29.12.2013 Views

Frequency of Cyanogenesis in Tropical Rainforests of Far North ...

Frequency of Cyanogenesis in Tropical Rainforests of Far North ...

Frequency of Cyanogenesis in Tropical Rainforests of Far North ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Frequency</strong> <strong>of</strong> <strong>Cyanogenesis</strong> <strong>in</strong> <strong>Tropical</strong> Ra<strong>in</strong>forests <strong>of</strong><br />

<strong>Far</strong> <strong>North</strong> Queensland, Australia<br />

REBECCA E. MILLER*, RIGEL JENSEN and IAN E. WOODROW<br />

School <strong>of</strong> Botany, The University <strong>of</strong> Melbourne, Victoria, 3010, Australia<br />

Background and Aims Plant cyanogenesis is the release <strong>of</strong> toxic cyanide from endogenous cyanide-conta<strong>in</strong><strong>in</strong>g<br />

compounds, typically cyanogenic glycosides. Despite a large body <strong>of</strong> phytochemical, taxonomic and ecological<br />

work on cyanogenic species, little is known <strong>of</strong> their frequency <strong>in</strong> natural plant communities. This study aimed to<br />

<strong>in</strong>vestigate the frequency <strong>of</strong> cyanogenesis <strong>in</strong> Australian tropical ra<strong>in</strong>forests. Secondary aims were to quantify the<br />

cyanogenic glycoside content <strong>of</strong> tissues, to <strong>in</strong>vestigate <strong>in</strong>tra-plant and <strong>in</strong>tra-population variation <strong>in</strong> cyanogenic<br />

glycoside concentration and to appraise the potential chemotaxonomic significance <strong>of</strong> any f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> relation to the<br />

distribution <strong>of</strong> cyanogenesis <strong>in</strong> related taxa.<br />

Methods All species <strong>in</strong> six 200 m 2 plots at each <strong>of</strong> five sites across lowland, upland and highland tropical ra<strong>in</strong>forest<br />

were screened for cyanogenesis us<strong>in</strong>g Feigl–Anger <strong>in</strong>dicator papers. The concentrations <strong>of</strong> cyanogenic glycosides<br />

were accurately determ<strong>in</strong>ed for all cyanogenic <strong>in</strong>dividuals.<br />

Key Results Over 400 species from 87 plant families were screened. Overall, 18 species (45 %) were cyanogenic,<br />

account<strong>in</strong>g for 73 % <strong>of</strong> total stem basal area. <strong>Cyanogenesis</strong> has not previously been reported for 17 <strong>of</strong> the 18 species,<br />

13 <strong>of</strong> which are endemic to Australia. Several species belong to plant families or orders <strong>in</strong> which cyanogenesis has<br />

been little reported, if at all (e.g. Elaeocarpaceae, Myrs<strong>in</strong>aceae, Araliaceae and Lamiaceae). A number <strong>of</strong> species<br />

conta<strong>in</strong>ed concentrations <strong>of</strong> cyanogenic glycosides among the highest ever reported for mature leaves—up to<br />

52mgCNg 1 d. wt, for example, <strong>in</strong> leaves <strong>of</strong> Elaeocarpus sericopetalus. There was significant variation <strong>in</strong> cyanogenic<br />

glycoside concentration with<strong>in</strong> <strong>in</strong>dividuals; young leaves and reproductive tissues typically had higher<br />

cyanogen content. In addition, there was substantial variation <strong>in</strong> cyanogenic glycoside content with<strong>in</strong> populations<br />

<strong>of</strong> s<strong>in</strong>gle species.<br />

Conclusions This study expands the limited knowledge <strong>of</strong> the frequency <strong>of</strong> cyanogenesis <strong>in</strong> natural plant<br />

communities, <strong>in</strong>cludes novel reports <strong>of</strong> cyanogenesis among a range <strong>of</strong> taxa and characterizes patterns <strong>in</strong> <strong>in</strong>tra-plant<br />

and <strong>in</strong>tra-population variation <strong>of</strong> cyanogensis.<br />

Key words: Australia, b-glycosidase, chemotaxonomy, cyanogenic glycoside, cyanogenesis, defence, hydrogen cyanide,<br />

polymorphism, Queensland, screen<strong>in</strong>g, secondary metabolite, tropical ra<strong>in</strong>forest.<br />

INTRODUCTION<br />

<strong>Cyanogenesis</strong> is the ability to release toxic hydrogen<br />

cyanide (HCN) from endogenous cyanide-conta<strong>in</strong><strong>in</strong>g compounds.<br />

It has long been recognized <strong>in</strong> plants (Conn, 1991;<br />

Seigler, 1991), and has been recorded <strong>in</strong> ferns, fern-allies,<br />

gymnosperms, as well as monocotyledonous and dicotyledonous<br />

angiosperms from >550 genera and 130 plant<br />

families (Conn, 1981; Poulton, 1990; Jones, 1998). <strong>Cyanogenesis</strong><br />

<strong>in</strong> plants requires the presence <strong>of</strong> either an unstable<br />

cyanohydr<strong>in</strong>, or <strong>of</strong> a stable cyanogen and its degradative<br />

enzymes (Seigler, 1991). While cyanolipids have been<br />

identified from a few taxa (Mikolajczak et al., 1970), cyanogenesis<br />

<strong>in</strong> plants most commonly results from the hydrolysis<br />

<strong>of</strong> cyanogenic glycosides (Conn, 1981). Autotoxicity <strong>in</strong><br />

<strong>in</strong>tact plants is prevented by the spatial separation—<br />

either at the subcellular or at the tissue level—<strong>of</strong> the cyanogenic<br />

glycoside and catabolic enzymes (Kojima et al., 1979;<br />

Selmar, 1993a; Poulton and Li, 1994; Zheng and Poulton,<br />

1995; Hickel et al., 1996). The catabolism <strong>of</strong> cyanogenic<br />

glycosides is therefore <strong>in</strong>itiated upon tissue disruption,<br />

due to mechanical damage or <strong>in</strong>gestion by herbivores, for<br />

example, which enables mix<strong>in</strong>g <strong>of</strong> enzymes and cyanogenic<br />

substrate (Wajant et al., 1994; Patton et al., 1997).<br />

Little is known about the frequency <strong>of</strong> cyanogenesis<br />

<strong>in</strong> natural plant communities. This is despite a large body<br />

<strong>of</strong> literature document<strong>in</strong>g cyanogenesis <strong>in</strong> >2650 species <strong>of</strong><br />

angiosperms worldwide (Lechtenberg and Nahrstedt, 1999).<br />

Indeed, as many as 11 % <strong>of</strong> all plant species are predicted to<br />

be cyanogenic (Jones, 1998). Historically, much <strong>of</strong> the<br />

<strong>in</strong>terest <strong>in</strong> cyanogenesis centred around record<strong>in</strong>g toxic<br />

plants with the potential for stock and human poison<strong>in</strong>g,<br />

the high frequency <strong>of</strong> cyanogenesis among food plants<br />

(Jones, 1998), and the potential utility <strong>of</strong> cyanogenesis<br />

and the structure <strong>of</strong> specific cyanogens <strong>in</strong> elucidat<strong>in</strong>g phylogenetic<br />

relationships between taxa (e.g. Gibbs, 1974). As a<br />

consequence, much <strong>of</strong> what is known about the frequency<br />

<strong>of</strong> cyanogenesis comes from surveys <strong>of</strong> regional floras, or<br />

<strong>of</strong> specific taxonomic groups. There are a number <strong>of</strong><br />

substantial chemotaxonomic works <strong>in</strong>corporat<strong>in</strong>g <strong>in</strong>formation<br />

on cyanogenesis (see Hegnauer, 1966, 1973, 1986,<br />

1989, 1990; Gibbs, 1974), several smaller and more specific<br />

chemotaxonomic works (e.g. Tjon Sie Fat, 1978, 1979b;<br />

Spencer and Seigler, 1985; van Wyk and Whitehead,<br />

1990; Seigler, 1994), <strong>in</strong>clud<strong>in</strong>g work on Australian Acacia<br />

spp. (Conn et al., 1985; Masl<strong>in</strong> et al., 1988), and numerous<br />

<strong>in</strong>ventories <strong>of</strong> cyanogenic species (e.g. Rosenthaler, 1919;<br />

Seigler, 1976a, 1976b; Tjon Sie Fat, 1979a; Francisco and<br />

P<strong>in</strong>otti, 2000). Several Australian researchers were active <strong>in</strong><br />

Ó The Author 2006. Published by Oxford University Press on behalf <strong>of</strong> the Annals <strong>of</strong> Botany Company. All rights reserved.<br />

For Permissions, please email: journals.permissions@oxfordjournals.org


the field early last century, report<strong>in</strong>g a number <strong>of</strong><br />

cyanogenic species and the specific cyanogenic constituents<br />

<strong>in</strong>volved (e.g. Petrie, 1912, 1913, 1914, 1920;<br />

F<strong>in</strong>nemore and Cox, 1928, 1929; F<strong>in</strong>nemore and<br />

Cooper, 1936, 1938). More than 700 species <strong>in</strong> the<br />

Queensland flora were screened by Smith and White<br />

(1918). Further phytochemical screen<strong>in</strong>g <strong>of</strong> the Queensland<br />

flora was conducted by Webb (1948, 1949); however, there<br />

was negligible test<strong>in</strong>g among tropical taxa. Importantly,<br />

many <strong>of</strong> these records are based on qualitative tests performed<br />

us<strong>in</strong>g herbarium specimens, and tests <strong>of</strong> this k<strong>in</strong>d<br />

us<strong>in</strong>g dried material are by no means conclusive. One further<br />

limitation <strong>of</strong> these data <strong>in</strong> terms <strong>of</strong> extrapolat<strong>in</strong>g to<br />

natural plant communities is that negative results were<br />

<strong>of</strong>ten not reported.<br />

<strong>Tropical</strong> ra<strong>in</strong>forests are <strong>of</strong> particular <strong>in</strong>terest <strong>in</strong> the<br />

study <strong>of</strong> plant chemical defences. Elevated herbivore pressure<br />

<strong>in</strong> tropical environments is hypothesized to have<br />

favoured both a diverse array <strong>of</strong> defences and high levels<br />

<strong>of</strong> <strong>in</strong>vestment <strong>in</strong> chemical defence (Lev<strong>in</strong>, 1976; Lev<strong>in</strong> and<br />

York, 1978; Coley and Barone, 1996; Kursar and Coley,<br />

2003). Indeed, <strong>in</strong> the field <strong>of</strong> plant secondary chemistry, the<br />

tropical ra<strong>in</strong>forest has been the focus <strong>of</strong> <strong>in</strong>tense <strong>in</strong>terest<br />

<strong>in</strong> co-evolutionary relationships between plants and<br />

herbivores, and the extraord<strong>in</strong>ary <strong>in</strong>ter-specific and <strong>in</strong>traplant<br />

variation <strong>in</strong> chemical defence strategies (Feeny,<br />

1976; Lev<strong>in</strong>, 1976; Coley et al., 1985; Coley and<br />

Kursar, 1996).<br />

On the whole, community-level studies <strong>of</strong> the distribution<br />

<strong>of</strong> chemical defences have focused on a small set <strong>of</strong> Asian<br />

and African ra<strong>in</strong>forests (McKey et al., 1978; Gartlan et al.,<br />

1980; Davies et al., 1988; Waterman et al., 1988). In<br />

addition, these and other studies have tended to focus on<br />

C-based ‘quantitative’ defences (e.g. Coley, 1983, 1988).<br />

Among N-based defences, the greater awareness <strong>of</strong> the<br />

frequency <strong>of</strong> alkaloid-bear<strong>in</strong>g plants <strong>in</strong> tropical and other<br />

ecosystems is a consequence <strong>of</strong> extensive phytochemical<br />

screen<strong>in</strong>g for bioactive compounds (e.g. Swanholm et al.,<br />

1960; Hartley et al., 1973; Smolenski et al., 1974; Coll<strong>in</strong>s<br />

et al., 1990; Hadi and Bremmer, 2001) or ecological<br />

research <strong>in</strong>to specific plant–herbivore <strong>in</strong>teractions (e.g.<br />

Janzen and Waterman, 1984; Hartmann et al., 1997), rather<br />

than systematic studies with<strong>in</strong> natural communities (but<br />

see Mali and Borges, 2003).<br />

There are some hypothesis-driven surveys for cyanogenesis.<br />

Two studies have <strong>in</strong>vestigated the frequency <strong>of</strong> cyanogenesis<br />

<strong>in</strong> floras, <strong>in</strong>vestigat<strong>in</strong>g evolutionary and ecological<br />

hypotheses about exposure to herbivory (see Kaplan et al.,<br />

1983; Adsersen et al., 1988; Adsersen and Adsersen, 1993).<br />

However, only the survey <strong>of</strong> Thomsen and Brimer (1997) <strong>in</strong><br />

Costa Rican ra<strong>in</strong>forest has been conducted <strong>in</strong> a systematic<br />

fashion, well def<strong>in</strong>ed with respect to forest area and plant<br />

size. As with other N-based defences, work on cyanogenic<br />

tropical ra<strong>in</strong>forest species worldwide is limited, and<br />

there has been no work on cyanogenesis <strong>in</strong> Australian tropical<br />

ra<strong>in</strong>forests, or any other form <strong>of</strong> chemical defence. The<br />

lack <strong>of</strong> work on cyanogenesis <strong>in</strong> diverse tropical ra<strong>in</strong>forests<br />

is further surpris<strong>in</strong>g, as it is a readily detectable and constitutive<br />

chemical defence (Gleadow and Woodrow,<br />

2000b).<br />

Here we report some <strong>of</strong> the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> a large-scale<br />

quantitative survey for cyanogenesis <strong>in</strong> Australian tropical<br />

ra<strong>in</strong>forests. First, we <strong>in</strong>vestigated the frequency <strong>of</strong> cyanogenesis<br />

and the contribution <strong>of</strong> cyanogenic species to<br />

biomass (basal area) <strong>in</strong> lowland, upland and highland tropical<br />

ra<strong>in</strong>forest <strong>in</strong> north Queensland, Australia. Conduct<strong>in</strong>g<br />

the survey <strong>in</strong> a standardized fashion will enable comparison<br />

with other communities (e.g. Thomsen and Brimer, 1997).<br />

Secondly, <strong>in</strong>tra-plant and <strong>in</strong>tra-population variation <strong>in</strong> concentrations<br />

<strong>of</strong> cyanogenic glycosides was quantified. The<br />

high level <strong>of</strong> endemism among the Australian tropical ra<strong>in</strong>forest<br />

flora (Webb and Tracey, 1981) and the number <strong>of</strong><br />

ra<strong>in</strong>forest taxa previously untested for cyanogenesis underscore<br />

the potential for novel reports <strong>of</strong> cyanogenesis with<strong>in</strong><br />

different taxonomic groups. F<strong>in</strong>ally, therefore, this study<br />

aimed to <strong>in</strong>vestigate the potential taxonomic significance<br />

<strong>of</strong> cyanogenesis reported here. Overall, this study aimed<br />

to expand the limited knowledge <strong>of</strong> the frequency <strong>of</strong><br />

cyanogenesis <strong>in</strong> the Australian flora and <strong>in</strong> natural plant<br />

communities.<br />

MATERIALS AND METHODS<br />

Field sites<br />

Field work was conducted between July 1999 and<br />

September 2002. Six 200 m 2 plots (20 · 10 m) were established<br />

at each <strong>of</strong> five sites (total area 1200 m 2 per site) <strong>in</strong><br />

lowland and upland ra<strong>in</strong>forest <strong>in</strong> the tropics <strong>of</strong> north east<br />

Queensland, Australia (Fig. 1). Six plots were selected for<br />

two reasons: first, the number <strong>of</strong> new species captured with<br />

each additional plot had reached a plateau at around five<br />

species and, secondly, it was a realistic sample size given<br />

the time and resources available. Sites were selected to<br />

capture maximum species diversity as on the Atherton<br />

Tablelands, forest type and species composition vary<br />

both with substrate and with altitude (Tracey, 1982). Further,<br />

to enable comparison <strong>of</strong> forests occurr<strong>in</strong>g on different<br />

soil types, two pairs <strong>of</strong> sites with similar altitude and ra<strong>in</strong>fall<br />

were selected. The first pair comprised a site on soil derived<br />

from basalt at Lam<strong>in</strong>s Hill and one on soil derived from<br />

granite at Mt Nomico (Fig. 1). The second pair comprised<br />

sites on soils derived from basalt and rhyolite at Longlands<br />

Gap (Fig. 1). A fifth site <strong>in</strong> lowland ra<strong>in</strong>forest near<br />

Cape Tribulation and Myall Creek, on soil derived<br />

from metamorphic substrate, was also surveyed (Fig. 1).<br />

The distribution <strong>of</strong> cyanogenic species <strong>in</strong> relation to<br />

resource availability (soil nutrients) will be addressed<br />

elsewhere (see Miller, 2004).<br />

It was not possible to control strictly for logg<strong>in</strong>g history;<br />

all sites on the Atherton Tablelands had been selectively<br />

logged prior to the declaration <strong>of</strong> the Wet Tropics World<br />

Heritage Area <strong>in</strong> 1988. Detailed site descriptions are provided<br />

<strong>in</strong> Miller (2004).<br />

All <strong>in</strong>dividuals (palms, trees and v<strong>in</strong>es) with a diameter at<br />

breast height (dbh) <strong>of</strong> >5 cm were tagged and identified.<br />

All additional species (dbh


Myall Creek<br />

Cape Tribulation<br />

Da<strong>in</strong>tree River<br />

Port Douglas<br />

Western<br />

Australia<br />

<strong>North</strong>ern<br />

Territory<br />

South<br />

Australia<br />

Queensland<br />

Mareeba<br />

Atherton<br />

Tableland<br />

Atherton<br />

Cairns<br />

Mt Nomico<br />

Lam<strong>in</strong>s Hill<br />

Malanda<br />

Longlands Gap<br />

0 50 km<br />

New South<br />

Wales<br />

F IG. 1. Location <strong>of</strong> study sites <strong>in</strong> tropical ra<strong>in</strong>forest <strong>in</strong> far north east Queensland, Australia. There were two pairs <strong>of</strong> sites <strong>in</strong> upland ra<strong>in</strong>forest on the Atherton<br />

Tableland: Lam<strong>in</strong>s Hill (17 224 0 S, 145 425 0 E) and Mt Nomico (17 133 0 S, 145 404 0 E), and two sites at Longlands Gap (17 27 0 S, 145 28 0 E). A fifth site was<br />

<strong>in</strong> lowland ra<strong>in</strong>forest near Myall Creek and Cape Tribulation (16 062 0 S, 145 269 0 E).<br />

Samples <strong>of</strong> all cyanogenic species, as well as species<br />

dom<strong>in</strong>ant at each site, and some rare species were pressed<br />

and lodged at the University <strong>of</strong> Melbourne (MELU) and<br />

Brisbane (BRI) Herbaria. Accession numbers, where<br />

assigned, are listed (Appendix).<br />

Climate<br />

The climate <strong>in</strong> far north Queensland is characterized<br />

by a marked wet season from December to April. Climate<br />

record<strong>in</strong>g stations <strong>in</strong> the study area are scattered, therefore<br />

data specific to each site were not available. While located<br />

<strong>in</strong> the tropical latitudes, because <strong>of</strong> its higher altitude, the<br />

climate <strong>of</strong> the Atherton Tableland is semi-tropical. Mean<br />

annual temperature with<strong>in</strong> the study area on the Tableland<br />

is 22 C (Nix, 1991), with a m<strong>in</strong>imum <strong>of</strong> 10 C (Hall et al.,<br />

1981; see Graham et al., 1995). All the upland and highland<br />

ra<strong>in</strong>forests surveyed on the Atherton Tableland have<br />

high average annual ra<strong>in</strong>fall, generally <strong>in</strong> the range<br />

2000–3000 mm plus cloud <strong>in</strong>terception (Tracey, 1982).<br />

For example, the average annual ra<strong>in</strong>fall at Lam<strong>in</strong>s Hill<br />

is 3584 mm, based on 30 years <strong>of</strong> records from the Queensland<br />

Bureau <strong>of</strong> Meteorology (see Osunkoya et al., 1993). In<br />

contrast, the climate <strong>in</strong> the coastal lowland tropical ra<strong>in</strong>forest<br />

near Cape Tribulation is characterized by higher<br />

temperatures. Mean daily temperatures range from 28 C<br />

<strong>in</strong> January to 22 C <strong>in</strong> July, and temperatures may reach<br />

the mid to high 30 s dur<strong>in</strong>g the summer months. Average<br />

annual ra<strong>in</strong>fall is also high, at 3928 mm recorded at Cape<br />

Tribulation (based on 65 years <strong>of</strong> records from the<br />

Queensland Bureau <strong>of</strong> Meteorology).<br />

Sites<br />

Upland and highland ra<strong>in</strong>forest. The upland ra<strong>in</strong>forest at<br />

Lam<strong>in</strong>s Hill [17 224 0 S, 145 425 0 E; altitude 850 m above<br />

sea level (a.s.l.); Fig. 1] is classified as complex mesophyll<br />

v<strong>in</strong>e forest on basalt (type 1b; Tracey, 1982; Tracey and<br />

Webb, 1975). This forest type typically occurs on upland<br />

sites (400–800 m), on high fertility kraznozem soils derived<br />

from basalt, with high ra<strong>in</strong>fall (Tracey, 1982). It is characterized<br />

by a closed canopy with multiple tree layers, and<br />

an uneven canopy with height rang<strong>in</strong>g from 35 to 45 m<br />

(Tracey 1982).<br />

The upland ra<strong>in</strong>forest at Mt Nomico (17 133 0 S,<br />

145 404 0 E, 900 m a.s.l.; Fig. 1) is with<strong>in</strong> the Gillies<br />

Range State Forest, and is on low nutrient soil derived<br />

from granite. The forest is classified as complex notophyll<br />

v<strong>in</strong>e forest, typical <strong>of</strong> upland granitic soils (type 6; Tracey,<br />

1982; Tracey and Webb, 1975).<br />

In the highland ra<strong>in</strong>forest <strong>of</strong> Longlands Gap State Forest<br />

(altitude 1100–1200 m a.s.l.), there is a sharp boundary<br />

<strong>in</strong> forest type def<strong>in</strong>ed by basalt (17 277 0 S; 145 285 0 E)<br />

and rhyolite (17 273 0 S, 145286 0 E) parent substrates.


