06.04.2013 Views

Diversity and phytogeography of vascular epiphytes in a tropical ...

Diversity and phytogeography of vascular epiphytes in a tropical ...

Diversity and phytogeography of vascular epiphytes in a tropical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Flora ] (]]]]) ]]]–]]]<br />

<strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a<br />

<strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>, Taiwan<br />

Rebecca Hsu a, ,1 , Jan H.D. Wolf b<br />

a<br />

Taiwan Forestry Research Institute, NO. 67, Sanyuan street, 100 Taipei, Taiwan<br />

b<br />

Universiteit van Amsterdam, Institute for Biodiversity <strong>and</strong> Ecosystem Dynamics (IBED), P.O. Box 94062, 1090 GB Amsterdam,<br />

The Netherl<strong>and</strong>s<br />

Received 14 May 2008; accepted 20 August 2008<br />

Abstract<br />

We present the first checklist <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> Taiwan, based on herbarium specimens, literature records, <strong>and</strong><br />

field observations. Epiphyte <strong>phytogeography</strong> was analyzed us<strong>in</strong>g Takhtajan’s modified division <strong>in</strong> floristic regions. We<br />

ascerta<strong>in</strong> the presence <strong>of</strong> 336 species <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> (24 families, 105 genera) <strong>in</strong> Taiwan. Pteridophytes<br />

contribute most species (171 species), followed by orchids (120 species). Epiphytes contribute 8% to Taiwanese floristic<br />

diversity <strong>and</strong> epiphyte endemism is near 21.3%. The extensive mounta<strong>in</strong> system is probably the most effective driver<br />

for epiphyte diversification <strong>and</strong> endemicity <strong>in</strong> Taiwan. Phytogeographically, Taiwanese <strong>epiphytes</strong> exhibit equal aff<strong>in</strong>ity<br />

to the Malesian region, southern Ch<strong>in</strong>a <strong>and</strong> Indo-Ch<strong>in</strong>a <strong>and</strong> Eastern Asiatic regions. However, some species have a<br />

disjunctive distribution between Taiwan <strong>and</strong> SW Ch<strong>in</strong>a <strong>and</strong>/or E Himalaya, presumably related to low habitat<br />

similarity with adjacent Ch<strong>in</strong>a <strong>and</strong>/or the legacy <strong>of</strong> Late Quaternary climate change. Vascular epiphyte distribution<br />

patterns corroborate the phytogeographical separation <strong>of</strong> the isl<strong>and</strong> <strong>of</strong> Lanyu from the ma<strong>in</strong> isl<strong>and</strong> <strong>of</strong> Taiwan along<br />

Kanto’s Neo-Wallace L<strong>in</strong>e.<br />

r 2009 Elsevier GmbH. All rights reserved.<br />

Keywords: Endemism; Epiphyte-quotient; Floristic aff<strong>in</strong>ity; Neo-wallace l<strong>in</strong>e; Paleotropics; Late Quaternary climate change<br />

Introduction<br />

The conspicuous <strong>vascular</strong> epiphyte community <strong>in</strong> the<br />

canopy <strong>of</strong> wet <strong>tropical</strong> forests has attracted botanists as<br />

early as 1888, especially dur<strong>in</strong>g the second half <strong>of</strong> the<br />

last century (Benz<strong>in</strong>g, 1990; Gentry <strong>and</strong> Dodson, 1987a;<br />

Johansson, 1974; Kress, 1986; Madison, 1977; Richards,<br />

1952). These studies have shown that the epiphytic lifeform<br />

is a successful adaptation <strong>of</strong> plants to conditions <strong>in</strong><br />

Correspond<strong>in</strong>g author.<br />

E-mail addresses: ecogarden@tfri.gov.tw (R. Hsu),<br />

wolf@science.uva.nl (J.H.D. Wolf).<br />

1 C.-C. Hsu is the correspond<strong>in</strong>g author’s name <strong>in</strong> Taiwanese.<br />

ARTICLE IN PRESS<br />

0367-2530/$ - see front matter r 2009 Elsevier GmbH. All rights reserved.<br />

doi:10.1016/j.flora.2008.08.002<br />

www.elsevier.de/flora<br />

the canopy, compris<strong>in</strong>g ca. 29,000 species, or approximately<br />

10% <strong>of</strong> all <strong>vascular</strong> plants, <strong>in</strong> 83 different<br />

families <strong>and</strong> 876 genera (Gentry <strong>and</strong> Dodson, 1987a).<br />

Whereas the number <strong>of</strong> epiphyte <strong>in</strong>ventories is gradually<br />

<strong>in</strong>creas<strong>in</strong>g, <strong>in</strong>ventories from the paleotropics are still<br />

rare <strong>and</strong> especially from Asia few <strong>in</strong>ventories are<br />

available (Wolf <strong>and</strong> Flamenco-S, 2003). In addition,<br />

little is known about <strong>epiphytes</strong> <strong>in</strong> <strong>tropical</strong>–sub<strong>tropical</strong><br />

transition zones. Consequently, the differences <strong>in</strong><br />

<strong>vascular</strong> epiphyte diversity <strong>and</strong> composition between<br />

temperate <strong>and</strong> <strong>tropical</strong> areas <strong>and</strong> between paleotropics<br />

<strong>and</strong> neotropics rema<strong>in</strong> ambiguous <strong>and</strong> lack generally<br />

accepted explanations (Benz<strong>in</strong>g, 1987; Gentry <strong>and</strong><br />

Dodson, 1987a; Zotz, 2005).<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


2<br />

Taiwan (formerly known as Formosa) is a cont<strong>in</strong>ental<br />

isl<strong>and</strong>, separated from Southeast Ch<strong>in</strong>a by<br />

the ca. 200 km wide Taiwan Strait, which reaches a<br />

depth <strong>of</strong> 70 m. The Tropic <strong>of</strong> Cancer crosses through<br />

the middle <strong>of</strong> the southern half <strong>of</strong> the isl<strong>and</strong>, <strong>and</strong><br />

about 70% <strong>of</strong> the total area is covered by mounta<strong>in</strong>s.<br />

Taiwan owes its existence to a collision <strong>of</strong> the<br />

Philipp<strong>in</strong>es Sea plate with the Eurasian cont<strong>in</strong>ental<br />

marg<strong>in</strong> some 5 million years ago, which <strong>in</strong>duced<br />

orogenesis (Ho, 1988). In contrast to many other<br />

regions at the tropic <strong>of</strong> Cancer or Capricorn,<br />

Taiwan has a humid climate thanks to the high<br />

mounta<strong>in</strong>s that <strong>in</strong>duce cloud formation <strong>in</strong> high-humidity<br />

oceanic w<strong>in</strong>ds. Frequent typhoons <strong>in</strong> summer <strong>and</strong><br />

NE monsoon <strong>in</strong> w<strong>in</strong>ter provide most precipitation<br />

throughout the year.<br />

Taiwan floristic diversity is high, compris<strong>in</strong>g ca. 4077<br />

species (Hsieh, 2003). Be<strong>in</strong>g a mounta<strong>in</strong>ous isl<strong>and</strong>,<br />

species diversity is the result <strong>of</strong> great habitat heterogeneity.<br />

Furthermore, situated at the transition from<br />

tropics to subtropics, <strong>in</strong> Taiwan many <strong>tropical</strong> plant<br />

species reach their northern limit (Hsueh <strong>and</strong> Lee, 2000),<br />

whereas temperate species are found <strong>in</strong> the high<br />

mounta<strong>in</strong>s (Hosokawa, 1958). Phytogeographically,<br />

Taiwan belongs to the Eastern Asiatic region (Takhtajan,<br />

1986). Yet the south end <strong>of</strong> Taiwan, Henchun<br />

Fig. 1. Location <strong>of</strong> Taiwan, Lanyu, Lutao, <strong>and</strong> the Neo-<br />

Wallace L<strong>in</strong>e (Kanto, 1933).<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]]<br />

Fig. 2. Takhtajan’s floristic regions. Numbers <strong>in</strong>dicated: 2,<br />

Eastern Asiatic region; 2–20, Ryukyu isl<strong>and</strong>s; 2–25, SW Ch<strong>in</strong>a;<br />

2–27, E Himalaya; 12, Sudano-Zambezian region; 15, Madagascan<br />

regions; 16, Indian region; 17, Indoch<strong>in</strong>ese region; 18,<br />

Malesian region; 18–104, Philipp<strong>in</strong>es; 19, Fijian region; 20,<br />

Polynesian region; 22, Neocaledonian region; 29, NE Australian<br />

region. Regions that not covered <strong>in</strong> above map but with<br />

Taiwanese epiphyte occurrence are: 3, North American<br />

Atlantic region; 4, Rocky Mounta<strong>in</strong> region; 6, Mediterranean<br />

region; 8, Iran-Turanian region; 9, Madrean region; 10,<br />

Gu<strong>in</strong>eo-Congolian region; 21, Hawaiian region; 23, Caribbean<br />

region; 24, Guayana Highl<strong>and</strong>s; 25, Amazonian region; 26,<br />

Brazilian region; 27, Andean region. The figure was modified<br />

from Takhtajan (1986).<br />

Pen<strong>in</strong>sula, <strong>and</strong> two small volcanic isl<strong>and</strong>s, Lanyu <strong>and</strong><br />

Lutao, located <strong>in</strong> the south-eastern Taiwan, are<br />

perta<strong>in</strong>ed to Malesian region (Figs. 1 <strong>and</strong> 2). The<br />

vegetation <strong>of</strong> Lanyu is characterized by <strong>tropical</strong> ra<strong>in</strong><br />

forests, <strong>and</strong> its flora <strong>and</strong> fauna have more <strong>in</strong> common<br />

with the Philipp<strong>in</strong>es than with Taiwan. On this basis,<br />

Kanto (1933) proposed the Neo-Wallace L<strong>in</strong>e by<br />

extend<strong>in</strong>g the boundary <strong>of</strong> Dickerson <strong>and</strong> Merrill’s L<strong>in</strong>e<br />

(Dickerson, 1928) from northern Luzon to Lanyu<br />

through the middle sea <strong>of</strong> Lanyu <strong>and</strong> Lutao (Fig. 1).<br />

Kanto’s proposal was corroborated by several subsequent<br />

biogeological studies (Hosokawa, 1958; Kanehira,<br />

1935; Yen et al., 2003).<br />

In this study we describe the epiphyte flora <strong>of</strong><br />

Taiwan for the first time. Specifically, we address the<br />

follow<strong>in</strong>g research questions: (i) Is species richness,<br />

endemism, <strong>and</strong> familial makeup similar to that <strong>of</strong><br />

other floristic regions such as <strong>tropical</strong> <strong>and</strong> temperate<br />

areas <strong>in</strong> the neotropics? (ii) What is the phytogeographical<br />

aff<strong>in</strong>ity <strong>of</strong> <strong>epiphytes</strong> <strong>and</strong> several<br />

sub-categories? (iii) Do <strong>epiphytes</strong> corroborate the Neo-<br />

Wallace L<strong>in</strong>e?<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


Materials <strong>and</strong> methods<br />

Study site<br />

Taiwan is situated between 21145 0 N–25156 0 N <strong>and</strong><br />

119118 0 E–124134 0 E with an area <strong>of</strong> 36,000 km 2 (Fig. 1).<br />

The Central Ridge <strong>of</strong> Taiwan comprises over 200 peaks<br />

higher than 3000 m a.s.l., <strong>and</strong> Yushan is the highest<br />

(3952 m) peak <strong>in</strong> this isl<strong>and</strong>. The annual ra<strong>in</strong>fall ranges<br />

from 1000 to over 6000 mm (data from 1949 to 2004).<br />

Mean monthly temperature <strong>in</strong> the lowl<strong>and</strong>s ranges from<br />

15 to 20 1C, <strong>and</strong> is about 28 1C <strong>in</strong> summer. Based on<br />

bioclimatic analyses, Taiwan can be classified <strong>in</strong>to seven<br />

climatic regions, <strong>and</strong> Lanyu is separated <strong>in</strong>dependently<br />

