03.04.2013 Views

Ecological consequences and ontogeny of seed ... - Accueil du site

Ecological consequences and ontogeny of seed ... - Accueil du site

Ecological consequences and ontogeny of seed ... - Accueil du site

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Vol. 5/1, pp. 13–36<br />

© Urban & Fischer Verlag, 2002<br />

http://www.urbanfischer.de/journals/ppees<br />

<strong>Ecological</strong> <strong>consequences</strong> <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism<br />

Eric Imbert<br />

Institut des Sciences de l’Evolution, Université Montpellier II, France<br />

Received: 9 October 2001 · Revised version accepted: 22 February 2002<br />

Intro<strong>du</strong>ction<br />

Abstract<br />

Seed heteromorphism represents the pro<strong>du</strong>ction <strong>of</strong> different kinds <strong>of</strong> <strong>seed</strong>s by a single indivi<strong>du</strong>al.<br />

The morphological differentiation affects either the fruit – heterocarpy – or the <strong>seed</strong> sensu stricto<br />

– heterospermy. In this study the phylogenetic distribution <strong>of</strong> <strong>seed</strong> heteromorphism among different<br />

families <strong>and</strong> habitats is investigated for 218 plant species based on existing literature. The<br />

ecological <strong>consequences</strong> <strong>of</strong> <strong>seed</strong> heteromorphism are explored as well. Seed heteromorphism is<br />

most common in the Asteraceae <strong>and</strong> Chenopodiaceae, suggesting that these families have morphological<br />

characteristics favouring the appearance <strong>of</strong> <strong>seed</strong> heteromorphism <strong>and</strong> ecological features<br />

that maintain it. Using the distribution <strong>of</strong> <strong>seed</strong> heteromorphism within the genus Crepis,<br />

the relationship between <strong>seed</strong> heteromorphism <strong>and</strong> life cycle <strong>and</strong> habitats is examined. From this<br />

analysis it appears that heterocarpic species are <strong>of</strong>ten monocarpic. In contrast, the relationship<br />

between heterocarpy <strong>and</strong> habitats is not obvious. Finally, a synthesis is presented about the <strong>ontogeny</strong><br />

<strong>of</strong> heteromorphism <strong>and</strong> some guidelines are proposed for future research on this topic.<br />

Key words: bet-hedging, dispersal, germination, plasticity, <strong>seed</strong> morphology<br />

Seeds are defined as units <strong>of</strong> sexual repro<strong>du</strong>ction developed<br />

from a fertilised ovule containing an embryo,<br />

usually a supply <strong>of</strong> stored nutrients <strong>and</strong> a protective<br />

coat (Hickey & King 2000). However, in a wider sense<br />

the term is <strong>of</strong>ten used including diaspores that are actually<br />

fruits, i.e. <strong>seed</strong>s plus maternal tissue from the<br />

ovary. In the present review the term <strong>seed</strong> is used in a<br />

broad sense, i.e. a unit <strong>of</strong> dispersal resulting from sexual<br />

repro<strong>du</strong>ction, but <strong>seed</strong> sensu stricto <strong>and</strong> fruit are<br />

distinguished when necessary.<br />

Perspectives<br />

in Plant Ecology,<br />

Evolution <strong>and</strong><br />

Systematics<br />

While early theoretical models suggested that stabilizing<br />

selection on <strong>seed</strong> size <strong>and</strong> <strong>seed</strong> morphology<br />

should be intense (Smith & Fretwell 1974; McGinley<br />

et al. 1987), most plant species show a continuous<br />

intra-indivi<strong>du</strong>al variation for <strong>seed</strong> mass <strong>and</strong>/or <strong>seed</strong><br />

morphology (Harper et al. 1970; Fenner 1985). For<br />

instance, in many Asteraceae, the achene size decreases<br />

in a continuous pattern from the periphery towards<br />

the centre <strong>of</strong> the capitulum, while the pappus size increases<br />