On basalt, the forest is complex notophyll v<strong>in</strong>e forest<br />

(type 5a; Tracey, 1982; Tracey and Webb, 1975), a forest<br />

type characterized by an uneven canopy (20–40 m high) and<br />

numerous tree layers, typical <strong>of</strong> basaltic cool wet uplands<br />

and highlands (Tracey, 1982). On rhyolite, the forest is<br />

simple microphyll v<strong>in</strong>e forest (type 9; Tracey, 1982),<br />

which is common on upland granitic soils (800–1300 m),<br />

and is characterized by an uneven canopy 20–25 m high,<br />

with emergent Agathis atropurpurea (up to 35 m).<br />

Lowland ra<strong>in</strong>forest. The fifth site was <strong>in</strong> lowland<br />

ra<strong>in</strong>forest <strong>in</strong> the Da<strong>in</strong>tree World Heritage Area, near<br />

Cape Tribulation (Fig. 1). The site was near to Thompson<br />

and Myall Creeks (16 062 0 S, 145 269 0 E; altitude 40 m<br />

a.s.l.). The forest is complex mesophyll v<strong>in</strong>e forest (type 1a;<br />

Tracey, 1982), the canopy is irregular, from 25 to 33 m <strong>in</strong><br />

height, and supports a great diversity <strong>of</strong> species and life<br />

forms, <strong>in</strong>clud<strong>in</strong>g many palms and lianas. The floristic<br />

composition is patchy, with considerable variation <strong>in</strong><br />

canopy and understorey dom<strong>in</strong>ants over small distances<br />

(Webb et al., 1972; Tracey, 1982). The soil is relatively<br />

nutrient-poor red clay loam podsol derived from<br />

metamorphic substrate.<br />

Sampl<strong>in</strong>g for detection <strong>of</strong> cyanogenesis<br />

Whole leaf samples (1–2 g f. wt) were taken from <strong>in</strong>dividuals<br />

with a dbh >5 cm, and from all additional species<br />

<strong>in</strong> the lower strata, until at least three <strong>in</strong>dividuals <strong>of</strong> each<br />

species had been sampled. Where possible, the youngest<br />

fully expanded leaves without epiphyllous communities<br />

were selected; however, <strong>in</strong> the case <strong>of</strong> samples acquired<br />

by prun<strong>in</strong>g shears attached to extension poles or by sl<strong>in</strong>gshot<br />

and rope from the canopy, it was not always possible<br />

to be selective. In <strong>in</strong>stances where it was not possible to<br />

obta<strong>in</strong> samples from large canopy trees, samples were taken<br />

from nearby <strong>in</strong>dividuals <strong>of</strong> the same species. Fresh whole<br />

leaf samples used for cyanide test<strong>in</strong>g were stored <strong>in</strong> air-tight<br />

bags on ice until tested for cyanide 2–6 h later us<strong>in</strong>g Feigl–<br />

Anger (FA) papers (Feigl and Anger, 1966). Individuals <strong>of</strong><br />

rare species, and those with little foliage, were sampled only<br />

once for analysis <strong>in</strong> the laboratory where a quantitative<br />

assay was used to test for cyanogenesis us<strong>in</strong>g freezedried<br />

ground tissue. Because cyanogenesis is known to<br />

be a polymorphic trait (e.g. Hughes, 1991; Aikman et al.,<br />

1996), a m<strong>in</strong>imum <strong>of</strong> three <strong>in</strong>dividuals <strong>of</strong> all species was<br />

tested, more where species were common. Ow<strong>in</strong>g to the<br />

diverse and heterogeneous nature <strong>of</strong> the forests, multiple<br />

<strong>in</strong>dividuals <strong>of</strong> each species were not always represented <strong>in</strong><br />

the plots. Therefore, for these rare species, test<strong>in</strong>g <strong>in</strong>dividuals<br />

located outside the plots was required, and still there<br />

were several species for which only s<strong>in</strong>gle samples were<br />

obta<strong>in</strong>ed.<br />

A range <strong>of</strong> other factors was taken <strong>in</strong>to consideration<br />

when sampl<strong>in</strong>g. For example, given that young leaves<br />

<strong>of</strong> tropical species, <strong>in</strong> particular, are typically more highly<br />

defended than older leaves (Coley, 1983; Coley and Barone,<br />

1996), both young (s<strong>of</strong>t expand<strong>in</strong>g leaves) and old (recent<br />

fully expanded) leaves were tested for cyanogenesis, where<br />

possible. In addition, depend<strong>in</strong>g on availability, fruit and<br />

flowers from several species were tested. Ow<strong>in</strong>g to the large<br />

number <strong>of</strong> species and samples <strong>in</strong> the survey, it was not<br />

possible to exam<strong>in</strong>e seasonal trends <strong>in</strong> defence; however,<br />

<strong>in</strong>dividuals <strong>of</strong> the majority <strong>of</strong> species were tested <strong>in</strong> wet<br />

and dry seasons for qualitative changes <strong>in</strong> cyanogenic status,<br />

as there is some evidence for seasonal variation <strong>in</strong><br />

cyanogenesis (Seigler, 1976b; Janzen et al., 1980; Kaplan<br />

et al., 1983). F<strong>in</strong>ally, because edaphic factors have been<br />

reported to affect the expression <strong>of</strong> cyanogenesis (e.g.<br />

Urbanska, 1982), species found on more than one substrate<br />

type were tested at each site.<br />

Sample collection, handl<strong>in</strong>g and storage for quantitative<br />

analysis<br />

In addition to samples for fresh cyanide tests, whole leaf<br />

samples (aga<strong>in</strong> recent fully expanded leaves) were taken for<br />

quantification <strong>of</strong> cyanogenic glycosides. All <strong>in</strong>dividuals <strong>of</strong><br />

species that produced a positive result and <strong>in</strong>dividuals <strong>of</strong><br />

rare species were sampled. Depend<strong>in</strong>g on sampl<strong>in</strong>g conditions,<br />

samples were either placed immediately <strong>in</strong>to liquid<br />

nitrogen, or placed <strong>in</strong> a sealed air-tight bag and kept on ice<br />

for 2–6 h until snap frozen <strong>in</strong> liquid nitrogen. Frozen<br />

samples were transported to the laboratory on dry ice,<br />

freeze-dried and stored on desiccant at 20 C for analysis.<br />

Freeze-dried samples were ground us<strong>in</strong>g either a cooled<br />

IKA Labortechnic A10 Analytical Mill (Janke and Kunkel,<br />

Stanfen, Germany) or, for smaller samples, an Ultramat 2<br />

Dental Gr<strong>in</strong>der (Southern Dental Industries Ltd, Bayswater,<br />

Victoria, Australia).<br />

Chemical analyses<br />

Detection <strong>of</strong> cyanogenesis: Feigl–Anger papers. The<br />

presence <strong>of</strong> cyanogenic compounds <strong>in</strong> fresh field samples<br />

was determ<strong>in</strong>ed us<strong>in</strong>g FA <strong>in</strong>dicator papers (Feigl and<br />

Anger, 1966). FA papers were selected <strong>in</strong> preference to<br />

picrate papers because FA papers are more sensitive<br />

(Nahrstedt, 1980) and less prone to giv<strong>in</strong>g false-positive<br />

results (Br<strong>in</strong>ker and Seigler, 1989). FA test papers were<br />

prepared accord<strong>in</strong>g to Br<strong>in</strong>ker and Seigler (1989). Because<br />

FA papers can be sensitive to moisture and light (Br<strong>in</strong>ker<br />

and Seigler, 1989), they were stored <strong>in</strong> the dark and on<br />

desiccant until use.<br />

Fresh leaves (approx. 1–2 g f. wt) were crushed <strong>in</strong><br />

duplicate screw-top vials. Old and young foliage samples<br />

were tested separately. To facilitate cyanogenesis, 05mL<strong>of</strong><br />

water was added to one <strong>of</strong> the vials, and pect<strong>in</strong>ase from<br />

Rhizopus spp. (Macerase Ò Pect<strong>in</strong>ase, 441201 Calbiochem Ò ,<br />

Calbiochem-Novabiochem Corp., La Jolla CA, USA)<br />

(04g L –1 )<strong>in</strong>01 M Tris–HCl (pH 68) was added to the<br />

other. Pect<strong>in</strong>ase has been found to have non-specific b-glycosidase<br />

activity (Brimer et al., 1995) and, therefore, <strong>in</strong><br />

the absence <strong>of</strong> sufficient endogenous b-glycosidase, enables<br />

tests for the presence <strong>of</strong> cyanogenic glycosides to be made.<br />

The <strong>in</strong>dicator papers were suspended above the tissue by<br />

means <strong>of</strong> the screw-top lid, and vials were left at room<br />

temperature and checked after 12 and 24 h. This 24 h<br />

time period, used <strong>in</strong> other surveys (e.g. Dickenmann,<br />

1982; Thomsen and Brimer, 1997; Buhrmester et al.,<br />

2000; Lewis and Zona, 2000), was selected to avoid spurious<br />

test results due to substantial bacterial contam<strong>in</strong>ation


which may occur beyond 24 h (Saupe et al., 1982). Tissue <strong>of</strong><br />

known cyanogenic species, Prunus turneriana or Ryparosa<br />

javanica, was used as a positive control. Moderate to<br />

strongly cyanogenic samples gave a positive result with<strong>in</strong><br />

a few m<strong>in</strong>utes or up to a few hours, while more weakly<br />

cyanogenic samples took several more hours. In accordance<br />

with the recommendations <strong>of</strong> Br<strong>in</strong>ker and Seigler (1989), a<br />

new test was conducted for any samples produc<strong>in</strong>g a slow<br />

positive response (24 h) <strong>in</strong> case <strong>of</strong> <strong>in</strong>terference by microbial<br />

cyanogenesis. In addition, any samples with <strong>in</strong>conclusive<br />

colour change were re-tested. An <strong>in</strong>dividual was considered<br />

cyanogenic if a positive, repeatable result was obta<strong>in</strong>ed,<br />

and a species was considered cyanogenic if at least<br />

one <strong>in</strong>dividual produced a consistent and repeatable<br />

positive result. A negative test result <strong>in</strong>dicates the absence<br />

<strong>of</strong> a cyanogenic glycoside, or <strong>of</strong> the specific cyanogenic<br />

b-glycosidase, or both.<br />

In the few <strong>in</strong>stances where <strong>in</strong>sufficient tissue was available<br />

for both FA paper tests us<strong>in</strong>g fresh leaves and subsequent<br />

laboratory analysis, cyanogenesis was determ<strong>in</strong>ed<br />

based on the quantitative assay <strong>of</strong> freeze-dried ground<br />

leaf tissue (as described below) by comparison with a<br />

negative tissue control (e.g. Alstonia scholaris or Aglaia<br />

meridionalis).<br />

In this study, tests for cyanogenesis used approx.<br />

1–2 g f. wt <strong>of</strong> leaves, which is larger than tissue samples<br />

tested <strong>in</strong> previous surveys (e.g. 50 mg f. wt by Lewis and<br />

Zona, 2000; and 200 mg f. wt by Thomsen and Brimer,<br />

1997; Buhrmester et al., 2000). Accord<strong>in</strong>g to Dickenmann<br />

(1982) who used 500 mg f. wt tissue, a weak positive reaction<br />

with FA papers, where part <strong>of</strong> the paper turns blue,<br />

<strong>in</strong>dicated approx. 2–20 mg HCN kg –1 f. wt, while a strong<br />

reaction <strong>in</strong>dicated >50 mg HCN kg –1 f. wt. These lower<br />

values equate to just over 6–60 mg HCN g –1 d. wt us<strong>in</strong>g a<br />

conversion based on the mean foliar water content <strong>of</strong><br />

several species <strong>in</strong> this study, which was 70 %. In this<br />

study, based on fresh leaf tests and quantitative analysis<br />

<strong>of</strong> freeze-dried tissue from the same sample, the threshold<br />

sensitivity <strong>of</strong> FA papers was similar, with<strong>in</strong> the range<br />

5–8 mg HCN g –1 d. wt. This threshold sensitivity <strong>of</strong> FA<br />

papers corresponds well to the criteria <strong>of</strong> Adsersen<br />

et al. (1988) for classify<strong>in</strong>g <strong>in</strong>dividuals as cyanogenic,<br />

where <strong>in</strong>dividuals with


T ABLE 1. Summary <strong>of</strong> the concentration <strong>of</strong> cyanogenic glycosides <strong>in</strong> leaves and other plant tissues from cyanogenic species found <strong>in</strong> six plots <strong>in</strong> upland/highland (U) and<br />

lowland (L) tropical ra<strong>in</strong>forest at five sites: high nutrient basalt sites at Lam<strong>in</strong>s Hill (B1) and Longlands Gap (B2), and low nutrient sites on granite at Mt Nomico (G), on rhyolite<br />

at Longlands Gap (R) and on metamorphic substrate near Cape Tribulation (M)<br />

Concentration <strong>of</strong> cyanogenic glycosides <strong>in</strong> different plant parts (mg CN g 1 d. wt)<br />

Form Species Family Forest Site Leaf Stem Floral parts Fruit/seed<br />

H Alocasia brisbanensis<br />

(F.M.Bailey) Dom<strong>in</strong>*<br />

Araceae U B1 – – – –<br />

T Beilschmiedia coll<strong>in</strong>a B.Hyland Lauraceae U B1, B2, G, R Old: 28.4–1263 (n = 36) – – –<br />

Yg: 1039–1391<br />

T Brombya platynema F.Muell. Rutaceae L M 156.4–1285 (n = 20) – – –<br />

0–10.5 (n = 27)<br />

T Cardwellia sublimis F.Muell. Proteaceae U, L B1, B1, G, R, M Old:11.5–69.8 (n = 21) – Bud: 779–851 Seed: approx.8<br />

Yg: 733.1, tips: 219.1 Flwr: 130–334<br />

T Cleistanthus myrianthus<br />

Euphorbiaceae L M Old: 1.1–17.3 (n = 41) – Flwr: 30.7 Mature: 160–377<br />

(Hassk.) Kurz<br />

Yg: 78.4–80.4 (n = 3) Immature: 821<br />

T Clerodendrum grayi Munir Verbenaceae U B1, B2, G Old: 1325–4800 (n = 6) – Bud: 733 –<br />

Flwr 440–942<br />

T Elaeocarpus sericopetalus F.Muell. Elaeocarpaceae U G, R 1100–5056 (n = 10) Sdlg: 1739–2679 – 1028<br />

Tree: 135<br />

V Embelia grayi S.T.Reynolds Myrs<strong>in</strong>aceae U B1, B2 10–81 (n = 3) – – –<br />

V Flagellaria <strong>in</strong>dica L. Flagellariaceae U, L B1, G, M 11–177.3 (n = 6) – – –<br />

T Helicia australasica F.Muell. Proteaceae L M 42.2–155.2 (n = 8) † – – –<br />

T Helicia blakei Foreman Proteaceae U B1 Mean: 17.9 (n = 2) – – –<br />

T Helicia nortoniana<br />

(F.M.Bailey) F.M.Bailey*<br />

Proteaceae L M – – – –<br />

V Passiflora sp. (Kuranda BH12896) Passifloraceae L M 313–922 (n = 4) – – –<br />

T Mischocarpus exangulatus<br />

Sap<strong>in</strong>daceae U B1 Old: 133; yg: 222 (n = 1) – – –<br />

(F.Muell.) Radlk.<br />

T Mischocarpus grandissimus<br />

(F.Muell.) Radlk.<br />

Sap<strong>in</strong>daceae U, L G, M 49–680 (n = 2)<br />

– – –<br />

761–2006 (n = 4) z<br />

T Opisthiolepis heterophylla L.S.Sm. Proteaceae U B1, B2 Old: 10–208 (n = 7) – – –<br />

Yg: 2000<br />

V Parsonsia latifolia (Benth.) S.T.Blake<br />

Apocynaceae U B1, G, R 765–4835 (n = 3) – – –<br />

T Polyscias australiana<br />

(F.Muell.) Philipson<br />

T Prunus turneriana<br />

(F.M.Bailey) Kalkman<br />

T Ryparosa javanica (Blume)<br />

Kurz ex Koord. & Valeton**<br />

Araliaceae U, L B1, B2, G, R, M Old:


leaves <strong>of</strong> numerous <strong>in</strong>dividuals <strong>of</strong> Polyscias<br />

australiana tested negative for cyanide, and conta<strong>in</strong>ed<br />

800 mgCNg 1 d. wt; Table 1). Overall, few tests were<br />

made <strong>of</strong> seeds or other reproductive tissues as part <strong>of</strong> the<br />

survey; however, where reproductive tissues were tested<br />

from species with cyanogenic leaves, they were typically<br />

cyanogenic and conta<strong>in</strong>ed higher concentrations <strong>of</strong> cyanogenic<br />

glycosides, although the concentration varied with<br />

the maturity <strong>of</strong> the fruit/seed. For example, the immature<br />

seed and fruit (comb<strong>in</strong>ed) from Prunus turneriana had<br />

>8mgCNg 1 d. wt compared with mature seed alone<br />

(


R. javanica occurs <strong>in</strong> a limited area with<strong>in</strong> lowland ra<strong>in</strong>forest<br />

north <strong>of</strong> the Da<strong>in</strong>tree River. <strong>Cyanogenesis</strong> is reported<br />

for the first time <strong>in</strong> the genera Beilschmiedia, Cardwellia,<br />

Cleistanthus, Elaeocarpus, Embelia, Mischocarpus,<br />

Opisthiolepis, Parsonsia and Polyscias. The number <strong>of</strong><br />

new reports at the generic level may <strong>in</strong> part reflect the<br />

high level <strong>of</strong> endemism among the Australian tropical ra<strong>in</strong>forest<br />

flora. In addition, several species are from families <strong>in</strong><br />

which cyanogenesis has been rarely reported, if at all. For<br />

example, cyanogenesis is rare <strong>in</strong> Elaeocarpaceae,<br />

Lauraceae, Apocynaceae, Myrs<strong>in</strong>aceae and Araliaceae<br />

families. Follow<strong>in</strong>g are descriptions <strong>of</strong> each cyanogenic<br />

species (listed alphabetically by family) discussed <strong>in</strong> relation<br />

to previous reports <strong>of</strong> cyanogenesis with<strong>in</strong> the relevant<br />

taxonomic groups.<br />

Ryparosa javanica (Blume) Kurz ex Koord. &<br />

Valeton (Achariaceae)<br />

Ryparosa javanica is currently the subject <strong>of</strong> taxonomic<br />

revision (Webber, 2005). The Queensland Ryparosa sp.<br />

currently known as R. javanica is endemic to lowland ra<strong>in</strong>forest<br />

north <strong>of</strong> the Da<strong>in</strong>tree River to Cape Tribulation, north<br />

east Queensland. This species was found to be cyanogenic<br />

early <strong>in</strong> this survey, and has subsequently been the focus<br />

<strong>of</strong> extensive population-level studies <strong>of</strong> cyanogenesis<br />

(Webber, 2005). Reports <strong>of</strong> cyanogenesis <strong>in</strong> this genus<br />

are common; for example, R. javanica (sensu stricto) and<br />

R. caesia are cyanogenic (Rosenthaler, 1919). <strong>Cyanogenesis</strong><br />

has been reported among other genera <strong>in</strong> Achariaceae,<br />

e.g. Hydnocarpus, Calancoba, Ceratiosicyos, Gynocardia,<br />

Erythrospermum, Pangium and Kiggelaria (Rosenthaler,<br />

1919; Tjon Sie Fat, 1979a; Jensen and Nielsen, 1986).<br />

Many <strong>of</strong> these genera were previously <strong>in</strong> the Flacourtiaceae<br />

until recent revisions saw most cyanogenic genera assigned<br />

to the Achariaceae (Chase et al., 2002), <strong>in</strong>clud<strong>in</strong>g the tribe<br />

Pangieae <strong>of</strong> which Ryparosa is a member. <strong>Cyanogenesis</strong><br />

was considered a useful taxonomic marker <strong>in</strong> Flacourtiaceae<br />

(Spencer and Seigler, 1985), this utility be<strong>in</strong>g apparent <strong>in</strong><br />

the revision <strong>of</strong> the family (Chase et al., 2002). All <strong>in</strong>dividuals<br />

<strong>in</strong> sizeable populations <strong>of</strong> R. javanica were cyanogenic,<br />

and the cyanogenic glycoside <strong>in</strong> R. javanica has been<br />

identified as gynocard<strong>in</strong> (Webber, 2005), a cyclopentenoid<br />

cyanogenic glycoside typical <strong>of</strong> Achariaceae (Jaroszewski<br />

and Olafsdottir, 1987). Cyanogenic glycosides derived<br />

from val<strong>in</strong>e/isoleuc<strong>in</strong>e have also been reported <strong>in</strong><br />

species formerly <strong>in</strong> the Flacourtiaceae (Lechtenberg and<br />

Nahrstedt, 1999).<br />

Parsonsia latifolia (Benth.) S.T.Blake (Apocynaceae)<br />

This is the first report <strong>of</strong> cyanogenesis <strong>in</strong> the genus<br />

Parsonsia, a genus <strong>of</strong> woody or semi-woody climbers<br />

(130 species) distributed from Southeast Asia to Australia,<br />

New Caledonia and New Zealand. Members <strong>of</strong> the Apocynaceae<br />

family (220 genera, 2000 species) commonly have<br />

clear or milky latex, and frequently conta<strong>in</strong> alkaloids<br />

(Mabberley, 1990; Coll<strong>in</strong>s et al., 1990). Parsonia latifolia<br />

(diameter up to 9 cm) has milky white latex, and is endemic<br />

to Australia (Forster and Williams, 1996). It is found <strong>in</strong><br />

lowland and highland ra<strong>in</strong>forest <strong>in</strong> noth east Queensland,<br />

parts <strong>of</strong> New South Wales and the <strong>North</strong>ern Territory<br />

(Hyland et al., 2003). Reports <strong>of</strong> cyanogenesis <strong>in</strong> Apocynaceae<br />

and the order Gentianales are few; Gibbs (1974), who<br />

reported negative results for Parsonsia eucalyptifolia and<br />

P. lanceolata, found only Alstonia scholaris (L.) R.Br. to be<br />

cyanogenic, and noted positive reports for four other<br />

species. Tests for cyanogenesis <strong>in</strong> the Apocynaceae are,<br />

however, apparently limited, with negative reports for<br />

only approx. 20 species (Gibbs, 1974; Adsersen et al.,<br />

1988; Thomsen and Brimer, 1997). In this study, leaf<br />

samples <strong>of</strong> all ages from multiple A. scholaris trees and<br />

seedl<strong>in</strong>gs gave negative FA paper results; quantitative<br />

assay<strong>in</strong>g confirmed the absence <strong>of</strong> cyanogenesis. No cyanogenic<br />

constituents <strong>in</strong> the family have been characterized.<br />

Polyscias australiana (F.Muell.) Philipson (Araliaceae)<br />

This is the first report <strong>of</strong> cyanogenesis <strong>in</strong> the genus<br />

Polyscias, a genus <strong>of</strong> approx. 100 species distributed<br />

throughout Africa, Asia, Malesia, Australia and the Pacific<br />

Islands. In addition, cyanogenesis is very rare <strong>in</strong> the order<br />

Umbellales; Gibbs (1974) reported only negative results or<br />

some doubtful positive results <strong>in</strong> a few members <strong>of</strong><br />

Araliaceae (Nothopanax sp. and Schefflera sp.) and the<br />

Umbelliferae. Subsequently, only Aralia sp<strong>in</strong>osa L.<br />

(above-ground parts) has been reported as cyanogenic<br />

(Seigler, 1976b). Polyscias australiana is <strong>of</strong>ten considered<br />

a regrowth species <strong>in</strong> disturbed ra<strong>in</strong>forest, and commonly<br />

occurs at ra<strong>in</strong>forest marg<strong>in</strong>s. Concentrations <strong>of</strong> cyanogenic<br />

glycosides <strong>in</strong> this species were variable, and <strong>in</strong> mature<br />

leaves were commonly less than the threshold value used<br />

for classify<strong>in</strong>g <strong>in</strong>dividuals as cyanogenic <strong>in</strong> this study<br />

(


considered common (Gibbs, 1974; Hegnauer, 1990;<br />

Mabberley, 1990). In the Elaeocarpaceae family, cyanogenesis<br />

has previously been reported <strong>in</strong> only two species: the<br />

leaves <strong>of</strong> Vallea stipularis ‘pyrifolia’ F.Ballard (Gibbs<br />

1974), and the leaves [Gresh<strong>of</strong>f (1898) cited <strong>in</strong> Hegnauer<br />

(1973)] and the bark (Pammel, 1911; Rosenthaler, 1919) <strong>of</strong><br />

Sloanea sigun (Blume) K.Schum (syn. Ech<strong>in</strong>ocarpus<br />

sigun), were found to be cyanogenic. Sambunigr<strong>in</strong> was<br />

isolated from the leaves <strong>of</strong> S. sigun [R. Hegnauer and<br />

L. H. Fikenscher, unpubl. data (1983) cited <strong>in</strong> Hegnauer<br />

(1990)], the only previous report <strong>of</strong> a cyanogenic constituent<br />

<strong>in</strong> Elaeocarpaceae and Malvales. Characterization <strong>of</strong> the<br />

pr<strong>in</strong>cipal foliar cyanogenic glycoside—an apparently<br />

unusual phenylalan<strong>in</strong>e-derived glycoside with an organic<br />

acid residue—is ongo<strong>in</strong>g (Miller, 2004).<br />

Cleistanthus myrianthus (Hassk.) Kurz (Euphorbiaceae)<br />

This appears to be the first report <strong>of</strong> cyanogenesis <strong>in</strong><br />

the genus Cleistanthus, which consists <strong>of</strong> 100–140 species.<br />

Cleistanthus myrianthus is a subcanopy ra<strong>in</strong>forest tree (to<br />

7 m), found <strong>in</strong> the lowland and foothills from the Da<strong>in</strong>tree<br />

River to Rossville, north east Queensland (Cooper and<br />

Cooper, 1994). In Australia, it is classified as rare on the<br />

basis <strong>of</strong> this limited distribution, but it is also found <strong>in</strong><br />

Southeast Asia and Malesia (Hyland et al., 2003). <strong>Cyanogenesis</strong><br />

is especially common <strong>in</strong> Euphorbiaceae (300<br />

genera, 7500 species), and is found <strong>in</strong> many genera <strong>in</strong>clud<strong>in</strong>g<br />

Bridelia, Euphorbia and Phyllanthus, as well as the<br />

economically important species Hevea brasiliensis (rubber<br />

tree) and Manihot esculenta (cassava) (e.g. Rosenthaler,<br />

1919; Tjon Sie Fat, 1979a; Seigler et al., 1979; Adsersen<br />

et al., 1988).<br />

The chemotaxonomic utility <strong>of</strong> cyanogenesis, as well<br />

as other secondary metabolites (e.g. alkaloids and terpenes),<br />

has been demonstrated <strong>in</strong> Euphorbiaceae (Seigler, 1994).<br />

Cyanogenic glycosides are useful at the <strong>in</strong>fra-familial<br />

level <strong>in</strong> the Euphorbiaceae (van Valen, 1978; Seigler,<br />

1994); the species <strong>in</strong> the subfamily Phyllanthoideae typically<br />

conta<strong>in</strong> the tyros<strong>in</strong>e-derived cyanogenic glycosides<br />

dhurr<strong>in</strong>, taxiphyll<strong>in</strong> or trigloch<strong>in</strong><strong>in</strong>, while species <strong>in</strong> the<br />

subfamily Crotonoideae (sensu Pax and H<strong>of</strong>fman, 1931;<br />

see van Valen, 1978), <strong>in</strong>clud<strong>in</strong>g Hevea and Manihot, produce<br />

cyanogenic glycosides derived from val<strong>in</strong>e and isoleuc<strong>in</strong>e<br />

(e.g. l<strong>in</strong>amar<strong>in</strong> and lotaustral<strong>in</strong>) (van Valen, 1978,<br />

Nahrstedt, 1987; Seigler, 1994). Given this pattern, one may<br />

predict Cleistanthus—assigned to the Phyllanthoideae—to<br />

conta<strong>in</strong> cyanogens derived from tyros<strong>in</strong>e.<br />

Flagellaria <strong>in</strong>dica L. (Flagellariaceae)<br />

Flagellaria <strong>in</strong>dica (‘the supplejack’), a leaf tendril climber<br />

with cane-like stems, is known to be cyanogenic (Petrie,<br />

1912; Webb, 1948; Gibbs, 1974; Morley and Toelken,<br />

1983). Young shoots were suspected <strong>of</strong> poison<strong>in</strong>g stock<br />

<strong>in</strong> Australia (Everist, 1981), and it has also been reported<br />

to have medic<strong>in</strong>al properties (e.g. tumour <strong>in</strong>hibition; Coll<strong>in</strong>s<br />

et al., 1990). In other countries, it has been used as a hair<br />

wash, and as a contraceptive (see Hyland et al., 2003),<br />

but was not apparently used medic<strong>in</strong>ally by aborig<strong>in</strong>al<br />