(Su, 1984, 1992). Lanyu (ca. 46 km 2 , also known as<br />

Botel Tobago, Kotosho, <strong>and</strong> Orchid I.) <strong>and</strong> Lutao<br />

(ca. 16 km 2 , Green I., Kwasyoto I., <strong>and</strong> Samasana I.) are<br />

small <strong>tropical</strong> isl<strong>and</strong>s located at 22103 0 N, 121132 0 E <strong>and</strong><br />

22140N, 121129E, respectively. Dur<strong>in</strong>g summer <strong>and</strong><br />

early autumn, typhoons frequently hit Taiwan, which<br />

have less impact <strong>in</strong> western Taiwan, sheltered by the<br />

Central Ridge.<br />

Epiphyte def<strong>in</strong>ition<br />

We def<strong>in</strong>e <strong>epiphytes</strong> as organisms that grow on plants<br />

without extract<strong>in</strong>g water or nutrients from hosts’ liv<strong>in</strong>g<br />

tissues, follow<strong>in</strong>g Barkman (1958). In this paper, focus is<br />

on <strong>vascular</strong> plants, but many other epiphytic organisms<br />

are found <strong>in</strong> the canopy <strong>of</strong> the forest. In addition, it is<br />

not rare to f<strong>in</strong>d accidental <strong>epiphytes</strong> grow<strong>in</strong>g on other<br />

plants, which are unable to reproduce <strong>in</strong> the canopy<br />

(M<strong>of</strong>fett, 2000). We excluded accidental <strong>epiphytes</strong><br />

from our checklist <strong>and</strong> classified <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong><br />

follow<strong>in</strong>g sub-categories:<br />

(i) Holo-<strong>epiphytes</strong>: <strong>epiphytes</strong> that complete their entire<br />

life cycle without contact<strong>in</strong>g the forest floor<br />

(Benz<strong>in</strong>g, 1990).<br />

(ii) Hemi-<strong>epiphytes</strong>: <strong>epiphytes</strong> that complete part <strong>of</strong><br />

their life cycle as terrestrial plants. Primary hemi<strong>epiphytes</strong><br />

beg<strong>in</strong> their life cycle as <strong>epiphytes</strong> <strong>and</strong><br />

eventually send their roots to the ground (e.g.<br />

strangler figs), whereas secondary hemi-epiphyte<br />

seedl<strong>in</strong>gs germ<strong>in</strong>ate terrestrially to become epiphytic<br />

secondarily when their root<strong>in</strong>g shoots decompose<br />

(e.g. aroids).<br />

(iii) Facultative <strong>epiphytes</strong>: species <strong>in</strong> which some <strong>in</strong>dividuals<br />

are terrestrial.<br />

Epiphyte checklist<br />

Botanically, Taiwan is one <strong>of</strong> the best explored<br />

regions <strong>in</strong> the tropics. The national database houses<br />

over 200,000 botanical records (ca. 60% <strong>of</strong> herbarium<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]] 3<br />

collections). We gratefully made use <strong>of</strong> this wealth <strong>of</strong><br />

<strong>in</strong>formation, scrut<strong>in</strong>iz<strong>in</strong>g for <strong>epiphytes</strong> <strong>in</strong> well-known<br />

epiphytic taxonomic groups (Benz<strong>in</strong>g, 1990). In addition,<br />

we used epiphyte records <strong>in</strong> published plant<br />

<strong>in</strong>ventories <strong>and</strong> floras. Nomenclature follows the 2nd<br />

edition <strong>of</strong> the Flora <strong>of</strong> Taiwan (Boufford et al., 2003).<br />

To compile this checklist, species listed <strong>in</strong> Flora <strong>of</strong><br />

Taiwan were exam<strong>in</strong>ed one by one, <strong>and</strong> the approximate<br />

number <strong>of</strong> <strong>epiphytes</strong> was ascerta<strong>in</strong>ed.<br />

Phytogeography analyses<br />

We assessed the presence <strong>of</strong> Taiwanese <strong>vascular</strong><br />

<strong>epiphytes</strong> <strong>in</strong> Takhtajan’s floristic regions (Takhtajan,<br />

1986). The floristic prov<strong>in</strong>ces, SW Ch<strong>in</strong>a, E Himalaya,<br />

Ryukyu <strong>and</strong> Philipp<strong>in</strong>es under Eastern Asiatic <strong>and</strong><br />

Malesian regions <strong>of</strong> Takhtajan’s system, were recognized<br />

<strong>in</strong>dependently (Fig. 2). Species geographical<br />

distributions were characterized based on the flora <strong>of</strong><br />

Taiwan <strong>and</strong> collections <strong>in</strong> the global biodiversity<br />

<strong>in</strong>formation facility (GBIF) onl<strong>in</strong>e database. For<br />

smaller floristic prov<strong>in</strong>ces, such as SW Ch<strong>in</strong>a <strong>and</strong><br />

Ryukyu, floras <strong>of</strong> Japan <strong>and</strong> Ch<strong>in</strong>a were consulted to<br />

determ<strong>in</strong>e the specific occurrence locations.<br />

Results<br />

Species richness, family makeup, <strong>and</strong> endemism<br />

There are 336 species <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> 105<br />

genera <strong>and</strong> 24 families <strong>in</strong> Taiwan <strong>and</strong> two subsidiary<br />

isles, Lanyu <strong>and</strong> Lutao (Appendix A). Obligate holo<strong>epiphytes</strong><br />

comprise 271 (81%) species, 41 (12%) species<br />

are facultative holo-<strong>epiphytes</strong>, <strong>and</strong> 7 (2%) <strong>and</strong> 17 (5%)<br />

species are primary <strong>and</strong> secondary hemi-<strong>epiphytes</strong>,<br />

respectively.<br />

The Taiwanese epiphyte flora is dom<strong>in</strong>ated by<br />

Pteridophytes, i.e. ferns <strong>and</strong> fern allies, compris<strong>in</strong>g 171<br />

species (Table 1). The number <strong>of</strong> orchids is also<br />

substantial, 120 species (Fig. 3). The 10 most speciesrich<br />

families conta<strong>in</strong> 89% <strong>of</strong> all <strong>epiphytes</strong> <strong>and</strong> the<br />

rema<strong>in</strong><strong>in</strong>g plant families with epiphytic representatives<br />

only contribute about 11% to total epiphyte richness<br />

(Fig. 3). At the genus level also, epiphytism is<br />

concentrated <strong>in</strong> few taxa. Only 5% <strong>of</strong> the genera conta<strong>in</strong><br />

more than 10 species <strong>and</strong> 54 (51%) genera are<br />

represented with one s<strong>in</strong>gle species only <strong>in</strong> the region.<br />

More than a quarter <strong>of</strong> native Pteridophytes (Table 1)<br />

<strong>and</strong> 36% <strong>of</strong> native orchids are <strong>epiphytes</strong>. In contrast, the<br />

Epiphyte-quotient (Ep.-Q, Hosokawa, 1950), i.e. the<br />

proportion <strong>of</strong> epiphytic species <strong>in</strong> the flora, is only<br />

approximately 8% (Table 1).<br />

Of the 336 <strong>epiphytes</strong>, 75 are endemic species.<br />

Sixty-n<strong>in</strong>e species are conf<strong>in</strong>ed to Taiwan, <strong>and</strong> one<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


4<br />

disjunctively occurs <strong>in</strong> Taiwan <strong>and</strong> Lanyu. Despite the<br />

small size <strong>of</strong> Lanyu <strong>and</strong> Lutao, five species are conf<strong>in</strong>ed<br />

here (four species are endemic to Lanyu, <strong>and</strong> one species<br />

is shared by both). The proportion <strong>of</strong> Taiwan endemic<br />

<strong>epiphytes</strong> (21.3%, Table 2) is less than that <strong>in</strong> the entire<br />

flora (26.2%, Hsieh, 2003). Most endemic <strong>epiphytes</strong> are<br />

orchids (54.2%) despite overall higher number <strong>of</strong><br />

epiphytic pteridophytes <strong>in</strong> Taiwan. Of all 114 epiphytic<br />

orchids, 38 species (33.3%) are endemic to Taiwan,<br />

as opposed to 19 species (11.2%) <strong>of</strong> pteridophytes<br />

(Table 2).<br />

Epiphyte <strong>phytogeography</strong><br />

With respect to phytogeographical region, about 41%<br />

<strong>of</strong> <strong>epiphytes</strong> <strong>in</strong> Taiwan also occur <strong>in</strong> the Malesian<br />

region, <strong>in</strong>clud<strong>in</strong>g 10% <strong>of</strong> species shared with only the<br />

Philipp<strong>in</strong>es (Table 2). About 39% <strong>of</strong> species are shared<br />

with Indo-Ch<strong>in</strong>a, <strong>and</strong> about the same proportion is<br />

shared with Eastern Asiatic regions, which cover<br />

temperate E Asia, E Himalaya, SW Ch<strong>in</strong>a, <strong>and</strong> Ryukyu.<br />

The isl<strong>and</strong>s Lutao <strong>and</strong> Lanyu share most species (over<br />

70%) with the Malesian region, whilst Lutao has a high<br />

proportion (40%) <strong>of</strong> species that also occur <strong>in</strong> temperate<br />

ARTICLE IN PRESS<br />

Table 1. Contribution <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> to the flora <strong>of</strong> Taiwan <strong>in</strong> various taxonomic categories (data Flora <strong>of</strong> Taiwan,<br />

Boufford et al., 2003).<br />

All <strong>vascular</strong> plants Ferns <strong>and</strong> allies Angiosperm Dicotyledons Monocotyledons<br />

Families 24/235(10%) 12/37(32%) 12/190(6%) 10/151(7%) 2/39(5%)<br />

Genera 105/1419(7%) 48/145(33%) 57/1257(5%) 16/901(2%) 41/356(12%)<br />

Species 336/4077(8%) a<br />

171/629(27%) 165/3420(5%) 40/2410(2%) 125/1010(12%)<br />

a Epiphyte-quotient.<br />

Moraceae (11) 3%<br />

Piperaceae (13) 4%<br />

Vittariaceae (10) 3%<br />

Lycopodiaceae (10) 3%<br />

Davalliaceae (11) 3%<br />

Aspleniaceae (17) 5%<br />

Grammitidaceae (19) 6%<br />

Hymenophyllaceae (31)<br />

9%<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]]<br />

other families (37) 11%<br />

Polypodiaceae (57) 17%<br />

E Asia. Only Lanyu shares an exceptional high<br />

proportion (22%) <strong>of</strong> species with the Philipp<strong>in</strong>es<br />

(Table 2).<br />

Overall, epiphytic ferns shared more species with<br />

other floristic regions than total epiphytic species<br />

(Table 2). Over 40% <strong>of</strong> Taiwanese epiphytic ferns also<br />

occurred <strong>in</strong> Eastern Asiatic, Malesian, <strong>and</strong> Indoch<strong>in</strong>ese<br />

regions. Epiphytic orchids exhibited the highest aff<strong>in</strong>ity<br />

(35%) to Indo-Ch<strong>in</strong>a, yet shared no species with<br />

Neo<strong>tropical</strong> <strong>and</strong> Holarctic areas, except E. Asia.<br />

Discussion<br />

Orchidaceae (120) 36%<br />

Fig. 3. Ten most species-rich epiphytic families <strong>and</strong> their contribution to total epiphyte flora <strong>in</strong> Taiwan. Numbers <strong>in</strong> parentheses are<br />

species numbers. Shad<strong>in</strong>g <strong>in</strong>dicates Pteridophyta.<br />