(Zohary 1950; McGinley 1989). In some<br />

species, the intra-indivi<strong>du</strong>al variation, <strong>of</strong>ten occurring<br />

within the same infrutescence, is tremendous <strong>and</strong> differ-<br />

Corresponding author: Eric Imbert, Institut des Sciences de l’Evolution, CC065, Université Montpellier II, 34095 Montpellier Cedex 5, France;<br />

Phone: +33-4 67 14 49 10, Fax: +33-4 67 14 26 22, e-mail: imbert@isem.univ-montp2.fr<br />

1433-8319/02/5/01-13 $ 15.00/0


14 E. Imbert<br />

ent types (or morphs) <strong>of</strong> <strong>seed</strong>s or fruits can be defined.<br />

This variation is associated with heteromorphism,<br />

which is an example <strong>of</strong> phenotypic variation as it<br />

refers to within-indivi<strong>du</strong>al variation. Therefore, <strong>seed</strong><br />

heteromorphism can be defined as the pro<strong>du</strong>ction <strong>of</strong><br />

different types <strong>of</strong> <strong>seed</strong>s by a single indivi<strong>du</strong>al.<br />

Plant ecologists have neglected intra-specific variation<br />

in <strong>seed</strong> size for a long time, because such variation<br />

was considered negligible compared to that occurring at<br />

the interspecific level (Harper et al. 1970; Fenner 1985).<br />

Conversely, early botanists recognised this feature as<br />

an important character for species diagnosis, <strong>and</strong><br />

intra-indivi<strong>du</strong>al variation in <strong>seed</strong> morphology has even<br />

been used to name some genera <strong>and</strong> species. Dimorphotheca<br />

in the Asteraceae, (named by C. Moench<br />

1744–1805; biographic data <strong>of</strong> botanical authors are<br />

from Mabberley 1997) <strong>and</strong> Heterotheca (named by<br />

A.H.G. Cassini 1781–1832) for example, include in<br />

their names the Greek word theke, meaning <strong>seed</strong> <strong>and</strong><br />

clearly refer to different forms <strong>of</strong> <strong>seed</strong>s. M.C. Durieu<br />

de Maisonneuve (1796–1878) used the pro<strong>du</strong>ction <strong>of</strong><br />

different fruits to name the species Ceratocapnos heterocarpa<br />

(Fumariaceae), carpos meaning fruit.<br />

Several words or expressions can be found in the literature<br />

to describe this character. In his Population Biology<br />

<strong>of</strong> Plants, Harper (1977) used the expression<br />

“somatic polymorphism” to signify that the phenotypic<br />

differentiation among <strong>seed</strong>s is “not a genetic segregation<br />

but a somatic differentiation” (Harper 1977,<br />

p. 69). However, the term polymorphism commonly<br />

refers to a differentiation among indivi<strong>du</strong>als, in particular<br />

“genetic polymorphism”, thus Venable (1985a)<br />

suggested the use <strong>of</strong> the term “heteromorphism”.<br />

Hannan (1980) suggested “heterospermy” for differentiation<br />

among <strong>seed</strong>s <strong>and</strong> “heterocarpy” for differentiation<br />

among fruits. M<strong>and</strong>ák (1997) proposed a more<br />

complete classification <strong>of</strong> <strong>seed</strong> heteromorphism based<br />

on diaspore morphology <strong>and</strong> other features. In the<br />

present study, <strong>seed</strong> heteromorphism is used in its<br />

broad sense, <strong>and</strong> heterospermy <strong>and</strong> heterocarpy are<br />

distinguished when necessary.<br />

The review deals with both the ecological <strong>consequences</strong><br />

<strong>of</strong> differentiation among <strong>seed</strong> morphs <strong>and</strong> the<br />

<strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism in angiosperms.<br />

However, before considering these topics in detail, it is<br />

important to describe the nature <strong>of</strong> the differentiation<br />

among morphs, <strong>and</strong> in particular to distinguish continuous<br />

variation <strong>and</strong> heteromorphism. For most species<br />

classified as <strong>seed</strong> heteromorphic, the differentiation<br />

among morphs is obvious. For instance, the variation<br />

<strong>of</strong> achene shape in Calen<strong>du</strong>la sp. is a well-known example<br />

