2.00 2.60 8.33<br />

11 2.20 1.80 3.00 8.00<br />

12 1.60 2.10 2.80 11 .00<br />

13 1.90 2.50 4.80 10.33<br />

14 2.30 1.90 3.20 9.83<br />

15 1.90 1.70 3.40 10.83<br />

16 2.50 1.60 3.10 8.77<br />

17 2.50 2.10 3.60 8.50<br />

18 3.20 1.80 3.20 8.93<br />

19 2.90 2.10 3.30 9.00<br />

20 2.40 2.20 3.80 9.23<br />

13.00 3.17 2.50 1.17 4.13 2.70 2.50 4.10 2.68<br />

13.33 3.70 3.00 1.50 4.80 2.47 2.67 4.70 2.59<br />

12.33 2.90 2.67 1.00 4.67 3.21 2.33 4.27 3.43<br />

13.33 3.00 2.41 1.00 4.00 3.20 1.67 4.10 2.93<br />

14.00 3.27 2.80 1.00 3.97 2.70 1.83 4.20 2.99<br />

11 .673.272.651 .174.272.77 2.17 3.93 2.89<br />

10.00 2.73 2.16 1.17 3.77 2.06 2.00 3.90 2.29<br />

12.33 3.47 2.45 1.17 4.47 2.51 2.17 4.93 2.25<br />

? 2.57 3.69 1.17 3.17 2.78 1.83 3.83 2.68<br />

9.00 2.203.161.172.933.042.172.803.11<br />

7.00 1.50 2.14 1.00 2.60 2.17 2.00 2.80 2.80<br />

13.67 3.30 3.53 1.50 4.60 3.39 2.33 4.30 3.61<br />

13.00 2.90 3.33 1.33 3.43 3.55 2.17 3.37 3.63<br />

13.00 2.03 2.19 1.00 3.80 2.95 2.00 3.97 2.79<br />

13.00 2.97 3.41 1.17 3.83 3.30 1.67 4.20 3.25<br />

12.33 2.67 3.41 1.50 3.07 3.44 1.83 3.50 3.83<br />

12.67 2.13 3.32 1.33 2.87 3.22 1.67 3.13 3.37<br />

12.33 2.27 3.70 1.17 2.87 3.19 1.50 3.23 4.10<br />

13.00 2.60 3.30 1.75 3.90 3.55 2.00 3.65 3.85<br />

12.00 2.63 3.45 1.33 3.27 3.40 1.83 3.13 3.78<br />

21 2.40 2.10 3.20 9.67 13.67 3.07 4.29 1.17 3.57 4.19 1.50 3.80 4.40<br />

22 2.30 1.90 2.90 9.33 12.00 2.80 3.48 1.17 3.47 3.26 2.50 3.17 3.97<br />

23 2.10 2.50 3.80 11.00 13.50 3.00 3.75 1.25 3.40 3.57 2.00 3.80 3.15<br />

24 1.70 2.00 3.10 9.00 13.00 2.25 2.65 1.25 3.25 2.72 2.25 3.35 3.71<br />

25 1.60 1.80 3.80 7.07 12.33 2.33 3.07 1.33 3.20 3.51 2.00 2.73 4.04<br />

26 1.60 1.60 3.20 6.50 8.00 1.75 1.86 1.75 2.40 2.21 2.00 2.60 2.91<br />

27 1.40 2.60 4.30 8.67 7.33 2.43 2.97 1.33 2.77 2.87 2.00 2.97 3.31<br />

28 1.50 2.70 4.20 7.00 7.33 1.73 2.54 1.1 7 2.37 3.10 2.1 7 2.20 2.75<br />

29 1.30 1.90 2.60 6.50 5.67 2.73 2.85 1.83 3.07 2.97 2.00 2.90 3.48<br />

30 1.90 1.80 2.40 6.40 7.00 2.03 2.46 1.1 7 2.67 2.50 2.00 2.63 2.76<br />

31 1.30 2.50 3.70 7.37 7.33 2.93 3.28 1.33 3.17 3.19 2.17 3.23 3.52<br />

32 1.70 1.80 2.80 9.17 10.00 2.27 2.92 1.50 2.83 3.18 1.83 3.27 4.12<br />

33 1.30 2.20 4.70 6.50 7.00 2.37 2.99 1.33 2.93 3.04 2.00 2.93 3.40<br />

<strong>The</strong> resulting arrangement <strong>of</strong> OTUs in the two-dimensional factor space <strong>of</strong> PC 1 : PC 2<br />

and PC 1 : PC 3 is shown in Fig. 18-19. It shows a go od correlation <strong>of</strong> morphological<br />

variation and geographical origino With the exception <strong>of</strong> <strong>Anthemis</strong> boveana varo jahandiezii<br />

(OTUs 24-25), variation is found to be much smaller within groups <strong>of</strong> specimens<br />

from the same area than between these groups. This supports the assumed morphological<br />

distinctness <strong>of</strong> the taxa as here circumscribed.<br />

In terms <strong>of</strong> PC 1, major differences were found between the Algerian populations <strong>of</strong><br />

<strong>Anthemis</strong> boveana (OTUs 1-8) on the one hand and the W and N Moroccan populations <strong>of</strong><br />

A. gharbensis (OTUs 16-23), A. tenuisecta (OTUs 26-33), A. boveana varo aguilarii


Bocconea 9 - 1998<br />

81<br />

Table 20 (continued).<br />

iibs palel palei pales palet rayl rayw rayi discl disci discm achei achew OTU<br />

2.83 3.33 3.42 3.00 2.00 9.37 4.07 1.91 2.87 1.73 0.24 1.27 0.78<br />

2.83 3.33 3.63 2.17 2.17 11 .80 3.77 2.68 3.33 1.89 0.28 1.27 0.76 2<br />

2.67 3.20 3.70 2.67 2.00 9.67 4.07 2.02 2.93 2.17 0.29 1.13 0.72 3<br />

2.83 3.83 2.95 2.83 2.33 9.93 3.87 2.06 3.27 1.75 0.19 1.33 0.78 4<br />

2.50 3.47 3.74 2.50 2.00 9.23 3.53 2.15 3.10 1.94 0.18 1.31 0.61 5<br />

2.50 3.80 3.64 2.00 2.00 9.27 3.53 2.10 3.27 1.69 0.26 1.18 0.87 6<br />

2.83 3.53 2.49 2.33 2.00 13.57 5.17 2.14 3.60 1.72 0.21 1.25 0.69 7<br />

2.67 3.77 2.83 2.67 2.83 15.17 6.70 1.91 3.50 1.78 0.24 1.33 0.85 8<br />

2.17 3.20 4.06 2.50 2.83 7.43 3.77 1.59 3.10 2.27 0.19 1.80 1.00 9<br />

2.33 3.50 4.81 2.33 2.50 5.10 2.77 1.42 3.17 2.07 0.13 1.85 1.03 10<br />

2.00 3.60 4.00 2.50 3.00 6.70 3.70 1.49 3.50 2.33 0.25 1.85 1.05 11<br />

2.50 3.57 4.80 2.17 3.00 8.17 4.30 1.52 3.27 2.01 0.21 1.57 0.87 12<br />

2.33 3.50 5.00 2.00 3.00 10.37 4.07 2.00 3.47 1.96 0.23 1.58 0.82 13<br />

2.67 3.40 5.40 2.50 2.17 8.03 3.50 1.81 3.03 2.17 0.25 1.80 0.78 14<br />

2.50 3.70 5.64 2.00 2.50 6.80 3.07 1.78 2.87 2.15 0.23 1.52 0.83 15<br />

2.00 3.07 6.33 2.17 3.83 7.87 3.00 2.10 2.30 2.88 0.12 1.17 0.55 16<br />

2.33 3.17<br />

2.33 3.30<br />

2.25 3.45<br />

2.00 3.73<br />

2.17 3.57<br />

3.00 3.03<br />

3.00 3.65<br />

2.50 2.95<br />

5.04 2.17<br />

5.25 2.50<br />

4.93 2.50<br />

5.33 2.17<br />

7.07 2.00<br />

5.37 2.33<br />

4.89 2.00<br />

4.52 2.25<br />

2.17 2.47 5.77 2.00<br />

3.00 2.80 2.96 3.00<br />

2.50 2.77 4 .15 2.00<br />

2.50 2.13 3.39 2.50<br />

2.67 3.10 3.96 2.33<br />

2.67 2.93 4.06 2.17<br />

2.33 3.43 4.13 2.50<br />

2.17 3.33 4.79 2.00<br />

2.33 2.97 4.71 2.17<br />

3.83 8.70 3.43 2.05 2.83 1.98 0.13<br />

3.50 9.27 3.90 1.89 2.67 2.06 0.15<br />

4.00 12.35 3.95 2.72 2.75 2.12 0.14<br />

3.33 8.57 3.50 2.02 2.90 2.03 0.14<br />

4.50 9.73 4.07 1.95 3.23 1.87 0.17<br />

4.67 9.83 3.63 2.24 2.70 2.29 0.13<br />

3.75 10.25 4.05 2.19 2.60 2.38 0.16<br />

3.25 10.25 4.40 1.96 2.60 2.00 0.19<br />

1.35<br />

1.20<br />

?<br />

?<br />

1.23<br />

1.40<br />

?<br />

1.38<br />

0.51<br />

0.58<br />

?<br />

?<br />

0.57<br />

0.65<br />

?<br />

0.75<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

3.17 6.40 2.57 1.99 2.17 2.17 0.15 ? ? 25<br />

3.50 5.45 3.35 1.27 2.60 2.08 0.20 1.02 0.68 26<br />

3.67 6.83 3.80 1.46 2.57 1.84 0.18 1.27 0.71 27<br />

3.00 5.37 3.27 1.28 2.17 1.91 0.20 1.05 0.65 28<br />

3.67 6.10 3.23 1.52 2.60 2.11 0.13 1.21 0.67 29<br />

3.17 6.43 3.47 1.53 2.57 1.93 0.15 1.13 0.66 30<br />

3.00 7.23 3.37 1.80 2.70 1.80 0.13 1.22 0.69 31<br />

3.00 7.87 4.90 1.28 2.87 1.88 0.14 1.18 0.71 32<br />

3.00 7.30 3.80 1.60 2.03 1.98 0.15 1.27 0.65 33<br />

(OTUs 9- l l), and var. jahandiezii (OTUs 24-25) on the other hand, specimens from C<br />

Morocco assigned to A. maroccana (OTUs 12-15) forming a transitional cluster between<br />

the two groups. Variable loadings on PC 1 indicate that this pattern mainly results from<br />

differences in size <strong>of</strong> involucres, ray and disc tlorets, and shape <strong>of</strong> tips <strong>of</strong> paleso PC 2<br />

mainly contributes to the dismembering <strong>of</strong> the W & N Moroccan taxa, resulting in a<br />

marked polarity between the NW Moroccan A. gharbensis and the SW Moroccan<br />

A. tenuisecta. A. boveana var. jahandiezii forrns a transitional cluster between the two<br />

taxa. A. boveana var. aguilarii falls within the range <strong>of</strong> A. tenuisecta on PC 1 and PC 2,<br />

but is conspicuously set <strong>of</strong>f from the latter in terms <strong>of</strong> PC 3, due to differences in achene


82 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 21. Variable loadings on PC 1 to PC 3<br />

<strong>of</strong> principal component analysis (PCA) <strong>of</strong> the<br />

<strong>Anthemis</strong> boveana group (character symbols<br />

are explained in Table 19 and Fig. 17).<br />

Dominating loadings on each principal component<br />

are shown in bold-face type.<br />

Character<br />

PC 1<br />

PC2<br />

PC3<br />

leafi<br />

ulsl<br />

ulsi<br />

invol<br />

rayno<br />

oibl<br />

oibi<br />

oibs<br />

mibl<br />

mi bi<br />

mibs<br />

iibl<br />

iibi<br />

iibs<br />

palel<br />

palei<br />

pales<br />

palet<br />

rayl<br />

rayw<br />

rayi<br />

discl<br />

disci<br />

discm<br />

achei<br />

achew<br />

-.003<br />

.244<br />

-.294<br />

.747<br />

.354<br />

.649<br />

- .331<br />

-.365<br />

.817<br />

-.392<br />

.377<br />

.840<br />

- .592<br />

.476<br />

.593<br />

- .555<br />

.302<br />

-.654<br />

.699<br />

.613<br />

.383<br />

.751<br />

- .464<br />

.733<br />

.290<br />

.338<br />

.560<br />

.117<br />

.146<br />

.519<br />

.640<br />

.494<br />

.749<br />

.076<br />

.388<br />

.762<br />

-.242<br />

.391<br />

.600<br />

-.254<br />

.417<br />

.661<br />

-.443<br />

.378<br />

.461<br />

.080<br />

.666<br />

.077<br />

.228<br />

-.229<br />

- .498<br />

- .564<br />

.418<br />

-.549<br />

-.452<br />

.157<br />

- .176<br />

- .184<br />

.180<br />

-.243<br />

- .122<br />

- .033<br />

- .356<br />

.102<br />

.070<br />

- .397<br />

.342<br />

.315<br />

- .051<br />

.058<br />

- .093<br />

.088<br />

-.266<br />

.402<br />

.274<br />

.048<br />

.573<br />

.509<br />

dimensions and length and form <strong>of</strong> ultimate leaf segments.<br />

An even clearer picture <strong>of</strong> the relations between the taxa in the <strong>Anthemis</strong> boveana<br />

group emerges when qualitative characters are taken into consideration. A conspicuous<br />

difference between the Algerian and Moroccan representatives <strong>of</strong> this group concerns the<br />

tip <strong>of</strong> the paleso A. boveana from Algeria has pales with cuspidate tips formed by the<br />

protruding midrib; plants from the Moroccan populations, even the somewhat intermediate<br />

A. maroccana, have pales with acute to blunt or even emarginate, translucent, yellow<br />

tinged, and somewhat hooded tips which are never formed by the midrib <strong>of</strong> the paleso<br />

Since the sister taxon <strong>of</strong> the A. boveana group, A. chrysantha, possesses pales with cuspidate<br />

tips, there is go od reason to assume the yellow and hooded tips to be the derived<br />

character state and, hence, the Moroccan taxa to form a monophyletic group.