Australians (Morley and Toelken, 1983). Interest<strong>in</strong>gly,<br />

monocotyledons are typically characterized by cyanogenic<br />

glycosides biosynthetically derived from tyros<strong>in</strong>e<br />

(Lechtenberg and Nahrstedt, 1999). Consistent with this,<br />

the tyros<strong>in</strong>e-derived cyanogenic glycoside trigloch<strong>in</strong><strong>in</strong><br />

was isolated from the stem (and rhizome) <strong>of</strong> F. <strong>in</strong>dica<br />

(L. H. Fikenscher unpubl. data, cited <strong>in</strong> Hegnauer, 1966),<br />

although meta-hydroxylated val<strong>in</strong>e or isoleuc<strong>in</strong>e, and<br />

leuc<strong>in</strong>e-derived glycosides have also been found <strong>in</strong><br />

monocotyledons (Nahrstedt, 1987; Lechtenberg and<br />

Nahrstedt, 1999).<br />

Clerodendrum grayi Munir (Lamiaceae)<br />

Clerodendrum grayi is a rare subcanopy tree endemic to<br />

the northern part <strong>of</strong> Queensland, Australia (Munir, 1989).<br />

Recent revisions <strong>of</strong> the division between Lamiaceae and<br />

Verbenaceae families (Cant<strong>in</strong>o, 1992; Wagstaff et al.,<br />

1997, 1998) transferred the genus Clerodendrum, and others<br />

historically <strong>in</strong> the Verbenaceae family, to the Lamiaceae<br />

family. <strong>Cyanogenesis</strong> <strong>in</strong> Lamiaceae, and also Verbenaceae,<br />

has rarely been reported. Even with<strong>in</strong> the order Lamiales,<br />

cyanogenesis is considered rare (Gibbs, 1974). In the<br />

Lamiaceae, known for its cul<strong>in</strong>ary and medic<strong>in</strong>al herbs<br />

[e.g. Lavandula (lavender); Mentha (m<strong>in</strong>t)], typical constituents<br />

are monoterpenoids, diterpenes or triterpenes, as<br />

well as flavonoids and iridoid glycosides (Gibbs, 1974;<br />

Hegnauer, 1989; Taskova et al., 1997). In a survey <strong>of</strong> the<br />

flora <strong>of</strong> the Galapagos Islands, Clerodendrum molle var.<br />

molle was found to be cyanogenic (Adsersen et al., 1988;<br />

see also Gibbs, 1974, Tjon sie Fat, 1979a). In addition,<br />

several species <strong>of</strong> Clerodendrum are known to be toxic<br />

(Hurst, 1942; Webb, 1948; CFSAN, 2003); however, the<br />

poison is not detailed.<br />

In this study, the extremely high foliar concentrations <strong>of</strong><br />

cyanogenic compounds—up to 48mgCNg 1 d. wt <strong>in</strong><br />

mature field-grown tree leaves—are among the highest<br />

reported for tree leaves (Table 1). Two cyanogenic glycosides<br />

were purified from the leaf tissue <strong>of</strong> C. grayi (Miller<br />

et al., 2006a). Prunas<strong>in</strong> and its primerveroside, the rare<br />

diglycoside lucum<strong>in</strong> (Eyjólfsson, 1971), were found <strong>in</strong><br />

the ratio 1 : 158 (mol:mol) (Miller et al., 2006a), the first<br />

reported co-occurrence <strong>of</strong> these glycosides, and the first<br />

confirmed report <strong>of</strong> lucum<strong>in</strong> <strong>in</strong> vegetative tissue (see<br />

Thomsen and Brimer, 1997). Given the relatively rarity<br />

<strong>of</strong> reports <strong>of</strong> cyanogenic glycosides from the Lamiaceae,<br />

and even with<strong>in</strong> the order Lamiales, it is difficult to draw<br />

any conclusions about the biogenetic orig<strong>in</strong>s <strong>of</strong> glycosides<br />

with<strong>in</strong> these taxonomic groups. Refer to Miller et al.<br />

(2006a) for a detailed discussion <strong>of</strong> cyanogenesis <strong>in</strong><br />

C. grayi and associated taxa.<br />

Beilschmiedia coll<strong>in</strong>a B.Hyland (Lauraceae)<br />

Beilschmiedia coll<strong>in</strong>a (‘the mounta<strong>in</strong> blush walnut’) is a<br />

tree species endemic to Queensland ra<strong>in</strong>forest (Cooper and<br />

Cooper, 1994). <strong>Cyanogenesis</strong> is very rare <strong>in</strong> Lauraceae<br />

(Gibbs, 1974; Hegnauer, 1989), hav<strong>in</strong>g only been reported<br />

from C<strong>in</strong>namomum camphora and Litsea glut<strong>in</strong>osa (Gibbs,<br />

1974), with one other species (Nectranda megapotamica)<br />

reported to have cyanogenic glycosides but apparently<br />

lacks the catabolic enzymes, requir<strong>in</strong>g further <strong>in</strong>vestigation


(Francisco and P<strong>in</strong>otti, 2000). The Lauraceae is better<br />

known for produc<strong>in</strong>g a range <strong>of</strong> alkaloids (e.g. Gibbs,<br />

1974), and as a dom<strong>in</strong>ant family <strong>in</strong> the ra<strong>in</strong>forest flora <strong>of</strong><br />

Australia has been much studied for its toxic and potentially<br />

medic<strong>in</strong>al alkaloids (Webb, 1949, 1952; Coll<strong>in</strong>s et al., 1990).<br />

Of 39 species tested <strong>in</strong> the Lauraceae family <strong>in</strong> this survey,<br />

only B. coll<strong>in</strong>a was cyanogenic (Appendix). Given the<br />

apparent rarity <strong>of</strong> cyanogenesis <strong>in</strong> the family, and even<br />

the order Laurales, it is difficult to speculate as to the<br />

biosynthetic precursor <strong>of</strong> the cyanogenic constituent <strong>in</strong><br />

B. coll<strong>in</strong>a. To the authors’ knowledge, only the tyros<strong>in</strong>ederived<br />

cyanogenic glycoside taxiphyll<strong>in</strong> has been reported<br />

<strong>in</strong> the Calycanthaceae family with<strong>in</strong> the Laurales<br />

(Lechtenberg and Nahrstedt, 1999); tyros<strong>in</strong>e-derived<br />

glycosides are also found <strong>in</strong> Ranunculaceae <strong>in</strong> the order<br />

Ranunculales, which is <strong>in</strong> the same subclass Magnoliidae<br />

(sensu Cronquist, 1981) as Laurales.<br />

Embelia grayi S.T. Reynolds (Myrs<strong>in</strong>aceae)<br />

This is the first report <strong>of</strong> cyanogenesis <strong>in</strong> the genus<br />

Embelia—a genus <strong>of</strong> approx. 130 species—and among<br />

the first <strong>in</strong> the family Myrs<strong>in</strong>aceae. Furthermore, Gibbs<br />

(1974) considered cyanogenesis to be unknown <strong>in</strong> the<br />

order Primulales. Subsequent to Gibbs (1974), only two<br />

reports <strong>of</strong> cyanogenesis <strong>in</strong> Myrs<strong>in</strong>aceae could be found—<br />

for Rapanea parviflora (Kaplan et al., 1983), and for<br />

R. umbellata, which needs confirmation as cyanogenesis<br />

was only detected after 24 h <strong>of</strong> tissue <strong>in</strong>cubation<br />

(Francisco and P<strong>in</strong>otti, 2000). Overall, there are even a<br />

few negative test records for the family. Embelia grayi is<br />

a v<strong>in</strong>e with diameter up to 9 cm, endemic to upland and<br />

highland ra<strong>in</strong>forest <strong>in</strong> north east Queensland. Embelia<br />

caulialata, and three Rapanea spp., also tested here, were<br />

not cyanogenic. The order Primulales (sensu Cronquist,<br />

1981) is <strong>in</strong> the subclass Dilleniidae which also <strong>in</strong>cludes<br />

the orders Malvales and Violales. With<strong>in</strong> the Violales,<br />

cyanogenesis is common <strong>in</strong> the Achariaceae (<strong>in</strong>clud<strong>in</strong>g<br />

Flacourtiaceae), Passifloraceae and Turneraceae families,<br />

which tend to conta<strong>in</strong> cyanogenic glycosides <strong>of</strong> the cyclopentanoid<br />

series (Lechtenberg and Nahrstedt, 1999).<br />

Passiflora sp. (Kuranda BH12896) (Passifloraceae)<br />

Passiflora sp. (Kuranda BH12896) was the only species<br />

<strong>in</strong> the Passifloraceae tested <strong>in</strong> this study. It is a v<strong>in</strong>e found<br />

<strong>in</strong> the lowland ra<strong>in</strong>forests <strong>of</strong> north east Queensland; all<br />

Australian members <strong>of</strong> the Passifloraceae are climbers or<br />

sprawl<strong>in</strong>g shrubs (Morley and Toelken, 1983). <strong>Cyanogenesis</strong><br />

is common with<strong>in</strong> the family Passifloraceae (600<br />

species, two genera worldwide), and the genus Passiflora<br />

(e.g. Rosenthaler, 1919; Tjon Sie Fat, 1979a; Adsersen et al.,<br />

1988; Olafsdottir et al., 1989). Several Australian Passiflora<br />

spp. were reported to be cyanogenic, <strong>in</strong>clud<strong>in</strong>g P. aurantia<br />

(Petrie, 1912; Smith and White, 1918; Webb, 1952; Gardner<br />

and Bennetts, 1956) and the endemic P. herbertiana L<strong>in</strong>dl.<br />

(Petrie, 1912), and implicated <strong>in</strong> poison<strong>in</strong>g stock (Smith<br />

and White, 1918). With<strong>in</strong> Passifloraceae, cyanogenesis<br />

has also been reported <strong>in</strong> Adenia spp. and Ophiocaulon<br />

spp. (Rosenthaler, 1919; Tjon Sie Fat, 1979a). The specific<br />

cyanogenic constituents may be taxonomically diagnostic at<br />

the <strong>in</strong>frafamilial level (e.g. occurrence <strong>of</strong> the rare glycoside<br />

passibiflor<strong>in</strong>; Adsersen et al., 1993). Cyanogenic Passifloraceae<br />

typically conta<strong>in</strong> cyanogenic glycosides with<br />

cyclopentenoid r<strong>in</strong>g structures (Seigler et al., 1982;<br />

Spencer and Seigler, 1985; Nahrstedt, 1987; Lechtenberg<br />

and Nahrstedt, 1999), although phenylalan<strong>in</strong>e-derived glycosides<br />

(e.g. prunas<strong>in</strong>) have been isolated from Passiflora<br />

edulis (Spencer and Seigler, 1983; Chassagne et al., 1996;<br />

Seigler et al., 2002), and val<strong>in</strong>e/isoleuc<strong>in</strong>e-derived glycosides<br />

(e.g. l<strong>in</strong>amar<strong>in</strong>, lotaustral<strong>in</strong>) from several Passiflora<br />

spp. <strong>in</strong> the subgenus Plectostemma (Spencer et al., 1986).<br />

<strong>Cyanogenesis</strong> <strong>in</strong> the Proteaceae family<br />

Five <strong>of</strong> the 20 species tested <strong>in</strong> the Proteaceae family<br />

were found to be cyanogenic: C. sublimis F.Muell.,<br />

O. heterophylla L.S.Sm., Helicia australasica F.Muell,<br />

H. blakei Foreman and H. nortoniana (F.M.Bailey)<br />

F.M.Bailey. The latter species was opportunistically tested<br />

as it was found only outside the plots. This is the first<br />

formal report <strong>of</strong> cyanogenesis <strong>in</strong> the monospecific genera<br />

Cardwellia and Opisthiolepis, while cyanogenesis has previously<br />

been reported <strong>in</strong> the genus Helicia (H. robusta;<br />

Gibbs, 1974).<br />

Cardwellia sublimis (‘the northern silky oak’) is the only<br />

species <strong>in</strong> the tribe Cardwelli<strong>in</strong>ae (Hoot and Douglas, 1998).<br />

This canopy species (to 30 m), an important timber tree, is<br />

endemic to north east Queensland, be<strong>in</strong>g widely distributed<br />

throughout well-developed lowland to highland ra<strong>in</strong>forest<br />

(Hyland et al., 2003). Cardwellia sublimis was common to<br />

all sites <strong>in</strong> this study.<br />

Opisthiolepis heterophylla (‘the blush silky oak’) is<br />

endemic and conf<strong>in</strong>ed to north east Queensland, from the<br />

Kirrama Range to Cooktown. It grows to 30 m <strong>in</strong> lowland<br />

to highland ra<strong>in</strong>forest, but is most common <strong>in</strong> upland and<br />

highland ra<strong>in</strong>forest on the Atherton Tableland (Hyland et al.,<br />

2003). The flowers <strong>of</strong> O. heterophylla have been found to<br />

be cyanogenic (E. E. Conn, University <strong>of</strong> California, Davis,<br />

CA, USA, pers. comm.).<br />

The genus Helicia (approx. 90 species) occurs throughout<br />

Asia and the Pacific, with n<strong>in</strong>e species found naturally<br />

<strong>in</strong> Australia (Foreman, 1995). Helicia blakei (‘Blake’s silky<br />

oak’) is endemic to north east Queensland, occurr<strong>in</strong>g as an<br />

understorey tree <strong>in</strong> well-developed upland ra<strong>in</strong>forest<br />

(Hyland et al., 2003). Helicia australasica is a shrub or<br />

tree (3–20 m) widespread throughout northern Australian<br />

through to Papua New Gu<strong>in</strong>ea. It occurs as an understorey<br />

tree <strong>in</strong> well-developed ra<strong>in</strong>forest, monsoon forest and dry<br />

ra<strong>in</strong>forest (Foreman, 1995; Hyland et al., 2003). The fruit is<br />

known to be eaten by aborig<strong>in</strong>es (Foreman, 1995). Helicia<br />

nortoniana is also an understorey tree (to 20 m), endemic<br />

to north east Queensland, and found <strong>in</strong> well-developed<br />

lowland and highland ra<strong>in</strong>forest (Cooper and Cooper,<br />

1994; Foreman, 1995; Hyland et al., 2003). These data<br />

support the prelim<strong>in</strong>ary results <strong>of</strong> tests on dried herbarium<br />

samples where only some samples <strong>of</strong> H. australasica and<br />

H. nortoniana tested positive for cyanide (E. E. Conn,<br />

University <strong>of</strong> California, Davis, CA, USA, pers. comm.).<br />

Tests <strong>of</strong> dried herbarium samples <strong>of</strong> H. blakei, however,<br />

gave only negative results (E. E. Conn, University <strong>of</strong>


California, Davis, CA, USA, pers. comm.). The <strong>in</strong>consistent<br />

f<strong>in</strong>d<strong>in</strong>gs by Conn are probably the result <strong>of</strong> us<strong>in</strong>g dried<br />

herbarium material.<br />

<strong>Cyanogenesis</strong> is considered especially common <strong>in</strong><br />

the Proteaceae (Swenson et al., 1989; Lechtenberg and<br />

Nahrstedt, 1999), known <strong>in</strong> a range <strong>of</strong> genera, but particularly<br />

<strong>in</strong> Grevillea and Hakea spp. In Australia, cyanogenic<br />

members <strong>of</strong> the Proteaceae have been implicated <strong>in</strong><br />

stock poison<strong>in</strong>g (Gardner and Bennetts, 1956). Based on the<br />

reports <strong>of</strong> Gibbs (1974) and Tjon Sie Fat (1979a), and the<br />

study <strong>of</strong> Swenson et al. (1989) who found 44 <strong>of</strong> 155 proteaceous<br />

species tested to be cyanogenic, cyanogenesis<br />

is most widespread <strong>in</strong> the subfamily Grevilleoideae. For<br />

example, cyanogenesis has been reported <strong>in</strong> the genera<br />

Stenocarpus, Lomatia, Helicia, Xylomelum, Telopea,<br />

Macadamia, Hicksbeachia, Lambertia, Grevillea and<br />

Xylomelum (Petrie, 1912; Smith and White, 1918; Hurst,<br />

1942; Gardner and Bennetts, 1956; Gibbs, 1974; Swenson<br />

et al., 1989; Lamont, 1993; E. E. Conn, University <strong>of</strong><br />

California, Davis, CA, USA, pers. comm.), all <strong>of</strong> which<br />

are <strong>in</strong> the Grevilloiedeae (Hoot and Douglas, 1998). Consistent<br />

with this pattern, the cyanogenic genera reported<br />

here are all <strong>in</strong> the subfamily Grevilleoideae; Cardwellia<br />

<strong>in</strong> the subtribe Cardwelli<strong>in</strong>ae (tribe Knightieae), Opisthiolepis<br />

<strong>in</strong> the subtribe Buck<strong>in</strong>ghami<strong>in</strong>ae (tribe Embothrieae),<br />

and Helicia <strong>in</strong> the subtribe Helici<strong>in</strong>ae (tribe Heliceae). In<br />

contrast, there are only a few reports <strong>of</strong> cyanogenesis with<strong>in</strong><br />

the Proteoideae subfamily; cyanogenesis was only reported<br />

<strong>in</strong> s<strong>in</strong>gle species <strong>of</strong> Conospermum, Petrophile and Protea<br />

(Gibbs, 1974; Swenson et al., 1989; E. E. Conn, University<br />

<strong>of</strong> California, Davis, CA, USA, pers. comm.).<br />

The cyanogenic constituents, which have been identified<br />

<strong>in</strong> comparatively few species, appear to be biogenetically<br />

derived from tyros<strong>in</strong>e. Swenson et al. (1989) identified<br />

the cyanogenic glycosides <strong>in</strong> eight species; leaves and<br />

flowers <strong>of</strong> several Hakea, Leucadendron, Grevillea<br />

and Macadamia species were found to conta<strong>in</strong> dhurr<strong>in</strong><br />

and proteac<strong>in</strong> (see also Plouvier, 1964; Young and<br />

Hamilton, 1966). In this regard, the identity <strong>of</strong> the cyanogenic<br />

constituent <strong>in</strong> the monospecific genera <strong>in</strong> particular<br />

would be <strong>in</strong>terest<strong>in</strong>g.<br />

Prunus turneriana (F.M.Bailey) Kalkman (Rosaceae)<br />

<strong>Cyanogenesis</strong> is widespread with<strong>in</strong> Rosaceae (Hegnauer,<br />

1990), and has been much studied <strong>in</strong> the subfamily<br />

Prunoideae <strong>in</strong> particular, as it conta<strong>in</strong>s many cyanogenic<br />

cultivated species [e.g. Prunus domestica L. (plum);<br />

Armeniaca vulgaris Lam. (apricot)]. Cyanogenic Rosaceae<br />

(<strong>in</strong> particular Prunus spp.) are also a common source <strong>of</strong><br />

poison<strong>in</strong>g <strong>in</strong> domestic animals (e.g. Poulton, 1983;<br />

Schuster and James, 1988). Prunus turneriana is one <strong>of</strong><br />

only two Prunus species native to Australia and is a late<br />

successional canopy tree species <strong>in</strong> the lowland and upland<br />

ra<strong>in</strong>forests <strong>of</strong> far north Queensland, Australia. The fruits <strong>of</strong><br />

this canopy species are known to be toxic, yet are also eaten<br />

by cassowaries, fruit pigeons, Herbert river r<strong>in</strong>gtail possums<br />

and musky-rat kangaroos (Cooper and Cooper, 1994).<br />

The flesh <strong>of</strong> the fruit was used raw by the Ngadjonji<br />

people—the orig<strong>in</strong>al <strong>in</strong>habitants <strong>of</strong> the ra<strong>in</strong>forests on<br />

the Atherton Tablelands, north Queensland—for treat<strong>in</strong>g<br />

toothache, while the toxic kernels were processed for a<br />

starchy food (Huxley, 2003). Despite its common name<br />

‘Almond bark’ and phytochemical surveys <strong>of</strong> Australian<br />

ra<strong>in</strong>forest species (e.g. Webb, 1949), cyanogenesis <strong>in</strong> P.<br />

turneriana had not previously been reported. Cyanogenic<br />

glycosides were found to be distributed throughout all tissues<br />

and, consistent with other species <strong>in</strong> the Rosaceae, are<br />

biosynthetically derived from the am<strong>in</strong>o acid phenylalan<strong>in</strong>e<br />

(Møller and Seigler, 1999). Prunas<strong>in</strong> was identified as the<br />

major cyanogen <strong>in</strong> leaf, stem, root and seed tissues <strong>of</strong><br />

P. turneriana, and amygdal<strong>in</strong> was restricted to the seed.<br />

What was unusual about P. turneriana was the presence<br />

<strong>of</strong> significant amounts <strong>of</strong> the (R)-prunas<strong>in</strong> epimer, (S)-<br />

sambunigr<strong>in</strong>, <strong>in</strong> leaf, stem and seed tissue, whereas root<br />

tissue conta<strong>in</strong>ed only prunas<strong>in</strong>. Refer to Miller et al.<br />

(2004) for the detailed characterization <strong>of</strong> cyanogenesis<br />

<strong>in</strong> P. turneriana.<br />

Brombya platynema F.Muell. (Rutaceae)<br />

This is the first report <strong>of</strong> cyanogenesis <strong>in</strong> the genus<br />

Brombya, which is a genus <strong>of</strong> 1–2 species endemic to<br />

Australia (Hyland et al., 2003). Brombya platynema is<br />

endemic to north east Queensland where it occurs as an<br />

understorey tree <strong>in</strong> well-developed forest (from sea level<br />

to 1100 m a.s.l.) (Hyland et al., 2003). The family (150<br />

genera, 1500 species) <strong>in</strong>cludes many strongly scented<br />

shrubs and trees, and rutaceous species are known for<br />

their terpenoids and alkaloids (Price, 1963; Gibbs, 1974;<br />

Everist, 1981). <strong>Cyanogenesis</strong> is rare <strong>in</strong> Rutaceae, and has<br />

only been reported <strong>in</strong> Boronia bip<strong>in</strong>nate L<strong>in</strong>dl. (leaves;<br />

Rosenthaler, 1919), Zieria spp. (Hurst, 1942; Gibbs, 1974;<br />

Fikenscher and Hegnauer, 1977), Zanthoxylum fagara<br />

(Adsersen et al., 1988) and Loureira coch<strong>in</strong>ch<strong>in</strong>ensis<br />

Meissa (Gibbs, 1974). Even with<strong>in</strong> the order Rutales,<br />

cyanogenesis is rare, with only a few additional def<strong>in</strong>itive<br />

reports <strong>of</strong> cyanogenesis <strong>in</strong> the Tremandraceae family<br />

(Gibbs, 1974). The phenylalan<strong>in</strong>e-derived cyanogenic glycosides<br />

prunas<strong>in</strong>/sambunigr<strong>in</strong> and zier<strong>in</strong> have been isolated<br />

from leaves <strong>of</strong> two Zieria spp. (F<strong>in</strong>nemore and Cooper,<br />

1936; Fikenscher and Hegnauer, 1977). The rare metahydroxylated<br />

cyanogenic glycoside holocal<strong>in</strong> was recently<br />

identified as the pr<strong>in</strong>cipal cyanogen <strong>in</strong> leaves <strong>of</strong><br />

B. platynema; traces <strong>of</strong> prunas<strong>in</strong> and amygdal<strong>in</strong> were<br />

also detected (Miller et al., 2006b). These data suggest<br />

the possibility that species <strong>in</strong> this family have cyanogenic<br />

glycosides biosynthetically derived from the am<strong>in</strong>o acid<br />

phenylalan<strong>in</strong>e.<br />

Mischocarpus grandissimus (F.Muell.) Radlk. and<br />

Mischocarpus exangulatus (F.Muell.) Radlk. (Sap<strong>in</strong>daceae)<br />

Two <strong>of</strong> the four species <strong>of</strong> Mischocarpus tested <strong>in</strong> this<br />

study were found to be cyanogenic—M. grandissimus and<br />

M. exangulatus—represent<strong>in</strong>g the first reports <strong>of</strong> cyanogenesis<br />

for the genus. Mischocarpus is a genus <strong>of</strong> 15 species<br />

found <strong>in</strong> Asia, Malesia and Australia; n<strong>in</strong>e species occur<br />

naturally <strong>in</strong> Australia (Hyland et al., 2003). Both species<br />

are endemic to Queensland; M. grandissimus is restricted to<br />

north east Queensland, while M. exangulatus is also found<br />

on the Cape York Pen<strong>in</strong>sula, Queensland. Mischocarpus


grandissimus occurs as an understorey tree <strong>in</strong> welldeveloped<br />

lowland and upland ra<strong>in</strong>forest (sea level to<br />

750 m a.s.l.; Hyland et al., 2003). Similarly, M. exangulatus<br />

(‘the red bell mischocarp’) is an understorey tree to 15 m<br />

found <strong>in</strong> well-developed lowland and highland ra<strong>in</strong>forest<br />

(sea level to 1100 m a.s.l.; Cooper and Cooper, 1994;<br />

Hyland et al., 2003). These were the only cyanogenic<br />

species identified among the 29 species <strong>in</strong> the Sap<strong>in</strong>daceae<br />

family tested <strong>in</strong> this study (Appendix). <strong>Cyanogenesis</strong><br />

is known <strong>in</strong> the Sap<strong>in</strong>daceae family; however, the<br />

family is best known for cyanolipids <strong>in</strong> the seed oils <strong>of</strong><br />

numerous species (e.g. Alectryon spp., Allophylus spp.,<br />

Cardiospermum spp., Sap<strong>in</strong>dus spp., Paull<strong>in</strong>ia spp. and<br />