<strong>of</strong> heterocarpy, <strong>and</strong> in many Calen<strong>du</strong>la species<br />

(C. arvensis, C. stellata for instance), three or four achene<br />

morphs are present (Heyn et al. 1974). However,<br />

plant species commonly show intra-indivi<strong>du</strong>al varia-<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

tion in <strong>seed</strong> size, either mass or length. This variation<br />

can also be observed for other structures as pappus or<br />

wing. Therefore, the distinction between continuous<br />

variation <strong>and</strong> heteromorphism can be difficult. In such<br />

cases, I propose to associate heteromorphism to a clear<br />

bimodal (for dimorphism) or multimodal distribution.<br />

Venable (1985a) defined <strong>seed</strong> heteromorphism as<br />

“the pro<strong>du</strong>ction by single indivi<strong>du</strong>als <strong>of</strong> <strong>seed</strong>s <strong>of</strong> different<br />

form or behavior”. Behaviour means ecological<br />

behaviour, i.e. mainly dispersal ability <strong>and</strong> germination<br />

requirements. There are several examples <strong>of</strong> differentiation<br />

in ecological behaviour without any morphological<br />

difference. For instance, in the Cistaceae,<br />

<strong>seed</strong>s are protected by a very hard <strong>seed</strong> coat, <strong>and</strong> <strong>seed</strong>s<br />

can only germinate when high temperatures, provoked<br />

by fire, destroy this <strong>seed</strong> coat. However, some <strong>seed</strong>s<br />

are morphologically identical to the previous ones but<br />

lack a hard <strong>seed</strong> (Vuillemin & Bulard 1981). This<br />

leads to “germination heterochrony”, a character that<br />

is probably be very common in plant species (Harper<br />

1977; Westoby 1981; Silvertown 1984; Fenner 1985).<br />

Burke (1995) also described a case <strong>of</strong> <strong>seed</strong> heteromorphism<br />

sensu Venable in the Asteraceae Geigeria alata.<br />

In this species from the Namib desert, plants pro<strong>du</strong>ce<br />

<strong>seed</strong> heads at the base <strong>and</strong> along the main stem, but<br />

there are no morphological differences between the<br />

achenes according to the position <strong>of</strong> the <strong>seed</strong> head<br />

(Burke 1995). The only difference is in relation to dispersal<br />

ability, since basal achenes are less dispersed<br />

than aerial ones (Burke 1995). These two examples <strong>of</strong><br />

ecological differentiation in absence <strong>of</strong> apparent morphological<br />

differences illustrate the idea <strong>of</strong> “cryptic<br />

heteromorphism”. This character is supposed to be<br />

very common in angiosperms (Silvertown 1984; Venable<br />

1985a) although underestimated. In the present<br />

review, some cases <strong>of</strong> well-described cryptic heteromorphism<br />

are included.<br />

The taxonomic distribution <strong>of</strong> <strong>seed</strong><br />

heteromorphism <strong>and</strong> its nature<br />

The collection <strong>of</strong> data is based on an extensive literature<br />

survey. To avoid synonymous species names, I checked<br />

each species using the Global Provisional Checklist created<br />

by the International Organization for Plant Information<br />

(www.bgbm.fu-berlin.de/IOPI/GPC/default.htm; last<br />

updated 27 November 2000). This checklist includes<br />

information from Flora Europaea, the USDA Plants<br />

Database <strong>and</strong> the Med-Checklist. I included 218 species<br />

with either heterocarpy or heterospermy (Appendix;<br />

note that only 170 are referenced in the Global Provisional<br />

Checklist); the number <strong>of</strong> species is similar to<br />

the one proposed by Flint & Palmblad (1978). Because<br />

it is not feasible to check the <strong>seed</strong>s <strong>of</strong> the ca.