Bocconea 9 - 1998 83<br />

A further dismembering <strong>of</strong> that monophyletic group is achieved by using morphological<br />

and anatomical characters <strong>of</strong> the achenes. As discussed earlier (<strong>Oberprieler</strong> 1994), the NW<br />

Moroccan populations <strong>of</strong> the <strong>Anthemis</strong> boveana group are characterised by disc achenes<br />

that are unique not only within the species group but among alI N African representatives<br />

<strong>of</strong> the genus. <strong>The</strong> IO acute-angled ribs are smooth, devo id <strong>of</strong> tubercles, and bear characteristicalIy<br />

formed mucilage celIs which are strongly elongated and form continuous slime<br />

ribbons on the narrow ridges (Fig. 3B, 70). Smooth achenes are also found in A. boveana<br />

varo jahandiezii and in the N populations <strong>of</strong> A. tenuisecta, but there the mucilage celIs are<br />

short, isodiametric or but slightly elongate, and the ribs are more rounded and less prominent<br />

than in the NW Moroccan populations. <strong>The</strong>se were newly described as A. gharbensis<br />

(<strong>Oberprieler</strong> 1994).<br />

A further distinct entity among the Moroccan populations <strong>of</strong> the <strong>Anthemis</strong> boveana group<br />

is A. maroccana (from the C Moroccan highlands around Fès, the adjacent foothills <strong>of</strong> the<br />

Middle Atlas, and the Rif mountains) plus A. boveana varo aguilarii (from higher altitudes<br />

in the Rif mountains). Both taxa tend to have very large achenes (A . maroccana:<br />

3~--------------------------------------------------------~<br />

PC2<br />

2<br />

o<br />

-1<br />

-2<br />

21<br />

",19<br />

~ .-._. 23<br />

. ,·'2~ - ~<br />

.' l:;<br />

.<br />

~/ /<br />

25 ._ -._ ~ 2:f<br />


84 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

1.5-1.8 mm; A. boveana varo aguilarii: 1.8-1.9 mm), when achenes are less than 1.6 mm .<br />

long in alI other taxa <strong>of</strong> the species group as weII as in A. chrysantha. <strong>The</strong> large achenes<br />

are therefore a synapomorphic character state <strong>of</strong> the two taxa which are treated as subspecies<br />

<strong>of</strong> A. maroccana here (subsp. maroccana and subsp. aguilarii), differing in achene<br />

size, corona length, and number <strong>of</strong> ray florets per head, and being geographicalIy and altitudinalIy<br />

separated.<br />

A third cIear cut entity is <strong>Anthemis</strong> tenuisecta from the coastaI plains around Cap Ghir<br />

and Agadir in SW Morocco, with some inland populations around Marrakech. As confirmed<br />

by PCA, this species is characterized by rather small capitula, very short ray florets<br />

with nearly circular limbs, relatively broad leaves with very low index values, and achenes<br />

usualIy not exceeding 1.3 mm in length. Additional qualitative characters further emphasise<br />

the distinctness <strong>of</strong> this taxon. In contrast to alI other members <strong>of</strong> the A. boveana group<br />

and A. chrysantha, the disc achenes <strong>of</strong> A. tenuisecta usualIy have a very thin pericarp<br />

lacking scIerenchymatic tissue (Fig. 84). Moreover, A. tenuisecta has a characteristic procumbent<br />

habit, with stems which branch repeatedly and bear a relatively high number <strong>of</strong><br />

3~----------------------------------------------------.<br />

PC3<br />

2<br />

16<br />

t;,. -- -<br />

...<br />

18 21 i<br />

_r..--~ .i<br />

11<br />

'J'V<br />

"!<br />

15<br />

~ ..<br />

. ... ~<br />

o<br />

: 0'-<br />

1~ ./<br />

~<br />

-1<br />

PC 1<br />

-2~ ________ -. ________ -.r-________ .-________ ~ ________ ~<br />

-2 -1 o 2 3<br />

Fig. 19. <strong>Anthemis</strong> boveana group. Ordination <strong>of</strong> OTUs (O = A. boveana, = A. maroccana subsp.<br />

maroccana; " = A. maroccana subsp. aguilarii; b.. = A. gharbensis; t> = A. tenuisecta subsp.<br />

tenuisecta;


Bocconea 9 - 1998 85<br />

heads. <strong>The</strong> leaves are usualIy sessile, i.e. their bases bear entire or dissected teeth which<br />

grade into primary leaf lobes along the main axis, while the other species usualIy lack<br />

basai teeth and their leaves are distinctly petiolate. Plants <strong>of</strong> A. tenuisecta from around<br />

Cap Ghir, in the N part <strong>of</strong> the species range, have smooth achenes with very rounded and<br />

low ribs (Fig. 84, bottom), whereas in the southern populations, around Agadir and Safi,<br />

and inland around Marrakech, the sculpturing <strong>of</strong> achenes is more pronounced and even<br />

strongly tuberculate achenes are found (Fig. 84, top).<br />

<strong>Anthemis</strong> boveana varo jahandiezii, which grows in a small area <strong>of</strong> the coastal plain<br />

around Safi, is geographicalIy and morphologicàlly transitional between A. tenuisecta and<br />

A. gharbensis. With the latter it shares the erect, sparsely branched habit and the relatively<br />

long ray florets, but it lacks the uniquely sculptured achenes <strong>of</strong> A. gharbensis with their<br />

extremely elongate mucilage celIs. From A. tenuisecta it differs in habit and in the sclerenchymatic<br />

tissue <strong>of</strong> its achenes (Fig. 88), but it shares the rather sessile leaves and the small<br />

heads <strong>of</strong> the latter. AdditionalIy, achenes with rounded and rather low ribs as in<br />

A. boveana var. jahandiezii are also found in populations <strong>of</strong> A. tenuisecta around Cap<br />

Ghir. It is mainly the latter feature that suggests inclusion <strong>of</strong> A. boveana varo jahandiezii in<br />

A. tenuisecta, as an independent subspecies.<br />

13. Species delimitation in the <strong>Anthemis</strong> pedunculata - A. punctata complex<br />

<strong>The</strong> <strong>Anthemis</strong> pedunculata - A. punctata complex comprises alI short- to long-lived<br />

perennial representatives <strong>of</strong> the genus in N Africa except A. maritima and A. eretica,<br />

which also belong to the section A. sect. Hiorthia but hold a relatively remote taxonomic<br />

position. Members <strong>of</strong> the complex are widely distributed throughout the mountainous<br />

areas <strong>of</strong> Spain, Morocco, Algeria, and Tunisia, and show considerable variation throughout<br />

that range, which has led to the description <strong>of</strong> a multitude <strong>of</strong> taxa <strong>of</strong> specific or infraspecific<br />

rank.<br />

<strong>The</strong> first to be described was <strong>Anthemis</strong> punctata, a species with very large flower heads<br />

from the mountains around Tunis, diagnosed and figured by Vahl (1791). Soon after, Desfontaines<br />

(1799) described A. pedunculata, with comparatively smaller heads, based on<br />

plant material presumably collected in W Algeria. Boissier (1838) added A. tuberculata, a<br />

small-headed plant with tuberculate achenes from the Sierra Nevada in S Spain. Mainly<br />

based on characters concerning leaf dissection (A. tenuisecta Pomel [non BalI]), colour <strong>of</strong><br />

the membranous margins <strong>of</strong> involucral bracts (A. clausonis), shape <strong>of</strong> involucral bracts<br />

(A. atlantica), and sculpturing <strong>of</strong> achenes (A. granulata), Pomel (1874-1875) named further<br />

Algerian taxa <strong>of</strong> the group at species rank. Battandier (in Battandier & Trabut 1892)<br />

recognised one more Algerian species similar to A. punctata, A. kabylica, raising in rank a<br />

variety <strong>of</strong> A. montana described a few years before (Battandier in Battandier & Trabut<br />

1888-1890) from the Djurdjura mountains. In Morocco, Humbert & Maire (in Maire<br />

1927) described A. laeviuscula as a segregate <strong>of</strong> A. pedunculata, but soon later Maire (in<br />

J ahandiez & Maire 1934) sunk it to a variety under the latter species. <strong>The</strong> last two species<br />

added to the group were the Spanish A. turolensis and A. guardielae, described by Caballero<br />

(1942a, b).


Bocconea 9 - 1998 85<br />

heads. <strong>The</strong> leaves are usually sessile, i.e. their bases bear entire or dissected teeth which<br />

grade into primary leaf lobes along the main axis, while the other species usually lack<br />

basaI teeth and their leaves are distinctly petiolate. Plants <strong>of</strong> A. tenuisecta from around<br />

Cap Ghir, in the N part <strong>of</strong> the species range, have smooth achenes with very rounded and<br />

low ribs (Fig. 84, bottom), whereas in the southern populations, around Agadir and Safi,<br />

and inland around Marrakech, the sculpturing <strong>of</strong> achenes is more pronounced and even<br />

strongly tuberculate achenes are found (Fig. 84, top).<br />

<strong>Anthemis</strong> boveana varo jahandiezii, which grows in a small area <strong>of</strong> the coastal plain<br />

around Safi, is geographically and morphologicàlly transitional between A. tenuisecta and<br />

A. gharbensis. With the latter it shares the erect, sparsely branched habit and the relatively<br />

long ray florets, but it lacks the uniquely sculptured achenes <strong>of</strong> A. gharbensis with their<br />

extremely elongate mucilage cells. From A. tenuisecta it differs in habit and in the sclerenchymatic<br />

tissue <strong>of</strong> its achenes (Fig. 88), but it shares the rather sessile leaves and the small<br />

heads <strong>of</strong> the latter. Additionally, achenes with rounded and rather low ribs as in<br />

A. boveana var. jahandiezii are also found in populations <strong>of</strong> A. tenuisecta around Cap<br />

Ghir. It is mainly the latter feature that suggests inclusion <strong>of</strong> A. boveana varo jahandiezii in<br />

A. tenuisecta, as an independent subspecies.<br />

13. Species delimitation in the <strong>Anthemis</strong> pedunculata - A. punctata complex<br />

<strong>The</strong> <strong>Anthemis</strong> pedunculata - A. punctata complex comprises all short- to long-lived<br />

perenni al representatives <strong>of</strong> the genus in N Africa except A. maritima and A. eretica,<br />

which also belong to the section A. sect. Hiorthia but hold a relatively remote taxonomic<br />

position. Members <strong>of</strong> the complex are widely distributed throughout the mountainous<br />

areas <strong>of</strong> Spain, Morocco, Algeria, and Tunisia, and show considerable variation throughout<br />

that range, which has led to the description <strong>of</strong> a multitude <strong>of</strong> taxa <strong>of</strong> specific or infraspecific<br />

rank.<br />

<strong>The</strong> first to be described was <strong>Anthemis</strong> punctata, a species with very large flower heads<br />

from the mountains around Tunis, diagnosed and figured by Vahl (1791). Soon after, Desfontaines<br />

(1799) described A. pedunculata, with comparatively smaller heads, based on<br />

plant material presumably collected in W Algeria. Boissier (1838) added A. tuberculata, a<br />

small-headed plant with tuberculate achenes from the Sierra Nevada in S Spain. Mainly<br />

based on characters concerning leaf dissection (A. tenuisecta Pomel [non BalI)), colour <strong>of</strong><br />

the membranous margins <strong>of</strong> involucral bracts (A. clausonis), shape <strong>of</strong> involucral bracts<br />

(A. atlantica), and sculpturing <strong>of</strong> achenes (A. granulata), Pomel (1874-1875) named further<br />

Algerian taxa <strong>of</strong> the group at species rank. Battandier (in Battandier & Trabut 1892)<br />

recognised one more Algerian species similar to A. punctata, A. kabylica, raising in rank a<br />

variety <strong>of</strong> A. montana described a few years before (Battandier in Battandier & Trabut<br />

1888-1890) from the Djurdjura mountains. In Morocco, Humbert & Maire (in Maire<br />

1927) described A. laeviuscula as a segregate <strong>of</strong> A. pedunculata, but soon later Maire (in<br />

J ahandiez & Maire 1934) sunk it to a variety under the latter species. <strong>The</strong> last two species<br />

added to the group were the Spanish A. turolensis and A. guardielae, described by Caballero<br />

(1942a, b).