Ungnadia speciosa) (Mikolajczak et al., 1970; Seigler<br />

et al., 1971; Gowrikumar et al., 1976; Seigler and<br />

Kawahara, 1976). There are only a few reports <strong>of</strong><br />

cyanogenesis <strong>in</strong> Australian <strong>in</strong>digenous members<br />

<strong>of</strong> Sap<strong>in</strong>daceae—for Dodonaea spp. (Hurst, 1942; Webb,<br />

1949) and Alectryon spp. (Smith and White 1918;<br />

F<strong>in</strong>nemore and Cooper, 1938)—and, with the exception<br />

<strong>of</strong> Heterodendrum oleifolium Desf. [syn. Alectryon oleifolius<br />

(Desf.) S.Reyn], the cyanogenic constituents <strong>in</strong> these<br />

species have not been characterized. In addition to cyanolipids<br />

<strong>in</strong> the seeds, leuc<strong>in</strong>e-derived cyanogenic glycosides<br />

have been characterized from vegetative parts <strong>of</strong> sap<strong>in</strong>daceous<br />

species (Seigler et al., 1974; Hübel and<br />

Nahrstedt, 1975, 1979; Nahrstedt, and Hübel, 1978).<br />

Further f<strong>in</strong>d<strong>in</strong>gs<br />

Alocasia brisbanensis (Araceae) was also found to be<br />

cyanogenic, consistent with reports <strong>of</strong> cyanogenesis <strong>in</strong><br />

numerous congeneric species (Rosenthaler, 1919; Tjon<br />

Sie Fat, 1979a). However, as a herb, it was not <strong>in</strong>cluded<br />

<strong>in</strong> the analysis. The tyros<strong>in</strong>e-derived cyanogenic glycoside<br />

trigloch<strong>in</strong><strong>in</strong> has been isolated from the closely related<br />

A. macrorrhiza (Nahrstedt, 1975).<br />

There were several f<strong>in</strong>d<strong>in</strong>gs which contradicted previous<br />

reports for species. In addition to negative results for<br />

A. scholaris noted above, Eupomatia laur<strong>in</strong>a (Eupomatiaceae)<br />

was reported to be ‘doubtfully cyanogenic’ and<br />

Cananga odorata (Annonaceae) cyanogenic by Gibbs<br />

(1974), but neither species was found to be cyanogenic<br />

<strong>in</strong> this study (based on repeated tests <strong>of</strong> four and two <strong>in</strong>dividuals,<br />

respectively). Similarly, reports <strong>of</strong> cyanogenesis <strong>in</strong><br />

fruit and leaves <strong>of</strong> the Australian endemic Davidson’s plum<br />

(Davidsonia pruriens) (Petrie, 1912; Rosenthaler, 1929)<br />

were not corroborated, both mature leaves and fruit test<strong>in</strong>g<br />

negative <strong>in</strong> this study. Gibbs (1974) also only found negative<br />

results for leaves <strong>of</strong> D. pruriens. In addition, negative<br />

test results for cyanogenesis <strong>in</strong> this study corroborate previous<br />

negative reports for Neolitsea dealbata (syn. Litsea<br />

dealbata), Cayratia acris, Mor<strong>in</strong>da jasm<strong>in</strong>oides and Sarcopetalum<br />

harveyanum (Gibbs, 1974; Appendix). A screen<strong>in</strong>g<br />

<strong>of</strong> Australian Proteaceae family, conducted primarily us<strong>in</strong>g<br />

dry herbarium material, was carried out by E. E. Conn<br />

(University <strong>of</strong> California, Davis, CA, USA, pers. comm.)<br />

and <strong>in</strong>cluded several species tested <strong>in</strong> this study. As noted<br />

above, Conn had some <strong>in</strong>consistent, and possibly therefore<br />

<strong>in</strong>conclusive, results for a number <strong>of</strong> species, which were<br />

confirmed by fresh sampl<strong>in</strong>g <strong>in</strong> this study. One <strong>of</strong> eight<br />

samples <strong>of</strong> Musgravea heterophylla gave a positive reaction<br />

after 12 h <strong>in</strong> Conn’s survey, a species which was not found<br />

to be cyanogenic here. Further test<strong>in</strong>g <strong>of</strong> M. heterophylla<br />

is warranted. As far as could be discerned, the majority <strong>of</strong><br />

species tested <strong>in</strong> this study had not previously been tested,<br />

despite numerous screen<strong>in</strong>gs <strong>of</strong> Australian and Queensland<br />

plants, most notably by Webb (1948, 1949).<br />

General f<strong>in</strong>d<strong>in</strong>gs: frequency <strong>of</strong> cyanogenesis<br />

Of 401 species from 87 families tested <strong>in</strong> the survey,<br />

18 (45 %) species from 13 families were cyanogenic.<br />

The proportion <strong>of</strong> cyanogenic species at the sites ranged<br />

from 47to65 %, values similar to the frequency <strong>of</strong> cyanogenic<br />

species found <strong>in</strong> a substantial survey <strong>of</strong> woody species<br />

<strong>in</strong> Costa Rican ra<strong>in</strong>forest (Thomsen and Brimer, 1997)—the<br />

only previous study to report the frequency <strong>of</strong> cyanogenesis<br />

standardized with respect to plant size (dbh >10 cm) and<br />

forest area (7 · 1 ha plots). Overall, Thomsen and Brimer<br />

(1997) found that 40 % (range 21–57 % for plots) <strong>of</strong><br />

401 species from 68 families were cyanogenic, and that<br />

cyanogenic stems (dbh > 5 cm) accounted for 3 % <strong>of</strong><br />

total basal area (range 16–51 %). Here, the overall proportion<br />

<strong>of</strong> total basal area <strong>in</strong> cyanogenic stems was 73 % and<br />

ranged from 12 to134 %. The highest proportions were <strong>in</strong><br />

highland ra<strong>in</strong>forest on basalt soil (134 %) and <strong>in</strong> lowland<br />

ra<strong>in</strong>forest (116 %). Highland ra<strong>in</strong>forest on rhyolite had the<br />

lowest proportion.<br />

Overall, at a community level, there are few studies with<br />

which to compare frequencies <strong>of</strong> cyanogenesis reported<br />

here for tropical ra<strong>in</strong>forest <strong>in</strong> north east Queensland. In<br />

the first <strong>in</strong>stance, there have been few studies <strong>in</strong> tropical<br />

systems, but also, the screen<strong>in</strong>g methodology varies<br />

depend<strong>in</strong>g on the research question be<strong>in</strong>g addressed, be it<br />

taxonomic (e.g. exam<strong>in</strong><strong>in</strong>g chemical differences <strong>in</strong> relation<br />

to proposed phylogenetic relationships) or ecological<br />

(e.g. the role <strong>of</strong> secondary compounds <strong>in</strong> plant–animal <strong>in</strong>teractions).<br />

For example, while the survey <strong>of</strong> Thomsen and<br />

Brimer (1997) was standardized with respect to plant size<br />

and forest area, the few surveys <strong>in</strong> other tropical systems<br />

have focused on plant–animal <strong>in</strong>teractions, and have not<br />

screened <strong>in</strong> a standardized fashion. Only 23 % (one species)<br />

was found to be cyanogenic <strong>in</strong> the screen<strong>in</strong>g <strong>of</strong> >90 % <strong>of</strong> the<br />

flora (n = 43 species) <strong>in</strong> a species-poor seasonal cloud forest<br />

<strong>in</strong> India (Mali and Borges, 2003). In contrast, <strong>in</strong> a survey<br />

exam<strong>in</strong><strong>in</strong>g the frequency <strong>of</strong> cyanogenesis <strong>in</strong> relation to<br />

environmental factors and <strong>in</strong>sect density along a transect<br />

from the shorel<strong>in</strong>e to an <strong>in</strong>land lagoon <strong>in</strong> a neotropical<br />

woodland (‘rest<strong>in</strong>ga’), Kaplan et al. (1983) found 25 species<br />

(23 %) <strong>of</strong> 108 species screened to be cyanogenic. They also<br />

reported variable test results for a further 49 species (for n =<br />

2–16 <strong>in</strong>dividuals), elevat<strong>in</strong>g the proportion <strong>of</strong> cyanogenic<br />

species to 68 %, a value which requires further exam<strong>in</strong>ation<br />

before <strong>in</strong>terpretation, as the sampl<strong>in</strong>g strategy (e.g. plant<br />

size, random sampl<strong>in</strong>g strategy, life form and transect area)<br />

was unclear, and some uncerta<strong>in</strong>ty with regard to picrate<br />

paper test results was expressed by the authors (Kaplan<br />

et al., 1983).<br />

Adsersen et al. (1988) compared frequencies <strong>of</strong> cyanogenesis<br />

with<strong>in</strong> the endemic and non-endemic flora <strong>of</strong> the<br />

Galapagos Islands, two floras subject to different suites <strong>of</strong>


herbivores over a period <strong>of</strong> time. They screened fresh and<br />

herbarium specimens <strong>of</strong> a significant proportion (65 %) <strong>of</strong><br />

the flora from the Archipelago, and reported 81% <strong>of</strong><br />

endemic species, and 53 % <strong>of</strong> native species—those<br />

which also occur on the South American ma<strong>in</strong>land—to<br />

be cyanogenic. Interest<strong>in</strong>gly, they also reported a further<br />

22 % <strong>of</strong> native species and 30 % <strong>of</strong> endemic species to<br />

release cyanide <strong>in</strong> the presence <strong>of</strong> a crude mix <strong>of</strong> b-<br />

glycosidases (<strong>in</strong>clud<strong>in</strong>g 5 % b-glucuronidase from snails),<br />

suggest<strong>in</strong>g that a large number <strong>of</strong> species conta<strong>in</strong> cyanogenic<br />

glycosides but lack the catabolic b-glycoside enzyme.<br />

This contrasts with the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> several other studies<br />

where the addition <strong>of</strong> non-specific b-glycosidases or<br />

pect<strong>in</strong>ase dur<strong>in</strong>g qualitative test<strong>in</strong>g did not alter the frequency<br />

<strong>of</strong> positive results (e.g. Petrie, 1912; Thomsen<br />

and Brimer, 1997; Buhrmester et al., 2000; Lewis and<br />

Zona, 2000; but see Conn et al., 1985). Similarly, <strong>in</strong> this<br />

study, all samples were spontaneously cyanogenic without<br />

the addition <strong>of</strong> pect<strong>in</strong>ase from Rhizopus spp., <strong>in</strong>dicat<strong>in</strong>g<br />

that non-cyanogenic <strong>in</strong>dividuals probably lacked both the<br />

cyanogenic glycoside and b-glycosidase, or possibly that<br />

pect<strong>in</strong>ase was not able to catalyse the cyanogenesis <strong>in</strong> these<br />

species. It is perhaps noteworthy that the greater frequency<br />

<strong>of</strong> cyanogenesis reported by Conn et al. (1985) <strong>in</strong> response<br />

to the addition <strong>of</strong> b-glycosidase (emuls<strong>in</strong>) was <strong>in</strong> a survey<br />

solely <strong>of</strong> the genus Acacia, <strong>in</strong>dicat<strong>in</strong>g that such a response<br />

may vary among taxa.<br />

It is important to note that the frequencies reported <strong>in</strong><br />

all <strong>of</strong> these surveys were apparently based on the test<strong>in</strong>g <strong>of</strong><br />

s<strong>in</strong>gle specimens <strong>of</strong> the vast majority <strong>of</strong> species (Adsersen<br />

et al., 1988; Thomsen and Brimer, 1997; Mali and Borges,<br />

2003). Similarly, while the present study aimed to test at<br />

least three <strong>in</strong>dividuals <strong>of</strong> each species <strong>in</strong> duplicate (i.e. with<br />

and without added enzyme), only one <strong>in</strong>dividual <strong>of</strong> many<br />

species was encountered (Appendix). Furthermore most<br />

species here were also tested <strong>in</strong> both wet and dry seasons.<br />

A range <strong>of</strong> studies report variable positive and negative test<br />

results among sample sizes as small as n = 2 (e.g. Kaplan<br />

et al., 1983; Thomsen and Brimer, 1997). Given such polymorphism<br />

for cyanogenesis (see also Aikman et al., 1996),<br />

the reported frequencies <strong>in</strong> these surveys may underestimate<br />

overall the actual proportion <strong>of</strong> cyanogenic species <strong>in</strong> plant<br />

communities. The reported frequency <strong>of</strong> cyanogenesis may<br />

also vary with the plant part tested. In the Costa Rican study,<br />

Thomsen and Brimer (1997) reported a greater frequency <strong>of</strong><br />

cyanogenesis among reproductive plant parts than leaves,<br />

as did Buhrmester et al. (2000) <strong>in</strong> populations <strong>of</strong> Sambucus<br />

canadensis (elderberry) <strong>in</strong> Ill<strong>in</strong>ois. Consistent with that<br />

trend, <strong>in</strong>dividuals <strong>of</strong> species with weakly cyanogenic leaves,<br />

<strong>in</strong>clud<strong>in</strong>g some which produced negative FA paper results,<br />

had higher concentrations <strong>of</strong> glycosides <strong>in</strong> flowers or fruits;<br />

however, overall, only a small number <strong>of</strong> reproductive<br />

tissues were tested, so limited comparison can be drawn<br />

(Table 1).<br />

The frequency <strong>of</strong> cyanogenesis varies between<br />

taxonomic groups and with life form. <strong>Cyanogenesis</strong> is considered<br />

especially common <strong>in</strong> some plant families (e.g.<br />

Rosaceae, Euphorbiaceae, Passifloraceae and Proteaceae;<br />

Lechtenberg and Nahrstedt, 1999), and rare or absent <strong>in</strong><br />

others (e.g. Lauraceae and Araliaceae; Gibbs, 1974;<br />

Hegnauer, 1989), a trend which may <strong>in</strong> part reflect differential<br />

<strong>in</strong>tensity <strong>of</strong> test<strong>in</strong>g among taxonomic groups. In this<br />

study, the frequency <strong>of</strong> cyanogenesis among the dom<strong>in</strong>ant<br />

plant families varied. In the Proteaceae family, five <strong>of</strong><br />

20 (25 %) species were cyanogenic, while two <strong>of</strong> 29<br />

(69 %) species <strong>in</strong> the Sap<strong>in</strong>daceae, and one <strong>of</strong> 39 (25%)<br />

species <strong>in</strong> the Lauraceae were cyanogenic (Table 1). In a<br />

screen<strong>in</strong>g <strong>of</strong> Australian Acacia, 69 % <strong>of</strong> 360 species were<br />

cyanogenic (Conn et al., 1985). <strong>Cyanogenesis</strong> appears to be<br />

rare among palms; only two species (12 %) <strong>of</strong> 155 species<br />

<strong>of</strong> palms (108 genera) were found to be cyanogenic<br />

(Lewis and Zona, 2000). No cyanogenic palm species<br />

were identified <strong>in</strong> this study.<br />

Concentrations <strong>of</strong> cyanogenic glycosides<br />

Several <strong>of</strong> the 18 cyanogenic species detected <strong>in</strong> this<br />

study conta<strong>in</strong>ed concentrations <strong>of</strong> cyanogenic glycosides<br />

among the highest reported for leaves <strong>of</strong> woody species.<br />

Most notably, tree species E. sericopetalus, C. grayi and P.<br />

turneriana had foliar concentrations <strong>of</strong> cyanogenic glycosides<br />

up to 52, 49 and 48mgCNg –1 d. wt, respectively<br />

(Table 1). Similarly, Webber (1999) recorded concentrations<br />

up to 5 mg CN g –1 d. wt <strong>in</strong> the tree species R. javanica;<br />

<strong>in</strong>dividuals <strong>of</strong> that species occurr<strong>in</strong>g with<strong>in</strong> the survey<br />

area <strong>of</strong> this study had a lower mean concentration <strong>of</strong><br />

18mgCN g –1 d. wt (Table 1). These high concentrations<br />

are substantially greater than the majority <strong>of</strong> values reported<br />

for foliage from a range <strong>of</strong> tropical and temperate taxa. For<br />

example, concentrations up to 11 mg HCN g –1 d. wt were<br />

reported <strong>in</strong> the tropical shrub Turnera ulmifolia (Shore<br />

and Obrist, 1992; Schappert and Shore, 1999), while the<br />

highest concentrations <strong>in</strong> naturally occurr<strong>in</strong>g populations <strong>of</strong><br />

Australian Eucalyptus spp. were 259 mg CN g –1 d. wt and<br />

316 mg CN g –1 d. wt for E. cladocalyx and E. yarraensis,<br />

respectively (Gleadow and Woodrow, 2000a; Goodger<br />

and Woodrow, 2002). Foliar concentrations <strong>of</strong> between<br />

166 and 378 mg HCN g 1 d. wt have been recorded <strong>in</strong><br />

cultivated Prunus spp. (Santamour, 1998). To our knowledge,<br />

possibly the highest foliar cyanogenic glycoside<br />

concentration among naturally occurr<strong>in</strong>g woody species<br />

was reported <strong>in</strong> the tropical proteaceous species Panopsis<br />

costaricensis by Thomsen and Brimer (1997), who measured<br />

2150 mg HCN kg –1 f. wt (approximately equivalent to<br />

72 mg HCN g 1 d. wt us<strong>in</strong>g a conversion based on the mean<br />

foliar water content <strong>of</strong> several species <strong>in</strong> this study, which<br />

was 70 %). The age <strong>of</strong> the leaves analysed was not specified,<br />

however, and it should also be noted that this value was<br />

determ<strong>in</strong>ed us<strong>in</strong>g picrate papers and reflectrometry, a less<br />

dependable method more sensitive to the presence <strong>of</strong><br />

<strong>in</strong>terfer<strong>in</strong>g substances (Br<strong>in</strong>ker and Seigler, 1989).<br />

Assess<strong>in</strong>g the ecological significance <strong>of</strong> the range<br />

<strong>of</strong> cyanogenic glycoside concentrations recorded here is<br />

difficult. While the high concentrations <strong>in</strong> several species<br />

(e.g. >2mgCNg 1 d. wt; Table 1) would almost certa<strong>in</strong>ly<br />

constitute toxic levels important <strong>in</strong> defence—plants with<br />

>600 mg HCN g 1 d. wt are considered potentially dangerous<br />

to livestock, for example (Hask<strong>in</strong>s et al., 1987)—the<br />

ecological significance <strong>of</strong> lower concentrations (e.g. approx.<br />

8–50 mgCNg 1 d. wt) is harder to determ<strong>in</strong>e. This reflects


the fact that despite the well-documented effectiveness <strong>of</strong><br />

cyanogenesis <strong>in</strong> defence aga<strong>in</strong>st generalist herbivores<br />

(e.g. Jones, 1998; Gleadow and Woodrow, 2002), overall<br />

there is no known particular concentration at which<br />

cyanogenic compounds are effective <strong>in</strong> herbivore deterrence.<br />

This is <strong>in</strong> part because unfortunately many herbivory<br />

studies only report the presence or absence <strong>of</strong> cyanogenesis,<br />

and not the actual concentrations <strong>of</strong> cyanogenic glycosides.<br />

Moreover, the efficacy <strong>of</strong> cyanogenesis as a<br />

defence depends not only on the concentration <strong>of</strong> cyanogenic<br />

glycosides, but also on the physiology, morphology<br />

and behaviour <strong>of</strong> the consumer (Gleadow and Woodrow,<br />

2002).<br />

Intra-plant variation <strong>in</strong> cyanogenic glycoside content<br />

In tropical forests, it is estimated that up to 70 % <strong>of</strong> a leaf’s<br />

lifetime damage occurs while expand<strong>in</strong>g (Coley and Barone,<br />

1996). This differential <strong>in</strong>tensity <strong>of</strong> herbivory among old<br />

and young leaves, and the frequent observation that defence<br />

compounds tend to be concentrated <strong>in</strong> plant tissues <strong>of</strong> higher<br />

value to reproduction or growth (e.g. young leaves) is summarized<br />

<strong>in</strong> the Optimal Allocation Theory (OAT) <strong>of</strong><br />

defence. This theory predicts that the most vulnerable<br />

and valuable plant parts—those susceptible to attack and<br />

most likely to contribute to growth and reproductive fitness<br />

such as reproductive structures and young leaves—will be<br />

more defended (McKey, 1974; Rhoades, 1979).<br />

Results here add to the already substantial body <strong>of</strong> work<br />

on mostly temperate cyanogenic species consistent with<br />

the predictions <strong>of</strong> the OAT (e.g. Mart<strong>in</strong> et al., 1938;<br />

Dement and Mooney, 1974; Cooper-Driver et al., 1977;<br />

Shore and Obrist, 1992; Dahler et al., 1995; Thomsen<br />

and Brimer, 1997; Gleadow et al., 1998; Gleadow and<br />

Woodrow, 2000b). In all species where young leaves<br />

were sampled, they conta<strong>in</strong>ed significantly higher concentrations<br />

<strong>of</strong> cyanogenic glycosides than old leaves. This<br />

trend was most apparent <strong>in</strong> species that had low cyanogen<br />

content <strong>in</strong> old leaves (e.g. C. sublimis, C. myrianthus,<br />

O. heterophylla and P. australiana) (Table 1). Moreover,<br />

<strong>in</strong> some cases, <strong>in</strong>dividuals <strong>of</strong> these species appeared only to<br />

<strong>in</strong>vest <strong>in</strong> cyanogenic glycoside defence <strong>in</strong> young leaves;<br />

acyanogenic old leaves were seem<strong>in</strong>gly reliant more on<br />

physical toughness. Thus, leaf age is an important consideration<br />

when assign<strong>in</strong>g the cyanogenic phenotype.<br />

Aga<strong>in</strong> consistent with the OAT, reproductive tissues<br />

such as floral buds, flowers and fruits/seeds tended to<br />

have high total cyanogen content (Table 1). This pattern<br />

has been commonly reported among cyanogenic species<br />

(e.g. Spencer and Seigler, 1983; Selmar et al., 1991;<br />

Selmar, 1993b; Thomsen and Brimer, 1997; Webber,<br />

1999). One notable exception to this was the low to negligible<br />

concentrations <strong>of</strong> cyanogenic glycosides <strong>in</strong> mature<br />

seeds <strong>of</strong> C. sublimis; unlike the fleshy seeds <strong>of</strong> many ra<strong>in</strong>forest<br />

species, C. sublimis seeds are dry and papery. The<br />

absence <strong>of</strong> cyanogenesis <strong>in</strong> mature seeds <strong>of</strong> proteaceous<br />

Grevillea spp. was reported by Lamont (1993) <strong>in</strong> species<br />

with cyanogenic foliage and flowers. The higher concentrations<br />

<strong>in</strong> floral tissues <strong>of</strong> C. sublimis is consistent with previous<br />

reports for proteaceous species which tend to have<br />

high concentrations <strong>of</strong> cyanogenic glycosides <strong>in</strong> flowers,<br />

while leaves may have low total cyanogen content or be<br />

acyanogenic (e.g. Smith and White, 1918; Tjon Sie Fat,<br />

1979a; Lamont, 1993).<br />

Intra-population variation <strong>in</strong> cyanogenic glycoside content<br />

All <strong>in</strong>dividuals <strong>of</strong> the majority <strong>of</strong> species were cyanogenic,<br />

albeit with low concentrations <strong>of</strong> cyanogenic<br />

glycosides <strong>in</strong> some <strong>in</strong>stances. Negative results with FA<br />

papers for old leaves were only obta<strong>in</strong>ed for <strong>in</strong>dividuals<br />

<strong>of</strong> three <strong>of</strong> the 18 cyanogenic species. In the population<br />

<strong>of</strong> one <strong>of</strong> these species, B. platynema, 50 % <strong>of</strong> <strong>in</strong>dividuals<br />

were determ<strong>in</strong>ed to be acyanogenic, with cyanogenic glycoside<br />

concentrations much less than the 8 mgCNg 1 d. wt<br />

threshold. The two other exceptions were C. myrianthus<br />

and P. australiana. Unlike B. platynema, cyanogenesis <strong>in</strong><br />

<strong>in</strong>dividuals <strong>of</strong> these species varied qualitatively with leaf<br />

age and plant part. Thus, assign<strong>in</strong>g the acyanogenic phenotype<br />

<strong>in</strong> these species was problematic.<br />

This developmental trend towards differences <strong>in</strong><br />

expression <strong>of</strong> cyanogenic potential has been reported previously;<br />

cyanogenesis is known be affected by plant age,<br />

growth phase, as well as the plant part used (Jones, 1972;<br />

Gibbs, 1974; Seigler, 1991). Consequently, as noted earlier,<br />

studies have reported a greater frequency <strong>of</strong> cyanogenesis<br />

when test<strong>in</strong>g reproductive tissues, young foliage and shoots<br />

compared with old leaves (e.g. Gibbs, 1974; Aikman et al.,<br />

1996; Thomsen and Brimer, 1997; Buhrmester et al., 2000;<br />

Mali and Borges, 2003). These f<strong>in</strong>d<strong>in</strong>gs emphasize the<br />

importance <strong>of</strong> only compar<strong>in</strong>g leaves <strong>of</strong> a similar age<br />

when classify<strong>in</strong>g <strong>in</strong>dividuals accord<strong>in</strong>g to the presence or<br />

absence <strong>of</strong> cyanogenesis.<br />

Aside from the three species mentioned above, no<br />

acyanogenic <strong>in</strong>dividuals were identified <strong>in</strong> populations <strong>of</strong><br />

other cyanogenic species. While the small sample sizes for<br />

most species reduced the likelihood <strong>of</strong> encounter<strong>in</strong>g an<br />

acyanogenic <strong>in</strong>dividual, even with<strong>in</strong> populations <strong>of</strong> the<br />

more abundant species such as B. coll<strong>in</strong>a (n = 46 all<br />

sites), C. sublimis (n = 31 at all sites) and R. javanica<br />

(n = 249; Webber, 1999), no acyanogenic <strong>in</strong>dividuals<br />

were detected. In the latter example, the quantitative screen<strong>in</strong>g<br />