250,000 angiosperm species, the present list is <strong>of</strong><br />

course not exhaustive. However, the present list may<br />

serve for a comparison among angiosperm families.<br />

Seed heteromorphism has been described in 18 families<br />

<strong>of</strong> angiosperms (Table 1), but the dominance <strong>of</strong><br />

Asteraceae <strong>and</strong> Chenopodiaceae is obvious, as 63% <strong>of</strong><br />

the recorded species belonged to Asteraceae (52% <strong>of</strong><br />

the genera) <strong>and</strong> 8% belonged to Chenopodiaceae<br />

(10% genera). Seven families are represented by only<br />

one species <strong>and</strong> ten with only one genus (Table 1). This<br />

distribution does not reflect species diversity within<br />

each family, as Asteraceae account for less than 10%<br />

<strong>of</strong> the angiosperm species <strong>and</strong> 12% <strong>of</strong> the genera. For<br />

the Chenopodiaceae, the corresponding values are<br />

0.5% <strong>and</strong> 0.8%, respectively. Furthermore, some families<br />

have a species diversity <strong>of</strong> the same magnitude as<br />

the Asteraceae (e.g. Fabaceae, Table 1), but <strong>seed</strong> heteromorphism<br />

is infrequent in these families (Table 1).<br />

Therefore, it can be tentatively concluded that,<br />

within the angiosperms, the character occurs more frequently<br />

in Asteraceae <strong>and</strong> Chenopodiaceae. This dominance<br />

<strong>of</strong> Asteraceae has also been observed for the<br />

Flora <strong>of</strong> Israel (Ellner & Shmida 1981).<br />

Asteraceae<br />

Differentiation in this family mainly occurs among the<br />

achenes (single-<strong>seed</strong>ed fruits, i.e. heterocarpy) in the periphery<br />

<strong>of</strong> the capitulum (peripheral achenes) <strong>and</strong> those<br />

in the centre <strong>of</strong> the capitulum (central achenes). Actually,<br />

<strong>seed</strong> dimorphism is common, but for several species,<br />

Table 1. Systematic repartition <strong>of</strong> heterocarpic or heterospermic species<br />

(see complete list in Appendix). Data for number <strong>of</strong> species <strong>and</strong> genera per<br />

family are from Mabberley (1997).<br />

Family Seed heteromorphic species Total diversity<br />

No. species No. genera No. species No. genera<br />

Apiaceae 3 3 3540 446<br />

Asteraceae 138 52 22750 1528<br />

Brassicaceae 12 8 2350 365<br />

Caryophyllaceae 11 2 2300 87<br />

Chenopodiaceae 18 10 1300 103<br />

Cistaceae 4 1 175 8<br />

Commelinaceae 1 1 640 39<br />

Euphorbiaceae 1 1 8100 313<br />

Fabaceae 5 5 18000 642<br />

Fumariaceae 1 1 530 17<br />

Nyctaginaceae 9 1 390 30<br />

Papaveraceae 2 2 230 23<br />

Plantaginaceae 1 1 275 3<br />

Poaceae 7 7 9500 668<br />

Polygonaceae 1 1 1100 46<br />

Rubiaceae 1 1 10220 630<br />

Thymelaceae 1 1 750 53<br />

Valerianaceae 2 1 300 10<br />

TOTAL 218 99 – –<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 15<br />

intermediate achenes can be found. Such achenes have a<br />

similar morphology to both the peripheral type <strong>and</strong><br />

central one, <strong>and</strong> are in an intermediate position within<br />

the <strong>seed</strong> head (Zohary 1950; Pomplitz 1956; Bachmann<br />

1983). Peripheral <strong>and</strong> central achenes differ in size,<br />

presence/absence <strong>of</strong> dispersal structures (e.g. pappus,<br />

trichomes), colour <strong>and</strong> shape. Peripheral achenes are<br />

typically heavier than central ones, e.g. in Bidens sp.,<br />

Crepis sancta, Hedypnois cretica <strong>and</strong> Picris sp. For instance<br />