86 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

<strong>The</strong> species complex around <strong>Anthemis</strong> pedunculata and A. punctata has never been<br />

comprehensively revised. Only geographically restricted treatments in Floras are available.<br />

Battandier (in Battandier & Trabut 1888-1890) treated A. kabylica and A. punctata as<br />

varieties <strong>of</strong> the polymorphic and wide spread A. montana, known today as A. eretica,<br />

while A. pedunculata (including Pomel's illegitimate A. tenuisecta) and A. tuberculata<br />

(with Pomel's A. atlantica in synonymy) were separated at species level, the latter to differ<br />

by its strongly tuberculate achenes and its abruptly acuminate paleso A. granulata was<br />

recognised as a variety <strong>of</strong> A. tuberculata, differing from the typical variety by its achenes<br />

having a short adaxial corona. A. clausonis, characterised by its pale membranous margins<br />

<strong>of</strong> involucral bracts, was kept as an independent species, its resemblance to<br />

A. pedunculata being however stated.<br />

<strong>The</strong> treatrnent <strong>of</strong> the <strong>Anthemis</strong> pedunculata - A. punctata group in Battandier & Trabut<br />

(1905) differs markedly from Battandier's previous account: A. kabylica and A. punctata<br />

were considered independent species, while A. montana was left with only one variety<br />

endemie to the Babors mountains <strong>of</strong> Algeria, formally described as A. numidica<br />

(Battandier & Trabut 1888-1890). A. pedunculata was expanded to include two varieties:<br />

one was based on the Algerian A. clausonis; the other, the annual varo decumbens, had<br />

been described in the meantime by Bonnet & Barratte (1896) from Tunisia and included<br />

A. stipa rum, described by Pomel (1874-1875) from Algeria. A. tuberculata, which !ike<br />

A. pedunculata was said to compri se annual, biennial and perenni al plants, was treated<br />

again as a independent species with not further subdivision.<br />

A further deviating assessment <strong>of</strong>the species group was proposed by Battandier (1910),<br />

who treated <strong>Anthemis</strong> kabylica as a variety <strong>of</strong> A. punctata and added a new variety<br />

(A. punctata varo baborensis). A. clausonis and A. granulata (the latter in contrast to the<br />

treatment in Battandier & Trabut 1888-1890, where it is placed near A. tuberculata) are<br />

considered to be independent microspecies ("petites espèces") related to A. pedunculata.<br />

A. tuberculata, was again is kept separate, but A. stiparum, A. sabulicola, and A. decumbens<br />

were placed in its vicinity as "types secondaires".<br />

Maire (in Jahandiez & Maire 1934) provided a taxonomic treatment <strong>of</strong> the group for<br />

Morocco, in which <strong>Anthemis</strong> tuberculata was treated as a second subspecies <strong>of</strong><br />

A. pedunculata, both subspecies being represented by numerous varieties, e.g. A. laeviuscula<br />

as variety <strong>of</strong> A. pedunculata subsp. pedunculata and A. granulata as variety <strong>of</strong><br />

A. pedunculata subsp. tuberculata. A. punctata, was said to have two varieties in Morocco:<br />

varo maroccana in the W High Atlas and varo abylaea in the W Rif mountains.<br />

Mainly based on Battandier's and Maire's works, the treatment <strong>of</strong> the <strong>Anthemis</strong> pedunculata<br />

- A. punctata complex by Quézel & Santa (1963) contributed !ittle to the understanding<br />

<strong>of</strong> its taxonomy: A. kabylica was omitted; A. punctata varo punctata and var.<br />

baborensis were kept separate from A. pedunculata, which was considered to comprise<br />

subsp. pedunculata (with a varo clausonis), subsp. tuberculata and subsp. granulata.<br />

Pottier-Alapetite (1981) adopted Battandier & Trabut's (1905) broad concept <strong>of</strong> <strong>Anthemis</strong><br />

pedunculata. While A. punctata was kept as an independent species, her<br />

A. pedunculata comprises not only the usually perenni al taxa varo clausonis and subsp.<br />

tuberculata but also the annual varo decumbens and subsp. glareosa from S Tunisia.<br />

<strong>The</strong> taxonomy <strong>of</strong> the European representatives <strong>of</strong> the <strong>Anthemis</strong> pedunculata -<br />

A. punctata complex is far less comp!icated than that <strong>of</strong> its N African members. After the<br />

description <strong>of</strong> A. tuberculata and its two varieties varo microcephala and var. discoidea by


Bocconea 9 - 1998 87<br />

Boissier (1838, 1840) and a presumably erroneous indication <strong>of</strong> A. punctata by Willkomm<br />

(1893), no further taxa were noted for the Iberian peninsula until Caballero (1942a, b)<br />

described two new species, A. turolensis and A. guadielae. Fernandes (1976) sank the<br />

latter into the sylionymy <strong>of</strong> A. tuberculata and treated the former as a subspecies <strong>of</strong> the<br />

same. Later (Fernandes 1983), she confirmed this concept and further discussed the differences<br />

between A. tuberculata and A. pedunculata: she considered A. tuberculata to have<br />

larger achenes with marked and strongly tuberculate ribs, narrow pales which gradually<br />

taper into dark tips, hemispherical receptacles, and disc tlorets with only inconspicuously<br />

spongy basai parts; A. pedunculata to have smaller and less conspicuously tuberculate<br />

achenes, broad pales with abruptly acuminate tips, subconical receptacles, and disc tlorets<br />

with strongly intlated, spongy basai parts. Since she did not use the type material <strong>of</strong><br />

A. pedunculata for her comparison but a specimen from E Algeria (which I consider to belong<br />

to A. pedunculata subsp. atlantica), these differences are not however appropriate to<br />

distinguish the two entities. In contrast to Fernandes (1976, 1983), Benedf i Gonz:Hez<br />

(1987) considered A. guadielae to be a synonym <strong>of</strong> A. tuberculata subsp. turolensis, said<br />

to differ from subsp. tuberculata by broader pales with tips usually not tinged with black<br />

or brown, smaller leaves, and smaller achenes. He did not further discuss the differences<br />

between A. tuberculata and A. pedunculata or the variation within the latter species. <strong>The</strong><br />

treatment <strong>of</strong> A. tuberculata in modern Spanish Floras is variable: Valdés & al. (1987)<br />

listed it as an independent species, Bolòs & Vigo (1995) gave it the status <strong>of</strong> a subspecies<br />

<strong>of</strong> A. pedunculata.<br />

As mentioned above, Willkomm (1893) definitively indicated <strong>Anthemis</strong> punctata,<br />

which Willkomm & Lange (1865) had listed among their "species inqirendae", for Spain.<br />

However, the specimen he cited was found by Benedf i Gonzalez (1987) to fall within the<br />

morphological range <strong>of</strong> A. tuberculata. <strong>The</strong> latter author, however, considers one specimen<br />

from Sevilla province in S Spain to belong to A. punctata. Plants from Sicily with<br />

rather large tlower heads, similar to plants from Tunisia, were considered to represent<br />

A. punctata by Gussone (1843) and Fiori & Béguinot (1903), or were treated as an independent<br />

species, A. cupaniana (e.g. by Nyman 1878-1882, Pignatti 1982). Fernandes<br />

(l975a, 1976) placed the Sicilian taxon as a subspecies under A. punctata, differing from<br />

the Tunisian subsp. punctata by its relatively more stout, smooth and indistinctly ribbed<br />

achenes.<br />

<strong>The</strong> different taxonomic concepts brietly summarised above, make it obvious that<br />

variation within the N African representatives <strong>of</strong> the group is stili poorly understood, but<br />

that the group's centre <strong>of</strong> diversity lies there, so that any conclusion solely or predominantly<br />

based on plant material from outside Africa is at the very best a crude approximation.<br />

<strong>The</strong> present study is based on more than 500 specimens from the N African area <strong>of</strong> the<br />

group. In addition, plant material from the Iberian peninsula and from Sicily was studied.<br />

Besides morphology, cytological aspects were duly considered, since Vogt & <strong>Oberprieler</strong><br />

(1993) had found that polyploidy played a role in the evolution <strong>of</strong> the group, plants <strong>of</strong><br />

<strong>Anthemis</strong> pedunculata s.I., at least in Morocco, showing two different ploidy levels (2x,<br />

4x). As for the A. boveana group, a multivariate approach was made to assess morphological<br />

variation within the A. pedunculata - A. punctata complex. Further information for the<br />

interpretation <strong>of</strong> morphological and cytological findings was drawn from the application <strong>of</strong><br />

the molecular technique <strong>of</strong> DNA amplification from arbitrary primers (RAPD). It soon


88 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 22. List <strong>of</strong> OTUs used in the numerical (PCA) and/or molecular (RAPO)<br />

analysis <strong>of</strong> the <strong>Anthemis</strong> punctata - A. pedunculata complex. Indication <strong>of</strong> ploidy<br />

is reported fram Table 18.<br />

No. ploidy Location Specimen Analysis<br />

A. abylaea<br />

1 4x Ma: Ojebel Fahies. Vogt 12045 (B) PCA+ RAPO<br />

2 [4x] Ma: Beni-Hosmar. 29 Jun 1930, Maire (MPU) [Type] PCA<br />

A. pedunculata varo pedunculata<br />

3 [2x] [N Africa] (G) [Type] PCA<br />

4 [2x] Hs: Sa. de los Filabres. Rico (SALA 59886) PCA+ RAPO<br />

5 [4x] Hs: Sierra Nevada. Boissier (G) PCA<br />

6 2x Ma: Ojebel Tizirene. Vogt 9628 & <strong>Oberprieler</strong> 4064 (B) PCA+ RAPO<br />

7 2x Ma: Ojebel Foughal. Vogt 15264 & <strong>Oberprieler</strong> 9573 (B) PCA+ RAPO<br />

8 2x Ma: Foum Kheneg. Vogt 9440 & <strong>Oberprieler</strong> 3878 (B) PCA+ RAPO<br />

9 2x Ma: Arn Leuh - Azrou. Vogt 9414 & <strong>Oberprieler</strong> 3852 (B) PCA<br />

10 4x Ma: Ojebel Tazzeka. Vogt 9487 & <strong>Oberprieler</strong> 3923 (B) PCA+ RAPO<br />

11 4x Ma: Ojebel Tassaot. Vogt 9647 & <strong>Oberprieler</strong> 4083 (B) PCA+ RAPO<br />

12 4x Ma: Ojebel Foughal. Vogt 15280 & <strong>Oberprieler</strong> 9589 (B) PCA+ RAPO<br />

13 4x Ma: Foum Kheneg. Vogt 9440 & <strong>Oberprieler</strong> 3878 (B) PCA+ RAPO<br />

14 4x Ma: Ojebel Lekst. Vogt 11829 & <strong>Oberprieler</strong> 6277 (B) PCA<br />

15 4x Ma: Tahout-ou-Fillali. <strong>Oberprieler</strong> 3478 (Herb. <strong>Oberprieler</strong>) PCA<br />

16 [?] Ma: Ojebel Tazzeka. 18 Jun 1925, Maire (P) [Type <strong>of</strong> PCA<br />

A. laeviscula]<br />

17 [?] Ma: Ojebel Ouensa. 22 Jun 1875, Ibrahim (MPU) [Type <strong>of</strong> PCA<br />

A. punctata varo maroccana]<br />

18 [2x] Ag: Tiaret. Pomel (P) [Type <strong>of</strong> A. granulata] PCA<br />

19 [2x) Ag: Yakouren. Podlech 39294 (MSB) PCA<br />

20 [2x] Ag: Col Telmet. Podlech 38937 (MSB) PCA+ RAPO<br />

21 [2x) Ag: Takerbouzt. Podlech 38994 (MSB) PCA+ RAPO<br />

22 [2x] Ag: Ojebel Babor. Dubuis (MSB) PCA<br />

23 [2x] Ag: Miliana. Jun 1856, Pomel (MPU) [Type <strong>of</strong> PCA<br />

A. tenuisecta]<br />

24 [?] Ag: Tizi N 'Kouilal. Podlech 39137 (MSB) PCA<br />

25 [?] Ag: Bossuet 6 Jun 1927, Faure (MPU) [Type <strong>of</strong> PCA<br />

A. punctata varo microcephala]<br />

A. pedunculata varo discoidea<br />

26 2x Ma: Ojebel Tidirhine. Vogt 9576 & <strong>Oberprieler</strong> 4012 (B) PCA+ RAPO<br />

A. pedunculata subsp. atlantica<br />

27 [?] Ag: Khenchala. Jun 1874, Pome/(P) [Type] PCA<br />

28 [2x] Ag: Ojebel Babor. Podlech 39380 (MSB) PCA+ RAPO<br />

29 [?] Ag: Ojebel Tougour. Balansa 967 (MPU) PCA<br />

30 [4x] Ag: Ojebel Cheliah. 11 Jun 1853, Perraudière (P) PCA<br />

31 4x Tn: Foret de Kesra. Vogt 13510 & <strong>Oberprieler</strong> 7815 (B) PCA+ RAPO<br />

32 2x Tn: Ojebel Chambi. Vogt 12606 & <strong>Oberprieler</strong> 6911 (B) PCA+ RAPO<br />

A. pedunculata subsp. turolensis<br />

33 2x Hs: Beteta - Mazegoza. Vogt 15350 & <strong>Oberprieler</strong> 9659 (B) PCA+ RAPO