<strong>of</strong> >800 <strong>in</strong>dividuals <strong>of</strong> R. javanica failed to detect an<br />

acyanogenic <strong>in</strong>dividual <strong>in</strong> several dist<strong>in</strong>ct populations<br />

(Webber, 2005). This number (800) was substantially<br />

greater than the number <strong>of</strong> <strong>in</strong>dividuals predicted by<br />

Gleadow and Woodrow (2000a) and Goodger et al.<br />

(2002) (n = 95–100) that would need to be sampled to<br />

capture an acyanogenic <strong>in</strong>dividual assum<strong>in</strong>g a similar genetic<br />

system for cyanogenesis to Trifolium repens (Hughes<br />

et al., 1988) and an estimate <strong>of</strong> the rarity <strong>of</strong> a species (or<br />

polymorph) (McArdle, 1990). The floristic heterogeneity <strong>of</strong><br />

the ra<strong>in</strong>forest makes sampl<strong>in</strong>g large populations challeng<strong>in</strong>g;<br />

it is noteworthy, however, that others have detected<br />

polymorphism for cyanogenesis <strong>in</strong> tropical studies based<br />

on very small sample sizes (e.g. n = 2) (Kaplan et al.,<br />

1983; Thomsen and Brimer, 1997). These acyanogenic<br />

morphs, determ<strong>in</strong>ed only by <strong>in</strong>dicator paper tests <strong>in</strong> these<br />

studies, were not verified by quantitative assay as for<br />

B. platynema here.


Conclusions<br />

In summary, the f<strong>in</strong>d<strong>in</strong>gs <strong>of</strong> this survey <strong>in</strong>dicate that<br />

cyanogenesis is an important, yet little studied, chemical<br />

defence <strong>in</strong> tropical ra<strong>in</strong>forests. The identification <strong>of</strong> specific<br />

cyanogens <strong>in</strong> but a few <strong>of</strong> the cyanogenic species first reported<br />

here has yielded novel f<strong>in</strong>d<strong>in</strong>gs. Given the large number<br />

<strong>of</strong> new reports for species belong<strong>in</strong>g to plant families<br />

or orders <strong>in</strong> which cyanogenesis has been little reported,<br />

the ongo<strong>in</strong>g characterization <strong>of</strong> cyanogenic constituents <strong>in</strong><br />

these species will potentially be <strong>of</strong> both phytochemical and<br />

chemotaxonomic significance. In addition, prelim<strong>in</strong>ary data<br />

on <strong>in</strong>tra-population variation <strong>in</strong> cyanogenesis here suggest<br />

that ontogenetic variation <strong>in</strong> cyanogenesis, and polymorphism<br />

for cyanogenesis merit further <strong>in</strong>vestigation <strong>in</strong> tropical<br />

ra<strong>in</strong>forest species.<br />

ACKNOWLEDGEMENTS<br />

The authors thank Pr<strong>of</strong>essor Eric Conn (University <strong>of</strong><br />

California, Davis) for shar<strong>in</strong>g unpublished data on the<br />

Proteaceae family, Nicole Middleton and volunteers at<br />

the University <strong>of</strong> Melbourne Herbarium for mount<strong>in</strong>g<br />

and databas<strong>in</strong>g specimens, Andrew Ford (CSIRO <strong>Tropical</strong><br />

Forest Research Centre, Atherton, Queensland) for assistance<br />

with species name changes, and Wendy Cooper and<br />

Steve McKenna for additional taxonomic assistance dur<strong>in</strong>g<br />

field work. We also thank Dr John Kanowski (Griffith<br />

University, Queensland) and Andrew Graham (TFRC,<br />

Atherton) for advice <strong>in</strong> the selection <strong>of</strong> field sites, and<br />

Marisa Coll<strong>in</strong>s, Bruce Webber, Ross Waller, Jennifer<br />

Fox, Gav<strong>in</strong> Smith and Joel Youl for assistance <strong>in</strong> the<br />

field. We thank the Australian Canopy Crane Research<br />

Facility for access to forest on the site. Field work was<br />

supported by an Individual Award from the Queen’s<br />

Trust for Young Australians to R.E.M., and was conducted<br />

under the Queensland Department <strong>of</strong> Environment and<br />

Heritage Scientific Purposes Permit number F1/000270/<br />

99/SAA, and Department <strong>of</strong> Natural Resources Permits<br />

to Collect numbers 1542, 1716, 1409 and 1663.<br />

LITERATURE CITED<br />

Adsersen A, Adsersen H. 1993. Cyanogenic plants <strong>in</strong> the Galapagos<br />

Islands: ecological and evolutionary aspects. OIKOS 66: 511–520.<br />

Adsersen A, Adsersen H, Brimer L. 1988. Cyanogenic constituents <strong>in</strong><br />

plants from the Galapagos Islands. Biochemical Systematics and<br />

Ecology 16: 65–77.<br />

Aikman K, Bergman D, Eb<strong>in</strong>ger J, Seigler D. 1996. Variation <strong>of</strong><br />

cyanogenesis <strong>in</strong> some plant species <strong>of</strong> the Midwestern United States.<br />

Biochemical Systematics and Ecology 24: 637–645.<br />

Brimer L, Cical<strong>in</strong>i AR, Federici F, Petruccioli M. 1995. Beta-glycosidase<br />

as a side activity <strong>in</strong> commerical pect<strong>in</strong>ase preparations <strong>of</strong> fungal<br />

orig<strong>in</strong>. The hydrolysis <strong>of</strong> cyanogenic glycosides. Italian Journal <strong>of</strong><br />

Food Sciences 4: 387–394.<br />

Br<strong>in</strong>ker AM, Seigler DS. 1989. Methods for the detection and quantitative<br />

determ<strong>in</strong>ation <strong>of</strong> cyanide <strong>in</strong> plant materials. Phytochemical Bullet<strong>in</strong><br />

21: 24–31.<br />

Buhrmester RA, Eb<strong>in</strong>ger JE, Seigler DS. 2000. Sambunigr<strong>in</strong> and<br />

cyanogenic variability <strong>in</strong> populations <strong>of</strong> Sambucus canadensis<br />

L. Caprifoliaceae. Biochemical Systematics and Ecology 28: 689–695.<br />

Cant<strong>in</strong>o PD. 1992. Evidence for a polyphyletic orig<strong>in</strong> <strong>of</strong> the Labiatae.<br />

Annals <strong>of</strong> the Missouri Botanical Garden 79: 361–379.<br />

CFSAN Centre for Food Safety and Applied Nutrition. 2003. US<br />

Department <strong>of</strong> Health and Human Services Poisonous Plant Database.<br />

http://www.cfsan.fda.gov/djw/plantox.html. Accessed: 16 October<br />

2003.<br />

Chase MW, Zmarzty S, Lledo MD, Wurdack KJ, Swensen SM,<br />

Fay MF. 2002. When <strong>in</strong> doubt, put it <strong>in</strong> Flacourtiaceae: a molecular<br />

phylogenetic analysis based on plastid rbcL DNA sequences. Kew<br />

Bullet<strong>in</strong> 57: 141–181.<br />

Chassagne D, Crouzet J, Bayonove CL, Baumes RL. 1996. Identification<br />

and quantification <strong>of</strong> passion fruit cyanogenic glycosides. Journal <strong>of</strong><br />

Agricultural and Food Chemistry 44: 3817–3820.<br />

Coley PD. 1983. Herbivory and defensive characteristics <strong>of</strong> tree species <strong>in</strong> a<br />

lowland tropical ra<strong>in</strong>forest. Ecological Monographs 53: 209–233.<br />

Coley PD. 1988. Effects <strong>of</strong> plant growth rate and leaf lifetime on the amount<br />

and type <strong>of</strong> anti-herbivore defense. Oecologia 74: 531–536.<br />

Coley PD, Barone JA. 1996. Herbivory and plant defenses <strong>in</strong> tropical<br />

forests. Annual Review <strong>of</strong> Ecology and Systematics 27: 305–335.<br />

Coley PD, Kursar TA. 1996. Anti-herbivore defenses <strong>of</strong> young tropical<br />

leaves: physiological constra<strong>in</strong>ts and ecological trade-<strong>of</strong>fs. In:<br />

Mulkey SS, Chazdon RL, Smith AP, eds. <strong>Tropical</strong> forest plant ecophysiology.<br />

New York: Chapman and Hall, 305–336.<br />

Coley PD, Bryant JP, Chapp<strong>in</strong> FS, III. 1985. Resource availability and<br />

plant antiherbivore defense. Science 230: 895–899.<br />

Coll<strong>in</strong>s DJ, Culvenor CCJ, Lamberton JA, Loder JW, Price JR. 1990.<br />

Plants for medic<strong>in</strong>es: a chemical and pharmacological survey <strong>of</strong><br />

plants <strong>in</strong> the Australian region. Melbourne: CSIRO Publications.<br />

Conn EE. 1981. Cyanogenic glycosides. In: Conn EE, ed. The biochemistry<br />

<strong>of</strong> plants. New York: Academic Press Inc., 479–499.<br />

Conn EE. 1991. The metabolism <strong>of</strong> a natural product: lessons learned<br />

from cyanogenic glycosides. Planta Medica 57: S1–S9.<br />

Conn EE, Masl<strong>in</strong> BR, Curry S, Conn ME. 1985. <strong>Cyanogenesis</strong> <strong>in</strong><br />

Australian species <strong>of</strong> Acacia. Survey <strong>of</strong> herbarium specimens and<br />

liv<strong>in</strong>g plants. Western Australian Herbarium Research Notes 10: 1–13.<br />

Cooper W, Cooper WT. 1994. Fruits <strong>of</strong> the ra<strong>in</strong> forest. A guide to fruits<br />

<strong>in</strong> Australian tropical ra<strong>in</strong> forests. Surry Hills, NSW, Australia:<br />

RD Press.<br />

Cooper-Driver GA, F<strong>in</strong>ch S, Swa<strong>in</strong> T. 1977. Seasonal variation <strong>in</strong> secondary<br />

plant compounds <strong>in</strong> relation to the palatability <strong>of</strong> Pteridium<br />

aquil<strong>in</strong>um. Biochemical Systematics and Ecology 5: 177–183.<br />

Cronquist A. 1981. An <strong>in</strong>tegrated system <strong>of</strong> classification <strong>of</strong> flower<strong>in</strong>g<br />

plants. New York: Columbia University Press.<br />

Dahler JM, McConchie CA, Turnbull CGN. 1995. Quantification <strong>of</strong><br />

cyanogenic glycosides <strong>in</strong> seedl<strong>in</strong>gs <strong>of</strong> three Macadamia Proteaceae.<br />

species. Australian Journal <strong>of</strong> Botany 43: 619–628.<br />

Davies AG, Bennett EL, Waterman PG. 1988. Food selection by two<br />

South-east Asian colob<strong>in</strong>e monkeys Preshytis rubicunda and<br />

Presbytis melalophos <strong>in</strong> relation to plant chemistry. Biological Journal<br />

<strong>of</strong> the L<strong>in</strong>nean Society 34: 33–56.<br />

Dement WA, Mooney HA. 1974. Seasonal variation <strong>in</strong> the production<br />

<strong>of</strong> tann<strong>in</strong>s and cyanogenic glycosides <strong>in</strong> the Chaparral shrub,<br />

Heteromeles arbutifolia. Oecologia 15: 65–76.<br />

Dickenmann R. 1982. <strong>Cyanogenesis</strong> <strong>in</strong> Ranunculus montanus s.l. from the<br />

Swiss Alps. Bericht des Geobotanischen Institutes ETH 49: 56–75.<br />

Everist SL. 1981. Poisonous plants <strong>of</strong> Australia. Sydney, Australia: Angus<br />

and Robertson.<br />

Eyjólfsson R. 1971. Constitution and stereochemistry <strong>of</strong> lucum<strong>in</strong>, a<br />

cyanogenic glycoside from Lucuma mammosa Gaertn. Acta Chemica<br />

Scandanavia 25: 1898–1900.<br />

Feeny P. 1976. Plant apparency and chemical defense. In: Wallace JW,<br />

Mansell RL, eds. Biochemical <strong>in</strong>teraction between plants and<br />

<strong>in</strong>sects. New York: Plenum Press, 1–40.<br />

Feigl F, Anger V. 1966. Replacement <strong>of</strong> benzid<strong>in</strong>e by copper ethylacetoacetate<br />

and tetra base as spot-test reagent for hydrogen cyanide and<br />

cyanogen. Analyst 91: 282–284.<br />

Fikenscher LH, Hegnauer R. 1977. Cyanogenese bei den Cormophyten.<br />

12. Mitteilung. Chaptalia nutans, e<strong>in</strong>e stark cyanogene Planze<br />

Brasiliens. Planta Medica 31: 266–269.<br />

F<strong>in</strong>nemore H, Cooper JM. 1936. Cyanogenetic glucosides <strong>in</strong> Australian<br />

plants. Part 4—Zieria laevigata. Journal <strong>of</strong> the Royal Society <strong>of</strong><br />

New South Wales 70: 175–182.<br />

F<strong>in</strong>nemoreH, CooperJM. 1938. The cyanogenic constituents <strong>of</strong> Australian<br />

and other plants. Journal <strong>of</strong> the Society <strong>of</strong> Chemistry and Industry 57:<br />

167–169.


F<strong>in</strong>nemore H, Cox CB. 1928. Cyanogenetic glucosides <strong>in</strong> Australian plants.<br />

Journal <strong>of</strong> the Royal Society <strong>of</strong> New South Wales 62: 369–378.<br />

F<strong>in</strong>nemore H, Cox CB. 1929. Cyanogenic glucosides <strong>in</strong> Australian plants<br />

Part II. A. Eremophila maculata, the native fuchsia. Journal <strong>of</strong> the<br />

Royal Society <strong>of</strong> New South Wales 63: 172–178.<br />

Foreman DB. 1995. Helicia. Flora <strong>of</strong> Australia 16: 393–399.<br />

Forster PI, Williams JB. 1996. Apocynaceae. Flora <strong>of</strong> Australia 28:<br />

104–196.<br />

Francisco IA, P<strong>in</strong>otti MHP. 2000. Cyanogenic glycosides <strong>in</strong><br />

plants. Brazilian Archives <strong>of</strong> Biology and Technology 43: 487–492.<br />

Gardner CA, Bennetts HW. 1956. The toxic plants <strong>of</strong> Western Australia.<br />

Perth, Australia: West Australian Newpapers Ltd.<br />

Gartlan JS, McKeyDB, Waterman PG, Mbi CN, StruhsakerTT. 1980. A<br />

comparative study <strong>of</strong> the phytochemistry <strong>of</strong> two African ra<strong>in</strong> forests.<br />

Biochemical Systematics and Ecology 8: 401–422.<br />

Gibbs RD. 1974. Chemotaxonomy <strong>of</strong> flower<strong>in</strong>g plants. Vol. 1–3. Montreal<br />

and London: Queen’s University Press.<br />

Gleadow RM, Woodrow IE 2000a. Polymorphism <strong>in</strong> cyanogenic glycoside<br />

content andcyanogenic b-glucosidaseactivity <strong>in</strong> natural populations<strong>of</strong><br />

Eucalyptus cladocalyx. Australian Journal <strong>of</strong> Plant Physiology 27:<br />

693–699.<br />

Gleadow RM, Woodrow IE. 2000b. Temporal and spatial variation <strong>in</strong><br />

cyanogenic glycosides <strong>in</strong> Eucalyptus cladocalyx. Tree Physiology<br />

20: 591–598.<br />

Gleadow RM, Woodrow IE. 2002. Constra<strong>in</strong>ts on effectiveness <strong>of</strong><br />

cyanogenic glycosides <strong>in</strong> herbivore defence. Journal <strong>of</strong> Chemical<br />

Ecology 28: 1297–1309.<br />

Gleadow RM, Foley WJ, Woodrow IE. 1998. Enhanced CO 2 alters the<br />

relationship between photosynthesis and defence <strong>in</strong> cyanogenic<br />

Eucalyptus cladocalyx F. Muell. Plant Cell and Environment 21:<br />

12–22.<br />

Goodger JQD, Woodrow IE. 2002. Cyanogenic polymorphism as an<br />

<strong>in</strong>dicator <strong>of</strong> genetic diversity <strong>in</strong> the rare species Eucalyptus yarraensis<br />

Myrtaceae. Functional Plant Biology 29: 1445–1452.<br />

Goodger JQD, Capon RJ, Woodrow IE. 2002. Cyanogenic polymorphism<br />

<strong>in</strong> Eucalyptus polyanthemos Schauer subsp. vestita L.<br />

Johnson and K. Hill Myrtaceae. Biochemical Systematics and<br />

Ecology 30: 617–630.<br />

Gowrikumar G, Mani VVS, Lakshm<strong>in</strong>arayana G 1976. Cyanolipids <strong>in</strong><br />

Sap<strong>in</strong>us emarg<strong>in</strong>atus seed oil. Phytochemistry 15: 1566–1567.<br />

Graham AW, Hopk<strong>in</strong>s MS, Maggs J. 1995. Succession and disturbance <strong>in</strong><br />

the remnant ra<strong>in</strong>forest type complex notophyll v<strong>in</strong>e forest on basalt<br />

type 5b. I. Vegetation map and explanatory notes. Atherton, Australia:<br />

CSIRO Division <strong>of</strong> Wildlife and Ecology, <strong>Tropical</strong> Research Centre,<br />

VM/1/1295-6.<br />

Hadi S, Bremmer JB. 2001. Initial studies on alkaloids from Lombok<br />

medic<strong>in</strong>al plants. Molecules 6: 117–129.<br />

Hall N, Wa<strong>in</strong>wright RW, Wolf LJ. 1981. Summary <strong>of</strong><br />

meteorological data <strong>in</strong> Australia no. 6. CSIRO Australian Division<br />

<strong>of</strong> Forest Research.<br />

Hartley TG, Dunstone EA, Fitzgerald JS, Johns SR, Lamberton JA.<br />

1973. A survey <strong>of</strong> New Gu<strong>in</strong>ea plants for alkaloids. Lloydia 36:<br />

217–319.<br />

Hartmann T, Witte I, Ehmke A, Theur<strong>in</strong>g C, Rowell-Rahier M,<br />

Pasteels JM. 1997. Selective sequestration and metabolism <strong>of</strong> plant<br />

derived pyrrolizid<strong>in</strong>e alkaloids by chrysomelid leaf beetles. Phytochemistry<br />

45: 489–497.<br />

Hask<strong>in</strong>s FA, Gorz HJ, Johnson BE. 1987. Seasonal variation <strong>in</strong> leaf<br />

hydrocyanic acid potential <strong>of</strong> low- and high-dhurr<strong>in</strong> Sorghums. Crop<br />

Science 27: 903–906.<br />

Hegnauer R. 1966. Chemotaxonomie der pflanzen. E<strong>in</strong>e Ubersicht uber<br />

die Verbreitung und die systematische Bedeutung der Pflanzenst<strong>of</strong>fe.<br />

Vol. 4. Basel: Birkhauser Verlag.<br />

Hegnauer R. 1973. Chemotaxonomie der pflanzen. E<strong>in</strong>e Ubersicht uber die<br />

Verbreitung und die systematische Bedeutung der Pflanzenst<strong>of</strong>fe.<br />

Vol. 6. Basel: Birkhauser Verlag.<br />

Hegnauer R. 1986. Chemotaxonomie der pflanzen. E<strong>in</strong>e Ubersicht uber die<br />

Verbreitung und die systematische Bedeutung der Pflanzenst<strong>of</strong>fe.<br />

Vol. 7. Basel: Birkhauser Verlag.<br />

Hegnauer R. 1989. Chemotaxonomie der pflanzen. E<strong>in</strong>e Ubersicht uber die<br />

Verbreitung und die systematische Bedeutung der Pflanzenst<strong>of</strong>fe.<br />

Vol. 8. Basel: Birkhauser Verlag.<br />

Hegnauer R. 1990. Chemotaxonomie der pflanzen. E<strong>in</strong>e Ubersicht uber die<br />

Verbreitung und die systematische Bedeutung der Pflanzenst<strong>of</strong>fe.<br />

Vol. 9. Basel: Birkhauser Verlag.<br />

Hickel A, Hasslacher M, Griengl H. 1996. Hydroxynitrile lyases: functions<br />

and properties. Physiologia Plantarum 98: 891–898.<br />

Hoot SB, Douglas AW. 1998. Phylogeny <strong>of</strong> the Proteaceae based on atpB<br />

and atpB–rbcL <strong>in</strong>tergenic spacer region sequences. Australian<br />

Sytematic Botany 11: 301–320.<br />

Hübel W, Nahrstedt A. 1975. E<strong>in</strong> neues cyanglykosid aus Heterodendron<br />

oleaefolium. Phytochemistry 14: 2723–2725.<br />

Hübel W, Nahrstedt A. 1979. Cardiosperm<strong>in</strong>sulfate—a sulfur conta<strong>in</strong><strong>in</strong>g<br />

cyanogenic glucoside from Cardiospermum grandiflorum. Tetrahedron<br />

Letters 45: 4395–4396.<br />

Hughes MA. 1991. The cyanogenic polymorphism <strong>in</strong> Trifolium repens<br />

L. white clover. Heredity 66: 105–115.<br />

Hughes MA, Sharif AL, Alison-Dunn M, Oxtoby E. 1988. The molecular<br />

biology <strong>of</strong> cyanogenesis. In: Evered D, Harnett S, eds. Cyanide<br />

compounds <strong>in</strong> biology. Chichester: John Wiley & Sons, 111–130.<br />

Hurst E. 1942. The poison plants <strong>of</strong> New South Wales. Sydney, Australia:<br />

Poison Plants Committee NSW.<br />

Huxley M. 2003. Ngadjon names and uses <strong>of</strong> some ra<strong>in</strong>forest plants. http://<br />

www.koori.usyd.edu.au/ngadjonji/Food/table1.html. Accessed: 16<br />

February 2004.<br />

Hyland BPM, Whiff<strong>in</strong> T, Christophel DC, Gray B, Elick RW. 2003.<br />

Australian ra<strong>in</strong> forest plants: trees, shrubs, v<strong>in</strong>es. Coll<strong>in</strong>gwood:<br />

CSIRO Publish<strong>in</strong>g Australia.<br />

Janzen DH, Waterman PG. 1984. A seasonal census <strong>of</strong> phenolics, fibre,<br />

and alkaloids <strong>in</strong> foliage <strong>of</strong> forest trees <strong>in</strong> Costa Rica: some factors<br />

<strong>in</strong>fluenc<strong>in</strong>g their distribution and relation to host selection by<br />

Sph<strong>in</strong>gidae and Saturniidae. Biological Journal <strong>of</strong> the L<strong>in</strong>nean Society<br />

21: 439–454.<br />

Janzen DH, Doerner ST, Conn EE. 1980. Seasonal constancy <strong>of</strong> <strong>in</strong>trapopulation<br />

variation <strong>of</strong> HCN content <strong>of</strong> Costa Rican Acacia<br />

farnesiana foliage. Phytochemistry 19: 2022–2023.<br />

Jaroszewski JW, Olafsdottir ES. 1987. Monohydroxylated cyclopentenone<br />

cyanohydr<strong>in</strong> glucosides <strong>of</strong> Flacourtiaceae. Phytochemistry 26:<br />

3348–3349.<br />

Jensen SR, Nielsen BJ. 1973. Cyanogenic glucosides <strong>in</strong> Sambucus nigra L.<br />

Acta Chemica Scandanavia 27: 2661–2662.<br />

Jensen SR, Nielsen BJ. 1986. Gynocard<strong>in</strong> <strong>in</strong> Ceratiosicyos laevis<br />

Achariaceae. Phytochemistry 25: 2349–2350.<br />

Jones DA. 1972. Cyanogenic glycosides and their function. In: Harborne JB,<br />

ed. Phytochemical ecology. London: Academic Press, 103–124.<br />

Jones DA. 1998. Why are so many food plants cyanogenic? Phytochemistry<br />

47: 155–162.<br />

Kaplan MAC, Figueiredo MR, Gottlieb OR. 1983. Variation <strong>in</strong><br />

cyanogenesis <strong>in</strong> plants with season and <strong>in</strong>sect pressure. Biochemical<br />

Systematics and Ecology 11: 367–370.<br />

Kojima M, Poulton JE, Thayer SS, Conn EE. 1979. Tissue distributions<br />

<strong>of</strong> dhurr<strong>in</strong> and <strong>of</strong> enzymes <strong>in</strong>volved <strong>in</strong> its metabolism <strong>in</strong> leaves <strong>of</strong><br />

Sorghum bicolor. Plant Physiology 63: 1022–1028.<br />

Kursar TA, Coley PD. 2003. Convergence <strong>in</strong> defense syndromes <strong>of</strong> young<br />

leaves <strong>in</strong> tropical ra<strong>in</strong>forests. Biochemical Systematics and Ecology<br />

31: 929–949.<br />

Lamont BB. 1993. Injury-<strong>in</strong>duced cyanogenesis <strong>in</strong> vegetative and<br />

reproductive parts <strong>of</strong> two Grevillea species and their F1 hybrid.<br />

Annals <strong>of</strong> Botany 71: 537–542.<br />

Lechtenberg M, Nahrstedt A. 1999. Cyanogenic glycosides. In: Ikan R, ed.<br />

Naturally occurr<strong>in</strong>g glycosides. Chichester, UK: John Wiley & Sons,<br />

147–191.<br />

Lev<strong>in</strong> DA. 1976. Alkaloid-bear<strong>in</strong>g plants: an ecogeographic perspective.<br />

American Naturalist 110: 261–284.<br />

Lev<strong>in</strong> DA, York BM, Jr. 1978. The toxicity <strong>of</strong> plant alkaloids: an<br />

ecogeographic perspective. Biochemical Systematics and Ecology 6:<br />

61–76.<br />

Lewis CE, Zona S. 2000. A survey <strong>of</strong> cyanogenesis <strong>in</strong> palms Arecaceae.<br />

Biochemical Systematics and Ecology 28: 219–228.<br />

Mabberley DJ. 1990. The plant book. Cambridge, UK: Cambridge<br />

University Press.<br />

Mali S, Borges RM. 2003. Phenolics, fibre, alkaloids, sapon<strong>in</strong>s, and<br />

cyanogenic glycosides <strong>in</strong> a seasonal cloud forest <strong>in</strong> India. Biochemical<br />

Systematics and Ecology 31: 1221–1246.