Species richness <strong>and</strong> taxonomic distribution<br />

For a paleo<strong>tropical</strong> region, the isl<strong>and</strong> <strong>of</strong> Taiwan is<br />

with 336 species rich <strong>in</strong> <strong>epiphytes</strong> (Table 1). There is no<br />

dist<strong>in</strong>ct dry season <strong>in</strong> Taiwan <strong>and</strong> abundant ra<strong>in</strong>fall <strong>and</strong><br />

warm climate promote epiphyte species richness <strong>and</strong><br />

growth. Another reason why epiphyte richness is high<br />

may be that Taiwan served as a refuge dur<strong>in</strong>g Late<br />

Quaternary climate change, which has been used<br />

to expla<strong>in</strong> the exceptionally high diversity <strong>in</strong> Taiwan<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


(4077 plant species; further discussed below). In view <strong>of</strong><br />

this high floristic diversity, Taiwan may even be<br />

considered relatively poor <strong>in</strong> <strong>vascular</strong> <strong>epiphytes</strong>. The<br />

contribution <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> to total <strong>vascular</strong> flora<br />

is only 8%, whilst the EP.-Q worldwide is nearly 10%.<br />

Moreover, about 36% <strong>of</strong> orchids are epiphytic <strong>in</strong><br />

Taiwan, which is far less than the 70% worldwide level<br />

(Atwood, 1986). Possibly frequent <strong>tropical</strong> storms have<br />

reduced epiphyte diversity <strong>in</strong> Taiwan. On average, five<br />

typhoons hit Taiwan each year (data from 1958 to 2007,<br />

Central Weather Bureau). Typhoons may have a<br />

dramatic impact on forest canopies <strong>and</strong> cause understory<br />

light levels to <strong>in</strong>crease to 30% <strong>of</strong> outside levels<br />

(L<strong>in</strong> et al., 2003). Similarly, low epiphyte diversity <strong>in</strong><br />

Puerto Rico has been attributed to isl<strong>and</strong> isolation<br />

<strong>and</strong> large-scale hurricane disturbances (Migenis <strong>and</strong><br />

Ackerman, 1993).<br />

Epiphyte richness <strong>in</strong> neo<strong>tropical</strong> areas, moreover, is<br />

generally higher. For example, Wolf <strong>and</strong> Flamenco-S<br />

(2003) report 1173 species for the state <strong>of</strong> Chiapas,<br />

Mexico (75,000 km 2 , 161N–181N). Typical for any<br />

epiphyte flora, the diversity is concentrated <strong>in</strong> few taxa<br />

(Fig. 3, Table 1). In contrast to the Neotropics,<br />

paleo<strong>tropical</strong> areas lack particularly species-rich epiphyte<br />

families (e.g. Bromeliaceae, Cactaceae, <strong>and</strong><br />

Marcgraviaceae) <strong>and</strong> genera <strong>in</strong> the orchids (e.g. Pleurothallis,<br />

1500 spp.; Epidendrum, 720 spp.; Maxillaria,<br />

570 spp.; Stelis, 540 spp.) <strong>and</strong> <strong>in</strong> the aroids (Anthurium,<br />

600 spp.; Philodendron, 350 spp. – Benz<strong>in</strong>g, 1990). In<br />

Taiwan, the most abundant <strong>epiphytes</strong> are ferns, <strong>and</strong> <strong>in</strong><br />

this respect Taiwanese epiphyte flora is typical for<br />

temperate regions. However, <strong>in</strong> comparison with other<br />

vegetation types, ecosystems, <strong>and</strong> floristic regions, the<br />

relative proportion <strong>of</strong> epiphytic ferns <strong>and</strong> orchids <strong>of</strong><br />

Taiwan is not dramatically different, show<strong>in</strong>g a transition<br />

from <strong>tropical</strong> to temperate regions (Table 3). A high<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]] 5<br />

Table 2. Floristic aff<strong>in</strong>ity <strong>of</strong> Taiwan epiphyte flora with phytogeographical regions, follow<strong>in</strong>g Takhtajan (1986).<br />

Floristic regions Taiwan (324) Lanyu (69) Lutao (25) Pteridophytes (170) Orchids (114)<br />

Eastern Asiatic Region 38.9 (126) 50.7 (35) 64.0 (16) 48.8 (83) 25.4 (29)<br />

Ch<strong>in</strong>a, Japan, Korea 27.2 (88) 21.7 (15) 40.0 (10) 31.2 (53) 20.2 (23)<br />

E. Himalaya & S.W. Ch<strong>in</strong>a 13.0 (42) 4.4 (3) 0.0 (0) 13.5 (23) 13.2 (15)<br />

Ryukyu 13.0 (42) 29.0 (20) 24.0 (6) 18.2 (31) 6.1 (7)<br />

Malesian Region 40.9 (132) 71.0 (49) 72.0 (18) 51.8 (88) 25.4 (29)<br />

Malay archipelago 31.2 (101) 49.3 (34) 64.0 (16) 42.4 (72) 14.0 (16)<br />

Philipp<strong>in</strong>es 9.6 (31) 21.7 (15) 8.0 (2) 9.4 (16) 11.4 (13)<br />

Indo-Ch<strong>in</strong>a 39.2 (127) 46.4 (32) 60.0 (15) 43.5 (74) 35.1 (40)<br />

India <strong>and</strong> Sirilanka 23.5 (76) 29.0 (20) 52.0 (13) 28.8 (49) 14.9 (17)<br />

Melanesia <strong>and</strong> Hawaii 12.0 (39) 26.1 (18) 44.0 (11) 20.0 (34) 1.8 (2)<br />

Africa 4.9 (16) 8.7 (6) 8.0 (2) 7.1 (12) 0.9 (1)<br />

Australia 9.0 (29) 18.8 (13) 36.0 (9) 12.4 (21) 1.8 (2)<br />

Neotropis 2.5 (8) 5.8 (4) 4.0 (1) 3.5 (6) 0.0 (0)<br />

Holarctis other than E.A. 1.5 (5) 2.9 (2) 0.0 (0) 2.9 (5) 0.0 (0)<br />

Endemicity 21.3 (69) 5.8 (4) 0.0 (0) 11.2 (19) 33.3 (38)<br />

Given is the proportion (%) <strong>and</strong> number <strong>of</strong> Taiwanese species, <strong>in</strong> parentheses, <strong>of</strong> epiphytic Taiwanese species per region.<br />

proportion <strong>of</strong> ferns <strong>and</strong> fern allies is probably due to the<br />

presence <strong>of</strong> temperate mounta<strong>in</strong>s <strong>in</strong> Taiwan that favour<br />

epiphytic ferns over, for example, orchids (Kessler et al.,<br />

2001; Zotz, 2005). In Taiwan, no epiphytic orchids are<br />

found above approximately 2300 m a.s.l. (Gastrochilus<br />

hoii, pers. comm.) <strong>in</strong> contrast to epiphytic ferns with<br />

ultimate altitudes <strong>of</strong> ca. 3000 m a.s.l. (e.g. Pyrrosia spp.,<br />

Lepisorus spp., Mecodium wrightii, pers. observ.).<br />

Epiphyte endemism<br />

Many isl<strong>and</strong>s are considered global biodiversity<br />

hotspots because <strong>of</strong> high endemicity <strong>of</strong> <strong>in</strong>sular biota<br />

(Kreft et al., 2008). Taiwan is no exception, hav<strong>in</strong>g<br />

extraord<strong>in</strong>ary plant endemicity. More than 1000 <strong>vascular</strong><br />

plant species are endemic to the isl<strong>and</strong>, compris<strong>in</strong>g<br />

26% <strong>of</strong> the entire flora. The strik<strong>in</strong>gly high flora<br />

endemism can be expla<strong>in</strong>ed by Taiwan’s extensive<br />

mounta<strong>in</strong> system. Taiwan was formed from the collision<br />

between the Philipp<strong>in</strong>es Sea plate <strong>and</strong> the Eurasian<br />

cont<strong>in</strong>ental marg<strong>in</strong> <strong>and</strong> gave rise to the Central Ridge <strong>of</strong><br />

Taiwan <strong>in</strong> Mid Pliocene (3 Ma) (Ho, 1988). Active<br />

orogenesis <strong>in</strong>duced a massive earthquake <strong>in</strong> central<br />

Taiwan as recent as 1999. Orogenesis results <strong>in</strong> greater<br />

microhabitat differentiation <strong>of</strong> mounta<strong>in</strong>ous regions,<br />

which promotes isl<strong>and</strong>-wide biodiversity <strong>and</strong> endemicity.<br />

Kreft et al. (2008) concluded that <strong>in</strong> cont<strong>in</strong>ental<br />

isl<strong>and</strong>s, geographic isolation from the ma<strong>in</strong>l<strong>and</strong> may<br />

contribute less to species diversity than mounta<strong>in</strong><br />

isolation. Our data are <strong>in</strong> agreement with this conclusion.<br />

For example, several epiphytic genera <strong>of</strong> mounta<strong>in</strong>ous<br />

regions, Bulbophyllum (24 spp.), Gastrochilus<br />

(9 spp.), <strong>and</strong> Oberonia (7 spp.), show exceptionally high<br />

endemicity <strong>of</strong> nearly 50%. Furthermore, Goodyera, a<br />

mid-elevation (ca. 1500–2000 m a.s.l.) species, evolved<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002<br />

Table 3. Epiphyte number <strong>of</strong> species (S) <strong>and</strong> taxonomic distribution among floristic regions <strong>and</strong> vegetation types.<br />

Location Vegetation type Latitude Ra<strong>in</strong>fall (mm) S Ferns (%) Orchids<br />

(%)<br />

Paleotropics<br />

Taiwan Tropical lowl<strong>and</strong><br />

to montane<br />

temperate forests<br />

Cameroon Semi-deciduous<br />

ra<strong>in</strong> forest<br />

Congo, upper Tropical lowl<strong>and</strong><br />

Katanga to montane forests<br />

SW Ch<strong>in</strong>a, Wet sub-<strong>tropical</strong><br />

Mt. Ailao montane forests<br />

Liberia,<br />

Nimba<br />

mounta<strong>in</strong>s<br />

Neotropics<br />

Mexico,<br />

Chiapas<br />

Tropical<br />

submontane forest<br />

Tropical lowl<strong>and</strong><br />

to montane<br />

temperate forests<br />

Ecuador Tropical lowl<strong>and</strong><br />

to montane<br />

temperate forests<br />

Ecuador, Tropical lowl<strong>and</strong><br />

Yasuní<br />

Amazonia<br />

Ecuador, Río<br />

Guajalito<br />

Ecuador, Río<br />

Palenque<br />

Costa Rica, La<br />

Selva<br />

Costa Rica,<br />

Santa Rosa<br />

Costa Rica,<br />

Monteverde<br />

Panama,<br />

Barro<br />

Colorado<br />

Guyana,<br />

Mabura Hill<br />

Temperate<br />

Chile, Fundo<br />

San Martín,<br />

Valdivia<br />

Tropical montane<br />

forest<br />

Tropical lowl<strong>and</strong><br />

wet forest<br />

Tropical lowl<strong>and</strong><br />

ra<strong>in</strong>forest<br />

Seasonal forest<br />

(with 6-month dry<br />

season)<br />

Tropical montane<br />

forest<br />

Tropical lowl<strong>and</strong><br />

moist forest<br />

Tropical lowl<strong>and</strong><br />

moist forest<br />

EQ (%) Endemism<br />

(%)<br />

Source Regional area/<br />

sampl<strong>in</strong>g effort<br />

21.9N–25.3N 2467 324 52 35 8 21 This study 36,000 km 2<br />

4.25N–2.5S ca. 1500–1900 78 25 65 Zapfack et al.<br />

(1996)<br />

150 trees<br />

ca. 7.5S–13.4S 780–1500 127 28 62 Schaijes <strong>and</strong><br />

Malaisse (2001)<br />

109,000 km 2<br />

24.53N 2450–2700 32 53 0.9 Xu <strong>and</strong> Liu (2005) 80 trees<br />

6N–8N 1500–3100 153 25 66 Johansson (1974) 463 trees<br />

16N–18N 800–5000 1173 21 48 14 Wolf <strong>and</strong><br />

Flamenco-S (2003)<br />

75,000 km 2 /<br />

12,276 coll.<br />

1.4N–5S 100–4500 4231 ca. 5–20 ca. 30–53 ca. 25 35 Küper et al. (2004) 256,370 km 2<br />