Bocconea 9 - 1998<br />

89<br />

Table 22 (continued).<br />

No. ploidy Location<br />

Specimen<br />

Analysis<br />

A. punctata subsp. punctata<br />

34 [?] Ag: Tamesguida.<br />

35<br />

36<br />

4x<br />

4x<br />

Tn: Ojebel Zaghouan.<br />

Tn: Ojebel Oyr.<br />

A. punctata subsp. kaby/ica<br />

37 [?] Ag: Tirourda.<br />

38 [?] Ag: Tala Guilef.<br />

A. cupaniana<br />

39 Si: Palermo, S. Martino.<br />

A. ubensis<br />

40 2x Tn: Forét de Kesra.<br />

41 2x Tn: Ojebel Oyr.<br />

42 2x Tn: Ojebel Goraa.<br />

43 2x Tn: Table de Jugurtha.<br />

A. confusa Pomel<br />

44 2x Tn: Tataouine - Chenini.<br />

45 2x Tn: Redeyef - Tamerza.<br />

46 2x Tn: Jelma.<br />

A. stiparum subsp. stiparum<br />

47 2x Ag: Aflou - El Bayadh.<br />

A. stiparum subsp. sabu/icola<br />

48 2x Ag: El Golea - Ghardaia.<br />

A. zaianica<br />

49 2x Ma: Oj. Tougroulmès.<br />

Battandier (P) [Type <strong>of</strong> A. punctata varo<br />

baborensis]<br />

Vogt 13823 & <strong>Oberprieler</strong> 8128 (B)<br />

Vogt 12353 & <strong>Oberprieler</strong> 6658 (B)<br />

Jun 1882, Battandier (P) [Type]<br />

Davies 53190 (RNG)<br />

Todaro 1102 (P) [Type]<br />

Vogt 13524 & <strong>Oberprieler</strong> 7829 (B)<br />

Vogt 12352 & <strong>Oberprieler</strong> 6657 (B)<br />

Vogt 12216 & <strong>Oberprieler</strong> 6521 (B)<br />

Vogt 12467 & <strong>Oberprieler</strong> 6772 (B)<br />

Vogt 13093 & <strong>Oberprieler</strong> 7398 (B)<br />

Vogt 12747 & <strong>Oberprieler</strong> 7052 (B)<br />

Vogt 13333 & <strong>Oberprieler</strong> 7638 (B)<br />

Podlech 34022 (MSB)<br />

Podlech 35456 (MSB)<br />

Vogt 14840 & <strong>Oberprieler</strong> 9149 (B)<br />

PCA<br />

PCA+ RAPO<br />

PCA+ RAPO<br />

PCA<br />

PCA<br />

PCA<br />

PCA+ RAPO<br />

PCA+ RAPO<br />

PCA<br />

PCA<br />

RAPO<br />

RAPO<br />

RAPO<br />

RAPO<br />

RAPO<br />

RAPO<br />

became obvious that there are not only problems <strong>of</strong> taxon delimitation within the<br />

A. pedunculata - A. punctata complex but also with the delimitation <strong>of</strong> this complex<br />

against other morphologically and/or genetically related species and species groups. In<br />

particular, the role <strong>of</strong> the Tunisian annuals (A . ubensis and A. confusa <strong>of</strong> the present study)<br />

<strong>of</strong>ten treated as A. pedunculata var. decumbens was difficult to interpret and these taxa<br />

were therefore inc1uded in our morphological and/or molecular analysis, together with a<br />

Moroccan population <strong>of</strong> annuals (A. zaianica) found to be morphologically intermediate<br />

between A. pedunculata s.1. and the annuals <strong>of</strong> A. ser. Bourgaeinianae, and with another<br />

species <strong>of</strong> that series, A. stipa rum.<br />

Material and methods<br />

Numerical analysis oJ morphological characters. - 43 specimens (OTUs) representative<br />

<strong>of</strong> the entire morphological and geographical range <strong>of</strong> the <strong>Anthemis</strong> pedunculata -<br />

A. punctata complex, plus the N Tunisian A. ubensis, were measured or scored for 26<br />

morphological characters (Table 19, Fig. 17). <strong>The</strong> OTUs (Table 22) were either single<br />

herbarium specimens or sets <strong>of</strong> duplicates from the same gathering. Type material <strong>of</strong> most<br />

<strong>of</strong> the relevant names was included in this study. On each specimen 3-5 measurements


90 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

were made for each character, the results averaged, and the mean values used in the multivariate<br />

analysis (Table 23). Principal component analysis (PCA) was performed using the<br />

SPSS FOR WINDOWS s<strong>of</strong>tware package. Missing values (marked by a question mark in<br />

Table 23), were replaced by the mean value <strong>of</strong> ali other OTUs for the corresponding character.<br />

Plant material for RAPD analysis. - 26 OTUs were selected for use in the RAPD<br />

analysis (see Table 22). 20 were representatives <strong>of</strong> the <strong>Anthemis</strong> pedunculata -<br />

A. punctata complex, plus A. ubensis, also used in the morphological analysis. To these,<br />

specimens <strong>of</strong> A. confusa, A. stiparum, and A. zaianica (OTUs 44-49) were added to address<br />

the questions <strong>of</strong> the relations <strong>of</strong> these species with the A. pedunculata - A. punctata<br />

complex. Single plants <strong>of</strong> the selected specimens were used as source for DNA extraction.<br />

DNA extraction. - DNA was extracted from dried and crushed leaf material accarding<br />

to a method devised by Hellwig & al. (unpubl.). 30-40 mg dry plant tissue was used. Lysis<br />

was performed in 0.8 mi 2 % CTAB-buffer at 60°C for 20 min. A first centrifugation for<br />

lO min at 15800 g at room temperature cleaned the supernatant from celi debris. <strong>The</strong> following<br />

steps use buffers <strong>of</strong> Quiagen Inc. 1 VoI. QA-ns buffer (double concentrated<br />

Quiagen QBT buffer without NaCl) was added to the supernatant. A second centrifugation<br />

(lO min at 15800 g at room temperature) followed. <strong>The</strong> supernatant was then loaded onto<br />

a Quiagen tip 20 column equilibrated previously with buffer QBT and washed 4 times with<br />

l m1 QC buffer. DNA was eluted with 1115 fll QF buffer and precipitated by addition <strong>of</strong><br />

0.7 VoI. (805 fll) isopropanol. After mixing, the precipitate was sedimented during 30 min<br />

centrifugation at 15800 g at room temperature. Pellets were washed with 0.4 mi ice co Id<br />

ethanol and sedimented again by a lO min centrifugation at 15800 g. <strong>The</strong> supernatant was<br />

discarded and the pellets were air-dried. <strong>The</strong> not too dry pellets were then resuspended in<br />

50 fll TE buffer pH 8.0.<br />

RAPD amplification. - Polymerase chain reactions (PCR) were perfarmed in 50 111 <strong>of</strong><br />

the buffer supplied by the Taq polymerase manufacturer (Appligene), 0.2 mM dATP, 0.2<br />

mM dGTP, 0.2 mM dCTP, 0.2 mM TIP, 0.25 flM primer, l fll template DNA (c. 2-8<br />

ng/fll) and 2.5 units <strong>of</strong> Taq polymerase (Applygene). Primers AOI to A12 <strong>of</strong> Primer Kit A<br />

from OperonTechnologies Inc. (U.S.A.) were used in the 12 independent PCR reactions;<br />

prinier sequences are given in Table 24. Amplification was carried out in a thermocycler<br />

programmed far 1 min denaturation at 95°C, followed by 35 cycles <strong>of</strong> 1 min at 93°C, 30<br />

sec annealing at 35°C, 1 min extension at 72°C, and a last additional 2.5 min extension at<br />

n°c. Products <strong>of</strong> amplification were separated on 3 % TAE-agarose gels by electrophoresis,<br />

stained with ethidium bromide, and documented with a Polaroid camera. Lengths <strong>of</strong><br />

amplification products were calculated using ÀlHind III and pBRlAlu I markers. Since a<br />

well-known problem with RAPD analyses is the difficulty to reproduce RAPD patterns<br />

exactly (Oxelman 1996), ali DNA templates far one primer were run with the same master<br />

mix <strong>of</strong> reaction components in the same terrnocycler at the same time.<br />

Data analysis. - Following recommendations by Koch (1995), only amplification<br />

products having lengths between 300 bp and 1500 bp were scored and used for the calculations.<br />

Shorter or longer amplification products are <strong>of</strong>ten <strong>of</strong> artificial nature, and their


Bocconea 9 - 1998 91<br />

amplification is highly random. Co-migrating bands shared by at least two <strong>of</strong> the OTUs<br />

were considered informative and used to build up the present/absent data matrix given in<br />

Table 25 . Question marks denote cases <strong>of</strong> faint band patterns due to failed DNA amplification.<br />

From the data matrix a distance matrix (DAB = l - SAB) was computed using Jaccard's<br />

association index (SAB = N AB / (NA + NB); where NAB = number <strong>of</strong> joint amplification<br />

bands; NA = number <strong>of</strong> bands in OTU A; NB = number <strong>of</strong> bands in OTU B) as the<br />

measure <strong>of</strong> similarity (Sneath & Sokal 1973: 131). For this operation the computer package<br />

SYN-T AX III (Podani 1988) was used. Dendrogram construction was performed by<br />

using the neighbor-joining method (Saitou & Nei 1987) provided in the computer package<br />

PHYLIP Version 3.5c (Felsenstein 1994). Since this method produces an unrooted tree, the<br />

tree was rooted using the midpoint-rooting option (program RETREE <strong>of</strong> PHYLIP) which<br />

places the root <strong>of</strong> the tree to the longest interior branch. For bootstrap analysis, 100 replicates<br />

<strong>of</strong> the originai data set were obtained running the bootstrap option <strong>of</strong> PHYLIP<br />

(program SEQBOOT). For each replicate a distance matrix was computed with SYN-TAX<br />

III, and a dendrogram constructed as above. <strong>The</strong> resulting 100 dendrograms were summarised<br />

in a majority-rule consensus tree with PHYLIP (program CONSENSE) and midpointrooted<br />

(program RETREE).<br />

Numerical analysis <strong>of</strong> morphological characters<br />

Principal component analysis (PCA) <strong>of</strong> morphological data yielded seven components<br />

with eigenvalues higher than 1, accounting for 78.8 % <strong>of</strong> the total vari ance <strong>of</strong> the data set.<br />

Character loadings on the frrst three components <strong>of</strong> PCA are listed in Table 26. <strong>The</strong> first<br />

principal component (PC l; 30.9 % <strong>of</strong> the total variance) is dominated by variables describing<br />

dimensions <strong>of</strong> leaves (leafl, ulsl), involucres (invol, oibl, mibl, iibl), pales (palel),<br />

ray and disc florets (rayl, discl), and the number <strong>of</strong> ray florets per capitulum (rayno). PC 2<br />

(16.0 % <strong>of</strong> the total vari ance) falls back markedly behind PC 1. <strong>The</strong> only characters with<br />

high loadings are those describing the shape <strong>of</strong> inner involucral bracts (iibs), the shape <strong>of</strong><br />

pales (palei, pales), and the shape <strong>of</strong> the tips <strong>of</strong> pales (palet). PC 3, accounting for 10.4 %<br />

<strong>of</strong> the total variance, is dominated by variables describing the shape <strong>of</strong> the outer involucral<br />

bracts (oibi, oibs) and length <strong>of</strong> achenes (achei).<br />

As seen on plots <strong>of</strong> the frrst three principal components <strong>of</strong> the PCA (Fig. 20-21), PC I,<br />

which is dominated by size features, separates fairly well <strong>Anthemis</strong> pedunculata and<br />

A. ubensis on the left from A. punctata, A. cupaniana, A. punctata subsp. kabylica, and<br />

A. abylaea, characterized by long basai leaves, large involucres, long pales, and long ray<br />

and disc florets, and placed further right. However, the differences are not too clear cut;<br />

the type specimen <strong>of</strong> A. punctata subsp. kabylica (OTU 37), in particular, is very close to<br />

representatives <strong>of</strong> A. pedunculata s.1.<br />

<strong>The</strong> two subgroups resulting from ordination on PC 1 are further subdivided on PC 2<br />

(Fig. 20). Within the <strong>Anthemis</strong> punctata group <strong>of</strong> taxa we find a clear discontinuity between<br />

A. punctata subsp. punctata (OTUs 34-36) and A. cupaniana (OTU 39) on the one<br />

hand, and A. punctata subsp. kabylica (OTUs 37-38) and A. abylaea (Otus 1-2) on the<br />

other. This is mainly due to the shape <strong>of</strong> the inner involucral bracts and pales which are<br />

found to be elliptical in outline in A. punctata subsp. kabylica and A. abylaea but obovate<br />

in A. punctata subsp. punctata and A. cupaniana. <strong>The</strong> type <strong>of</strong> A. punctata varo baborensis<br />

(OTU 34) is definitively closer to A. punctata subsp. punctata than to subsp. kabylica.