Mart<strong>in</strong> JH, Couch JF, Briese RR. 1938. Hydrocyanic acid content <strong>of</strong><br />

different parts <strong>of</strong> the sorghum plant. Journal <strong>of</strong> the American Society<br />

<strong>of</strong> Agronomy 30: 725–734.<br />

Masl<strong>in</strong> BR, Dunn JE, Conn EE. 1988. <strong>Cyanogenesis</strong> <strong>in</strong> Australian species<br />

<strong>of</strong> Acacia. Phytochemistry 27: 421–428.<br />

McArdle BH. 1990. When are rare species not there? OIKOS 57: 276–277.<br />

McKey D. 1974. Adaptive patterns <strong>in</strong> alkaloid physiology. American<br />

Naturalist 108: 305–320.<br />

McKey D, Waterman PG, Gartlan JS, Struhsaker TT. 1978. Phenolic<br />

content <strong>of</strong> vegetation <strong>in</strong> two African ra<strong>in</strong> forests: ecological<br />

implications. Science 202: 61–64.<br />

Mikolajczak KL, Smith CR, Jr, Tjarks LW. 1970. Cyanolipids <strong>of</strong><br />

Cardiospermum halicacabum L. and other Sap<strong>in</strong>daceous seed oils.<br />

Lipids 5: 812–817.<br />

Miller RE. 2004. <strong>Cyanogenesis</strong> <strong>in</strong> Australian tropical ra<strong>in</strong>forests: resource<br />

allocation to a nitrogen-based defence. PhD Thesis, The University <strong>of</strong><br />

Melbourne, Australia.<br />

Miller RE, Gleadow RM, Woodrow IE. 2004. <strong>Cyanogenesis</strong> <strong>in</strong> tropical<br />

Prunus turneriana: characterisation, variation and response to low<br />

light. Functional Plant Biology 31: 491–503.<br />

Miller RE, McConville MJ, Woodrow IE. 2006a. Cyanogenic glycosides<br />

from the rare Australian endemic ra<strong>in</strong>forest tree Clerodendrum grayi<br />

(Lamiaceae). Phytochemistry 67: 43–51.<br />

Miller RE, Simon J, Woodrow IE. 2006b. <strong>Cyanogenesis</strong> <strong>in</strong> the Australian<br />

tropical ra<strong>in</strong>forest endemic Brombya platynema (Rutaceae): chemical<br />

characterisation and polymorphism. Functional Plant Biology (<strong>in</strong><br />

press).<br />

Møller BL, Seigler DS. 1999. Biosynthesis <strong>of</strong> cyanogenic glycosides,<br />

cyanolipids, and related compounds. In: S<strong>in</strong>gh KK, ed. Plant am<strong>in</strong>o<br />

acids: biochemistry and biotechnology. New York: Marcel Dekker,<br />

563–609.<br />

Morley BD, Toelken HRE. 1983. Flower<strong>in</strong>g plants <strong>in</strong> Australia.<br />

Adelaide, Australia: Rigby Publishers.<br />

Munir AA. 1989. A taxonomic revision <strong>of</strong> the genus Clerodendrum L.<br />

Verbenaceae. <strong>in</strong> Australia. Journal <strong>of</strong> the Adelaide Botanic Gardens<br />

11: 101–173.<br />

Nahrstedt A. 1975. Verteilung von prunas<strong>in</strong> <strong>in</strong> fruchtstielen von<br />

Prunus avium L. und der e<strong>in</strong>fluß von IES auf den<br />

gesamtgehalt an prunas<strong>in</strong>. Biochemie und Physiologie der Pflanzen<br />

167: 597–600.<br />

Nahrstedt A. 1980. Absence <strong>of</strong> cyanogenesis from Droseraceae.<br />

Phytochemistry 19: 2757–2758.<br />

Nahrstedt A. 1987. Recent developments <strong>in</strong> the chemistry, distribution and<br />

biology <strong>of</strong> the cyanogenic glycosides. In: Hostettmann K, Lea PJ, eds.<br />

Biologically active natural products. Oxford: Clarendon Press,<br />

213–234.<br />

Nahrstedt A, Hübel W. 1978. Die cyanogenen verb<strong>in</strong>dungen von<br />

Heterodendron oleaefolium. Phytochemistry 17: 314–315.<br />

Nix HA. 1991. Biogeography: pattern and process. In: Nix HA, Switzer MA,<br />

Kowari I, eds. Ra<strong>in</strong>forest animals. Atlas <strong>of</strong> vertebrates endemic to<br />

Australia’s wet tropics. Canberra: Australian National Parks and<br />

Wildlife Service, 11–40.<br />

Olafsdottir ES, Andersen JV, Jaroszewski JW. 1989. Cyanohydr<strong>in</strong><br />

glycosides <strong>of</strong> Passifloraceae. Phytochemistry 28: 127–132.<br />

Osunkoya OO, Ash JE, Graham AW, Hopk<strong>in</strong>s MS. 1993. Growth <strong>of</strong><br />

tree seedl<strong>in</strong>gs <strong>in</strong> tropical ra<strong>in</strong> forests <strong>of</strong> <strong>North</strong> Queensland, Australia.<br />

Journal <strong>of</strong> <strong>Tropical</strong> Ecology 9: 1–18.<br />

Pammel LH. 1911. A manual <strong>of</strong> poisonous plants. Chiefly <strong>of</strong> eastern<br />

<strong>North</strong> America, with brief notes on economic and medic<strong>in</strong>al plants,<br />

and numerous illustrations. Cedar Rapids, Iowa, USA: The Torch<br />

Press.<br />

Patton CA, Ranney TG, Burton JD, Walgenbach JF. 1997. Natural<br />

pest resistance <strong>of</strong> Prunus taxa to feed<strong>in</strong>g by adult Japanese beetles:<br />

role <strong>of</strong> endogenous allelochemicals <strong>in</strong> host plant resistance. Journal<br />

<strong>of</strong> the American Society for Horticultural Science 122: 668–672.<br />

Petrie JM. 1912. Hydrocyanic acid <strong>in</strong> plants. Part I. Its distribution <strong>in</strong> the<br />

Australian flora. Proceed<strong>in</strong>gs <strong>of</strong> the L<strong>in</strong>nean Society <strong>of</strong> New South<br />

Wales 37: 220–234.<br />

Petrie JM. 1913. Hydrocyanic acid <strong>in</strong> plants I. Proceed<strong>in</strong>gs <strong>of</strong> the L<strong>in</strong>nean<br />

Society <strong>of</strong> New South Wales 37: 220–234.<br />

Petrie JM. 1914. Hydrocyanic acid <strong>in</strong> plants II. Proceed<strong>in</strong>gs <strong>of</strong> the L<strong>in</strong>nean<br />

Society <strong>of</strong> New South Wales 38: 624–638.<br />

Petrie JM. 1920. <strong>Cyanogenesis</strong> <strong>in</strong> plants. IV. The hydrocyanic acid <strong>of</strong><br />

Heterodendron—a fodder plant <strong>of</strong> New South Wales. Proceed<strong>in</strong>gs<br />

<strong>of</strong> the L<strong>in</strong>nean Society <strong>of</strong> New South Wales 45: 447–459.<br />

Plouvier V. 1964. Investigation <strong>of</strong> polyalcohols and cyanogenic<br />

heterosides <strong>in</strong> certa<strong>in</strong> Proteaceae. Compte Rendu Hebdomadaire des<br />

Séances de L’Académie des Sciences 259: 665–666.<br />

Poulton JE. 1983. Cyanogenic compounds <strong>in</strong> plants and their toxic effects.<br />

In: Keeler RF, Tu WT, eds. Plant and fungal tox<strong>in</strong>s. New York:<br />

Dekker, 117–157.<br />

Poulton JE. 1990. <strong>Cyanogenesis</strong> <strong>in</strong> plants. Plant Physiology 94: 401–405.<br />

Poulton JE, Li CP. 1994. Tissue level compartmentation <strong>of</strong> R.-amygdal<strong>in</strong><br />

and amygdal<strong>in</strong> hydrolase prevents large-scale cyanogenesis <strong>in</strong><br />

undamaged Prunus seeds. Plant Physiology 104: 29–35.<br />

Price JR. 1963. The distribution <strong>of</strong> alkaloids <strong>in</strong> the Rutaceae. In: Swa<strong>in</strong> T,<br />

ed. Chemical plant taxonomy. London: Academic Press, 429–452.<br />

Rhoades DF. 1979. Evolution <strong>of</strong> plant chemical defense aga<strong>in</strong>st<br />

herbivores. In: Rosenthal GA, Janzen DH, eds. Herbivores: their<br />

<strong>in</strong>teraction with secondary plant metabolites. New York: Academic<br />

Press, 3–54.<br />

Rosenthaler L. 1919. Die Verbreitung der Blausäure im Pflanzenreich.<br />

Journal Suisse de Pharmacie 57: 279–283, 307–313, 324–329,<br />

341–346.<br />

Rosenthaler L. 1929. Beiträge zur Blausäure-Frage. Neue Blausäure-<br />

Pflanzen. Pharmaceutica Acta Helvetiae 4: 196–199.<br />

Santamour Jr FS. 1998. Amygdal<strong>in</strong> <strong>in</strong> Prunus leaves. Phytochemistry 47:<br />

1537–1538.<br />

Saupe SG, Seigler DS, Escalante-Semerena J. 1982. Bacterial<br />

contam<strong>in</strong>ation as a cause <strong>of</strong> spurious cyanide tests. Phytochemistry<br />

21: 2111–2112.<br />

Schappert PJ, Shore JS. 1999. Effects <strong>of</strong> cyanogenesis polymorphism <strong>in</strong><br />

Turnera ulmifolia on Euptoieta hegesia and potential Anolis<br />

predators. Journal <strong>of</strong> Chemical Ecology 25.<br />

Schuster JL, James LF. 1988. Some other major poisonous plants <strong>of</strong><br />

the Western United States. In: James LF, Ralphs MH, Darw<strong>in</strong> DB,<br />

eds. The ecology and economic impact <strong>of</strong> poisonous plants on<br />

livestock production. London: Westview Press, 295–307.<br />

Seigler DS. 1976a. Plants <strong>of</strong> Oklahoma and Texas capable <strong>of</strong> produc<strong>in</strong>g<br />

cyanogenic compounds. Proceed<strong>in</strong>gs <strong>of</strong> the Oklahoma Academy <strong>of</strong><br />

Science 56: 95–100.<br />

Seigler DS. 1976b. Plants <strong>of</strong> the <strong>North</strong>eastern United States that produce<br />

cyanogenic compounds. Economic Botany 30: 395–407.<br />

Seigler DS. 1991. Cyanide and cyanogenic glycosides. In: Rosenthal GA,<br />

Berenbaum MR, eds. Herbivores: their <strong>in</strong>teractions with secondary<br />

plant metabolites. Academic Press: San Diego, 35–77.<br />

Seigler DS. 1994. Phytochemistry and systematics <strong>of</strong> the Euphorbiaceae.<br />

Annals <strong>of</strong> the Missouri Botanical Garden 81: 380–401.<br />

Seigler DS, Kawahara W. 1976. New reports <strong>of</strong> cyanolipids from<br />

Sap<strong>in</strong>daceous plants. Biochemical Systematics and Ecology 4:<br />

263–265.<br />

Seigler DS, Seaman F, Mabry TJ. 1971. New cyanogenetic lipids from<br />

Ungnadia speciosa. Phytochemistry 10: 485–487.<br />

Seigler DS, Eggerd<strong>in</strong>g C, Butterfield C. 1974. A new cyanogenic<br />

glycoside from Cardiospemum hirsutum. Phytochemistry 13:<br />

2330–2332.<br />

Seigler DS, Coussio JD, Rond<strong>in</strong>a RVD. 1979. Cyanogenic plants from<br />

Argent<strong>in</strong>a. Journal <strong>of</strong> Natural Products 42: 179–182.<br />

Seigler DS, Spencer KC, Statler WS, Conn EE, Dunn JE. 1982.<br />

Tetraphyll<strong>in</strong> B and epitetraphyll<strong>in</strong> B sulphates: novel cyanogenic glucosides<br />

from Passiflora caerulea and P. alato-caerulea. Phytochemistry<br />

21: 2277–2285.<br />

Seigler DS, Pauli GF, Nahrstedt A, Leen R. 2002. Cyanogenic<br />

allosides and glucosides from Passiflora edulis and Carica papaya.<br />

Phytochemistry 60: 873–882.<br />

Selmar D. 1993a. Apoplastic occurrence <strong>of</strong> cyanogenic b-glucosidases and<br />

consequencesfor the metabolism<strong>of</strong> cyanogenic glucosides. In:Esen A,<br />

ed. The biochemistry and molecular biology <strong>of</strong> b-glucosidases.<br />

American Chemical Society: Wash<strong>in</strong>gton, DC, 191–204.<br />

Selmar D. 1993b. Transport <strong>of</strong> cyanogenic glucosides: l<strong>in</strong>ustat<strong>in</strong> uptake by<br />

Hevea cotyledons. Planta 191: 191–199.<br />

Selmar D, Lieberei R, Junqueira N, Biehl B. 1991. Changes <strong>in</strong><br />

cyanogenic glucoside content <strong>in</strong> seeds and seedl<strong>in</strong>gs <strong>of</strong> Hevea species.<br />

Phytochemistry 30: 2135–3140.


Shore JS, Obrist CM. 1992. Variation <strong>in</strong> cyanogenesis with<strong>in</strong> and<br />

among populations and species <strong>of</strong> Turnera series Canaligerae<br />

Turneraceae. Biochemical Systematics and Ecology 20: 9–16.<br />

Smith F, White CT. 1918. An <strong>in</strong>terim census <strong>of</strong> cyanophoric plants <strong>in</strong> the<br />

Queensland flora. Proceed<strong>in</strong>gs <strong>of</strong> the Royal Society <strong>of</strong> Queensland 30:<br />

84–90.<br />

Smolenski SJ, Sil<strong>in</strong>is H, <strong>Far</strong>nsworth NR. 1974. Akaloid screen<strong>in</strong>g III.<br />

Lloydia 36: 359.<br />

Spencer KC, Seigler DS 1983. <strong>Cyanogenesis</strong> <strong>of</strong> Passiflora edulis. Journal<br />

<strong>of</strong> Agricultural and Food Chemistry 31: 794–796.<br />

Spencer KC, Seigler DS. 1985. Cyanogenic glycosides and the systematics<br />

<strong>of</strong> the Flacourtiaceae. Biochemical Systematics and Ecology<br />

13: 421–431.<br />

Spencer KC, Seigler DS, Nahrstedt A. 1986. L<strong>in</strong>amar<strong>in</strong>, lotaustral<strong>in</strong>,<br />

l<strong>in</strong>ustat<strong>in</strong> and neol<strong>in</strong>ustat<strong>in</strong> from Passiflora species. Phytochemistry<br />

25: 645–647.<br />

Swanholm CE, St John H, Scheuer PJ. 1960. A survey for alkaloids <strong>in</strong><br />

Hawaiian plants II. Pacific Science 14: 68–74.<br />

Swenson WK, Dunn JE, Conn EE. 1989. <strong>Cyanogenesis</strong> <strong>in</strong> the Proteaceae.<br />

Phytochemistry 28: 821–823.<br />

Taskova R, Mitova M, Evstatieva L, Ancev M, Peev D, Handjieva N,<br />

Bankova V, Popov S. 1997. Iridoids, flavonoids and terpenoids as<br />

taxonomic markers <strong>in</strong> Lamiaceae, Scrophulariaceae and Rubiaceae.<br />

Bocconea 5: 631–636.<br />

Thomsen K, Brimer L. 1997. Cyanogenic constituents <strong>in</strong> woody plants<br />

<strong>in</strong> natural lowland ra<strong>in</strong> forest <strong>in</strong> Costa Rica. Biological Journal <strong>of</strong><br />

the L<strong>in</strong>nean Society 121: 273–291.<br />

Tjon Sie Fat L. 1978. Contribution to the knowledge <strong>of</strong> cyanogenesis <strong>in</strong><br />

Angiosperms. 2. Communicatio<strong>in</strong>. <strong>Cyanogenesis</strong> <strong>in</strong> Campanulaceae.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the Kon<strong>in</strong>klijke Nederlandse Akadamie Van<br />

Wetenschappen Series C 81: 126–131.<br />

Tjon Sie Fat L. 1979a. Contribution to the knowledge <strong>of</strong> cyanogenesis <strong>in</strong><br />

angiosperms Cyanogene Verb<strong>in</strong>d<strong>in</strong>gen bij Poaceae, Commel<strong>in</strong>aceae,<br />

Ranunculaceae en Campanulaceae. PhD. Thesis, Leiden University,<br />

The Netherlands.<br />

Tjon Sie Fat L. 1979b. Contribution to the knowledge <strong>of</strong> cyanogenesis <strong>in</strong><br />

Angiosperms. 14. Communication. <strong>Cyanogenesis</strong> <strong>in</strong> Ranunculaceae.<br />

Proceed<strong>in</strong>gs <strong>of</strong> the Kon<strong>in</strong>klijke Nederlandse Akadamie Van<br />

Wetenschappen Series C 82: 197–209.<br />

Tracey JC. 1982. The vegetation <strong>of</strong> the humid tropical region <strong>of</strong> <strong>North</strong><br />

Queensland. Melbourne, Australia: CSIRO.<br />

Tracey JG, Webb LJ. 1975. Vegetation <strong>of</strong> the humid tropical region <strong>of</strong><br />

<strong>North</strong> Queensland. Indooroopilly, Queensland: Ra<strong>in</strong>forest Ecology<br />

Unit, CSIRO Australia, Division <strong>of</strong> Plant Industry.<br />

Urbanska K. 1982. Polymorphism <strong>of</strong> cyanogenesis <strong>in</strong> Lotus alp<strong>in</strong>us <strong>in</strong><br />

Switzerland. I. Small-scale variability <strong>in</strong> phenotypic frequencies upon<br />

acidic silicate and carbonate. Bericht des Geobotanischen Institutes<br />

ETH 49: 35–55.<br />

van Valen F. 1978. Contribution to the knowledge <strong>of</strong> cyanogenesis <strong>in</strong><br />

angiosperms. Planta Medica 34: 408–413.<br />

van Wyk B-E, Whitehead CS. 1990. The chemotaxonomic significance<br />

<strong>of</strong> prunas<strong>in</strong> <strong>in</strong> Buchenroedera Fabaceae-Crotalarieae. South African<br />

Journal <strong>of</strong> Botany 56: 68–70.<br />

Wagstaff SJ, Olmstead RG. 1997. Phylogeny <strong>of</strong> Labiatae and Verbenaceae<br />

<strong>in</strong>ferred from rbcL sequences. Systematic Botany 22: 165–179.<br />

Wagstaff SJ, Hickerson L, Spangler R, Reeves PA, Olmstead RG.<br />

1998. Phylogeny <strong>in</strong> Labiatae s. l., <strong>in</strong>ferred from cpDNA sequences.<br />

Plant Systematics and Evolution 209: 265–274.<br />

Wajant H, Riedel D, Benz S, Mundry K-W. 1994. Immunocytological<br />

localization <strong>of</strong> hydroxynitrile lyases from Sorghum bicolor L. and<br />

L<strong>in</strong>um usitatissimum L. Plant Science 103: 145–154.<br />

Waterman PG, Ross AM, Jr, Bennett EL, Davies AG. 1988. A<br />

comparison <strong>of</strong> the floristics and leaf chemistry <strong>of</strong> the tree flora <strong>in</strong><br />

two Malaysian ra<strong>in</strong> forests and the <strong>in</strong>fluence <strong>of</strong> leaf chemistry on<br />

populations <strong>of</strong> colob<strong>in</strong>e monkeys <strong>in</strong> the Old World. Biological Journal<br />

<strong>of</strong> the L<strong>in</strong>nean Society 34: 1–32.<br />

Webb LJ. 1948. Guide to the medic<strong>in</strong>al and poisonous plants <strong>of</strong><br />

Queensland. CSIRO Bullet<strong>in</strong> 232: 1–202.<br />

Webb LJ. 1949. An Australian phytochemical survey I. Alkaloids and<br />

cyanogenetic compounds <strong>in</strong> Queensland plants. CSIRO Bullet<strong>in</strong><br />

241: 1–56.<br />

Webb LJ. 1952. An Australian phytochemical survey II. Alkaloids <strong>in</strong><br />

Queensland flower<strong>in</strong>g plants. CSIRO Bullet<strong>in</strong> 268: 1–99.<br />

Webb LJ, Tracey JG. 1981. The ra<strong>in</strong>forests <strong>of</strong> northern Australia.<br />

In: Groves RH, ed. Australian vegetation. Cambridge: Cambridge<br />

University Press, 67–101.<br />

Webb LJ, Tracey JG, Williams WT. 1972. Regeneration and<br />

pattern <strong>in</strong> the sub-tropical ra<strong>in</strong>forest. Journal <strong>of</strong> Ecology 60:<br />

675–95.<br />

Webber BL. 1999. <strong>Cyanogenesis</strong> <strong>in</strong> the tropical ra<strong>in</strong>forest tree, Ryparosa<br />

javanica. Honours Thesis, The University <strong>of</strong> Melbourne.<br />

Webber BL. 2005. Plant–animal <strong>in</strong>teractions and plant defence <strong>in</strong> the<br />

ra<strong>in</strong>forest tree, Ryparosa. PhD Thesis, The University <strong>of</strong> Melbourne,<br />

Australia.<br />

Webber BL, Woodrow IE. 2004. Cassowary frugivory, seed deflesh<strong>in</strong>g and<br />

fruit fly <strong>in</strong>festation <strong>in</strong>fluence the transition from seed to seedl<strong>in</strong>g <strong>in</strong><br />

the rare Australian ra<strong>in</strong>forest tree, Ryparosa sp. nov. 1 Achariaceae.<br />

Functional Plant Biology 31: 505–516.<br />

Young RL, Hamilton RA. 1966. A bitter pr<strong>in</strong>ciple <strong>in</strong> Macadamia nuts.<br />

In: Proceed<strong>in</strong>gs <strong>of</strong> the 6th annual meet<strong>in</strong>g. Hawaii Macadamia<br />

Producers Association, 27–30.<br />

Zheng L, Poulton JE. 1995. Temporal and spatial expression <strong>of</strong><br />

amygdal<strong>in</strong> hydrolase and R.-+.-mandelonitrile lygase <strong>in</strong> black cherry<br />

seeds. Plant Physiology 109: 31–39.<br />

APPENDIX<br />

Summary <strong>of</strong> all species tested for cyanogenesis with<strong>in</strong><br />

6 · 200 m 2 plots at five sites <strong>in</strong> upland/highland (U) or<br />

lowland (L) tropical ra<strong>in</strong>forest, on sites contrast<strong>in</strong>g <strong>in</strong><br />

soil type: basalt sites at Lam<strong>in</strong>s Hill (B1) and Longlands<br />

Gap (B2), and sites on granite at Mt Nomico (G), on rhyolite<br />

at Longlands Gap (R) and on metamorphic substrate near<br />

Cape Tribulation (M). Species are listed <strong>in</strong> alphabetical<br />

order. Life forms: tree (T), shrub (SH), herb (H), v<strong>in</strong>e (V),<br />

treefern (TF), palm (P) and hemi-epiphyte (HE). The results<br />

(+ or –) for tests us<strong>in</strong>g Feigl–Anger papers and approx.<br />

1 g f. wt leaf tissue, with and without the addition <strong>of</strong><br />

pect<strong>in</strong>ase (+/– enz) for n <strong>in</strong>dividuals <strong>of</strong> each species are<br />

listed. All tests were carried out us<strong>in</strong>g most recently fully<br />

expanded leaves and <strong>in</strong> most <strong>in</strong>stances also us<strong>in</strong>g young<br />

leaves. In some cases, leaf tips (tips), only a few fruit<br />

(ft) or flowers (flwr) were tested. Previous f<strong>in</strong>d<strong>in</strong>gs for<br />

species and <strong>in</strong> some cases genera are noted (e.g. Proteaceae<br />

species tested by E. E. Conn, University <strong>of</strong> California,<br />

Davis, CA, USA, pers. comm. based on herbarium specimens).<br />

Species <strong>in</strong>cluded <strong>in</strong> phytochemical screen<strong>in</strong>gs <strong>of</strong><br />

Queensland ra<strong>in</strong>forest taxa (alkaloids, CN; Webb, 1948,<br />

Webb, 1949) are noted, most were not tested for CN<br />

(DNT). Canopy species or rare species for which no sample<br />

was obta<strong>in</strong>ed were <strong>in</strong>cluded <strong>in</strong> floristic analysis, but were<br />

not tested for cyanogenesis (DNT). Lodgement numbers at<br />

Brisbane (BRI) and The University <strong>of</strong> Melbourne (MELU)<br />

herbaria are given.