0.63S 2750 313 22 30 21 a<br />

10 Kreft et al. (2004) 650 ha<br />

0.23S 2700 122 22 57 28 Nieder et al.<br />

(2001), Rauer <strong>and</strong><br />

Rudolph (2001)<br />

400 ha<br />

ca. 1S 2980 238 12 34 23 Gentry <strong>and</strong><br />

Dodson (1987a)<br />

170 ha<br />

10.43N 4000 368 16 30 23 Gentry <strong>and</strong><br />

Dodson (1987b)<br />

1536 ha<br />

10.83N 1550 24 29 33 4 Gentry <strong>and</strong><br />

Dodson (1987a),<br />

Janzen <strong>and</strong><br />

Liesner (1980)<br />

37,000 ha<br />

10.3N 2500 878 22 b<br />

36 b<br />

29 Haber (2001) 10,500 ha<br />

9.15N 2750 216 20 38 16 Croat (1978) 1560 ha<br />

5.33N 2700 216 18 42 13 Ek (1997) 10,000 ha<br />

Temperate forests 39.63S 16 63 6 Riveros <strong>and</strong><br />

Ramírez (1978)<br />

6<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]]<br />

ARTICLE IN PRESS


New Zeal<strong>and</strong> Temperate ra<strong>in</strong> 34S–47S 150–5400 50 70 12 2 Oliver (1930) 268,680 km<br />

forests<br />

2<br />

Japan Temperate forest 24N–45N 800–3600 52 63 35 ca. 1 Zotz (2005) 377,873 km 2<br />

India, west Montane<br />

ca. 29N 1600 17 76 24 Gupta (1968), 3422 km<br />

Himalaya, temperate forest<br />

Zotz (2005)<br />

Na<strong>in</strong>ital<br />

2<br />

North Korea Temperate forest 38N–43N 560–1500 9 100 0 Kolbeck (1995) 120,540 km 2<br />

World<br />

28,200 9 71 ca. 10 Madison (1977)<br />

23,456 11 59 ca. 10 Kress (1986)<br />

29,505 9 77 ca. 10 Gentry <strong>and</strong><br />

Dodson (1987a)<br />

a<br />

Freiberg <strong>and</strong> Freiberg (2000).<br />

b<br />

Ingram et al. (1996) (composition <strong>of</strong> 256 epiphyte spp.).<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]] 7<br />

three epiphytic species, <strong>in</strong>clud<strong>in</strong>g two endemics. This is<br />

the first report <strong>of</strong> epiphytism <strong>in</strong> this genus. F<strong>in</strong>ally,<br />

endemicity <strong>in</strong>creases with altitude <strong>in</strong> Taiwan up to<br />

nearly 60% above 3500 m a.s.l.<br />

Yet, <strong>vascular</strong> <strong>epiphytes</strong> show lower endemism<br />

(21.3%) than terrestrial plants (Table 2). This may be<br />

due to their superior dispersal ability; 89% <strong>of</strong> <strong>vascular</strong><br />

<strong>epiphytes</strong> <strong>in</strong> Taiwan disperse by w<strong>in</strong>d. The arboreal<br />

habitat <strong>and</strong> dust-like seeds <strong>and</strong> diaspores enable longdistance<br />

dispersal. Overall, ferns show wider ranges <strong>and</strong><br />

lower endemicity than angiosperms (Gentry <strong>and</strong> Dodson,<br />

1987a; Kelly et al., 2004) (Table 2). In contrast with<br />

epiphytic seed plants, most large epiphytic fern genera<br />

are preponderantly pan<strong>tropical</strong> (Gentry <strong>and</strong> Dodson,<br />

1987a). Apart from dispersal ability, historical factors<br />

may also expla<strong>in</strong> species geographical range (Lester et<br />

al., 2007). Kelly et al. (2004) reported that <strong>in</strong> the <strong>tropical</strong><br />

Andes species endemism <strong>in</strong>creased from primitive to<br />

advanced taxonomic groups (bryophytesopteridophytesoangiosperms).<br />

Furthermore, taxa with narrow<br />

geographical range are <strong>of</strong>ten considered to have high<br />

speciation rates (Kelly et al., 2004). In this view, the high<br />

endemism (33%) <strong>in</strong> Taiwanese epiphytic orchids relates<br />

to their highly specific poll<strong>in</strong>ation system, which,<br />

together with the fragmented canopy habitat, promotes<br />

rapid speciation (Benz<strong>in</strong>g, 1987; Gentry, 1982; Gentry<br />

<strong>and</strong> Dodson, 1987a; Gravendeel et al., 2004).<br />

Epiphyte <strong>phytogeography</strong><br />

Taiwan has a relatively unique <strong>vascular</strong> epiphyte<br />

flora. The regions with closest aff<strong>in</strong>ity are the Malesian<br />

region, Indo-Ch<strong>in</strong>a, <strong>and</strong> Eastern Asiatic regions; ca.<br />

40% <strong>of</strong> Taiwanese species are shared with those regions.<br />

Interest<strong>in</strong>gly, about 13% <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> have a<br />

disjunctive distribution between Taiwan <strong>and</strong> SW Ch<strong>in</strong>a<br />

<strong>and</strong>/or E Himalayan regions (Table 2). This floristic<br />

disjunction is consistent with Hosokawa’s (1958) f<strong>in</strong>d<strong>in</strong>g<br />

that Taiwan’s flora, especially <strong>of</strong> the highl<strong>and</strong>, is more<br />

closely related to SW Ch<strong>in</strong>a <strong>and</strong> E Himalaya than to<br />

adjacent coastal prov<strong>in</strong>ces <strong>of</strong> ma<strong>in</strong>l<strong>and</strong> Ch<strong>in</strong>a. Kuo<br />

(1985) <strong>in</strong>dicated similar observations on Taiwanese<br />

pteridophyte flora. He found that the pteridophytes <strong>of</strong><br />

warm-temperate forests (500–1800 m a.s.l.) were closely<br />

related to SW Ch<strong>in</strong>a <strong>and</strong> the Himalayan regions, whilst<br />

lowl<strong>and</strong> species showed higher aff<strong>in</strong>ity to Ryukyu,<br />

south-eastern Ch<strong>in</strong>a <strong>and</strong> Indo-Ch<strong>in</strong>a.<br />

The simplest explanation for the lower epiphyte<br />

aff<strong>in</strong>ity <strong>of</strong> Taiwan with adjacent coastal regions <strong>of</strong><br />

south-eastern Ch<strong>in</strong>a is lack <strong>of</strong> suitable habitats (Kuo,<br />

1985). Due to long-term population pressure <strong>and</strong><br />

associated agricultural activities, south-eastern Ch<strong>in</strong>a<br />

has endured extensive habitat change. S<strong>in</strong>ce <strong>epiphytes</strong><br />

are most diverse <strong>and</strong> abundant <strong>in</strong> old-growth forests<br />

(Cascante-Mar<strong>in</strong> et al., 2006; Köhler et al., 2007; Wolf,<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


8<br />

2005), epiphyte diversity is especially affected. Furthermore,<br />

lowl<strong>and</strong> south-eastern Ch<strong>in</strong>a shows little habitat<br />

similarity with Taiwan mounta<strong>in</strong> areas.<br />

Late Quaternary climate change <strong>of</strong>fers another<br />

explanation. On an evolutionary time-scale, epiphytism<br />

is relatively recent, occurr<strong>in</strong>g <strong>in</strong> evolutionary advanced<br />

families <strong>of</strong> ferns <strong>and</strong> seed plants. Orchidaceae did not<br />

evolve until the Quaternary (1.6 Ma ago) (Benz<strong>in</strong>g,<br />

1990). Zotz (2005) discussed the possibility that the<br />

Pleistocene ext<strong>in</strong>ction was one <strong>of</strong> the limits <strong>of</strong> epiphytism<br />

<strong>in</strong> temperate zones, whilst few temperate areas<br />

(e.g. Chile, New Zeal<strong>and</strong>, Himalayas, Japan) have a<br />

high number <strong>of</strong> <strong>epiphytes</strong> for be<strong>in</strong>g Tertiary refugia. The<br />

common feature <strong>of</strong> the flora <strong>in</strong> these areas is a high<br />

proportion <strong>of</strong> autochthonous <strong>and</strong> monotypic taxa.<br />

Dur<strong>in</strong>g the ice age <strong>in</strong> the Quaternary, the sea level <strong>in</strong><br />

the Taiwan Strait dropped, connect<strong>in</strong>g Taiwan with<br />

ma<strong>in</strong>l<strong>and</strong> Eurasia. Accord<strong>in</strong>g to the projected vegetation<br />

map <strong>of</strong> Last Glacial Maximum (LGM, 18,000 ago),<br />

Eurasia had relatively scarce tree cover with scattered<br />

areas <strong>of</strong> close forests <strong>in</strong> the upl<strong>and</strong>s across southwestern<br />

Ch<strong>in</strong>a <strong>and</strong> along the south-eastern coast <strong>of</strong><br />

Eurasia (Ray <strong>and</strong> Adams, 2001). Presumably, the<br />

oceanic climate facilitated Taiwan as a refuge dur<strong>in</strong>g<br />

Quaternary glaciations. Moreover, apart from high<br />

endemicity, more than half <strong>of</strong> plant genera <strong>in</strong> Taiwan<br />

are monotypic (Hsieh, 2003). There is an endemic<br />

monotypic epiphyte genus Haraella (Orchidaceae)<br />

<strong>in</strong> Taiwan. Thus, we propose that Late Quaternary<br />

climate change helps expla<strong>in</strong> the disjunctive distribution<br />

<strong>of</strong> many <strong>vascular</strong> <strong>epiphytes</strong> between Taiwan<br />

<strong>and</strong> south-western Ch<strong>in</strong>a as well as eastern Himalayan<br />

regions.<br />

Table A1. The <strong>vascular</strong> epiphyte checklist <strong>of</strong> Taiwan.<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]]<br />

Interest<strong>in</strong>gly, the epiphyte flora <strong>of</strong> Lanyu <strong>and</strong> Lutao is<br />

phytogeographically dist<strong>in</strong>ct. Lanyu has more aff<strong>in</strong>ity<br />

with the Philipp<strong>in</strong>es (22%) <strong>in</strong> the Malesian region than<br />

Lutao (8%), whereas Lutao shares more species with<br />

Ch<strong>in</strong>a, Japan <strong>and</strong> Korea <strong>in</strong> the Eastern Asiatic Region<br />

(40%) than Lanyu (22%) (Table 2). This pattern is <strong>in</strong><br />

agreement with the proposed Neo-Wallace L<strong>in</strong>e based<br />

on <strong>in</strong>sect distributions (Kanto, 1933).<br />

In summary, this one <strong>of</strong> the few epiphyte <strong>in</strong>ventories<br />

<strong>in</strong> Asia shows that the Taiwanese epiphyte flora is rich <strong>in</strong><br />

species <strong>and</strong> has an extraord<strong>in</strong>arily high endemicity.<br />

Regional mounta<strong>in</strong> isolation is probably the most<br />

effective driver for epiphyte diversification <strong>in</strong> Taiwan.<br />

Regard<strong>in</strong>g the proportional contribution <strong>of</strong> epiphytic<br />

ferns <strong>and</strong> orchids, Taiwan is transitional between<br />

<strong>tropical</strong> <strong>and</strong> temperate zones. The disjunctive distribution<br />

<strong>of</strong> <strong>epiphytes</strong> between Taiwan <strong>and</strong> SW Ch<strong>in</strong>a as well<br />

as E Himalaya suggests low habitat similarity to<br />

adjacent Ch<strong>in</strong>a <strong>and</strong>/or a legacy <strong>of</strong> Late Quaternary<br />

climate change. Taiwanese <strong>vascular</strong> epiphyte distributions<br />

are <strong>in</strong> agreement with the Neo-Wallace L<strong>in</strong>e.<br />