92 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 23. Data far the multivariate analysis af the <strong>Anthemis</strong> punctata - A. pedunculata<br />

camplex (character symbals are explained in Table 19 and Fig. 17).<br />

OTU leafl leafi ulsl ulsi inval rayna aibl aibi aibs mibl mibi mibs iibl<br />

1 49.00 2.04 2.88 3.21 16.83 18.00 4.57 2.77 1.17 6.33 3.77 1.67 6.77<br />

2 51.50 3.32 3.14 2.97 13.80 22.00 4.00 2.98 1.00 5.35 3.37 1.25 6.90<br />

3 33.33 3.36 2.36 3.13 9.80 16.50 2.75 2.82 1.00 3.85 4.17 1.75 4.10<br />

4 18.50 3.38 1.60 3.18 8.20 10.67 2.13 2.13 1.00 3.03 2.85 1.173.03<br />

5 25.33 3.62 1.74 2.98 10.33 ? 2.47 1.85 1.00 3.53 2.61 1.67 4.23<br />

6 28.25 2.20 2.14 2.40 10.33 12.33 3.07 2.87 1.33 4.00 3.24 1.67 3.87<br />

7 45.75 2.36 2.20 2.85 12.40 12.60 3.97 2.67 1.00 4.97 3.24 1.50 5.23<br />

8 15.00 2.50 1.40 2.38 8.67 10.33 2.70 2.38 1.00 3.37 3.16 1.67 3.63<br />

9 23.40 3.27 1.63 2.59<br />

10 29.25 2.43 1.96 2.47<br />

11 35.40 3.01 2.34 2.61<br />

12 37.67 3.73 2.26 2.76<br />

13 36.75 2.86 2.90 2.69<br />

14 27.00 3.25 1.83 2.28<br />

15 38.00 2.93 2.22 2.22<br />

16 35.67 3.39 2.14 2.58<br />

17 40.50 4.05 1.78 2.12<br />

18 24.00 3.52 1.40 2.17<br />

19 43.60 2.77 2.07 3.51<br />

20 33.67 3.16 2.36 2.56<br />

21 22.00 3.00 1.68 2.42<br />

22 27.00 3.00 2.13 2.77<br />

23 48.67 2.98 2.93 5.56<br />

24 31 .17 2.99 2.22 2.41<br />

25 27.00 3.00 1.70 2.04<br />

26 22.75 2.14 2.20 2.52<br />

27 20.50 3.12 1.64 2.32<br />

28 30.00 3.33 1.42 2.48<br />

29 25.50 2.81 2.05 2.67<br />

30 26.50 4.10 1.68 2.52<br />

31 43.80 2.83 2.42 2.83<br />

32 29.80 3.74 1.77 2.74<br />

33 20.83 3.40 1.28 2.49<br />

34 37.00 2.83 4.22 3.87<br />

35 51 .80 3.16 2.76 2.97<br />

36 46.50 3.61 2.98 2.65<br />

37 28.60 2.42 1.94 2.12<br />

38 59.75 2.91 3.16 2.48<br />

39 65.00 2.29 4.20 3.46<br />

40 28.00 2.65 1.53 2.44<br />

41 28.83 3.57 1.50 2.54<br />

42 21.00 2.78 1.57 2.97<br />

43 26.33 3.10 1.32 2.17<br />

10.00 13.00 2.90 2.95 1.00 3.37 3.26 1.50 3.73<br />

10.33 13.67 3.63 3.35 1.00 4.70 3.70 1.50 4.63<br />

10.67 11 .33 2.83 1.78 1.00 4.20 2.70 1.83 4.47<br />

11.67 13.60 3.57 3.06 1.00 4.40 2.82 1.33 5.03<br />

9.33 13.50 3.33 2.96 1.00 3.97 3.25 1.50 4.63<br />

11 .67 13.17 3.23 2.86 1.00 3.60 3.18 1.67 4.33<br />

10.83 12.25 2.53 2.85 1.00 3.00 3.34 1.50 3.83<br />

9.50 13.00 2.80 2.49 1.00 3.38 2.81 1.50 4.15<br />

12.83 16.67 3.30 2.76 1.00 3.95 2.63 1.00 5.15<br />

10.40 13.50 2.80 2.91 1.00 4.10 3.05 1.75 3.98<br />

11 .50 13.25 2.83 2.87 1.50 3.13 2.50 2.17 3.43<br />

10.60 12.67 3.53 3.12 1.00 4.37 3.22 1.67 5.43<br />

10.00 15.80 3.07 2.84 1.50 3.67 3.54 2.00 3.70<br />

10.83 14.80 3.13 2.55 1.00 4.07 3.00 1.67 4.43<br />

11 .17 ? 2.53 2.73 1.00 3.00 2.80 1.50 4.10<br />

11 .33 18.20 3.97 3.01 1.50 4.73 3.31 2.00 5.17<br />

9.75 ? 3.00 2.40 1.00 4.05 2.82 1.75 3.70<br />

8.00 0.00 2.03 1.76 1.00 3.07 2.31 1.33 3.10<br />

10.00 ? 2.65 2.52 1.00 3.35 2.35 1.50 3.45<br />

9.80 14.00 2.57 1.93 1.17 3.50 2.04 2.33 4.03<br />

10.83 13.00 3.07 2.48 1.00 4.07 2.64 2.00 4.63<br />

10.67 12.00 3.10 2.50 1.00 4.43 3.70 1.83 4.40<br />

13.17 16.33 3.90 2.93 1.17 4.70 2.93 1.83 5.40<br />

12.50 14.50 3.93 2.93 1.00 4.70 2.63 1.33 4.87<br />

9.63 14.803.132.551.173.732.741.833.83<br />

11 .80 13.00 3.75 2.42 1.00 4.25 2.43 1.25 5.05<br />

12.83 14.00 3.47 2.68 1.00 5.00 2.94 1.83 5.60<br />

14.83 17.17 3.70 2.12 1.00 4.87 2.72 1.67 6.60<br />

11 .00 23.00 3.30 2.81 1.00 4.28 2.82 1.67 5.47<br />

17.20 19.33 4.95 3.19 1.25 5.60 3.61 1.75 6.45<br />

15.33 21 .00 3.60 2.40 1.00 4.70 2.61 1.50 5.30<br />

11 .50 14.83 3.90 3.39 1.17 5.00 3.31 2.00 5.93<br />

10.83 13.17 3.70 2.68 1.17 4.37 2.70 1.83 5.23<br />

11 .00 10.50 3.40 2.60 1.00 4.33 2.92 1.83 4.30<br />

11 .0013.173.272.91 1.174.102.372.174.68


Bocconea 9 - 1998 93<br />

Table 23 (continued).<br />

iibi iibs palel palei pales palet rayl rayi discl disci achei achew coro n OTU<br />

4.06 2.00 4.82 5.97 2.00 2.00 17.47 2.76 3.73 2.25 2.68 1.27 005<br />

4.20 2.50 5.23 7.60 2.00 2.00 15.65 2.69 3.23 2.26 2.16 1.23 0.00<br />

3.92 2.25 2.76 5.06 2.00 2.00 9.70 2.86 2.60 2.36 1.60 0.70 0.15<br />

2.97 2.00 2.77 5.29 2.00 2.00 9.17 2.14 2.63 2.34 1.67 1.03 0.20<br />

2.96 2.17 3.28 5.22 2.00 1.85 7.15 1.54 2.60 2.60 2.19 1.15 0.30<br />

3.07 2.00 3.44 6.50 2.00 2.00 7.50 2.06 2.78 2.32 1.95 0.98 0.05<br />

3.83 1.83 4.06 6.70 2.00 2.00 14.53 2.54 3.07 2.31 ? ? ?<br />

3.48 2.33 2.86 6.65 2.00 2.00 8.00 1.67 2.25 2.40 1.83 0.98 0.23<br />

3.68 1.67 2.52 7.70 2.00 2.00 9.27 2.39 2.63 2.29 1.73 0.87 0.06<br />

3.78 2.00 3.78 6.88 2.00 2.00 9.60 2.05 3.00 2.37 2.42 1.16 0.15<br />

3.15 2.17 3.70 6.01 2.00 2.00 10.03 1.91 3.30 2.36 1.83 0.92 0.10<br />

3.44 2.00 3.68 5.05 2.00 2.00 10.73 2.04 2.88 2.76 1.93 0.97 0.08<br />

3.67 2.00 3.76 6.17 2.00 2.00 13.43 2.78 2.93 2.39 1.85 0.93 0.14<br />

3.64 2.00 3.58 7.90 2.00 2.00 8.88 1 .88 3.05 2.90 2.22 1.08 0.24<br />

4.26 1.83 3.06 5.15 2.00 1.70 9.50 2.32 2.90 2.18 1.90 0.99 0.21<br />

3.81 1.75 4.22 7.56 2.00 2.00 8.30 1.64 2.93 2.61 2.23 1.10 0.23<br />

4.17 2.00 3.80 7.71 2.00 2.00 16.10 2.91 2.97 2.37 2.20 1.07 0.15<br />

2.37 2.50 3.15 4.79 2.25 2.00 11 .90 2.06 2.83 2.90 1.80 1.00 0.30<br />

2.97 2.17 3.22 5.11 2.00 1.80 11 .50 2.63 3.25 2.65 1.62 0.93 0.02<br />

3.47 2.67 4.22 4.97 2.00 1.90 13.80 2.20 3.22 2.49 1.73 0.93 0.00<br />

3.02 2.67 3.25 6.39 2.00 2.00 11 .20 2.50 3.40 2.54 1.77 0.92 0.08<br />

3.05 2.83 3.46 5.12 2.50 1.50 12.83 2.76 2.90 2.46 1.57 0.92 0.00<br />

3.29 2.25 3.73 6.60 2.10 2.00 10.80 3.00 2.93 2.58 2.05 0.94 0.21<br />

4.04 2.00 3.90 7.71 2.00 2.00 12.13 2.68 2.93 2.75 1.53 0.83 0.16<br />

2.31 3.00 2.98 4.11 2.30 1.60 8.43 2.21 2.63 2.26 1.61 0.96 0.27<br />

2.38 2.00 2.76 4.92 1.80 2.00 ? ? 2.83 2.52 2.18 1.00 0.28<br />

2.11 2.50 3.90 4.30 2.40 1.30 12.30 2.62 3.00 2.50 1.75 0.75 0.06<br />

1.87 3.00 3.34 3.45 2.70 1.00 9.60 2.32 2.63 2.24 1.79 0.80 0.00<br />

2.90 3.00 4.08 4.68 2.30 1.70 10.95 2.26 2.98 2.90 2.00 1.03 0.20<br />

3.27 2.67 3.28 4.55 2.50 1.50 8.55 2.40 2.83 2.23 2.08 0.94 0.11<br />

2.66 2.83 4.36 3.92 2.20 1.60 13.95 2.58 3.35 2.39 1.96 0.99 0.10<br />

2.61 2.50 3.63 3.37 3.00 1.13 10.76 2.05 3.17 2.19 1.98 0.85 0.38<br />

2.81 2.00 2.86 5.16 2.00 1.90 9.60 2.18 2.73 2.46 ? ? ?<br />

2.28 2.75 4.21 5.53 2.10 1.50 14.00 2.55 3.17 3.17 1.85 0.95 0.10<br />

2.62 2.67 4.92 5.15 2.00 1.40 12.27 2.77 3.35 2.95 2.20 1.08 0.73<br />

2.96 2.67 4.32 4.35 2.50 1.10 13.93 2.61 3.45 2.43 2.25 0.94 0.35<br />

3.87 2.00 4.88 9.56 2.00 2.00 11.40 2.91 3.23 2.55 2.15 0.95 0.30<br />

4.78 2.25 4.90 8.17 2.00 2.00 19.60 2.47 3.80 2.86 ? ? 0.50<br />

2.65 2.00 4.70 5.11 2.38 1.13 13.05 2.13 3.27 2.55 2.03 1.02 0.47<br />

3.62 2.33 4.20 3.95 2.10 1.20 8.77 2.26 2.95 2.41 1.55 0.76 0.02<br />

2.91 2.17 4.22 3.29 2.70 1.10 10.20 2.17 3.15 2.49 1.39 0.77 0.04<br />

2.69 2.33 4.03 3.09 2.75 1.13 8.80 1.82 3.03 2.12 1.90 0.90 0.82<br />

2.25 3.00 3.38 3.21 2.90 1.00 7.80 2.10 2.75 2.48 ? ? ?<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43


94 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

On the left side <strong>of</strong> the plot (Fig. 20), taxa belonging to <strong>Anthemis</strong> pedunculata s.l. are<br />

also scattered along PC 2 and form a transitional series, ranging from plants with extremely<br />

low scores (indicating narrow inner involucral bracts and narrow pales that gradually<br />

taper to the tip) to those with very high scores (indicating broad inner involucral<br />

bracts and broad pales with tricuspidate or abruptly acuminate tips). This morphological<br />

variation shows a clear correlation with geographical origin: Plants from the W part <strong>of</strong> the<br />

distributional area <strong>of</strong> the group (Spain alld Morocco) are placed at the negative end <strong>of</strong> PC<br />

2, while the positive end is formed by populations <strong>of</strong> A. ubensis (OTUs 40-43) from Tunisia<br />

and populations from E Algeria ascribed to A. pedunculata subsp. atlantica (OTUs 27-<br />

32), the extremes being connected by a cluster <strong>of</strong> specimens from W and C Algeria (OTUs<br />

18-25) that hold a intermediate position and include the types <strong>of</strong> A. granulata (OTU 18)<br />

and A. punctata varo microcephala (OTU 25). <strong>The</strong> types <strong>of</strong> A. tenuisecta Pomel, nom.<br />

illeg. (OTU 23), and A. pedunculata (OTU 3) are nested within the Moroccan and Spanish<br />

representatives, along with A. tuberculata varo discoidea (OTU 26), A. turolensis (OTU<br />

33), A. laeviuscula (OTU 16), and A. punctata varo maroccana (OTU 17).<br />

PC 3 (Fig. 21) contributes little to a further understanding <strong>of</strong> taxon relations within the<br />

<strong>Anthemis</strong> punctata and the A. pedunculata groups. <strong>The</strong> geographical cline within<br />

A. pedunculata, as revealed by PC 2, is lost in PC 3.<br />

For the Moroccan representatives <strong>of</strong> <strong>Anthemis</strong> pedunculata s.l. there seems to exist a<br />

week correlation between morphology and chromosome number: diploid representatives<br />

(OTUs 6, 8, 9) are mainly found to have rather low scores on PC 1, the tetraploids (OTUs<br />

10-15) tend to have higher scores on that axis, mainly due to size differences between the<br />

two cytotypes. However, the position <strong>of</strong> OTU 7, a diploid specimen from NE Morocco,<br />

shows that exceptions to this pattem occur.<br />

Table 24. Base sequences <strong>of</strong> primers used in the RAPD analysis <strong>of</strong> the<br />