the weight <strong>of</strong> peripheral achenes is four times<br />

greater than that <strong>of</strong> central ones in Picris amalecitana<br />

(Ellner & Shmida 1984). For a few species, central achenes<br />

are heavier than peripheral ones (Car<strong>du</strong>us pycnocephalus<br />

<strong>and</strong> C. tenuiflorus, Olivieri & Berger 1985; Picris<br />

radicata, Ellner & Shmida 1984). The mass difference<br />

is mainly <strong>du</strong>e to differences in embryo size, but in<br />

few species the difference is also <strong>du</strong>e to the structure<br />

<strong>and</strong> thickness <strong>of</strong> the pericarp (Crepis sancta, Imbert et<br />

al. 1999; Dimorphotheca sinuata, Beneke et al. 1992a;<br />

Heterotheca subaxillaris, Venable & Levin 1985a).<br />

In addition to a difference in size, there is variation in<br />

dispersal structures within a <strong>seed</strong> head. For example,<br />

peripheral achenes do not have a pappus in Carthamus<br />

lanatus, Centaurea solstitialis, Charieis heterophylla,<br />

Crepis sancta, Hedypnois cretica, Hemizonia increscens,<br />

Heterotheca sp., Picris galilea, Grindelia papposa <strong>and</strong><br />

Senecio jacobea, but they bear a resi<strong>du</strong>al pappus in Laya<br />

platyglossa <strong>and</strong> Picris echioides (references in Appendix).<br />

In Bidens tripartita, peripheral <strong>and</strong> central achenes differ<br />

in the number <strong>and</strong> size <strong>of</strong> awns (Montégut 1970). In<br />

Anthemis chia, peripheral achenes have a large wing<br />

whereas central achenes do not have any wing (Feinbrun-Dothan<br />

& Zohary 1978). Finally, the size <strong>of</strong> the<br />

beak bearing the pappus varies in several species (Crepis<br />

foetida, E. Imbert, pers. observ.; Hypochoeris glabra,<br />

Baker & O’Dowd 1982). In Crepis leontodontoides,<br />

Hedypnois cretica, Picris echioides <strong>and</strong> Picris galilea,<br />

peripheral achenes remain enclosed in the involucral<br />

bracts, while in Anacyclus arenaria, Calen<strong>du</strong>la stellata,<br />

Car<strong>du</strong>us tenuiflorus, Hedypnois arenaria <strong>and</strong> Leontodon<br />

taraxacoides they remain enclosed in the whole <strong>seed</strong><br />

head (Appendix). In both cases, the dispersal unit is not<br />

only the achene but the achene combined with another<br />

structure, whereas central achenes disperse normally.<br />

Achene morphs can also differ in colour (e.g. Crepis<br />

sancta), the ornament on the pericarp (Chrysanthenum<br />

sp.) or shape (Calen<strong>du</strong>la sp.).<br />

However, not all differentiation involves the position<br />

<strong>of</strong> the achene. In the annual Heterosperma pinnatum,<br />

achenes also vary within a head but there is no relation<br />

between position <strong>and</strong> morphology (Venable et al. 1987).<br />

Gardocki et al. (2000) reported that all different <strong>seed</strong><br />

morphs are pro<strong>du</strong>ced by peripheral florets in a Calen<strong>du</strong>la<br />

species. In Gymnarhena micrantha, heterocarpy is associated<br />

with amphicarpy, i.e. the pro<strong>du</strong>ction <strong>of</strong> both<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