A PPENDIX<br />

Lifeform Species Family HCN +/– enz (n tested) Upland/lowland Site (substrate) Previous reports Lodgement no.<br />

T Acacia celsa T<strong>in</strong>dale Mimosaceae / (3) U R Webb (1949) DNT<br />

T Acmena graveolens (F.M.Bailey) L.S.Sm. Myrtaceae / (3) L M MELU102318<br />

T Acmena resa B.Hyland Myrtaceae / (2) U B2, R<br />

T Acronychia acidula F.Muell. Rutaceae / (2) U G Webb (1949) DNT<br />

T Acronychia acronychioides (F.Muell.) T.G.Hartley Rutaceae / (3) U G<br />

T Acronychia crassipetala T.G.Hartley Rutaceae / (1) U B2<br />

SH Acronychia parviflora C.T.White Rutaceae / (5) U B1, R<br />

SH Actephila sp. (Wooroonooran NP<br />

P.I.Forster+ PIF17151)<br />

Euphorbiaceae / (5) U B1<br />

T Adenanthera pavon<strong>in</strong>a L. Mimosaceae / (1) L M<br />

T Agathis atropurpurea B.Hyland Araucariaceae / (3) U R<br />

T Agathis microstachya J.F.Bailey & C.T.White Araucariaceae / (1) U G<br />

T Agathis robusta (C.Moore ex F.Muell.) F.M.Bailey Araucariaceae / (1) U B1<br />

SH Aglaia meridionalis C.M.Pannell Meliaceae / (13) U, L B1, M MELU102332<br />

T Aglaia sap<strong>in</strong>d<strong>in</strong>a (F.Muell.) Harms Meliaceae / (2) L M<br />

T Aglaia tomentosa Teijsm. & B<strong>in</strong>n. Meliaceae / (5) U, L B1, B2, G, M MELU102275<br />

T Alangium villosum subsp. polyosmoides<br />

Alangiaceae / (3) U B1 Webb (1949) DNT MELU102329<br />

(F.Muell.) Bloemb.<br />

T Alloxylon flammeum P.H.Weston & Crisp Proteaceae / (2) U B2<br />

T Alloxylon wickhamii (W.Hill ex F.Muell.)<br />

P.H.Weston & Crisp<br />

Proteaceae / (4) U G, B2<br />

H Alocasia brisbanensis (F.M.Bailey) Dom<strong>in</strong> z Araceae +/+ U B1 Hurst (1942)<br />

T Alphitonia whitei Braid Rhamnaceae / (3) U G MELU102103<br />

H Alp<strong>in</strong>ia arctiflora (F.Muell.) Benth. Z<strong>in</strong>giberaceae / (1) U B1<br />

H Alp<strong>in</strong>ia modesta F.Muell. ex K.Schum. Z<strong>in</strong>giberaceae / (1) U B2<br />

T Alstonia scholaris (L.) R.Br. Apocynaceae / (10) L M Gibbs (1974) reported<br />

+CN; Webb (1949) DNT<br />

BRI 578809,<br />

MELU102127,<br />

102257<br />

SH Alyxia ilicifolia subsp. ilicifolia F.Muell. Apocynaceae / (3) U G<br />

V Alyxia spicata R.Br. Apocynaceae / (2) U B1, R Webb (1949) DNT<br />

T Antidesma erostre F.Muell. ex Benth. Euphorbiaceae / (6) U, L B1, G, R, M MELU102113<br />

SH Antirhea sp. (Mt Missery L.W.Jessup+ GJD 3136) Rubiaceae / (3) U B2<br />

T Antirhea tenuiflora F.Muell. ex Benth. Rubiaceae / (4) U, L B1, G, M<br />

T Apodytes brachystylis F.Muell. Icac<strong>in</strong>aceae / (6) U B1, G, R MELU102188<br />

T Archidendron ramiflorum (F.Muell.) Kosterm. Mimosaceae / (4) U, L B1, M<br />

T Archidendron vaillantii (F.Muell.) F.Muell. Mimosaceae / (3) U B2, G MELU102186<br />

T Archidendron whitei I.C.Nielsen Mimosaceae / (1) U B1<br />

SH Ardisia bifaria C.T.White & W.D.Francis Myrs<strong>in</strong>aceae / (2) U B1<br />

SH Ardisia brevipedata F.Muell. Myrs<strong>in</strong>aceae / (7); frt – U, L B1, B2, G, R, M MELU102148<br />

T Argyrodendron sp. (Boonjee BH 2139RFK) Sterculiaceae / (9) U B1<br />

T Arytera pauciflora S.T.Reynolds Sap<strong>in</strong>daceae / (4) U, L B1, M<br />

SH Atractocarpus hirtus (F.Muell.) Puttock Rubiaceae / (7) U, L B1, M Webb (1949) DNT<br />

SH Atractocarpus merik<strong>in</strong> (F.M.Bailey) Puttock Rubiaceae / (3) U B1, B2<br />

T Auranticarpa papyracea L.Cayzer,<br />

Crisp & I.Telford<br />

Pittosporaceae / (2) U B2, G<br />

V Austrobaileya scandens C.T.White Austrobaileyaceae / (6); flwr – U B1<br />

SH Austromatthaea elegans L.S.Sm. Monimiaceae / (3) U G, R<br />

T Austromuellera tr<strong>in</strong>ervia C.T.White Proteaceae / (4) U, L B1, M<br />

V Austrosteenisia stipularis (C.T.White) Jessup Fabaceae / (4) U B1, G


A PPENDIX Cont<strong>in</strong>ued<br />

Lifeform Species Family HCN +/– enz (n tested) Upland/lowland Site (substrate) Previous reports Lodgement no.<br />

T Balanops australiana F.Muell. Balanopaceae / (3) U R, G Webb (1949) DNT MELU102216,<br />

102108<br />

T Beilschmiedia bancr<strong>of</strong>tii (F.M. Bailey) C.T.White Lauraceae / (3) U, L B1, G, M Webb (1949) DNT MELU102219<br />

T Beilschmiedia castris<strong>in</strong>ensis B.Hyland Lauraceae / (2) L M<br />

T Beilschmiedia coll<strong>in</strong>a B.Hyland Lauraceae +/+ U B1, B2, G, R BRI 578804,<br />

MELU102299,<br />

102300<br />

T Beilschmiedia oligandra L.S.Sm. Lauraceae / (3) U G<br />

T Beilschmiedia recurva B.Hyland Lauraceae / (4) U B1, G<br />

T Beilschmiedia tooram (F.M.Bailey ) B.Hyland Lauraceae / (10) U B1, B2, G MELU102211<br />

T Bobea myrtoides (F.Muell.) Valeton Rubiaceae / (8) U G, R MELU102105, 102110<br />

SH Bowenia spectabilis Hook. ex Hook.f. Stangeriaceae / (6) U, L B1, M<br />

T Brachychiton acerifolius (A.Cunn.<br />

ex G.Don.) Macarthur<br />

Sterculiaceae / (3) U, L B2, M<br />

T Brackenridgea australiana F.Muell. Ochnaceae / (4) U, L G, R, M MELU102322<br />

SH/T Breynia cernua (Poir.) Muell.Arg Euphorbiaceae / (2) U B2, G Webb (1949) 1948<br />

B. oblongifolia Muell.<br />

Arg. +CN<br />

T Brombya platynema F.Muell. Rutaceae +/+ L M Webb (1949) DNT BRI 578818.<br />

MELU102283,<br />

102313<br />

T Bubbia semecarpoides (F.Muell.) B.L.Burtt W<strong>in</strong>teraceae / (5) U B1, G<br />

V (P) Calamus australis Mart. Arecaceae / (1); U B1<br />

V Calamus moti F.M.Bailey Arecaceae / (1) U B1<br />

T Caldcluvia australiensis (Schltr.) Hoogland Cunoniaceae / (1) U B1<br />

T Calophyllum costatum F.M.Bailey Clusiaceae / (3) U B2, R<br />

T Cananga odorata (Lam.) Hook.f. & Thomson Annonaceae / (2) L M<br />

T Canarium muelleri F.M.Bailey Burseraceae / (1) U G MELU102250<br />

T Canthium sp. Rubiaceae / (1) U G<br />

T Carallia brachiata (Lour.) Merr. Rhizophoraceae / (1) L M<br />

T Cardwellia sublimis F.Muell. Proteaceae +/+ U, L B1, B2, G, R, M E. E. Conn (pers. comm.)<br />

1<strong>of</strong>7+ve<br />

T Carnarvonia araliifolia var. montana B.Hyland Proteaceae / (3) U B2, G, R E. E. Conn<br />

(pers. comm.) –ve<br />

BRI 578806,<br />

MELU102280, 102281<br />

MELU102282<br />

V Carronia protensa (F.Muell.) Diels Menispermaceae / (5) U, L B1, B2, M MELU102213<br />

T Casearia costulata L.W.Jessup Salicaceae † / (4) U B1, B2, G, R Webb (1949) DNT<br />

T Casearia dallachii F.Muell. Salicaceae † / (1) L M<br />

T Casearia grayi L.W.Jessup Salicaceae † / (2) dry* U B2<br />

T Castanospermum australe A.Cunn. &<br />

C.Fraser ex Hook.<br />

Fabaceae / (3) L M Webb (1949) DNT<br />

T Castanospora alphandii (F.Muell.) F.Muell. Sap<strong>in</strong>daceae / (3) U B1, B2 MELU102130<br />

V Cayratia saponaria (Seem. & Benth.) Dom<strong>in</strong> Vitaceae / (1) L M C. acris Gibbs (1974) –CN<br />

T Celtis paniculata (Endl.) Planch. Ulmaceae / (1) L M<br />

V Cephalaralia cephalobotrys (F.Muell.) Harms Araliaceae / (2) U B1, B2<br />

T Ceratopetalum succirubrum C.T.White Cunoniaceae / (4) U B2, G Webb (1949) DNT<br />

T Cerbera floribunda K.Schum. Apocynaceae / (1) U, L G, M Webb (1949) DNT<br />

T Chionanthus axillaris R.Br. Oleaceae / (4) U B1, G MELU102327<br />

T C<strong>in</strong>namomum laubatii F.Muell. Lauraceae / (3) U B1, G, R Webb (1949) DNT MELU102210<br />

V Cissus hypoglauca A.Gray Vitaceae / (2) U G<br />

V Cissus penn<strong>in</strong>ervis (F.Muell.) Planch. Vitaceae / (1) U, L R, M


V Cissus sterculiifolia (F.Muell. ex Benth.) Planch. Vitaceae / (4) U B1, B2, G MELU102325<br />

V Cissus v<strong>in</strong>osa Jackes Vitaceae / (3) U B1, B2, G MELU102195<br />

T Citronella smythii (F.Muell.) R.A.Howard Icac<strong>in</strong>aceae / (4) U, L B1, G, M MELU102143<br />

T Claoxylon tenerifolium (Baill.) F.Muell. Euphorbiaceae / (1) U B1<br />

T Cleistanthus myrianthus (Hassk.) Kurz Euphorbiaceae +/+ L M BRI 578811,<br />

MELU102122,<br />

102123, 102258<br />

T Clerodendrum grayi Munir Verbenaceae +/+ U B1, B2, G Other Clerodendrum<br />

spp. +CN (Gibbs, 1974;<br />

Tjon Sie Fat, 1979a;<br />

Adsersen et al., 1988)<br />

BRI 578815,<br />

MELU102115,<br />

102116, 102117<br />

T Cnesmocarpon dasyantha (Radlk.) Adema Sap<strong>in</strong>daceae / (2) U G<br />

V Connarus conchocarpus F.Muell. Connaraceae / (1) L M<br />

SH Cordyl<strong>in</strong>e petiolaris (Dom<strong>in</strong>) Pedley Laxmanniaceae / (2) U B1<br />

SH Cordyl<strong>in</strong>e sp. Laxmanniaceae / (1) U G<br />

T Corynocarpus cribbianus (F.M.Bailey) L.S.Sm. Corynocarpaceae / (1) U B1 C. laevigata +CN<br />

(Webb, 1948)<br />

SH Crispiloba disperma (S.Moore) Steenis Alseuosmiaceae / (4) U G<br />

T Cryptocarya angulata C.T.White Lauraceae / (4) U B1, G, R MELU102102<br />

T Cryptocarya cocosoides B.Hyland Lauraceae / (3) U B2, G MELU102157, 102268<br />

T Cryptocarya corrugata<br />

C.T.White & W.D.Francis<br />

Lauraceae / (3) U B1, B2, G, R MELU102147<br />

T Cryptocarya densiflora Blume Lauraceae / (2) U G, R MELU102104, 102269<br />

T Cryptocarya grandis B.Hyland Lauraceae / (3); U, L B1, B2, G, M MELU102247<br />

T Cryptocarya hypospodia F.Muell. Lauraceae / (1) L M<br />

T Cryptocarya laevigata Blume Lauraceae / (2) U, L G, M<br />

T Cryptocarya leucophylla B.Hyland Lauraceae / (1) U B2, R MELU102248<br />

T Cryptocarya lividula B.Hyland Lauraceae / (2) U G, R MELU102095<br />

T Cryptocarya mack<strong>in</strong>noniana F.Muell. Lauraceae / (5) U, L B1, G, M MELU102212<br />

T Cryptocarya melanocarpa B.Hyland Lauraceae / (5) U B1, B2<br />

T Cryptocarya murrayi F.Muell. Lauraceae / (2) U, L B1, M<br />

T Cryptocarya oblata F.M.Bailey Lauraceae / (2) U, L B1, M Webb (1949) DNT MELU102099<br />

T Cryptocarya pleurosperma C.T.White &<br />

W.D.Francis<br />

Lauraceae / (4) U B1, G Webb (1949) DNT MELU102270<br />

T Cryptocarya putida B.Hyland Lauraceae / (4) U G, R MELU102144<br />

T Cryptocarya saccharata B.Hyland Lauraceae / (3) U B2, R<br />

T Cryptocarya smaragd<strong>in</strong>a B.Hyland Lauraceae / (3) U B2, R MELU102193<br />

T Cupaniopsis flagelliformis (F.M.Bailey)<br />

Sap<strong>in</strong>daceae / (4) U B1 MELU102129<br />

Radlk. var. flagelliformis<br />

T Cupaniopsis sp. Sap<strong>in</strong>daceae / (1) L M<br />

TF Cyathea rebeccae (F.Muell.) Dom<strong>in</strong> Cyatheaceae / (2) U G, R<br />

T Cyclophyllum multiflorum<br />

S.T.Reynolds & R.J.F.Hend.<br />

Rubiaceae / (1) U B1 Canthium vacc<strong>in</strong>ifolium<br />

F. Muell. +CN Webb<br />

(1949) 1948<br />

T Daphnandra repandula (F.Muell.) F.Muell. Monimiaceae / (2) U B1, B2, G<br />

T Darl<strong>in</strong>gia darl<strong>in</strong>giana (F.Muell.) L.A.S.Johnson Proteaceae / (2) U G E. E. Conn (pers. comm.) –ve<br />

T Darl<strong>in</strong>gia ferrug<strong>in</strong>ea J.F.Bailey Proteaceae / (3)– U B1, B2 E. E. Conn (pers. comm.) –ve<br />

T Davidsonia pruriens F.Muell. Davidsoniaceae / (2) U G Webb (1949) DNT; +CN<br />

(Rosenthaler, 1929; Hurst,<br />

1942); –CN Gibbs (1974)<br />

T Decaspermum humile (G.Don.) A.J.Scott Myrtaceae / (1) dry* L M<br />

T Delarbrea michieana (F.Muell.) F.Muell. Araliaceae / (4) U B1, G<br />

V Dendrotrophe varians (Blume) Miq. Santalaceae / (1) U R<br />

V Derris sp. (Da<strong>in</strong>tree D.E. Boyland+469) Fabaceae / (1) dry* L M<br />

MELU102151, 102152


A PPENDIX Cont<strong>in</strong>ued<br />

Lifeform Species Family HCN +/– enz (n tested) Upland/lowland Site (substrate) Previous reports Lodgement no.<br />

V Desmos goezeanus (F.Muell.) Jessup Annonaceae / (2) U G<br />

V Dichapetalum papuanum (Becc.) Boerl. Dichapetalaceae / (4) U B1 MELU102326<br />

T D<strong>in</strong>osperma stipitatum (C.T.White &<br />

W.D.Francis) T.G. Hartley<br />

Rutaceae / (3) U B1<br />

T Diospyros cupulosa F.Muell. Ebenaceae / (1) L M<br />

T Diospyros hebecarpa A.Cunn. ex Benth. Ebenaceae / (1) dry* U B1 MELU102307<br />

T Diploglottis bernieana S.T.Reynolds Sap<strong>in</strong>daceae / (2) L M<br />

T Diploglottis bracteata Leenh. Sap<strong>in</strong>daceae / (1) U G<br />

T Doryphora aromatica (F.M.Bailey) L.S.Sm. Monimiaceae / (5) U, L B1, B2, M Webb (1949) DNT<br />

T Dysoxylum alliaceum Blume (Blume) Meliaceae / (1) L M<br />

T Dysoxylum arborescens (Blume) Miq. Meliaceae / (2) U, L B1, M<br />

T Dysoxylum klanderi F.Muell. Meliaceae / (3) U B1, B2, R<br />

T Dysoxylum oppositifolium F.Muell. Meliaceae / (3) U B2, G MELU102273<br />

T Elaeocarpus bancr<strong>of</strong>tii F.Muell. & F.M.Bailey Elaeocarpaceae / (3) L M<br />

T Elaeocarpus eumundi F.M.Bailey Elaeocarpaceae / (1) U G, R MELU102125<br />

T Elaeocarpus foveolatus F.Muell. Elaeocarpaceae / (2) U B1, R<br />

T Elaeocarpus grahamii F.Muell. Elaeocarpaceae / (1) L M<br />

T Elaeocarpus largiflorens<br />

C.T.White subsp. largiflorens<br />

Elaeocarpaceae / (4) U B1, G<br />

T Elaeocarpus rum<strong>in</strong>atus F.Muell. Elaeocarpaceae / (3) U B2, G<br />

T Elaeocarpus sericopetalus F.Muell. Elaeocarpaceae +/+ U G, R BRI 578817,<br />

MELU102135,<br />

102304<br />

T Elaeocarpus sp. (Mt Bellenden Ker LJB 18336) Elaeocarpaceae / (3) U B2, G, R MELU102304<br />

V Embelia caulialata S.T.Reynolds Myrs<strong>in</strong>aceae / (1) dry* L M<br />

V Embelia grayi S.T.Reynolds Myrs<strong>in</strong>aceae +/+ U B1, B2 BRI 578803,<br />

MELU102267<br />

T Endiandra bessaphila B.Hyland Lauraceae / (2) U B1<br />

T Endiandra dielsiana Teschn. Lauraceae / (2) U G<br />

T Endiandra hypotephra F.Muell. Lauraceae DNT L M<br />

T Endiandra leptodendron B.Hyland Lauraceae / (7) U, L B1, M MELU102293<br />

T Endiandra microneura C.T.White Lauraceae / (3) L M<br />

T Endiandra monothyra B.Hyland subsp. monothyra Lauraceae / (3) U B1, B2<br />

T Endiandra montana C.T.White Lauraceae DNT U B2<br />

T Endiandra palmerstonii (F.M.Bailey)<br />

C.T.White & W.D.Francis<br />

Lauraceae / (2) U B2, G Webb (1949) DNT MELU102294<br />

T Endiandra sankeyana F.M.Bailey Lauraceae / (3) U B1, B2 MELU102155<br />

T Endiandra sideroxylon B.Hyland Lauraceae / (3) U B2 MELU102109<br />

T Endiandra wolfei B.Hyland Lauraceae / (3); sht – U B1, G MELU102295<br />

T Endospermum myrmecophilum L.S.Sm. Euphorbiaceae / (1) dry * L M<br />

V Entada phaseoloides (L.) Merr. Mimosaceae / (1) L M<br />

HE Epipremnum p<strong>in</strong>natum (L.) Engl. Araceae / (2) L M<br />

V Erycibe cocc<strong>in</strong>ea (F.M.Bailey) Hoogl. Convolvulaceae / (3) L M<br />

T Erythroxylum ecar<strong>in</strong>atum Burck ex Hoch. Erythroxylaceae / (2) U B1 Webb (1949) DNT MELU102225<br />

SH Eupomatia barbata Jessup Eupomatiaceae / (2) dry* U, L B1, M<br />

SH/T Eupomatia laur<strong>in</strong>a R.Br. Eupomatiaceae / (4) U B2, G Gibbs (1974) ‘doubtfully MELU102331<br />

cyanogenic’; Webb<br />

(1949) DNT<br />

V Eustrephus latifolius R.Br. ex Ker Gawl. Philesiaceae / (2) U, L B1, M<br />

T Fagraea cambagei Dom<strong>in</strong> Gentianaceae / (4) L M MELU102317


T Fagraea fagraeacea (F.Muell.) Druce Gentianaceae / (3) U B1, B2, G, R MELU102323<br />

T Ficus congesta Roxb. Moraceae / (1) L M<br />

T Ficus crassipes F.M.Bailey Moraceae / (1) U B1<br />

T Ficus destruens F.Muell. ex C.T.White Moraceae / (1) U B2, G<br />

T Ficus leptoclada Benth. Moraceae DNT U B1, B2 MELU102107<br />

V Ficus pantoniana K<strong>in</strong>g Moraceae / (1) L M<br />

T Ficus pleurocarpa F.Muell. Moraceae / (1) U B1<br />

T Ficus triradiata Corner Moraceae / (1) L M<br />

V Flagellaria <strong>in</strong>dica L. Flagellariaceae +/+ U, L B1, G, M +CN (1912) BRI 578816,<br />

MELU102259,<br />

102296<br />

T Fl<strong>in</strong>dersia bourjotiana F.Muell. Rutaceae / (4) U, L B2, G, R, M Webb (1949) DNT<br />

T Fl<strong>in</strong>dersia brayleyana F.Muell. Rutaceae / (1) U B2 Webb (1949) DNT<br />

T Fl<strong>in</strong>dersia laevicarpa C.T.White & W.D.Francis Rutaceae / (2) U G MELU102222<br />

T Fl<strong>in</strong>dersia pimenteliana F.Muell. Rutaceae / (2) U G, R Webb (1949) DNT MELU102132,<br />

102106<br />

T Fonta<strong>in</strong>ea picrosperma C.T.White Euphorbiaceae / (2) U B2<br />

T Franciscodendron laurifolium<br />

(F.Muell.) B.Hyland & Steenis<br />

Sterculiaceae / (10) U B1, G<br />

V Freyc<strong>in</strong>etia excelsa F.Muell. Pandanaceae / (3) U B1, B2<br />

V Freyc<strong>in</strong>etia scandens Gaudich. Pandanaceae / (1) U B1<br />

T Galbulimima baccata F.M.Bailey Himantandraceae / (3) U B1, B2, G, R Webb (1949) DNT;<br />

fruits –CN (Bailey, 1909<br />

<strong>in</strong> Webb, 1948)<br />

T Garc<strong>in</strong>ia gibbsiae S.Moore Clusiaceae / (7) U B1 MELU102126<br />

T Garc<strong>in</strong>ia warrenii F.Muell. Clusiaceae / (4) L M<br />

T Gardenia ovularis F.M.Bailey Rubiaceae / (5) U, L G, M Webb (1949) DNT MELU102319<br />

T Gevu<strong>in</strong>a bleasdalei (F.Muell.) Sleumer Proteaceae / (3) U B1, G E. E. Conn (pers. comm.) –ve MELU102292<br />

T Gillbeea adenopetala F.Muell. Cunoniaceae / (3) U B1, G<br />

T Glochidion harveyanum Dom<strong>in</strong> var. harveyanum Euphorbiaceae / (1) U G Webb (1949) DNT<br />

T Glochidion hylandii Airy Shaw Euphorbiaceae / (1) U B2, G Webb (1949) DNT<br />

T Gmel<strong>in</strong>a fasciculiflora Benth. Lamiaceae / (2) U, L G, M Webb (1949) DNT MELU102261,<br />

102262,102263<br />

T Gomphandra australiana F.Muell. Icac<strong>in</strong>aceae / (2) L M MELU102333<br />

T Goniothalamus australis Jessup Annonaceae / (6) U B1 MELU102185,<br />

102290<br />

T Gossia dallachiana (F.Muell.) N.Snow & Guymer Myrtaceae / (5) U B1, B2, G MELU102220<br />

T Gossia myrs<strong>in</strong>ocarpa (F.Muell.)<br />

N.Snow & Guymer<br />

Myrtaceae / (1) U B2<br />

T Gossia grayii N.Snow & Guymer Myrtaceae / (2) U G MELU102146<br />

T Grevillea baileyana McGill. Proteaceae / (1) L M Webb (1952); Hurst (1942)<br />

Grevillea spp. +CN;<br />

E. E. Conn (pers. comm.) –ve<br />

T Guioa acutifolia Radlk. Sap<strong>in</strong>daceae / (2) U, L B2, M<br />

T Guioa lasioneura Radlk. Sap<strong>in</strong>daceae / (2) U B1, G<br />

T Guioa montana C.T.White Sap<strong>in</strong>daceae / (2) U R MELU102150<br />

SH Gymnostachys anceps R.Br. Araceae / (2) U, L B2, M<br />

V Gynochtodes sp. (Lamb Range J.W.398) Rubiaceae / (2) U G, R<br />

T Halfordia kendack (Montrouz.) Guillaum<strong>in</strong> Rutaceae / (3) U B1, B2, G, R Webb (1949) DNT MELU102112<br />

SH Haplostichanthus sp. (Coopers Creek B. Gray 2433) Annonaceae / (7) L M MELU102291<br />

SH Haplostichanthus sp. (Topaz L.W.Jessup 520) Annonaceae / (7) U B1 MELU102328<br />

SH Harpullia frutescens F.M.Bailey Sap<strong>in</strong>daceae / (1) U B2<br />

SH/T Harpullia rhyticarpa C.T.White & W.D.Francis Sap<strong>in</strong>daceae / (10) U, L B1, G, M Webb (1949) DNT<br />