<strong>Anthemis</strong> pedunculata - A. punctata complex.<br />

Primer Base sequence Primer Base sequence<br />

A-Ol 5 ' -CAGGCCCTTC-3 , A-07 S ' -GAAACGGGTG-3 '<br />

A-02 S'-TGCCGAGCTG-3' A-08 S ' -GTGACGTAGG-3 '<br />

A-03 S '-AGTCAGCCAC-3' A-09 5 ' -GGGTAACGCC-3 ,<br />

A-04 S ' -AATCGGGCTG-3 ' A-IO 5 ' -GTGATCGCAG-3 ,<br />

A-05 S ' -AGGGGTCTTG-3 ' A-Il S ' -CAATCGCCGT-3 '<br />

A-06 S ' -GGTCCCTGAC-3 ' A-12 S ' -TCGGCGATAG-3 '<br />

RAPD analysis<br />

Polymerase chain reactions (PCR) using 26 OTUs and 12 different primers resulted in<br />

106 informative amplification bands which are listed in Table 25. <strong>The</strong> number <strong>of</strong> informative<br />

bands per primer ranged from 1 (primer A-06) to 18 (primer A-Il). <strong>The</strong> dendrogram<br />

constructed using the Jaccard index as a distance measure and the neighbor-joining<br />

method for the agglomeration <strong>of</strong> OTUs resulted in the dendrogram shown in Fig. 22, A<br />

majority-rule consensus tree based on 100 replicates is presented in Fig. 23. Bootstrap<br />

values appear to be rather low throughout the consensus tree, indicating that the data set<br />

contains a considerable amount <strong>of</strong> random noise, <strong>The</strong> same conclusion is valid for the


Bocconea 9 - 1998 95<br />

Table 25: Distribution <strong>of</strong> variable amplification bands found in the RAPD analysis<br />

<strong>of</strong> representatives <strong>of</strong> the <strong>Anthemis</strong> pedunculata - A. punctata complex.<br />

Primer fragmenl OTU Primer fragment<br />

length<br />

length<br />

OTU<br />

(bp) 30014201010144443333444222 (bp) 30014201010144443333444222<br />

34109661728345601026187018 34109661728345601026187018<br />

A-OI 1425 01000000110010011110000100 A-08 954 11111111111107711101077011<br />

1360 00000000000011101000000100<br />

908 00001000000017700000077000<br />

1149 01000000000010000010000000<br />

814 00000000000017710111077000<br />

1101 00000000100000000010000000<br />

713 00000001000007700000077001<br />

1055 01010001000000000000000000<br />

642 11111011111107700000177110<br />

1012 00001000000000000000100001<br />

619 01000000110007700100077101<br />

895 000010000000000QOOO0100000<br />

577 00001001000007700100077011<br />

844 00000000110000000000000000<br />

750 11110111111100001111011111 467 10000011000007700100077010<br />

669 00000000000000000001000001 405 00100000000007700000177000<br />

644 00000000000000000001100000 A-09 854 01010101111100701001101010<br />

632 00000000000000001010000000 635 00000011000001700100000001<br />

482 10111000000000010111100111 614 11111101110100711111100111<br />

435 00100010000100011011000000<br />

545 11110100111110711110010100<br />

A-02 1187 00100001111110011111107101<br />

509 01000100000000700000000000<br />

1005 01001110111100000000000000<br />

436 10101111000101701111011000<br />

985 00100000101100000111100010<br />

779 00100001010000001111110011 A-IO 1056 01000100000001000000000000<br />

765 00100001010000001111110011 1021 00000000010000000000000100<br />

751 00100001010010001111110011 957 10111011001100000100000000<br />

737 00100001010000001111111111 870 00000100000001000110000001<br />

601 00100000000011111101111000 826 11000001000000011000000000<br />

579 00001000000001000000010000 784 11000001000000011000001111<br />

558 00000000001000000000100000 668 11111111111111011111111111<br />

533 00000000000001000000010000 612 11110101010110011111011111<br />

509 10100101011110011011110111<br />

499 00000000000010000010001000<br />

482 11110111111111111111110111<br />

485 00110100000000000000000111<br />

432 00000100000000000000000001<br />

355 00100001011100011111110011 A-Il 1117 00100000111100010000000000<br />

338 00100001111100011111111111 1096 00000000001000000100000110<br />

A-03 645 01001000001000000000011001 1034 00100000010000000000000000<br />

565 00010000000011000000001000 1015 01000000000100010000000000<br />

451 11110111111711100100011011 959 10001000000000000000000011<br />

428 01110111101710000100111111 860 00000001000000000000011011<br />

A-04 1144 11110101111111011111107111 747 00010010010000010100000000<br />

1073 11110101111111011111107111 698 00001000000001000011010001<br />

1040 00001000000000100000010000 686 11100101010100100000000100<br />

761 00000000101000010001007111 652 00010110101000011011100010<br />

592 00000000000010000100010000 620 00000100100000000010001100<br />

470 00100001000000001000000100 590 00000010100000000100000100<br />

443 11111111111100000000000000 585 00000000000000000000000011<br />

426 11111111111100000000000101<br />

562 01000111000000000011010000<br />

410 11100000010000000000010000<br />

544 00001000100000000000100000<br />

A-05 1127 00000000000000000000010001<br />

501 00000010000110000100010000<br />

1093 00000000010000000100000000<br />

379 00000000001111000001010000<br />

1038 00000001010000010000017711<br />

316 00000000000000010001111000<br />

997 00110000000000000000000000<br />

667 10000011010000011111117111 A-12 1218 00000000000000001010000000<br />

631 10010010010000017111117111 1067 10010000000000000000000000<br />

517 00000000000000010000001111 655 00000000010000000000000011<br />

A-06 1034 00001000000000011111000000 612 00000000000010010010100000<br />

A-07 881 00000000000010011111100111 572 00011000000010000000000111<br />

826 00000000000000000011100000 561 10100101100000001111100111<br />

696 00000000000000011010000000 427 00100100000000000000000000<br />

671 00000000000100011110000000 321 00111011010100001100000000


96 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

Table 26. Variable loadings on PC 1 to PC 3<br />

<strong>of</strong> principal component analysis (PCA) <strong>of</strong> the<br />

<strong>Anthemis</strong> punctata - <strong>Anthemis</strong> pedunculata<br />

complex (character symbols are explained in<br />

Table 19 and Fig. 17). Dominating loadings<br />

on each principal component are shown in<br />

bold-face type.<br />

Variable PC 1 PC2 PC3<br />

leafl .815 .090 -.234<br />

leafi -.214 .172 .028<br />

ulsl .689 .005 - .408<br />

ulsi .201 -.003 - .403<br />

invol .886 .276 -.068<br />

rayno .667 .129 .265<br />

oibl .831 .264 .277<br />

oibi .427 - .118 .612<br />

oibs .085 .081 .609<br />

mibl .802 .301 .157<br />

mibi .367 - .430 .501<br />

mibs - .181 .469 .483<br />

iibl .876 .264 .058<br />

iibi .539 -.626 .331<br />

iibs - .105 .726 .024<br />

palel .835 .267 - .127<br />

pale i .406 -.755 .069<br />

pales -.207 .841 - .011<br />

palet .122 -.910 .076<br />

rayl .807 .047 -.045<br />

rayi .452 .006 .173<br />

discl .804 .234 -.022<br />

disci .190 -.013 - .185<br />

achei .433 - .229 -.533<br />

achew .385 -.374 - .476<br />

coron .125 .192 - .430<br />

dendrogram in Fig. 22, where most <strong>of</strong> the interior branches connecting nodes are considerably<br />

shorter than the branches between nodes and OTUs, indicating that a high amount<br />

<strong>of</strong> parallelism exists in the data set and that only few amplification bands are significant<br />

for the tree topology. However, there is a good correlation <strong>of</strong> groupings in dendrogram<br />

and consensus tree, and only few discrepancies are found, which indicate that the essential<br />

structures <strong>of</strong> the dendrogram are trustworthy despite the low bootstrap values.<br />

<strong>The</strong> arrangement <strong>of</strong> OTUs according to their genetic similarity as assessed by RAPD<br />

analysis shows some interesting groupings. Four major c\usters were found to exist in both<br />

the originaI dendrogram and the consensus tree <strong>of</strong> the bootstrap analysis. <strong>The</strong> first group is<br />

formed by the annuals <strong>of</strong> <strong>Anthemis</strong> confusa (OTUs 44-46), A. stipa rum subsp. stipa rum


Bocconea 9 - 1998 97<br />

(OTU 47) and subsp. sabulicola (OTU 48). This cluster is conspicuously set apart from<br />

the rest <strong>of</strong> the OTUs, which cluster with the comparatively high bootstrap value <strong>of</strong> 61 %.<br />

A second cluster is formed by Tunisian representatives: the annual, diploid A. ubensis<br />

(OTUs 40, 41), the perennial, tetraploid A. punctata (OTUs 35, 36), and a diploid (OTU<br />

32) and tetraploid (OTU 31) <strong>of</strong> A. pedunculata subsp. atlantica. <strong>The</strong> arrangement <strong>of</strong><br />

OTUs within this cluster differs markedly between the dendrogram and the consensus tree,<br />

so that groupings within this cluster are very unstable. Only the position <strong>of</strong> OTU 32 as an<br />

outlayer <strong>of</strong> this cluster proves to be fairly reproducible.<br />

A third cluster comprises the diploid and tetraploid Moroccan and Spanish representati<br />

ves <strong>of</strong> <strong>Anthemis</strong> pedunculata s.l (OTUs 4-l3) and, nested among them, A. abylaea (OTU<br />

l) and A. zaianica (OTU 49). <strong>The</strong> internaI structure <strong>of</strong> the cluster is faithfully maintained<br />

in the consensus tree. A first subcluster is formed by the tetraploid A. abylaea (OTU l)<br />

and two tetraploid Moroccan representatives <strong>of</strong> A. pedunculata (OTUs 11-l2), while the<br />

other tetraploids are nested within the cluster comprising Moroccan diploids (OTUs 6-8),<br />

along with representatives <strong>of</strong> A. turolensis (OTU 33) and A. tuberculata (OTU 4) from<br />

Spain, and A. tuberculata varo discoidea (OTU 26) and A. zaianica (OTU 49).<br />

<strong>The</strong> fourth cluster is formed by three Algerian representatives <strong>of</strong> <strong>Anthemis</strong> pedunculata<br />

s.1. (OTUs 20, 21, 28). It is linked with the Tunisian cluster in Fig. 22, but in the consensus<br />

tree (Fig. 23) it is associated with the cluster <strong>of</strong> Moroccan OTUs. In view <strong>of</strong> the very<br />

low bootstrap value for the latter grouping (17 %), the position <strong>of</strong> this cluster is uncertain.<br />

Discussion<br />

<strong>The</strong> morphological analysis shows a main discontinuity within the data set that is<br />

caused by correlated characters describing sizes <strong>of</strong> leaves, involucres, ray and disc florets.<br />

That combination <strong>of</strong> characters permits to discriminate between <strong>Anthemis</strong> punctata s.1. on<br />

the one hand and A. pedunculata s.1. on the other hand. <strong>The</strong> A. punctata group, thus defined,<br />

comprises taxa that were ali treated at infraspecific level within that species in the<br />

past: A. punctata var. abylaea (OTUs 1-2), A. punctata varo kabylica (OTUs 37-38),<br />

A. punctata var. baborensis (OTU 34), and A. punctata subsp. cupaniana (OTU 39).<br />

Two taxa assigned to <strong>Anthemis</strong> punctata in the past, however, are found nested within<br />

A. pedunculata s.l., the first <strong>of</strong> these is A. punctata varo microcephala, for which Faure &<br />

Maire (in Maire 1931 b) stated that it has the habit <strong>of</strong> A. tuberculata, differing in its adaxially<br />

coronated achenes, a character which they considered typical <strong>of</strong> A. puncata. Maire<br />

(1933) later included A. punctata var. microcephala in the synonymy <strong>of</strong> A. granulata,<br />

which he treated as a variety <strong>of</strong> A. pedunculata subsp. tuberculata in Jahandiez & Maire<br />

(1934). <strong>The</strong> inclusion <strong>of</strong> A. punctata var. microcephala in A. pedunculata s.1. is backed by<br />

the morphological analysis presented here, its type (OTU 25) being very similar to that <strong>of</strong><br />

A. granulata (OTU 18). Both types, collected in W Algeria, belong to the group <strong>of</strong> OTUs<br />

intermediate between the Moroccan/Spanish representatives <strong>of</strong> A. pedunculata s.1. and the<br />

E Algerian ones.<br />

<strong>Anthemis</strong> punctata varo maroccana (OTU 17) is the other taxon once assigned to<br />

A. punctata bul showing a closer overall similarity with representatives <strong>of</strong> A. pedunculata<br />

s.1. in the peA. It was said by Maire (l93la) to differ from the typical variety <strong>of</strong><br />

A. punctata by its smooth achenes lacking a corona, from A. punctata var. baborensis by<br />

its pubescent leaves and conspicuously mucronate ultimate leaf segments, and from


98 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

A. tuberculata by its twice as large capitula. However, Maire (l931b) adds: "Habitus<br />

A. tuberculatae Boiss." Indeed, specimens from the W High Atlas mountains ascribable to<br />

A. punctata varo maroccana tend to combine characters typical for A. pedunculata s.1. (e.g.<br />

smallleaves, ecoronate achenes) with large flower heads typical <strong>of</strong> A. punctata s.1. However,<br />

capitulum size still falls within the variation range <strong>of</strong> A. pedunculata s.I., its<br />

tetraploid but also some diploid (OTU 7!) representatives in Morocco. <strong>The</strong>refore,<br />