Acknowledgement<br />

We thank Chung S.-W., Yu S.-K., Lu P.-F., Chang<br />

Y.-H., for shar<strong>in</strong>g personal observations on Taiwanese<br />

<strong>epiphytes</strong> <strong>in</strong> the field.<br />

Appendix A<br />

See Table A1.<br />

No Family Species/taxon Habit Floristic_Region<br />

1<br />

Pteridophytes<br />

Aspleniaceae Asplenium adiantoides FacuE 15, 18, 22, 29<br />

2 Aspleniaceae Asplenium antiquum E 2<br />

3 Aspleniaceae Asplenium australasicum E 18, 22, 29<br />

4 Aspleniaceae Asplenium bullatum E 16, 17<br />

5 Aspleniaceae Asplenium cuneatiforme E EndemicF<br />

6 Aspleniaceae Asplenium ensiforme FacuE 2–25, 17, 16<br />

7 Aspleniaceae Asplenium griffithianum FacuE 2–20, 16, 17<br />

8 Aspleniaceae Asplenium <strong>in</strong>cisum FacuE 2<br />

9 Aspleniaceae Asplenium lac<strong>in</strong>iatum E 2–27<br />

10 Aspleniaceae Asplenium neolaserpitiifolium E 2–20, 17<br />

11 Aspleniaceae Asplenium nidus E 2–20, 17, 18, 19, 20, 21, 22, 23,<br />

29, 15, 12<br />

12 Aspleniaceae Asplenium normale FacuE 2, 15, 17, 18, 20, 29, 12, 21<br />

13 Aspleniaceae Asplenium oldhami FacuE 2–20, 17<br />

14 Aspleniaceae Asplenium planicaule FacuE 2, 17, 18–104<br />

15 Aspleniaceae Asplenium prolongatum FacuE 16, 17, 2<br />

16 Aspleniaceae Asplenium<br />

pseudolaserpitiifolium<br />

E 17<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


Table A1. (cont<strong>in</strong>ued )<br />

ARTICLE IN PRESS<br />

No Family Species/taxon Habit Floristic_Region<br />

17 Aspleniaceae Asplenium ritoense FacuE 2, 17<br />

18 Davalliaceae Araiostegia parvip<strong>in</strong>nata E 2–25<br />

19 Davalliaceae Davallia formosana E 17<br />

20 Davalliaceae Davallia mariesii E 2<br />

21 Davalliaceae Davallia solida E 17, 18, 22<br />

22 Davalliaceae Humata chrysanthemifolia E 18–104<br />

23 Davalliaceae Humata griffithiana E 2–27, 2–25<br />

24 Davalliaceae Humata pect<strong>in</strong>ata E 18, 20, 29<br />

25 Davalliaceae Humata repens E 2, 15, 17, 18, 29<br />

26 Davalliaceae Humata trifoliata E 2–20, 17, 18<br />

27 Davalliaceae Humata vestita E 17, 18<br />

28 Davalliaceae Leucostegia immersa E 2–27, 16, 17, 18<br />

29 Grammitidaceae Calymmodon cucullatus E 16, 18, 22, 29<br />

30 Grammitidaceae Calymmodon gracilis E 17, 18<br />

31 Grammitidaceae Ctenopteris curtisii E 18<br />

32 Grammitidaceae Ctenopteris merrittii E 18<br />

33 Grammitidaceae Ctenopteris mollicoma E 18<br />

34 Grammitidaceae Ctenopteris obliquata E 16, 17, 18<br />

35 Grammitidaceae Ctenopteris subfalcata E 16, 17, 18<br />

36 Grammitidaceae Ctenopteris tenuisecta E 18<br />

37 Grammitidaceae Grammitis adspera E 18, 29<br />

38 Grammitidaceae Grammitis congener E 17, 18<br />

39 Grammitidaceae Grammitis fenicis E 18–104<br />

40 Grammitidaceae Grammitis <strong>in</strong>tromissa E 18<br />

41 Grammitidaceae Grammitis jagoriana E 18<br />

42 Grammitidaceae Grammitis nuda E EndemicF<br />

43 Grammitidaceae Grammitis re<strong>in</strong>wardtia E 18<br />

44 Grammitidaceae Prosaptia contigua E 16, 18, 19, 20, 22, 29<br />

45 Grammitidaceae Prosaptia urceolaris E 17, 18<br />

46 Grammitidaceae Scleroglossum pusillum E 17, 18<br />

47 Grammitidaceae Xiphopteris okuboi E 2, 17<br />

48 Hymenophyllaceae Abrodictyum cum<strong>in</strong>gii E 2, 18<br />

49 Hymenophyllaceae Crepidomanes bilabiatum E 2–20, 17, 18<br />

50 Hymenophyllaceae Crepidomanes birmanicum E 2, 17, 16<br />

51 Hymenophyllaceae Crepidomanes kurzii E 16, 17, 18, 29<br />

52 Hymenophyllaceae Crepidomanes latealatum FacuE 2, 16, 17, 18<br />

53 Hymenophyllaceae Crepidomanes latemarg<strong>in</strong>ale FacuE 2–20, 16, 17, 18<br />

54 Hymenophyllaceae Crepidomanes palmifolium E EndemicF<br />

55 Hymenophyllaceae Crepidomanes schmidtianum FacuE 2–27, 18–104<br />

var. latifrons<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]] 9<br />

56 Hymenophyllaceae Gonocormus m<strong>in</strong>utus E 2, 16, 17, 18, 20, 22<br />

57 Hymenophyllaceae Hymenophyllum barbatum E 2, 16, 17<br />

58 Hymenophyllaceae Hymenophyllum devolii E EndemicF<br />

59 Hymenophyllaceae Hymenophyllum fimbriatum E 18–104<br />

60 Hymenophyllaceae Hymenophyllum productum E 17, 18<br />

61 Hymenophyllaceae Hymenophyllum simonsianum E 2–27<br />

62 Hymenophyllaceae Hymenophyllum taiwanense E EndemicF<br />

63 Hymenophyllaceae Mecodium badium E 2, 16, 17, 18<br />

64 Hymenophyllaceae Mecodium javanicum E 16, 18, 19<br />

65 Hymenophyllaceae Mecodium oligosorum E 2<br />

66 Hymenophyllaceae Mecodium polyanthos E 2, 15, 17, 18<br />

67 Hymenophyllaceae Mecodium wrightii E 2, 4<br />

68 Hymenophyllaceae Mer<strong>in</strong>gium bl<strong>and</strong>um E 18<br />

69 Hymenophyllaceae Mer<strong>in</strong>gium denticulatum FacuE 2–20, 16, 17, 18, 19<br />

70 Hymenophyllaceae Mer<strong>in</strong>gium holochilum FacuE 18<br />

71 Hymenophyllaceae Microgonium bimarg<strong>in</strong>atum FacuE 2–20, 16, 17, 18, 20, 29<br />

72 Hymenophyllaceae Microgonium motleyi FacuE 2–20, 16, 17, 18, 20<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


10<br />

Table A1. (cont<strong>in</strong>ued )<br />

ARTICLE IN PRESS<br />

No Family Species/taxon Habit Floristic_Region<br />

73 Hymenophyllaceae Microgonium omphalodes FacuE 2–20, 18, 20, 29<br />

74 Hymenophyllaceae Microtrichomanes nitidulum E 16, 17, 18, 29<br />

75 Hymenophyllaceae Pleuromanes pallidum E 16, 17, 18, 20<br />

76 Hymenophyllaceae V<strong>and</strong>enboschia auriculata E 2, 16, 17, 18, 20<br />

77 Hymenophyllaceae V<strong>and</strong>enboschia maxima FacuE 2–20, 17, 18<br />

78 Hymenophyllaceae V<strong>and</strong>enboschia radicans E 2–27, 2–20, 6, 12, 16, 17, 18, 23,<br />

24, 25, 27<br />

79 Lomariopsidaceae Elaphoglossum callifolium E 17, 18<br />

80 Lomariopsidaceae Elaphoglossum commutatum E 10, 12, 15, 16, 18, 21, 25<br />

81 Lomariopsidaceae Elaphoglossum luzonicum E 18<br />

82 Lomariopsidaceae Elaphoglossum marg<strong>in</strong>atum E EndemicF<br />

83 Lomariopsidaceae Elaphoglossum yosh<strong>in</strong>agae E 2, 17<br />

84 Lomariopsidaceae Lomariopsis spectabilis E 2–20, 18<br />

85 Lycopodiaceae Lycopodium car<strong>in</strong>atum E 2–20, 17, 18, 20, 29<br />

86 Lycopodiaceae Lycopodium cryptomerianum E 2<br />

87 Lycopodiaceae Lycopodium cunn<strong>in</strong>ghamioides E 2<br />

88 Lycopodiaceae Lycopodium fargesii E 2<br />

89 Lycopodiaceae Lycopodium fordii E 2, 16, 17<br />

90 Lycopodiaceae Lycopodium phlegmaria E 2, 18, 22, 29, 15, 12<br />

91 Lycopodiaceae Lycopodium salv<strong>in</strong>ioides E 2–20, 18–104<br />

92 Lycopodiaceae Lycopodium sieboldii E 2<br />

93 Lycopodiaceae Lycopodium squarrosum E 2, 20, 18, 22<br />

94 Lycopodiaceae Lycopodium taiwanense E 2–27, 2–20, 16<br />

95 Ole<strong>and</strong>raceae Nephrolepis auriculata FacuE 2–20, 16, 17, 18, 9, 23, 24, 25,<br />

26, 27, 22, 21, 15, 29<br />

96 Ole<strong>and</strong>raceae Nephrolepis biserrata FacuE 2–20, 19, 20, 18, 23, 12, 15, 16,<br />

10, 29, 27, 25<br />

97 Ole<strong>and</strong>raceae Nephrolepis multiflora FacuE 2–20, 16, 17, 18–104<br />

98 Ole<strong>and</strong>raceae Ole<strong>and</strong>ra wallichii E 2–25, 2–27, 16, 17<br />

99 Opioglossaceae Ophioderma pendula E 17, 18, 15, 21, 29<br />

100 Polypodiaceae Aglaomorpha meyeniana E 18–104<br />

101 Polypodiaceae Arthromeris lehmanni E 2, 16, 17, 18–104<br />

102 Polypodiaceae Belvisia mucronata E 16, 18, 20, 22, 19, 29<br />

103 Polypodiaceae Colysis hemionitidea FacuE 2–27, 16, 17, 18–104<br />

104 Polypodiaceae Colysis pothifolia FacuE 2, 16, 17, 18–104<br />

105 Polypodiaceae Colysis sh<strong>in</strong>tenensis FacuE 2<br />

106 Polypodiaceae Colysis wrightii FacuE 2–20, 17<br />

107 Polypodiaceae Cryps<strong>in</strong>us ech<strong>in</strong>osporus E EndemicF<br />

108 Polypodiaceae Cryps<strong>in</strong>us engleri E 2<br />

109 Polypodiaceae Cryps<strong>in</strong>us hastatus FacuE 2, 18–104<br />

110 Polypodiaceae Cryps<strong>in</strong>us quasidivaricatus FacuE 2–27, 16<br />

111 Polypodiaceae Cryps<strong>in</strong>us taeniatus var.<br />

FacuE 18, 20<br />