16 E. Imbert<br />

aerial <strong>and</strong> subterranean flowers, <strong>and</strong> subterranean <strong>seed</strong>s<br />

are heavier than aerial ones <strong>and</strong> both morphs also differ<br />

in morphology (Koller & Roth 1964). Catananche lutea<br />

also pro<strong>du</strong>ces subterranean achenes that differ from<br />

aerial ones, but in addition there is differentiation between<br />

peripheral <strong>and</strong> central achenes in the aerial capitula<br />

(Ruiz de Clavijo 1995). Finally, heterospermy can be<br />

found in the genus Xanthium. In Xanthium species, the<br />

fruit contains two <strong>seed</strong>s, <strong>and</strong> the upper <strong>seed</strong> is heavier<br />

than the lower one (see references in Appendix).<br />

Chenopodiaceae <strong>and</strong> Nyctaginaceae<br />

In the genus Atriplex <strong>and</strong> the species Halogeton glomeratus,<br />

the unit <strong>of</strong> dispersal (the anthocarp; Wilson 1974) is<br />

composed <strong>of</strong> a fruit <strong>and</strong> bracts surrounding it, that result<br />

from the development <strong>of</strong> the sepals. In some Atriplex<br />

species (Appendix), the shape <strong>and</strong> colour <strong>of</strong> bracts vary<br />

according to their position around the axis, whereas in<br />

Halogeton glomeratus the different <strong>seed</strong> morphs are pro<strong>du</strong>ced<br />

at different stages <strong>du</strong>ring the life cycle (Williams<br />

1960). In Chenopodium album the pericarp is either<br />

reticulate or smooth, <strong>and</strong> either black or brown, leading<br />

to four <strong>seed</strong> morphs (Williams & Harper 1965). Therefore,<br />

this differentiation is related to heterocarpy.<br />

In Salicornia sp. the inflorescence consists <strong>of</strong> a central<br />

flower <strong>and</strong> usually two lateral flowers, <strong>and</strong> each<br />

flower has only one ovule. In most species central <strong>seed</strong><br />

mass is greater than lateral ones (Davy et al. 2001),<br />

but <strong>seed</strong> dimorphism is really important only in Salicornia<br />

europaea (Ungar 1979; Davy et al. 2001). Furthermore,<br />

the perianth <strong>of</strong> central flowers remains<br />

closed after <strong>seed</strong> maturation, which re<strong>du</strong>ces <strong>seed</strong> dispersal,<br />

whereas lateral <strong>seed</strong>s disperse normally. Heterospermy<br />

can also be found in two Chenopodiaceae<br />

species, Aellinia autrani <strong>and</strong> Salsola volkensii, where<br />

indivi<strong>du</strong>als pro<strong>du</strong>ce single-<strong>seed</strong>ed fruits, containing<br />

either a green embryo or a yellow embryo without<br />

chlorophyll (Negbi & Tamari 1963). In Salsola komarovii<br />

the differentiation affects both the fruit (long- or<br />

short-winged) <strong>and</strong> the <strong>seed</strong> (green or yellow embryo;<br />

Takeno & Yamaguchi 1991).<br />

In the Abronia genus (Nyctaginaceae, a family close to<br />

Caryophyllaceae; Mabberley 1997) the unit <strong>of</strong> dispersal<br />

is also an anthocarp, resulting from the development <strong>of</strong><br />

the lower part <strong>of</strong> the perianth that forms lobes or wings<br />

around the <strong>seed</strong> (Wilson 1974; Wiggins 1980). Morphological<br />

changes <strong>of</strong> the anthocarp within an inflorescence<br />

include the existence, number <strong>and</strong> size <strong>of</strong> the lobes.<br />

Caryophyllaceae<br />

In the genus Spergularia, heterospermy has been described<br />

in some species, in particular in the two closely<br />

related species Spergularia maritima <strong>and</strong> S. marina. In S.<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

maritima <strong>seed</strong>s are usually winged, but some indivi<strong>du</strong>als<br />

pro<strong>du</strong>ce capsules containing both numerous winged<br />

<strong>seed</strong>s <strong>and</strong> a few wingless ones. In S. marina the relation is<br />

reverse: winged <strong>seed</strong>s are fewer than wingless <strong>seed</strong>s. For<br />

both species indivi<strong>du</strong>als with homomorphic <strong>seed</strong>s are the<br />