A. punctata varo maroccana is better considered a member <strong>of</strong> A. pedunculata s.1. whose<br />

rather large capitula were acquired independently from those <strong>of</strong> the E Algerian and N<br />

Tunisian A. punctata. Pending further cytological and genetic studies <strong>of</strong> these populations<br />

in the W High Atlas mountains, they are here treated as belonging to the tetraploid representatives<br />

<strong>of</strong> A. pedunculata.<br />

<strong>The</strong> N Moroccan populations described as A. punctata varo abylaea, however, appear to<br />

be well separated from A. pedunculata s.1. in our morphological analysis. <strong>The</strong> two studied<br />

2 ,5~--------------------------------------------------~<br />

2,0<br />

1,5<br />

1 ,O<br />

PC2<br />

28<br />

1( .- _.<br />

\.<br />

\.<br />

43<br />

~ "<br />

- .- \:' 32<br />

......... ~; - . -...... ,.<br />

\.42 ......<br />

'". ....<br />

'.,<br />

" .<br />

'-.<br />

36<br />

39<br />

•<br />

,5<br />

0,0<br />

-,5<br />

-1,0<br />

-- -- 18<br />

\ o<br />

19<br />

o<br />

-- \. 1~1<br />

" ". 20<br />

"~<br />

5~ _ -\-----~--,- - -" ,t2 '~<br />

r---- \. 2f'.>,


Bocconea 9 - 1998 99<br />

representatives <strong>of</strong> this taxon (OTUs 1-2) are quite similar to representatives <strong>of</strong> A. punctata<br />

varo kabylica (OTUs 36-37) from the Djurdjura mountains in C Algeria. That resemblance<br />

even induced Font Quer & Pau to identify a collection <strong>of</strong> Font Quer from the W Rif<br />

mountains (Iter Maroccanum 1930: n° 665) as A. cupaniana varo kabylica. However, there<br />

are some differences between the two taxa. Whereas in A. punctata varo kabylica the involucral<br />

bracts are completely glabrous and the disc achenes usually have an adaxial corona,<br />

the involucral bracts are conspicuously hairy in A. punctata varo abylaea, where<br />

achenes lack a corona. <strong>The</strong> results <strong>of</strong> the RAPD analysis point in a different direction.<br />

OTU 1, representing A. abylaea in the molecular analysis, is found in a cluster with two<br />

tetraploid representatives <strong>of</strong> A. pedunculata s.l., one from a nearby population in the W<br />

Rif mountains (OTU Il), the other from the NE Moroccan Beni Snassen mountains (OTU<br />

12). Other tetraploid Moroccan representatives <strong>of</strong> A. pedunculata s.l. (OTUs lO, 13),<br />

however, are nested among the Moroccan and Spanish diploids (OTUs 4, 6, 7, 8, 26, 33).<br />

3~---------------------------------------------------.<br />

2<br />

PC3<br />

24<br />

40 .... ~<br />

21 .... ,! ........ !<br />

~,./).-.:.:/.;;,./ !<br />

f<br />

j<br />

;<br />

38<br />

o<br />

-1<br />

-2<br />

1 •<br />

.""" ,-!/",,'J:.


100 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

<strong>The</strong> two tetraploid groups differ markedly in the number <strong>of</strong> amplification bands found in<br />

the RAPD analysis: OTUs lO and 13 have 27 and 29 informative bands, respectively,<br />

which falls within the range found in the diploids (OTU 4: 28, OTU 6: 23, OTU 7: 29,<br />

OTU 8: 27, OTU 26: 28, OTU 33: 27); the tetraploids clustering with A. abylaea have<br />

higher numbers <strong>of</strong> informative bands (OTU 1: 39, OTU 11 : 39, OTU 12: 38), which may<br />

indicate their likely allotetraploid origin - the other tetraploids then being considered<br />

autotetraploids. However, most <strong>of</strong> the bands found in the presumed allotetraploids also<br />

occur in the local diploids, and since in the present study no assumption <strong>of</strong> variation <strong>of</strong><br />

amplification bands within and between plant populations was made, this "allopolyploidisation"<br />

may also result from the combination <strong>of</strong> two different local genotypes <strong>of</strong> the same<br />

species (when the plants would stili be autotetraploids) rather than from the combination<br />

<strong>of</strong> two substantially different genomes <strong>of</strong> two independent species (as in true allotetraploids).<br />

<strong>The</strong> occurrence <strong>of</strong> four amplification bands (primer A-02: 779 bp, 765 bp, 751 bp,<br />

737 bp) that are shared by the three presumed allotetraploids, Algerian representatives <strong>of</strong><br />

A. pedunculata s.I., and Tunisian diploids (A . ubensis) and tetraploids (A . punctata) supports<br />

the allotetraploid hypothesis, but further evidence is required.<br />

Only diploid chromosome numbers were so far reported for Moroccan representatives<br />

<strong>of</strong> <strong>Anthemis</strong> pedunculata s.1. (Galland 1985, 1991), but tetraploids proved to be common<br />

throughout Morocco (Vogt & <strong>Oberprieler</strong> 1993 and present study), from the Rif mountains<br />

in the N to the Anti-Atlas mountains in the S. <strong>The</strong>y mostly grow in the same area as<br />

diploids, <strong>of</strong>ten in mixed stands. Since morphological and genetic differences between<br />

diploids and tetraploids were found to be small, it is reasonable to assume the tetraploids<br />

to be autotetraploids derived directly from the loeal diploids. Treating diploids and<br />

autotetraploids as a different speeies on the grounds <strong>of</strong> reproductive isolation is undesirable<br />

as long as no new morphological characters evolve within and spread through some<br />

or all tetraploid populations. As no sue h eharacters were found, diploids and tetraploids<br />

are treated as cytotypes <strong>of</strong> a single speeies, A. abylaea being the single exception to that<br />

mie: plants <strong>of</strong> this tetraploid segregate differ morphologically from all other diploid and<br />

tetraploid representatives <strong>of</strong> A. pedunculata s.1. and are therefore treated as members <strong>of</strong> an<br />

independent species.<br />

<strong>The</strong> patterns observed in Moroccan populations <strong>of</strong> the <strong>Anthemis</strong> pedunculata -<br />

A. punctata complex are paralleled to some extent in E Algerian and N Tunisian populations,<br />

where the occurrence <strong>of</strong> diploid annuals (OTUs 40-43) that fall within the morphological<br />

range <strong>of</strong> perennial A. ,Jedunculata s.1. (OTUs 27-32) adds to the complexity. Due<br />

to their annual habit, these plants were <strong>of</strong>ten considered to be closely related to annuals<br />

from S Tunisia, and united with them in A. pedunculata var. decumbens. However, RAPD<br />

analysis shows that the N Tunisian annuals are more closely related to the N Tunisian<br />

perennials <strong>of</strong> A. pedunculata s.I. and A. punctata, while the S Tunisian annuals, treated in<br />

the present study as A. confusa (OTUs 44-46), are clustered with A. stiparum subsp. stiparum<br />

(OTU 47) and subsp. sabulicola (OTU 48) <strong>of</strong> A. sect. <strong>Anthemis</strong>. Morphological<br />

evidence shows that the N Tunisian annuals hold an intermediate position between<br />

A. pedunculata s.I. and A. secundiramea, an annual species growing along the E Algerian<br />

and N and E Tunisian coasts <strong>of</strong> the Mediterranean Sea. <strong>The</strong> N Tunisian annuals share with<br />

A. pedunculata s.1. the erect habit, dark tipped pales (found at least in some populations),<br />

and the occurrence in mountainous inland habitats, while characters typical for<br />

A. secundiramea are the annual habit, the much-branched capitulescence (stems in


Bocconea 9 - 1998 101<br />

A. pedunculata s.1. usually bear up to three capitula), the peduncles which become inflated<br />

at maturity (they remain slender in A. pedunculata s.I.), the conical receptacles<br />

(hernispherical in A. pedunculata s.I.), and the comparatively small achenes with a relatively<br />

long corona (A. pedunculata s.1. usually has longer achenes with very short coronas).<br />

A majority <strong>of</strong> these characters thus favour a relationship with A. secundiramea. <strong>The</strong><br />

occurrence <strong>of</strong> a segregate inland taxon <strong>of</strong> the coastal A. secundiramea has a parallel in the<br />

case <strong>of</strong> A. muricata, a discoid relative <strong>of</strong> A. secundiramea that occurs only inland in C<br />

Sicily. <strong>The</strong> intermediate annuals <strong>of</strong> N Tunisia (OTUs 40-43) are thus better placed in the<br />

44 confusa (2x)<br />

48 sabulicola (2x)<br />

45 confusa (2x)<br />

47 stiparwn (2x)<br />

46 confusa (2x)<br />

40 ubensis (2x)<br />

31 atlantica (4x)<br />

35 punctata (4x)<br />

36 punctata (4x)<br />

41 ubensis (2x)<br />

32 atlantica (2x)<br />

----------------------------~-<br />

20 pedunculata (2x) F:<br />

21 pedunculata(2x) ~<br />

28 atlantica (2x) ;:t><br />

I abylaea (4x)<br />

II pedunculata (4x)<br />

12 pedunculata (4x)<br />

33 turolensis (2x)<br />

IO pedunculata (4x)<br />

49 zaianica (2x)<br />

6 pedunculata (2x)<br />

4 pedunculata (2x)<br />

26 discoidea (2x)<br />

3:::<br />

O<br />

~<br />

(ì<br />

(ì<br />

O<br />

+<br />

7 pedunculata (2x)<br />

8 pedunculata (2x)<br />

13 pedunculata (4x)<br />

Fig. 22. <strong>Anthemis</strong> pedunculata - A. punctata complex: neighbour-joining distance analysis <strong>of</strong><br />

Jaccard distances from RAPD pattems given in Table 25.


102 Oberprie1er: <strong>Anthemis</strong> in N Africa<br />

vicinity <strong>of</strong> A. secundiramea than near A. pedunculata s.l., even though the RAPD ana1ysis,<br />

where they cluster with representatives <strong>of</strong> A. pedunculata S.l. and A. punctata from N<br />

Tunisia, suggests intermediacy between A. sect. <strong>Anthemis</strong> and sect. Hiorthia. <strong>The</strong> occurrence<br />

<strong>of</strong> aneup10id chromosome numbers in two popu1ations, indicating genomic imba1-<br />

ance, may a1so point to a possib1e hybrid origino Inclusion <strong>of</strong> the N Tunisian annua1s in<br />

A. secundiramea or A. pedunculata wou1d harm the taxonomic integrity <strong>of</strong> either, and<br />

_----- 20 pedunculata (2x)<br />

95<br />

21 pedunculata (2x)<br />

28 atlantica (2x)<br />

17<br />

65<br />

8 pedunculata (2x)<br />

7 pedunculata (2x)<br />

13 pedunculata (4x)<br />

4 pedunculata (2x)<br />

26 discoidea (2x)<br />

49 zaianica (2x)<br />

6 pedunculata (2x)<br />

IO pedunculata (4x)<br />

~<br />

~<br />

()<br />

()<br />

O<br />

+<br />

61<br />

33 turolensis (2x)<br />

Il pedunculata (4x)<br />

31<br />

53<br />

12 pedunculata (4x)<br />

l abylaea (4x)<br />

31 atlantica (4x)<br />

35 punctata (4x)<br />

40 ubensis (2x)<br />

41 ubensis (2x)<br />

36 punctata (4x)<br />

62<br />

64<br />

82<br />

32 atlantica (2x)<br />

-----------------------------------<br />

44 confusa (2x)<br />

46 confusa (2x)<br />

45 confusa (2x)<br />

48 sabulicola (2x)<br />

47 stiparum (2x)<br />

Fig. 23. <strong>Anthemis</strong> pedunculata - A. punctata complex: majority-ruIe consensus dendrogram<br />

summarising 100 dendrograms from a bootstrap analysis <strong>of</strong> RAPD patterns given in Table 25 . -<br />

Single dendrograms were constructed by neighbour-joining distance analyses <strong>of</strong> Jaccard distances.<br />

Bootstrap values denote the number <strong>of</strong> trees with a particular grouping <strong>of</strong> OTUs.