palmatus<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]]<br />

112 Polypodiaceae Cryps<strong>in</strong>us taiwanensis FacuE EndemicF<br />

113 Polypodiaceae Cryps<strong>in</strong>us yakushimensis FacuE 2–20<br />

114 Polypodiaceae Drymotaenium miyoshianum E 2<br />

115 Polypodiaceae Drynaria fortunei E 17<br />

116 Polypodiaceae Lemmaphyllum diversum E 2<br />

117 Polypodiaceae Lemmaphyllum microphyllum E 2<br />

118 Polypodiaceae Lepisorus clathratus E 2,8,16<br />

119 Polypodiaceae Lepisorus kawakamii E EndemicF<br />

120 Polypodiaceae Lepisorus kuchenensis E 2–25<br />

121 Polypodiaceae Lepisorus megasorus E EndemicF<br />

122 Polypodiaceae Lepisorus monilisorus E EndemicF<br />

123 Polypodiaceae Lepisorus morrisonensis E 2–25, 2–27<br />

124 Polypodiaceae Lepisorus obscurevenulosus E 2<br />

125 Polypodiaceae Lepisorus pseudoussuriensis E EndemicF<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


Table A1. (cont<strong>in</strong>ued )<br />

ARTICLE IN PRESS<br />

No Family Species/taxon Habit Floristic_Region<br />

126 Polypodiaceae Lepisorus suboligolepidus E 2<br />

127 Polypodiaceae Lepisorus thunbergianus E 2, 18–104<br />

128 Polypodiaceae Lepisorus tosaensis E 2<br />

129 Polypodiaceae Leptochilus decurrens FacuE 16, 17, 18, 20<br />

130 Polypodiaceae Loxogramme confertifolia E EndemicF<br />

131 Polypodiaceae Loxogramme formosana E 2–25<br />

132 Polypodiaceae Loxogramme grammitoides E 2<br />

133 Polypodiaceae Loxogramme remotefrondigera E EndemicF<br />

134 Polypodiaceae Loxogramme salicifolia E 2, 17<br />

135 Polypodiaceae Microsorium buergerianum E 2, 17<br />

136 Polypodiaceae Microsorium dilatatum E 2–20, 16, 17<br />

137 Polypodiaceae Microsorium fortunei FacuE 2–27, 2–20<br />

138 Polypodiaceae Microsorium membranaceum FacuE 2–25, 2–27, 16, 17, 18–104<br />

139 Polypodiaceae Microsorium punctatum E 16, 17, 22, 29<br />

140 Polypodiaceae Microsorium rubidum E 2–20, 16, 17, 18, 20<br />

141 Polypodiaceae Polypodium amoenum E 2–27, 17<br />

142 Polypodiaceae Polypodium argutum E 2–25, 2–27, 17, 18–104<br />

143 Polypodiaceae Polypodium formosanum E 2–20<br />

144 Polypodiaceae Polypodium microrhizoma E 2–25, 2–27<br />

145 Polypodiaceae Polypodium raishanense E EndemicF<br />

146 Polypodiaceae Polypodium transpianense E EndemicF<br />

147 Polypodiaceae Pseudodrynaria coronans E 2–20, 2–25, 2–27, 17<br />

148 Polypodiaceae Pyrrosia adnascens E 2–20, 16, 17, 18, 20<br />

149 Polypodiaceae Pyrrosia gralla E 2–25<br />

150 Polypodiaceae Pyrrosia l<strong>in</strong>earifolia E 2<br />

151 Polypodiaceae Pyrrosia l<strong>in</strong>gua E 2, 17<br />

152 Polypodiaceae Pyrrosia matsudae E EndemicF<br />

153 Polypodiaceae Pyrrosia polydactylis E EndemicF<br />

154 Polypodiaceae Pyrrosia sheareri E 17<br />

155 Polypodiaceae Pyrrosia transmorrisonensis E EndemicF<br />

156 Polypodiaceae Saxiglossum angustissimum E 2<br />

157 Psilotaceae Psilotum nudum E 2, 17, 18, 21, 22, 29, 10, 12, 15,<br />

23, 9, 3, 25, 27, 26<br />

158 Selag<strong>in</strong>ellaceae Selag<strong>in</strong>ella delicatula E 2, 16, 17, 18, 20<br />

159 Selag<strong>in</strong>ellaceae Selag<strong>in</strong>ella <strong>in</strong>volvens E 2, 16, 17, 18<br />

160 Selag<strong>in</strong>ellaceae Selag<strong>in</strong>ella stauntoniana FacuE 2<br />

161 Selag<strong>in</strong>ellaceae Selag<strong>in</strong>ella tamarisc<strong>in</strong>a FacuE 2, 16, 18<br />

162 Vittariaceae Antrophyum formosanum FacuE 2–20<br />

163 Vittariaceae Antrophyum obovatum FacuE 2, 16, 17<br />

164 Vittariaceae Antrophyum parvulum FacuE 2–20, 18<br />

165 Vittariaceae Antrophyum sessilifolium FacuE 18–104<br />

166 Vittariaceae Vag<strong>in</strong>ularia paradoxa E 16, 18, 20, 21<br />

167 Vittariaceae Vag<strong>in</strong>ularia trichoidea E 18, 21<br />

168 Vittariaceae Vittaria anguste-elongata E 18<br />

169 Vittariaceae Vittaria flexuosa E 2, 16, 17, 18<br />

170 Vittariaceae Vittaria taeniophylla E 2–27, 2–25, 17, 18–104<br />

171 Vittariaceae Vittaria zosterifolia E 2–20, 18, 20<br />

172<br />

Dicotyledons<br />

Araliaceae Schefflera arboricola E 17<br />

173 Asclepiadaceae Dischidia formosana E EndemicF&L<br />

174 Asclepiadaceae Hoya carnosa E 2, 16, 17<br />

175 Ericaceae Rhododendron kawakamii E EndemicF<br />

176 Ericaceae Vacc<strong>in</strong>ium dunalianum var. E EndemicF<br />

caudatifolium<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]] 11<br />

177 Ericaceae Vacc<strong>in</strong>ium emarg<strong>in</strong>atum E EndemicF<br />

178 Gesneriaceae Aeschynanthus acum<strong>in</strong>atus E 2–27, 16, 17, 18<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


12<br />

Table A1. (cont<strong>in</strong>ued )<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]]<br />

No Family Species/taxon Habit Floristic_Region<br />

179 Gesneriaceae Lysionotus pauciflorus E 2<br />

180 Gesneriaceae Lysionotus pauciflorus var.<br />

ikedae<br />

E EndemicL<br />

181 Melastomataceae Med<strong>in</strong>illa formosana E EndemicF<br />

182 Melastomataceae Med<strong>in</strong>illa hayata<strong>in</strong>a E EndemicL<br />

183 Melastomataceae Pachycentria formosana E EndemicF<br />

184 Moraceae Ficus benjam<strong>in</strong>a HemiE-P 17, 18, 29<br />

185 Moraceae Ficus caulocarpa HemiE-P 2–20, 17, 18, 16<br />

186 Moraceae Ficus heteropleura HemiE-P 2–27, 18, 17<br />

187 Moraceae Ficus microcarpa var.<br />

microcarpa<br />

HemiE-P 2–20, 18, 17, 16, 29<br />

188 Moraceae Ficus microcarpa var.<br />

crassifolia<br />

HemiE-P 18–104<br />

189 Moraceae Ficus pumila HemiE-S 2, 16<br />

190 Moraceae Ficus pumila L. var. awkeotsang HemiE-S EndemicF<br />

191 Moraceae Ficus sarmentosa var. henryi HemiE-S 2<br />

192 Moraceae Ficus sarmentosa var. nipponica HemiE-S 2<br />

193 Moraceae Ficus superba var. japonica HemiE-P 2, 16, 17, 18<br />

194 Moraceae Ficus virgata HemiE-P 2–20, 16, 17, 18, 29, 22<br />

195 Piperaceae Peperomia japonica E 2<br />

196 Piperaceae Peperomia nakaharai E EndemicF<br />

197 Piperaceae Peperomia reflexa E 2, 23, 26, 25, 21, 12, 10, 15, 25,<br />

29<br />

198 Piperaceae Peperomia rubrivenosa E 18–104<br />

199 Piperaceae Peperomia sui E EndemicF<br />

200 Piperaceae Piper arborescens HemiE-S 18<br />

201 Piperaceae Piper betle HemiE-S 18<br />

202 Piperaceae Piper <strong>in</strong>terruptum var.<br />

mult<strong>in</strong>ervum<br />

HemiE-S 18<br />

203 Piperaceae Piper kadsura HemiE-S 2<br />

204 Piperaceae Piper kawakamii HemiE-S EndemicF<br />

205 Piperaceae Piper kwashoense HemiE-S EndemicL&G<br />

206 Piperaceae Piper s<strong>in</strong>tenense HemiE-S EndemicF<br />

207 Piperaceae Piper taiwanense HemiE-S EndemicF<br />

208 Rubiaceae Psychotria serpens HemiE-S 2, 17<br />

209 Saxifragaceae Hydrangea <strong>in</strong>tegrifolia E 18–104<br />

210 Saxifragaceae Pileostegia viburnoides E 2–20, 16, 17<br />

211 Urticaceae Procris laevigata E 2–25, 15, 16, 17, 18<br />

Monocotyledons<br />

212 Araceae Epipremnum formosanum HemiE-S EndemicF<br />

213 Araceae Epipremnum p<strong>in</strong>natum HemiE-S 2, 18, 20, 29<br />

214 Araceae Pothoidium lobbianum HemiE-S 18<br />

215 Araceae Pothos ch<strong>in</strong>ensis HemiE-S 2<br />

216 Araceae Remusatia vivipara E 2–25, 15, 16, 17, 18, 12, 29, 10,<br />

25<br />

217 Orchidaceae Acampe rigida E 2–27, 16, 17, 18<br />

218 Orchidaceae Appendicula fenixii E EndemicL<br />

219 Orchidaceae Appendicula reflexa E 17, 18<br />

220 Orchidaceae Arachnis labrosa E 17<br />

221 Orchidaceae Ascocentrum pumilum E EndemicF<br />

222 Orchidaceae Bulbophyllum aff<strong>in</strong>e E 2–27, 16, 17<br />

223 Orchidaceae Bulbophyllum albociliatum E EndemicF<br />

224 Orchidaceae Bulbophyllum aureolabellum E EndemicF<br />

225 Orchidaceae Bulbophyllum chitouense E EndemicF<br />

226 Orchidaceae Bulbophyllum drymoglossum E 2<br />

227 Orchidaceae Bulbophyllum electr<strong>in</strong>um E 2–25, 17<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


Table A1. (cont<strong>in</strong>ued )<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]] 13<br />