T Hedycarya loxocarya (Benth.) W.D.Francis Monimiaceae / (4) U G


A PPENDIX Cont<strong>in</strong>ued<br />

Lifeform Species Family HCN +/– enz (n tested) Upland/lowland Site (substrate) Previous reports Lodgement no.<br />

T Helicia australasica F.Muell. Proteaceae +/+ L M E. E. Conn (pers. comm.)<br />

flwr +ve; H. robusta +CN<br />

Pammel, 1911 <strong>in</strong> Webb (1949)<br />

1948; Gibbs (1974)<br />

BRI 578805,<br />

MELU102284<br />

T Helicia blakei Foreman Proteaceae +/+ U B1 E. E. Conn (pers. comm.) –ve BRI 578807,<br />

MELU102285<br />

T Helicia lam<strong>in</strong>gtoniana (F.M.Bailey)<br />

Proteaceae / (3) U B2 E. E. Conn (pers. comm.) –ve MELU102214<br />

C.T.White ex L.S.Sm.<br />

T Hernandia albiflora (C.T.White) Kubitzki Hernandiaceae / (4) L M Webb (1949) DNT MELU102314<br />

V Hibbertia scandens (Willd.) Dryand. Dilleniaceae / (1) U R<br />

V Hippocratea barbata F.Muell. Celastraceae / (4) U, L B1, M<br />

V Hoya sp. Asclepiadaceae / (1) L M<br />

T Hylandia dockrillii Airy Shaw Euphorbiaceae / (2) U B1<br />

V Hypserpa decumbens (Benth.) Diels Menispermaceae / (4) U B1, G MELU102316<br />

V Hypserpa laur<strong>in</strong>a (F.Muell.) Diels Menispermaceae / (2) L M Webb (1949) DNT MELU102276<br />

V Hypserpa smilacifolia Diels Menispermaceae / (1) U B2<br />

T Hypsophila dielsiana Loes. Celastraceae / (3) U B1 MELU102311<br />

T Irv<strong>in</strong>gbaileya australis (C.T.White) R.A.Howard Icac<strong>in</strong>aceae / (2) U B1, G MELU102324<br />

T Ixora biflora Fosberg Rubiaceae / (2) L M<br />

T Ixora sp. (<strong>North</strong> Mary LA B.P.Hyland 8618) Rubiaceae / (3) U B1, B2<br />

V Jasm<strong>in</strong>um didymum G.Forst. Oleaceae / (2) U B1, B2, G<br />

V Jasm<strong>in</strong>um kajewskii C.T.White Oleaceae / (2) U B2, G<br />

SH Lasianthus strigosus Wight Rubiaceae / (2) L M<br />

SH/T Leea <strong>in</strong>dica (Burm.f.) Merr. Leeaceae / (1) L M<br />

SH/T Lepidozamia hopei (W.Hill) Regel Zamiaceae / (3) L M<br />

T Lethedon setosa (C.T.White) Kosterm. Thymelaeaceae / (2) U G<br />

P(T) Licuala ramsayi (F.Muell.) Dom<strong>in</strong> Arecaceae / (3) L M<br />

P(SH) L<strong>in</strong>ospadix m<strong>in</strong>or (W.Hill) F.Muell. Arecaceae / (2) L M<br />

T Litsea b<strong>in</strong>doniana F.Muell. (F.Muell.) Lauraceae / (2) U G MELU102097<br />

T Litsea connorsii B.Hyland Lauraceae / (2) U G, R<br />

T Litsea leefeana (F.Muell.) Merr. Lauraceae / (7) U,L B1, B2, M MELU102145<br />

T Loganiaceae sp. Loganiaceae / (1) U G<br />

T Lomatia frax<strong>in</strong>ifolia F.Muell. ex Benth. Proteaceae / (2) U B2, G E. E. (Conn (pers. comm.) –ve; MELU102091<br />

L. silaifolia R.Br. ft, flwr +CN<br />

Webb (1949) 1948<br />

T Macaranga <strong>in</strong>amoena F.Muell. ex Benth. Euphorbiaceae / (7) U B1 Webb (1949) DNT MELU102156<br />

T Macaranga subdentata Benth Euphorbiaceae / (1) L M<br />

SH Mack<strong>in</strong>laya confusa Hemsl. Araliaceae / (1) U R<br />

SH Mack<strong>in</strong>laya macrosciadea (F.Muell.) F.Muell. Araliaceae / (4) U B1, G Webb (1949) DNT<br />

V Maesa dependens F.Muell. Myrs<strong>in</strong>aceae / (1) U R<br />

SH/T Melicope broadbentiana F.M.Bailey Rutaceae / (3) U B1, G MELU102131<br />

T Melicope jonesii T.G.Hartley Rutaceae / (1) U B2<br />

T Melicope vitiflora (F.Muell.) T.G.Hartley Rubiaceae / (1) U, L B1, G, M<br />

V Melod<strong>in</strong>us acutiflorus F.Muell. Apocynaceae / (1) L M Webb (1949) DNT<br />

V Melod<strong>in</strong>us australis (F.Muell.) Pierre Apocynaceae / (4) U B1, G, R<br />

V Melod<strong>in</strong>us baccellianus (F.Muell.) S.T.Blake Apocynaceae / (3) U B1, B2 MELU102230<br />

V Melodorum uhrii F.Muell. Annonaceae / (1) dry* L M<br />

T Mischarytera lautereriana (F.M.Bailey) H.Turner Sap<strong>in</strong>daceae / (2) U B2, G, R MELU102286


T Mischocarpus exangulatus (F.Muell.) Radlk. Sap<strong>in</strong>daceae +/+ U B1 BRI 578801,<br />

MELU102190,<br />

102288<br />

T Mischocarpus grandissimus (F.Muell.) Radlk. Sap<strong>in</strong>daceae +/+ U, L G, M BRI 578802,<br />

MELU102287<br />

T Mischocarpus lachnocarpus (F.Muell.) Radlk. Sap<strong>in</strong>daceae / (3) U B2, G<br />

T Mischocarpus macrocarpus S.T.Reynolds Sap<strong>in</strong>daceae / (3) U B1, B2<br />

T Mischocarpus pyriformis (F.Muell.)<br />

Radlk. subsp. pyriformis<br />

T Monimiaceae Gen.(AQ63687) sp. (Davies<br />

Creek L.J.Webb+ 6430)<br />

V Mor<strong>in</strong>da Gen.(AQ124851) sp.<br />

(Boonjie L.J.Webb+ 6837A)<br />

Sap<strong>in</strong>daceae / (1) U B2<br />

Monimiaceae / (3) U B2, R<br />

Rubiaceae / (3) U B1<br />

V Mor<strong>in</strong>da jasm<strong>in</strong>oides A.Cunn. ex Hook. Rubiaceae / (1) U B2, G Webb (1949)–CN<br />

V Mor<strong>in</strong>da sp. Rubiaceae / (1) U G<br />

V Mor<strong>in</strong>da umbellata L. Rubiaceae / (1) U G<br />

T Musgravea heterophylla L.S.Sm. Proteaceae / (2) L M E. E. Conn (pers. comm.)<br />

1<strong>of</strong>8+ve<br />

T Musgravea stenostachya F.Muell. Proteaceae / (4) U G, R E. E. Conn (pers. comm.) –ve<br />

T Myristica globosa subsp.<br />

muelleri (Warb.) W.J.de Wilde<br />

Myristicaceae / (3) U B1<br />

T Myristica <strong>in</strong>sipida R.Br. Myristicaceae / (3) L M MELU102312<br />

Apocynaceae / (2) U B2<br />

T Neisosperma poweri (F.M.Bailey)<br />

Fosberg & Sachet<br />

T Neolitsea dealbata (R.Br.) Merr. Lauraceae / (4) U B1, B2 Gibbs (1974) –CN<br />

V Neosepicaea jucunda (F.Muell.) Steenis Bignoniaceae / (2) L M<br />

T Niemeyera prunifera (F.Muell.) F.Muell. Sapotaceae / (4) U, L B1, G, M MELU102149<br />

P(T) Normanbya normanbyi (W.Hill) L.H.Bailey Arecaceae / (4) L M<br />

T Opisthiolepis heterophylla L.S.Sm. Proteaceae +/+ U B1, B2 E.E . Conn (pers. comm.)<br />

flwr and lf +ve<br />

P(T) Oraniopsis appendiculata<br />

(F.M.Bailey) J.Dransf.,<br />

A.K.Irv<strong>in</strong>e & N.W.Uhl<br />

Arecaceae / (1) U B1<br />

BRI 578808,<br />

MELU102298<br />

V Pachygone longifolia F.M.Bailey Menispermaceae / (2) L M<br />

T Palaquium galactoxylon (F.Muell.) H.J.Lam Sapotaceae / (1) dry* L M<br />

V Palmeria scandens F.Muell. Monimiaceae / (4) U G MELU102194<br />

SH/T Pandanus monticola F.Muell. Pandanaceae / (1) U G<br />

V Pandorea pandorana (Andrews) Steenis Bignoniaceae / (1) U B2 Webb (1949) DNT<br />

V Pararistolochia australopithecurus (F.Muell.)<br />

Michael J.Parsons<br />

Aristolochiaceae / (3) U B1, B2, G<br />

V Parsonsia latifolia (Benth.) S.T.Blake Apocynaceae +/+ U B1, G, R Webb (1949) DNT;<br />

other Parsonsia spp. –CN<br />

BRI 578800,<br />

MELU102128<br />

V Parsonsia sp. 1 Apocynaceae / (1) U G<br />

V Parsonsia langiana F.Muell Apocynaceae / (1) U R<br />

V Passiflora sp. (Kuranda BH12896) Passifloraceae +/+ L M BRI 578813,<br />

MELU102297<br />

T Perrottetia arborescens (F.Muell.) Loes. Celastraceae / (1) U G<br />

SH/T Pilidiostigma papuanum (Lauterb.) A.J.Scott Myrtaceae / (3) L M<br />

SH Pilidiostigma tetramerum L.S.Sm. Myrtaceae / (4) U B1 MELU102274<br />

T Pilidiostigma tropicum L.S.Sm. Myrtaceae / (2) U B1<br />

V Piper can<strong>in</strong>um Blume Piperaceae / (3) L M MELU102265<br />

V Piper novae-hollandiae Miq. Piperaceae / (3) U B1, G Webb (1949) DNT<br />

T Pitaviaster haplophyllus (F.Muell.) T.G.Hartley Rutaceae / (12) U, L B1, G, M MELU102100,<br />

102187


A PPENDIX Cont<strong>in</strong>ued<br />

Lifeform Species Family HCN +/– enz (n tested) Upland/lowland Site (substrate) Previous reports Lodgement no.<br />

SH/T Pittosporum rubig<strong>in</strong>osum A.Cunn. Pittosporaceae / (3) U, L B1, B2, G, R, M P. undulatum<br />

(Bailey, 1909 <strong>in</strong><br />

Webb, 1949) 1948<br />

T Pittosporum w<strong>in</strong>gii F.Muell. Pittosporaceae / (2) U G<br />

Proteaceae / (2) U G<br />

T Placospermum coriaceum C.T.White &<br />

W.D.Francis<br />

T Podocarpus dispermus C.T.White Podocarpaceae / (2) U B1<br />

T Polyalthia michaelii C.T.White Annonaceae DNT U B1<br />

T Polyosma alangiacea F.Muell. Grossulariaceae / (3) U G, R<br />

T Polyosma hirsuta C.T.White Grossulariaceae / (1) U B1, B2<br />

T Polyosma rhytophloia C.T.White & W.D.Francis Grossulariaceae / (1) U B2, R Webb (1949) DNT<br />

T Polyosma rigidiuscula F.Muell. &<br />

F.M.Bailey ex F.M. Bailey<br />

Grossulariaceae / (3) U B1<br />

MELU102192<br />

T Polyscias australiana (F.Muell.) Philipson Araliaceae +/+ U, L B1, B2, G, R, M BRI 578812,<br />

MELU102301<br />

T Polyscias mollis (Benth.) Harms & C.T.White Araliaceae / (1) U B1<br />

T Polyscias murrayi (F.Muell.) Harms Araliaceae / (1) U B1 Webb (1949) DNT<br />

SH Polyscias purpurea C.T.White Araliaceae / (4) U G MELU102154<br />

HE Pothos longipes Schott Araceae / (4) U, L B1, M<br />

T Pouteria asterocarpon (P.Royen) Jessup Sapotaceae / (1) U B2<br />

T Pouteria brownlessiana (F.Muell.) Baehni Sapotaceae / (3) U, L B1, B2, G, M<br />

T Pouteria castanosperma (C.T.White) Baehni Sapotaceae / (4) U B1, G<br />

T Pouteria chartacea (F.Muell. ex Benth.) Baehni Sapotaceae / (3) 2 dry* L M<br />

T Pouteria myrs<strong>in</strong>odendron (F.Muell.) Jessup Sapotaceae / (7) U, L G, M MELU102221<br />

T Pouteria papyracea (P.Royen) Baehni Sapotaceae / (2) U B2 MELU102308,<br />

102309<br />

T Pouteria pearsoniorum Jessup Sapotaceae / (1) U R<br />

T Prunus turneriana (F.M.Bailey) Kalkman Rosaceae +/+ U, L B1, M BRI 578814,<br />

MELU102133,<br />

102134<br />

H Pseuderanthemum variabile (R.Br.) Radlk. Acanthaceae / (1) L M Webb (1949) DNT<br />

T Pseuduvaria froggattii (F.Muell.) Jessup Annonaceae / (3) L M MELU102310<br />

T Pseuduvaria mulgraveana Jessup<br />

var. glabrescens<br />

Annonaceae / (1) U G<br />

SH Psychotria dallachiana Benth. Sap<strong>in</strong>daceae / (1) U B2<br />

SH Psychotria loniceroides Sieber ex DC. Rubiaceae / (2) U G Webb (1949) DNT<br />

SH Psychotria nematopoda F.Muell. Rubiaceae / (2) L M<br />

SH Psychotria sp. Rubiaceae / (1) L M<br />

SH Psychotria sp. (Utchee Creek H. Flecker NQNC 5313) Rubiaceae / (3) U G<br />

SH Psychotria submontana Dom<strong>in</strong> Rubiaceae / (2) U B1, G<br />

T Psydrax laxiflorens S.T.Reynolds & R.J.F.Hend. Rubiaceae / (2) U G<br />

T Pullea stutzeri (F.Muell.) Gibbs Cunoniaceae / (3) U G<br />

SH Randia sp. (Boonjie L.W.Jessup+ GJM264) Rubiaceae / (1) U B1<br />

SH Randia tuberculosa F.M.Bailey Rubiaceae / (7) U B1, G MELU102158<br />

T Rapanea achradifolia (F.Muell.) Mez Myrs<strong>in</strong>aceae / (3) U B2, G, R MELU102217<br />

SH/T Rapanea porosa (F.Muell.) Mez Myrs<strong>in</strong>aceae / (3) U, L R, M<br />

SH Rapanea sp. (Atherton K.J.White AQ91778) Myrs<strong>in</strong>aceae / (2) U R MELU102260<br />

HE Rhaphidophora petrieana A.Hay Araceae / (3) L M Webb (1949) DNT<br />

T Rhodamnia blairiana F.Muell. Myrtaceae / (2) U G<br />

T Rhodamnia spongiosa (F.M.Bailey) Dom<strong>in</strong> Myrtaceae / (2) U R


T Pammel (1911)<br />

Rhodomyrtus pervagata Guymer Myrtaceae / (3) U B2, G, R<br />

T Rhysotoechia mortoniana (F.Muell.) Radlk. Sap<strong>in</strong>daceae / (1) U B2<br />

T Rhysotoechia robertsonii (F.Muell.) Radlk. Sap<strong>in</strong>daceae / (1) L M<br />

V Ripogonum album R.Br. Smilacaceae / (3) U B1, B2, G<br />

V Ripogonum elseyanum F.Muell. Smilacaceae / (3) U B1<br />

V Rourea brachyandra F.Muell. Connaraceae / (1) L M<br />

SH Rubus queenslandicus A.R.Bean Rosaceae / (1) U B2<br />

T Ryparosa javanica (Blume) Kurz ex<br />

Achariaceae † +/+ L M Koord. & Valeton D R. caesia +CN;<br />

Rosenthaler (1919)<br />

Ryparosa spp. +CN<br />

V Sarcopetalum harveyanum F.Muell. Menispermaceae / (1) B B1 Webb (1949) DNT;<br />

Hurst (1942) –CN<br />

T Sarcopteryx martyana (F.Muell.) Radlk. Sap<strong>in</strong>daceae DNT U G<br />

T Sarcopteryx reticulata S.T.Reynolds Sap<strong>in</strong>daceae / (2) L M<br />

T Sarcotoechia lanceolata (C.T.White)<br />

S.T.Reynolds<br />

Sap<strong>in</strong>daceae / (2) U G<br />

MELU102277<br />

T Sarcotoechia protracta Radlk. Sap<strong>in</strong>daceae / (3) U B1, G<br />

T Sarcotoechia sp. (Mt Carb<strong>in</strong>e<br />

Sap<strong>in</strong>daceae / (2) U R MELU102303<br />

L.W.Jessup+ GJM995)<br />

V Scaevola enantophylla F.Muell. Goodeniaceae / (4) U B1, G Webb (1949) DNT<br />

T Schistocarpaea johnsonii F.Muell. Rhamnaceae / (5) U B1<br />

T Schizomeria whitei Mattf. Cunoniaceae / (1) U G<br />

T Scolopia braunii (Klotzsch) Sleumer Salicaceae † / (1) U B2<br />

T Siphonodon membranaceus F.M.Bailey Celastraceae / (3) U, L B1, M<br />

T Sloanea australis subsp. parviflora Coode Elaeocarpaceae / (4) U B1<br />

T Sloanea langii F.Muell. Elaeocarpaceae / (5) U, L B2, G, M<br />

T Sloanea macbrydei F.Muell. Elaeocarpaceae / (3) U B1, G<br />

V Smilax aculeatissima Conran Smilacaceae / (3) U B1<br />

V Smilax calophylla Wall. ex A.DC. Smilacaceae / (1) L M<br />

V Smilax glauca Walter Smilacaceae / (2) U B1<br />

V Smilax glyciphylla Sm. Smilacaceae / (2) U B2, R<br />

SH Solanum macoorai F.M.Bailey Solanaceae / (1) U B2<br />

SH Solanum sp. Solanaceae / (2) U B1<br />

SH Solanum viridifolium Dunal Solanaceae / (1) U G<br />

T Sphenostemon lobosporus (F.Muell.) L.S.Sm. Sphenostemonaceae / (3) U G, R MELU102111<br />

SH/T Steganthera australiana C.T.White Monimiaceae / (2) U B2<br />

T Steganthera macooraia (F.M.Bailey) P.K.Endress Monimiaceae / (4) U R MELU102231<br />

T Stenocarpus reticulatus C.T.White Proteaceae / (1) U R E. E. Conn (pers. comm.) –ve MELU102196<br />

T Stenocarpus s<strong>in</strong>uatus (Loudon) Endl. Proteaceae / (1); flwr – U B2 E. E. Conn (pers. comm.) –ve<br />

V Stephania japonica (Thunb.) Miers Menispermaceae DNT L M<br />

T Storckiella australiensis J.H.Ross & B.Hyland Caesalp<strong>in</strong>iaceae / (3) L M MELU102279<br />

T Streblus glaber var. australianus<br />

(C.T.White) Corner<br />

Moraceae / (3) U B2, R<br />

V Strychnos m<strong>in</strong>or Dennst. Strychnaceae / (1) L M<br />

T Symplocos coch<strong>in</strong>ch<strong>in</strong>ensis subsp. 1 Symplocaceae / (2) U G<br />

T Symplocos coch<strong>in</strong>ch<strong>in</strong>ensis var. gittonsii Noot. Symplocaceae / (2) U B2, R<br />

T Symplocos coch<strong>in</strong>ch<strong>in</strong>ensis var. pilosiuscula Noot. Symplocaceae / (3) U B2, G, R MELU102218<br />

SH Symplocos hayesii C.T.White & W.D.Francis Symplocaceae / (3) U B1, B2, R MELU102320<br />

SH/T Symplocos paucistam<strong>in</strong>ea F.Muell. & F.M.Bailey Symplocaceae / (3) U, L B1, G, M<br />

T Synima cordierorum (F.Muell.) Radlk. Sap<strong>in</strong>daceae / (1) U, L B2, G, M<br />

T Synima macrophylla S.T.Reynolds Sap<strong>in</strong>daceae / (4) U B1, B2, G MELU102289<br />

T Synoum muelleri C.DC. Meliaceae / (2) U B2 MELU102306<br />

T Syzygium canicortex B.Hyland Myrtaceae / (2) U B2, G MELU102272


T Syzygium cormiflorum (F.Muell.) B.Hyland Myrtaceae / (3) U, L B1, B2, G, M MELU102224<br />

T Syzygium endophloium B.Hyland Myrtaceae / (4) U B1, B2, G, R MELU102153<br />

T Syzygium gustavioides (F.M.Bailey) B.Hyland Myrtaceae / (1) U B1<br />

T Syzygium johnsonii (F.Muell.) B.Hyland Myrtaceae / (3) U B2, G<br />

T Syzygium kuranda (F.M.Bailey) B.Hyland Myrtaceae / (4) U, L B1, G, M<br />

T Syzygium luehmannii (F.Muell.) L.A.S.Johnson Myrtaceae / (1) U R<br />

T Syzygium monospermum Craven Myrtaceae / (1) L M<br />

T Syzygium papyraceum B.Hyland Myrtaceae / (3) U B1, G MELU102159<br />

T Syzygium trachyphloium (C.T.White) B.Hyland Myrtaceae / (1) U B1<br />

T Syzygium wesa B.Hyland Myrtaceae / (3) U B2, G MELU102096,<br />

102249<br />

T Syzygium wilsonii subsp. cryptophlebium<br />

Myrtaceae / (3) U B1, G MELU102223<br />

(F.Muell.) B.Hyland<br />

SH Tabernaemontana pandacaqui Lam. Apocynaceae / (1) L M<br />

SH Tape<strong>in</strong>osperma sp. (Cedar Bay<br />

J.G.Tracey 14780)<br />

Myrs<strong>in</strong>aceae / (4) U G<br />

SH Tasmannia <strong>in</strong>sipida R.Br. ex DC. W<strong>in</strong>teraceae / (3) dry* U R<br />

T Ternstroemia cherryi (F.M.Bailey)<br />

Theaceae / (2) L M<br />

Merr. ex J.F.Bailey & C.T.White<br />

V Tetracera nordtiana var. nordtiana F.Muell. Dilleniaceae / (2) U, L G, M<br />

T Tetrasynandra laxiflora (Benth.) J.R.Perk<strong>in</strong>s Monimiaceae / (6) U, L B1, G, M MELU102229<br />

T Timonius s<strong>in</strong>gularis (F.Muell.) L.S.Sm. Rubiaceae / (1) U B1<br />

T Toechima erythrocarpum (F.Muell.) Radlk. Sap<strong>in</strong>daceae / (3) U, L B1, G, M MELU102321<br />

T Toechima monticola S.T.Reynolds Sap<strong>in</strong>daceae / (1) U G, R MELU102098<br />

T Triunia erythrocarpa Foreman Proteaceae / (3) U B1 E. E. Conn (pers. comm.) –ve<br />

V Trophis scandens (Lour.) Hook. &<br />

Arn. subsp. scandens<br />

Moraceae / (1) L M MELU102271<br />

V Uncaria lanosa var. appendiculata<br />

(Benth.) Ridsdale<br />

Rubiaceae / (1) L M<br />

T Uromyrtus metrosideros (F.M.Bailey) A.J.Scott Myrtaceae / (1) U R MELU102315<br />

V Ventilago ecorollata F.Muell. Rhamnaceae DNT L M<br />

T Wilkiea angustifolia (F.M.Bailey) J.R.Perk<strong>in</strong>s Monimiaceae / (1) U B1 MELU102330<br />

SH Wilkiea sp. Monimiaceae / (2) U B1<br />

SH Wilkiea sp. (Barong L.W.Jessup 719) Monimiaceae / (14) U B1, B2, G<br />

SH Wilkiea sp. Gen. (AQ63687) sp.<br />

(Davies Creek L.J.Webb+ 6430)<br />

Monimiaceae / (3) U B1 MELU102302<br />

SH Wilkiea wardellii (F.Muell.) J.R.Perk<strong>in</strong>s Monimiaceae / (3) U R<br />

T Xanthophyllum octandrum (F.Muell.) Dom<strong>in</strong> Xanthophyllaceae / (3) U, L B1, B2, G, M MELU102101<br />

T Xylopia maccreae (F.Muell.) L.S.Sm. Annonaceae / (1) L M<br />

T Zanthoxylum veneficum F.M.Bailey Rutaceae / (2) U B2, G Webb (1949) DNT MELU102215<br />

† Species <strong>in</strong> the families Salicaceae and Achariaceae which, until recent revisions, were <strong>in</strong> the Flacourtiaceae (Chase et al., 2002)<br />

z Non-woody Alocasia brisbanensis was not <strong>in</strong>cluded <strong>in</strong> the analysis <strong>of</strong> the frequency <strong>of</strong> cyanogenic species.<br />

D Ryparosa javanica is currently the subject <strong>of</strong> taxonomic review; this Queensland Ryparosa sp. is likely to be renamed (Webber, 2005).<br />

* Due to limited access to foliage, tests for cyanogenesis us<strong>in</strong>g fresh tissue were not conducted, <strong>in</strong>stead, freeze-dried samples were assayed quantitatively for the presence <strong>of</strong> CN <strong>in</strong>dicated as ‘dry’.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!