Bocconea 9 - 1998 103<br />

recognition <strong>of</strong> a separate species, A. ubensis (described from E Algeria), is therefore proposed.<br />

However, additional field and experimental work is needed to fully understand the<br />

complex relationships <strong>of</strong> that species.<br />

In parallel to the case <strong>of</strong> <strong>Anthemis</strong> abylaea in Morocco, some <strong>of</strong> the Tunisian<br />

tetraploids (OTUs 34-36) are morphologically distinct enough (see Fig. 21) to warrant<br />

their recognition as an independent species, A. punctata. Same as A. abylaea, A. punctata<br />

shows a marked tendency to large flower heads and long basai leafs. It shows a striking<br />

overall similarity with a tetraploid from Sicily, described as A. cupaniana (OTU 39), that<br />

is <strong>of</strong>ten treated as a subspecies <strong>of</strong> A. punctata. In the multivarite analysis <strong>of</strong> morphological<br />

characters these two tetraploids are indeed very similar, but there are considerable differences<br />

in the shape <strong>of</strong> the membranous margin <strong>of</strong> involucral bracts, which in A. punctata is<br />

broad and bicoloured (darker brown inwardly), but in A. cupaniana is narrow and<br />

uniformJy light to dark brown.<br />

After the segregation <strong>of</strong> the E Algerian and N Tunisian annuals (<strong>Anthemis</strong> ubensis) and<br />

the large-headed A. punctata, what remains <strong>of</strong> A. pedunculata s.l. is rather homogenous,<br />

consisting <strong>of</strong> small-headed perennials with a continuous range from Morocco and Spain to<br />

N Tunisia. Within this range clinal variation exists in the shape <strong>of</strong> inner involucral bracts<br />

and pales, as shown by PC 2 <strong>of</strong> the PCA (Fig. 20) and a1ready discussed. <strong>The</strong> two extremes<br />

are connected by a series <strong>of</strong> intermediate plants throughout W and C Algeria, but<br />

may nonetheless deserve recognition as subspecies. <strong>The</strong> type <strong>of</strong> A. pedunculata (OTU 3)<br />

falls within the western group; the deviating populations in E Algeria and N Tunisia are<br />

named A. pedunculata subsp. atlantica, based on A. atlantica (OTU 27), described from<br />

the Aurès mountains near the Algerian-Tunisian border. Quantitatively, as seen in the PCA<br />

plot (Fig. 20), A. pedunculata subsp. atlantica is very similar to A. ubensis, which ho w­<br />

ever differs in its annual growth, much-branched capitulescence, peduncles somewhat<br />

inflated at maturity, conical receptacles, and smaller achenes with usually longer coronas.<br />

<strong>Anthemis</strong> pedunculata subsp. pedunculata, comprising diploids and tetraploids and<br />

found growing throughout S Spain, Morocco, E and C Algeria, shows little quantitative<br />

variation that might call for taxonomic recognition. <strong>The</strong> sculpturing <strong>of</strong> achenes has been<br />

used to delimit A. granulata (with extremely tuberculate achenes) and A. laeviuscula (with<br />

quite smooth achenes), and al so in some floras (e.g. Quézel & Santa 1963) to separate<br />

A. pedunculata subsp. pedunculata and subsp. tuberculata, but appears to be quite variable<br />

even within populations, and highly dependent on the degree <strong>of</strong> maturity (the type<br />

specimen <strong>of</strong> A. laeviuscula has unripe achenes, plants with ripe achenes collected later at<br />

the locus classicus have normally tuberculate achene surfaces), providing scant support to<br />

a further subdivision <strong>of</strong> A. pedunculata subsp. pedunculata. Only discoid plants, found<br />

within the range <strong>of</strong> A. pedunculata subsp. pedunculata in S Spain and in the Rif and High<br />

Atlas mountains, may deserve formai recognition, as a variety (var. discoidea), although<br />

they are not geographically separated and may have originated in parallel in the different<br />

regions.<br />

<strong>Anthemis</strong> turolensis (OTU 33), both in morphological and RAPD analysis, is well<br />

nested among the OTUs representing A. pedunculata subsp. pedunculata. According to<br />

Benedi i Gonzalez & Molero i Briones (1985) and Benedi i Gonzalez (1987), who studied<br />

Spanish populations <strong>of</strong> HA. tuberculata subsp. tuberculata" (= A. pedunculata subsp.<br />

pedunculata) and subsp. turolensis, the two taxa differ in achene length, shape <strong>of</strong> pales,<br />

and the colour and length <strong>of</strong> leaves. Fernandes (1976) also used achene length to discrimi-


104 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

nate between HA. tuberculata subsp. tuberculata" and subsp. turolensis. However, the<br />

respective ranges <strong>of</strong> achene length overlap, being 1.3-2.1 rnrn in A. tuberculata subsp.<br />

turolensis and 1.8-2.5 rnrn in A. tuberculata subsp. tuberculata. Benedf i GonzaIez (1987)<br />

describes the pales <strong>of</strong> A. tuberculata subsp. tuberculata as linear-subulate and usually<br />

tinged with black at the apex, those <strong>of</strong> A. tuberculata subsp. turolensis as oblanceolate<br />

with concolourous tips. Leaves <strong>of</strong> A. tuberculata subsp. tuberculata were found to be dark<br />

green and 2-3.5(-6.0) cm long, those <strong>of</strong> A. tuberculata subsp. turolensis, light green and<br />

only 1.2-2 cm long. As HA. tuberculata subsp. tuberculata" grows in the S Spanish<br />

mountain ranges and subsp. turolensis is restricted to mountains in C Spain (Sistema<br />

Ibérico), the treatment <strong>of</strong> A. turolensis as a subspecies <strong>of</strong> A. pedunculata (= A. tuberculata)<br />

is logica!.<br />

<strong>Anthemis</strong> clausonis, restricted to the coasts W <strong>of</strong> Algiers, also belongs to the<br />

A. pedunculata group <strong>of</strong> taxa and is treated here as its subspecies, A. pedunculata subsp.<br />

clausonis. Due to lack <strong>of</strong> fresh plant material this taxon was omitted from the morphological<br />

and molecular analyses. With its narrowly elliptical to subulate pales it c1early falls<br />

within the range <strong>of</strong> A. pedunculata subsp. pedunculata but differs by its pale membranous<br />

margins <strong>of</strong> the involucral bracts, when in all other taxa <strong>of</strong> the A. pedunculata group they<br />

use to be light to dark brown or even black. As A. ubensis from E Algeria and N Tunisia,<br />

and unlike other members <strong>of</strong> the A. pedunculata group, A. clausonis has a fairly branched<br />

capitulescence, but it differs from A. ubensis by its perennial growth and the shape <strong>of</strong><br />

involucral bracts and pales. By the pale membranous margins <strong>of</strong> involucral bracts and the<br />

much-branched habit, A. clausonis resembles the NE Moroccan A. mauritiana and the S ·<br />

Spanish A. bourgaei <strong>of</strong> A. ser. Bourgaeinianae which, however, are annuals with readily<br />

caducous pales.<br />

<strong>Anthemis</strong> zaianica is here described as new to accornrnodate a population in the Zaian<br />

area in Morocco that also holds a somewhat intermediate position between the A. pedunculata<br />

group and A. ser. Bourgaeinianae. It was not inc1uded in the numerical analysis, but<br />

morphologically it fits in A. ser. Bourgaeinianae due to its annual habit and its readily<br />

caducous pales. In contrast, results <strong>of</strong> RAPD analysis piace a representative <strong>of</strong> A. zaianica<br />

among Moroccan and Spanish populations <strong>of</strong> A. pedunculata, well apart from the two<br />

specimens <strong>of</strong> A. stiparum. <strong>The</strong> dendrogram in Fig. 22 al so indicates, however, that<br />

A. zaianica deviates genetically from its nearest neighbour, OTU 6, since the branch<br />

length between A. zaianica (OTU 49) and the internai node with OTU 6 is much longer<br />

than is the rule for representatives <strong>of</strong> A. pedunculata, i.e. genetic deviation <strong>of</strong> A. zaianica<br />

from a joint "cornrnon ancestor" conspicuously exceeds that <strong>of</strong> OTU 6. One may hypothesise<br />

that A. zaianica is rather an annual segregate <strong>of</strong> A. pedunculata than a member <strong>of</strong><br />

A. ser. Bourgaeinianae, and that annual growth and caducous pales have evolved in parallei<br />

in A. zaianica and in the mentioned series. That hypothesis may be extended to question<br />

the monophyly <strong>of</strong> A. ser. Bourgaeinianae altogether by assurning that its members all<br />

derive from A. pedunculata, having become annuals independently in different areas in<br />

habitats that favour annuallife forms: the dry high plateaus <strong>of</strong> Algeria (A. stipa rum subsp.<br />

stipa rum and subsp. intermedia, A. monilicostata), the border lands <strong>of</strong> the Sahara desert<br />

(A . stiparum subsp. sabulicola), or the rather arid coastal areas <strong>of</strong> NE Morocco (A. mauritiana)<br />

and SW Spain (A. bourgaei). For the latter species a relation to A. tuberculata<br />

(= A. pedunculata) was already suggested by Talavera, cited by Benedf i Gonzalez (1987:<br />

216). Since A. pedunculata is a rather short-lived perennial herb that may <strong>of</strong>ten flower


Bocconea 9 - 1998 105<br />

already in the first year, the switch to annual Iife form is easy, and indeed took piace in<br />

some diploid populations <strong>of</strong> A. pedunculata in Morocco growing as weeds in arable fields,<br />

while plants growing on adjacent limestone c1iffs were tetraploid and distinctly perennial<br />

(e.g. at Foum Kheneg, Middle Atlas, OTUs 8 and 13). Our morphological and molecular<br />

studies are not sufficient to prove or disprove the monophyly <strong>of</strong> A. ser. Bourgaeinianae<br />

(and consequently <strong>of</strong> both A. sect. <strong>Anthemis</strong> and sect. Hiorthia). <strong>The</strong> answer must await a<br />

comprehensive study on the phylogeny <strong>of</strong> the genus. Pending this, I consider the annual<br />

habit and the readily caducous pales <strong>of</strong> A. zaianica to be sufficient grounds for its inc1usion<br />

in A. ser. Bourgaeinianae.<br />

Variation within <strong>Anthemis</strong> pedunculata in C and E Algeria and N Tunisia is paralleled<br />

in A. punctata in the same area. In the E Algerian and N Tunisian mountains (where<br />

A. pedunculata is represented by subsp. atlantica) A. punctata is characterized by obovate<br />

inner involucral bracts and tricuspidate pales (A. punctata subsp. punctata). <strong>The</strong> largeheaded<br />

plants from the Djurdjura mountains (where A. pedunculata is represented by<br />

subsp. pedunculata) differ by having elliptical inner involucral bracts and gradually tapering<br />

pales (A . punctata subsp. kabylica). Perhaps the local small-headed plants did participate<br />

in the evolution <strong>of</strong> the large-headed plants in their area. <strong>The</strong> large-headed plants<br />

being supposedly tetraploid, this participation may consist in the involvement <strong>of</strong> smallheaded<br />

diploids in the formation <strong>of</strong> these tetraploids. As cytological and morphological<br />

results demonstrate for Moroccan populations <strong>of</strong> A. pedunculata s.l., the increase <strong>of</strong><br />

flower heads is not necessarily caused by autotetraploidisation. Thus, the large-headed<br />

Algerian plants may well have an allotetraploid origin, with the local A. pedunculata only<br />

contributing for one half, which would stili explain the observed paUern <strong>of</strong> parallel morphological<br />

variation. Since neither cytological nor experimental or molecular investigations<br />

were feasible with Algerian plants due to the present inaccessibility <strong>of</strong> this country,<br />

we are unable to test this hypothesis.<br />

A diagrammatic summary <strong>of</strong> the taxonomic relationships within the <strong>Anthemis</strong> pedunculata<br />

- A. punctata complex, as inferred from morphology, chromosome numbers and<br />

?<br />

t<br />

turolensis<br />

clausonis<br />

, , , , , ,<br />

SPAIN ,MaROCCO, C ALGERIA ,C ALGERIA, E ALGERIA ,TUNISIA,<br />

, , Babors , , ,<br />

?<br />

SICILY<br />

4X<br />

2X<br />

Fig. 24. Diagram summarising the hypothesised taxonomic relationships in the <strong>Anthemis</strong><br />

pedunculata - A. punctata compI ex.


106 <strong>Oberprieler</strong>: <strong>Anthemis</strong> in N Africa<br />

molecular data is given in Fig. 24. On the diploid level one observes a strong morphological<br />

differentiation within A. pedunculata, expressed by the recognition <strong>of</strong> four allopatric<br />

subspecies: A. pedunculata subsp. pedunculata (Betic mountain range <strong>of</strong> S Spain, alI<br />

Moroccan mountains from the Rif to the Anti-Atlas, W and C Algeria). In the Algerian<br />

Babors mountains (Petite Kabylie), parts <strong>of</strong> the Aurès range, on the Monts de Constantine<br />

and in N Tunisia it is replaced by A. pedunculata subsp. atlantica, in the Sistema Iberico<br />

in C Spain by A. pedunculata subsp. turolensis, and in a small coastal area W <strong>of</strong> Algiers<br />

by A. pedunculata subsp. clausonis. In E Algeria and N Tunisia, A. ubensis, an annual,<br />

presumably hybrid species mediating between A. pedunculata and A. secundiramea, replaces<br />

A. pedunculata. Variation observed on the diploid level is to a large extent paralleled<br />

on the tetraploid level. Presumed autoploidisation has led and stilI leads to the formation<br />

<strong>of</strong> tetraploids throughout the range <strong>of</strong> A. pedunculata subsp. pedunculata and<br />

subsp. atlantica that morphologicalIy strongly resemble their diploid progenitors. An<br />

allotetrapioid origin is suggested for the morphologicalIy deviating taxa <strong>of</strong> the A. punctata<br />

group, involving the local diploids <strong>of</strong> A. pedunculata and resulting in A. punctata subsp.<br />

punctata in E Algeria and Tunisia, in A. punctata subsp. kabylica in the Djurdjura<br />

mountains <strong>of</strong> C Algeria, and in A. abylaea in the W Rif mountains in N Morocco. <strong>The</strong><br />

second species involved in this assumed alloploidisation is not yet known, perhaps some<br />

diploid with large flower heads, like the Sicilian endemie A. ismelia, may have played this<br />

role. Alternatively, one may speculate that A. punctata results from the hybridisation <strong>of</strong> a<br />

large-headed tetraploid species, like A. cupaniana or A. eretica subsp. columnae, with<br />

local autotetraploids <strong>of</strong> A. pedunculata s.l. At present it is impossible to decide between<br />

the two scenarios, further molecular and cytogenetic work, especially in Algeria, being<br />

needed.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!