No Family Species/taxon Habit Floristic_Region<br />

228 Orchidaceae Bulbophyllum hirund<strong>in</strong>is E 17<br />

229 Orchidaceae Bulbophyllum <strong>in</strong>sulsum E 17<br />

230 Orchidaceae Bulbophyllum japonicum E 2<br />

231 Orchidaceae Bulbophyllum macraei E 2, 16<br />

232 Orchidaceae Bulbophyllum melanoglossum E EndemicF<br />

233 Orchidaceae Bulbophyllum omer<strong>and</strong>rum E 2<br />

234 Orchidaceae Bulbophyllum pectenveneris E 17<br />

235 Orchidaceae Bulbophyllum pect<strong>in</strong>atum E 17<br />

236 Orchidaceae Bulbophyllum p<strong>in</strong>gtungense E EndemicF<br />

237 Orchidaceae Bulbophyllum retusiusculum E 2–27, 17, 16<br />

238 Orchidaceae Bulbophyllum riyanum E 17<br />

239 Orchidaceae Bulbophyllum rubrolabellum E EndemicF<br />

240 Orchidaceae Bulbophyllum setaceum E EndemicF<br />

241 Orchidaceae Bulbophyllum taitungianum E EndemicF<br />

242 Orchidaceae Bulbophyllum taiwanense E EndemicF<br />

243 Orchidaceae Bulbophyllum tokioi E EndemicF<br />

244 Orchidaceae Bulbophyllum umbellatum E 2–27, 16, 17<br />

245 Orchidaceae Bulbophyllum wightii E 16<br />

246 Orchidaceae Chiloschista segawai E EndemicF<br />

247 Orchidaceae Cleisostoma paniculatum E 17<br />

248 Orchidaceae Cleisostoma uraiensis E 2–20, 18–104<br />

249 Orchidaceae Cymbidium dayanum E 2, 16, 17, 18<br />

250 Orchidaceae Dendrobium catenatum E 2<br />

251 Orchidaceae Dendrobium chameleon E 18–104<br />

252 Orchidaceae Dendrobium chryseum E 2, 16, 17<br />

253 Orchidaceae Dendrobium crumenatum E 16, 17, 18<br />

254 Orchidaceae Dendrobium equitans E 18–104<br />

255 Orchidaceae Dendrobium falconeri E 2–27, 16, 17<br />

256 Orchidaceae Dendrobium<br />

E EndemicF<br />

furcatopedicellatum<br />

257 Orchidaceae Dendrobium goldschmidtianum E 18–104<br />

258 Orchidaceae Dendrobium leptocladum E EndemicF<br />

259 Orchidaceae Dendrobium l<strong>in</strong>awianum E 2<br />

260 Orchidaceae Dendrobium moniliforme E 2<br />

261 Orchidaceae Dendrobium somae E EndemicF<br />

262 Orchidaceae Dendrochilum uncatum E 18–104<br />

263 Orchidaceae Diploprora championii E 2–27, 16, 17<br />

264 Orchidaceae Epigeneium fargesii E 2–27, 17<br />

265 Orchidaceae Epigeneium nakaharae E EndemicF<br />

266 Orchidaceae Eria amica E 2–25, 2–27, 17<br />

267 Orchidaceae Eria corneri E 2–20, 17<br />

268 Orchidaceae Eria japonica E 2–20, 17<br />

269 Orchidaceae Eria javanica E 2, 16, 17, 18<br />

270 Orchidaceae Eria ovata E 2–20, 18<br />

271 Orchidaceae Eria robusta E 18<br />

272 Orchidaceae Eria tomentosiflora E 18–104<br />

273 Orchidaceae Flick<strong>in</strong>geria comata E 18, 29, 19, 20, 22<br />

274 Orchidaceae Flick<strong>in</strong>geria tairukounia E EndemicF<br />

275 Orchidaceae Gastrochilus ciliaris E 2<br />

276 Orchidaceae Gastrochilus formosanus E 2<br />

277 Orchidaceae Gastrochilus fuscopunctatus E EndemicF<br />

278 Orchidaceae Gastrochilus hoii E EndemicF<br />

279 Orchidaceae Gastrochilus japonicus E 2<br />

280 Orchidaceae Gastrochilus l<strong>in</strong>ii E EndemicF<br />

281 Orchidaceae Gastrochilus matsudai E EndemicF<br />

282 Orchidaceae Gastrochilus rantabunensis E 2<br />

283 Orchidaceae Gastrochilus raraensis E EndemicF<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


14<br />

Table A1. (cont<strong>in</strong>ued )<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]]<br />

No Family Species/taxon Habit Floristic_Region<br />

284 Orchidaceae Goodyera bilamellata E EndemicF<br />

285 Orchidaceae Goodyera pendula E 2<br />

286 Orchidaceae Goodyera nantoensis E EndemicF<br />

287 Orchidaceae Haraella retrocalla E EndemicF<br />

288 Orchidaceae Holcoglossum quasip<strong>in</strong>ifolium E 2<br />

289 Orchidaceae Liparis bootanensis E 2, 17, 18<br />

290 Orchidaceae Liparis caespitosa E 17, 18, 16, 12, 15, 19, 20<br />

291 Orchidaceae Liparis condylobulbon E 17, 18<br />

292 Orchidaceae Liparis cordifolia FacuE 2–27, 2–25, 16<br />

293 Orchidaceae Liparis elliptica E 2, 16, 17<br />

294 Orchidaceae Liparis grossa E 17, 18–104<br />

295 Orchidaceae Liparis nakaharai E EndemicF<br />

296 Orchidaceae Liparis somai E EndemicF<br />

297 Orchidaceae Liparis viridiflora E 2–27, 16, 17, 18<br />

298 Orchidaceae Luisia cordata E EndemicF<br />

299 Orchidaceae Luisia megasepala E EndemicF<br />

300 Orchidaceae Luisia teres E 2<br />

301 Orchidaceae Microtatorchis compacta E 18–104<br />

302 Orchidaceae Oberonia arisanensis E 2–20<br />

303 Orchidaceae Oberonia caulescens E 2–25, 2–27, 17<br />

304 Orchidaceae Oberonia gigantea E EndemicF<br />

305 Orchidaceae Oberonia japonica E 2<br />

306 Orchidaceae Oberonia pumila E EndemicF<br />

307 Orchidaceae Oberonia rosea E 17<br />

308 Orchidaceae Oberonia seidenfadenii E EndemicF<br />

309 Orchidaceae Papilionanthe taiwaniana E EndemicF<br />

310 Orchidaceae Phalaenopsis aphrodite E 18–104<br />

311 Orchidaceae Phalaenopsis equestris E 18–104<br />

312 Orchidaceae Pholidota cantonensis E 17<br />

313 Orchidaceae Phreatia caulescens E 18–104<br />

314 Orchidaceae Phreatia formosana E 2–25, 17<br />

315 Orchidaceae Phreatia morii E EndemicF<br />

316 Orchidaceae Phreatia taiwaniana E EndemicF<br />

317 Orchidaceae Pleione bulbocodioides FacuE 2<br />

318 Orchidaceae Pomatocalpa acum<strong>in</strong>ata E EndemicF<br />

319 Orchidaceae Schoenorchis vanoverberghii E 18–104<br />

320 Orchidaceae Staurochilus luchuensis E 2–20<br />

321 Orchidaceae Sunipia <strong>and</strong>ersonii E 2–27, 16, 17<br />

322 Orchidaceae Taeniophyllum complanatum E EndemicF<br />

323 Orchidaceae Taeniophyllum gl<strong>and</strong>ulosum E 2, 17, 18, 29<br />

324 Orchidaceae Thelasis pygmaea E 2–27, 16, 17, 18<br />

325 Orchidaceae Thrixspermum annamense E 17<br />

326 Orchidaceae Thrixspermum eximium E 18–104<br />

327 Orchidaceae Thrixspermum fantasticum E 2–20, 18–104<br />

328 Orchidaceae Thrixspermum formosanum E 17<br />

329 Orchidaceae Thrixspermum laurisilvaticum E 2<br />

330 Orchidaceae Thrixspermum merguense E 17, 18<br />

331 Orchidaceae Thrixspermum pensile E 17, 18<br />

332 Orchidaceae Thrixspermum saruwatarii E EndemicF<br />

333 Orchidaceae Thrixspermum subulatum E 17, 18<br />

334 Orchidaceae Trichoglottis rosea E 18–104<br />

335 Orchidaceae Tuberolabium kotoense E EndemicL<br />

336 Orchidaceae V<strong>and</strong>a lamellata E 2–20, 18–104<br />

Abbreviations: E: epiphyte, FacuE: facultative epiphyte, HemiE-P: primary hemi-<strong>epiphytes</strong>, HemiE-S: secondary hemi-epiphyte, EndemicF: endemic<br />

species <strong>in</strong> Taiwan, EndemicL: endemic species <strong>in</strong> Lanyu, EndemicG: endemic species <strong>in</strong> Lutao, floristic codes refer to Fig. 2.<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


References<br />

Atwood, J.T., 1986. The size <strong>of</strong> the Orchidaceae <strong>and</strong> the<br />

systematic distribution <strong>of</strong> epiphytic orchids. Selbyana 9,<br />

171–186.<br />

Barkman, J.J., 1958. Phytosociology <strong>and</strong> Ecology <strong>of</strong><br />

Cryptogamic Epiphytes. Van Gorcum & Comp. N. V.,<br />

Assen.<br />

Benz<strong>in</strong>g, D.H., 1987. Vascular epiphytism: taxonomic participation<br />

<strong>and</strong> adaptive diversity. Ann. Mo. Bot. Gard. 74,<br />

183–204.<br />

Benz<strong>in</strong>g, D.H., 1990. Vascular Epiphytes. Cambridge University<br />

Press, Cambridge.<br />

Boufford, D.E., Hsieh, C.-F., Huang, T.-C., Kuoh, C.-S.,<br />

Ohashi, H., Peng, C.-I., Tsai, J.-L., Yang, K.-C., 2003.<br />

Flora <strong>of</strong> Taiwan, second ed. Department <strong>of</strong> Botany, NTU,<br />

Taipei.<br />

Cascante-Mar<strong>in</strong>, A., Wolf, J.H.D., Oostermeijer, J.G.B., Den<br />

Nijs, J.C.M., Sanahuja, O., Duran-Apuy, A., 2006.<br />

Epiphytic bromeliad communities <strong>in</strong> secondary <strong>and</strong> mature<br />

forest <strong>in</strong> a <strong>tropical</strong> premontane area. Basic Appl. Ecol. 7,<br />

520–532.<br />

Croat, T., 1978. Flora <strong>of</strong> Barro Colorado Isl<strong>and</strong>. Stanford<br />

University Press, Stanford.<br />

Dickerson, R.E., 1928. Distribution <strong>of</strong> Life <strong>in</strong> the Philipp<strong>in</strong>es.<br />

Bureau <strong>of</strong> Science Manila, Manila.<br />

Ek, R.C., 1997. Botanical diversity <strong>in</strong> the <strong>tropical</strong> ra<strong>in</strong> forest<br />

<strong>of</strong> Guyana. Ph.D. Dissertation, Universiteit Utrecht,<br />

Utrecht.<br />

Freiberg, M., Freiberg, E., 2000. Epiphyte diversity <strong>and</strong><br />

biomass <strong>in</strong> the canopy <strong>of</strong> lowl<strong>and</strong> <strong>and</strong> montane forests <strong>in</strong><br />

Ecuador. J. Trop. Ecol. 16, 673–688.<br />

Gentry, A.H., 1982. Neo<strong>tropical</strong> floristic diversity: phytogeographical<br />

connections between Central <strong>and</strong> South America,<br />

Pleistocene climatic fluctuations, or an accident <strong>of</strong> the<br />

Andean orogeny? Ann. Mo. Bot. Gard. 69, 557–593.<br />

Gentry, A.H., Dodson, C.H., 1987a. <strong>Diversity</strong> <strong>and</strong> biogeography<br />

<strong>of</strong> neo<strong>tropical</strong> <strong>vascular</strong> <strong>epiphytes</strong>. Ann. Mo. Bot.<br />

Gard. 74, 205–233.<br />

Gentry, A.H., Dodson, C.H., 1987b. Contribution <strong>of</strong> nontrees<br />

to species richness <strong>of</strong> a <strong>tropical</strong> ra<strong>in</strong> forest. Biotropica 19,<br />

149–156.<br />

Gravendeel, B., Smithson, A., Slik, F.J.W., Schuiteman, A.,<br />

2004. Epiphytism <strong>and</strong> poll<strong>in</strong>ator specialization: drivers for<br />

orchid diversity? Philos. Trans. R. Soc. London B 359,<br />

1523–1535.<br />

Gupta, R., 1968. Flora Na<strong>in</strong>italensis: A H<strong>and</strong>book <strong>of</strong> the<br />

Flower<strong>in</strong>g Plants <strong>of</strong> Na<strong>in</strong>ital. Navayug Traders, New<br />

Delhi.<br />

Haber, W.A., 2001. Number <strong>of</strong> species with different plant<br />

growth forms. In: Nadkarni, N.M., Wheelwright, N.T.<br />

(Eds.), Monteverde: Ecology <strong>and</strong> Conservation <strong>of</strong> a<br />

Tropical Cloud Forest. Oxford University Press, New<br />

York, Oxford, pp. 519–522.<br />

Ho, C.-S., 1988. An Introduction to the Geology <strong>of</strong> Taiwan,<br />

Explanatory Text <strong>of</strong> the Geologic Map <strong>of</strong> Taiwan, second<br />

ed. Central Geological Survey, M<strong>in</strong>istry <strong>of</strong> Economic<br />

Affairs, Taipei.<br />

Hosokawa, T., 1950. Epiphyte-quotient. Bot. Mag. Tokyo 63,<br />

739–740.<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]] 15<br />

Hosokawa, T., 1958. On the synchorological <strong>and</strong> floristic<br />

trends <strong>and</strong> discont<strong>in</strong>uities <strong>in</strong> regard to the Japan-Liukiu-<br />

Formosa area. Plant Ecol. 8, 65–92.<br />

Hsieh, C.-F., 2003. Composition, endemism <strong>and</strong> phytogeographical<br />

aff<strong>in</strong>ities <strong>of</strong> the Taiwan flora. In: Boufford, D.E.,<br />

Hsieh, C.-F., Huang, T.-C., Kuoh, C.-S., Ohashi, H., Peng,<br />

C.-I., Tsai, J.-L., Yang, K.-C. (Eds.), Flora <strong>of</strong><br />

Taiwan, second ed. Department <strong>of</strong> Botany, NTU, Taipei,<br />

pp. 1–14.<br />

Hsueh, M.-L., Lee, H.-H., 2000. <strong>Diversity</strong> <strong>and</strong> distribution <strong>of</strong><br />

the mangrove forests <strong>in</strong> Taiwan. Wetl. Ecol. Manage. 8,<br />

233–242.<br />

Ingram, S.W., Ferrell-Ingram, K., Nadkarni, N.M., 1996.<br />

Floristic composition <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a neo<strong>tropical</strong><br />

cloud forest, Monteverde, Costa Rica. Selbyana 17, 88–103.<br />

Janzen, D.H., Liesner, R., 1980. Annotated check-list <strong>of</strong> plants<br />

<strong>of</strong> lowl<strong>and</strong> Guanacaste Prov<strong>in</strong>ce, Costa Rica, exclusive <strong>of</strong><br />

grasses <strong>and</strong> non-<strong>vascular</strong> cryptogams. Brenesia 18, 15–90.<br />

Johansson, D., 1974. Ecology <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> west<br />

African ra<strong>in</strong> forest. Acta Phytogeogr. Suec. 59, 1–129.<br />

Kanehira, R., 1935. The phytogeographical relationship<br />

between Botel Tabago (Kotosyo) <strong>and</strong> the Philipp<strong>in</strong>es on<br />

the basis <strong>of</strong> the ligneous flora. Bull. Biogeogr. Soc. Japan 5,<br />

209–212.<br />

Kanto, T., 1933. Zoogeographical studies <strong>of</strong> Botel Tobago,<br />

with a consideration <strong>of</strong> the northern part <strong>of</strong> Wallace’s l<strong>in</strong>e.<br />

Geogr. Rev. Japan 9, 5–8 (In Japanese).<br />

Kelly, D.L., O’Donovan, G., Feehan, J., Murphy, S.,<br />

Drangeid, S.O., Marcano-Berti, L., 2004. The epiphyte<br />

communities <strong>of</strong> a montane ra<strong>in</strong> forest <strong>in</strong> the Andes <strong>of</strong><br />

Venezuela: patterns <strong>in</strong> the distribution <strong>of</strong> the flora. J. Trop.<br />

Ecol. 20, 643–666.<br />

Kessler, M., Parris, B.S., Kessler, E., 2001. A comparison <strong>of</strong><br />

the <strong>tropical</strong> montane Pteridophyte floras <strong>of</strong> Mount<br />

K<strong>in</strong>abalu, Borneo, <strong>and</strong> Parque Nacional Carrasco, Bolivia.<br />

J. Biogeogr. 28, 611–622.<br />

Köhler, L., Tobón, C., Frumau, K., Bruijnzeel, L., 2007.<br />

Biomass <strong>and</strong> water storage dynamics <strong>of</strong> <strong>epiphytes</strong> <strong>in</strong> oldgrowth<br />

<strong>and</strong> secondary montane cloud forest st<strong>and</strong>s <strong>in</strong><br />

Costa Rica. Plant Ecol. 193, 171–184.<br />

Kolbeck, J., 1995. Notes on epiphytic communities <strong>in</strong> forests<br />

<strong>of</strong> North Korea. Preslia, Praha 67, 41–45.<br />

Kreft, H., Koster, N., Kuper, W., Nieder, J., Barthlott, W.,<br />

2004. <strong>Diversity</strong> <strong>and</strong> biogeography <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong><br />

Western Amazonia, Yasuní, Ecuador. J. Biogeogr. 31,<br />

1463–1476.<br />

Kreft, H., Jetz, W., Mutke, J., Kier, G., Barthlott, W., 2008.<br />

Global diversity <strong>of</strong> isl<strong>and</strong> floras from a macroecological<br />

perspective. Ecol. Lett. 11, 116–127.<br />

Kress, W.J., 1986. The systematic distribution <strong>of</strong> <strong>vascular</strong><br />

epiphyte: an update. Selbyana 9, 2–22.<br />

Kuo, C.-M., 1985. Taxonomy <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong><br />

Taiwanese Pteridophytes. Taiwania 30, 5–100.<br />

Küper, W., Kreft, H., Nieder, J., Koster, N., Barthlott, W.,<br />

2004. Large-scale diversity patterns <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong><br />

<strong>in</strong> neo<strong>tropical</strong> montane ra<strong>in</strong> forests. J. Biogeogr. 31,<br />

1477–1487.<br />

Lester, S.E., Ruttenberg, B.I., Ga<strong>in</strong>es, S.D., K<strong>in</strong>lan, B.P.,<br />

2007. The relationship between dispersal ability <strong>and</strong><br />

geographic range size. Ecol. Lett. 10, 745–758.<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002


16<br />

L<strong>in</strong>, T.-C., Hamburg, S.P., Hsia, Y.-J., L<strong>in</strong>, T.-T., K<strong>in</strong>g, H.-B.,<br />

Wang, L.-J., L<strong>in</strong>, K.-C., 2003. Influence <strong>of</strong> typhoon<br />

disturbances on the understory light regime <strong>and</strong> st<strong>and</strong><br />

dynamics <strong>of</strong> a sub<strong>tropical</strong> ra<strong>in</strong> forest <strong>in</strong> northeastern<br />

Taiwan. J. For. Res. 8, 139–145.<br />

Madison, M., 1977. Vascular <strong>epiphytes</strong>: their systematic<br />

occurrence <strong>and</strong> salient features. Selbyana 2, 1–13.<br />

Migenis, L.E., Ackerman, J.D., 1993. Orchid phorophyte<br />

relationships <strong>in</strong> a forest watershed <strong>in</strong> Puerto-Rico. J. Trop.<br />

Ecol. 9, 231–240.<br />

M<strong>of</strong>fett, M.W., 2000. What’s ‘‘Up’’? A critical look at the<br />

basic terms <strong>of</strong> canopy biology. Biotropica 32, 569–596.<br />

Nieder, J., Prosperí, J., Michaloud, G., 2001. Epiphytes <strong>and</strong> their<br />

contribution to canopy diversity. Plant Ecol. 153, 51–63.<br />

Oliver, W.R.B., 1930. New Zeal<strong>and</strong> <strong>epiphytes</strong>. J. Ecol. 18,<br />

1–50.<br />

Rauer, G., Rudolph, D., 2001. Vaskuläre Epiphyten e<strong>in</strong>es<br />

West<strong>and</strong><strong>in</strong>en Bergregenwaldes <strong>in</strong> Ecuador. In: Nieder, J.,<br />

Barthlott, W. (Eds.), The Flora <strong>of</strong> the Río Guajalito<br />

Mounta<strong>in</strong> Ra<strong>in</strong> Forest (Ecuador). Results <strong>of</strong> the Bonn-<br />

Quito Epiphyte Project, funded by the Volkswagen<br />

Foundation. GmbH, Bonn, pp. 323–470.<br />

Ray, N., Adams, J.M., 2001. A GIS-based vegetation map <strong>of</strong><br />

the world at the last glacial maximum (25,000–15,000 bp).<br />

Internet Archaeol. 11 /http://<strong>in</strong>tarch.ac.uk/journal/issue11/<br />

2/toc.htmlS.<br />

Richards, P.W., 1952. The Tropical Ra<strong>in</strong> Forest. Cambridge<br />

University Press, Cambridge.<br />

Riveros, M., Ramírez, C., 1978. Fitocenoses epífitas de la<br />

asociación Lapagerio-Aextoxiconetum en el fundo San<br />

Martín (Valdivia-Chile). Acta Cient. Venez. 29, 163–169.<br />

ARTICLE IN PRESS<br />

R. Hsu, J.H.D. Wolf / Flora ] (]]]]) ]]]–]]]<br />

Schaijes, M., Malaisse, F., 2001. <strong>Diversity</strong> <strong>of</strong> Upper Katanga<br />

<strong>epiphytes</strong> (ma<strong>in</strong>ly orchids) <strong>and</strong> distribution <strong>in</strong> different<br />

vegetation units. Syst. Geogr. Plants 71, 575–584.<br />

Su, H.-J., 1984. Studies on the climate <strong>and</strong> vegetation types <strong>of</strong><br />

natural forests <strong>in</strong> Taiwan (iii). A scheme <strong>of</strong> geographical<br />

climatic regions. Quart. J. Ch<strong>in</strong>. For. 18, 33–44.<br />

Su, H.-J., 1992. Vegetation <strong>of</strong> Taiwan: altitud<strong>in</strong>al vegetation<br />

zones <strong>and</strong> geographical climatic regions. Bot. Ins. Acad.<br />

S<strong>in</strong>. Monogr. Ser. 11, 39–53 (<strong>in</strong> Ch<strong>in</strong>ese).<br />

Takhtajan, A., 1986. Floristic Regions <strong>of</strong> the World.<br />

University <strong>of</strong> California Press, London.<br />

Wolf, J.H.D., 2005. The response <strong>of</strong> <strong>epiphytes</strong> to anthropogenic<br />

disturbance <strong>of</strong> p<strong>in</strong>e-oak forests <strong>in</strong> the highl<strong>and</strong>s <strong>of</strong><br />

Chiapas, Mexico. For. Ecol. Manage. 212, 376–393.<br />

Wolf, J.H.D., Flamenco-S, A., 2003. Patterns <strong>in</strong> species<br />

richness <strong>and</strong> distribution <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> Chiapas,<br />

Mexico. J. Biogeogr. 30, 1689–1707.<br />

Xu, H., Liu, W., 2005. Species diversity <strong>and</strong> distribution <strong>of</strong><br />

<strong>epiphytes</strong> <strong>in</strong> the montane moist evergreen broad-leaved<br />

forest <strong>in</strong> Ailao mounta<strong>in</strong>, Yunnan. Biodiversity Sci. 13,<br />

137–147 (<strong>in</strong> Ch<strong>in</strong>ese).<br />

Yen, S.-H., Kitch<strong>in</strong>g, I.J., Tzen, C.-S., 2003. A new subspecies<br />

<strong>of</strong> hawkmoth from Lanyu isl<strong>and</strong>, Taiwan, with a revised<br />

<strong>and</strong> annotated checklist <strong>of</strong> Taiwanese Sph<strong>in</strong>gidae<br />

(Lepidoptera). Zool. Stud. 42, 292–306.<br />

Zapfack, L., Nkongmeneck, A., Villiers, J., Lowman, M.,<br />

1996. The importance <strong>of</strong> pteridophytes <strong>in</strong> the epiphytic<br />

flora <strong>of</strong> some phorophytes <strong>of</strong> the Cameroonian semideciduous<br />

ra<strong>in</strong> forest. Selbyana 17, 76–81.<br />

Zotz, G., 2005. Vascular <strong>epiphytes</strong> <strong>in</strong> the temperate zones – a<br />

review. Plant Ecol. 176, 173–183.<br />

Please cite this article as: Hsu, R., Wolf, J.H.D., <strong>Diversity</strong> <strong>and</strong> <strong>phytogeography</strong> <strong>of</strong> <strong>vascular</strong> <strong>epiphytes</strong> <strong>in</strong> a <strong>tropical</strong>–sub<strong>tropical</strong> transition isl<strong>and</strong>,<br />

Taiwan. Flora (2009), doi:10.1016/j.flora.2008.08.002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!