most frequent in natural populations (Telenius 1992).<br />

Several arguments demonstrate that heteromorphic indivi<strong>du</strong>als<br />

are not hybrids between the two species (Sterk<br />

1969). In particular, heterospermic indivi<strong>du</strong>als can be<br />

found in monospecific populations (Salisbury 1958).<br />

Brassicaceae<br />

In Cakile sp. fruits consist <strong>of</strong> two segments, each containing<br />

one <strong>seed</strong>. The <strong>seed</strong> in the upper position is larger<br />

than the one in lower position. Furthermore, at maturity<br />

only the upper <strong>seed</strong> is dispersed (see references in<br />

Appendix). The fruit type <strong>of</strong> many species within this<br />

family, the silique, is a two-valved vessel that is normally<br />

dehiscent. Three species, Aethionema carneum,<br />

A. heterocarpum <strong>and</strong> A. saxatile, are heterocarpic since<br />

indivi<strong>du</strong>als pro<strong>du</strong>ce both many-<strong>seed</strong>ed dehiscent siliques<br />

<strong>and</strong> one-<strong>seed</strong>ed indehiscent siliques (Zohary 1966; Andersson<br />

et al. 1983). In Sinapsis alba, Erucaria boveana,<br />

Fezia pterocarpa <strong>and</strong> Hirschfeldia incana the silique is<br />

not completely dehiscent, <strong>and</strong> <strong>seed</strong>s in the distal part<br />

do not disperse (see Appendix). Finally, in Cardamine<br />

chenopodifolia plants pro<strong>du</strong>ce both aerial fruits containing<br />

many light <strong>seed</strong>s <strong>and</strong> subterranean siliques containing<br />

few (even one) but heavy <strong>seed</strong>s (Batt<strong>and</strong>ier<br />

1883; Cheplick 1983).<br />

Fabaceae <strong>and</strong> Poaceae<br />

In the Fabaceae heteromorphism is associated with amphicarpy,<br />

<strong>and</strong> subterranean pods have heavier <strong>seed</strong>s<br />

than aerial ones (e.g. 3 vs. 1.5 g in Vicia sativa; Plitmann<br />

1973). In Amphicarpaea bracteata plants pro<strong>du</strong>ce<br />

both aerial flowers, that are either chasmogamous<br />

or cleistogamous, <strong>and</strong> subterranean cleistogamous<br />

flowers. Pods <strong>and</strong> <strong>seed</strong>s from aerial flowers are identical,<br />

but pods from subterranean flowers contain a single<br />

<strong>seed</strong> much larger than aerial ones, <strong>and</strong> are surrounded<br />

by a thinner <strong>seed</strong> coat (see references in Appendix).<br />

In the Poaceae heteromorphism is also associated with<br />

amphicarpy in Amphicarpum purshii <strong>and</strong> others (see<br />

Campbell et al. 1983). In Agrostis hiemalis, Amphibromus<br />

scabrivalvis, Danthonia spicata, Nasella leucotricha<br />

<strong>and</strong> Triplasis purpurea <strong>seed</strong>s from cleistogamous flowers<br />

are heavier than those from chasmogamous flowers.<br />

Various examples<br />

Subterranean fruits are six times heavier than aerial<br />

ones (mean 18.3 vs. 2.7 mg) in the amphicarpic Com-


melina benghalensis (Commelinaceae; Budd et al. 1979),<br />

<strong>and</strong> four times heavier in Emex spinosa (Polygonaceae)<br />

(60 vs. 15 mg; Weiss 1980). Variation in pericarp<br />

morphology occurs in Asperula arvensis (Rubiaceae),<br />

Torilis nodosa (Apiaceae) <strong>and</strong> Eremocarpus<br />

setigerus (Euphorbiaceae). In the last species there is<br />

an important polymorphism among indivi<strong>du</strong>als for the<br />

colour <strong>of</strong> the pericarp (black or white) <strong>and</strong> its ornament<br />

(mottled or uniform). Few indivi<strong>du</strong>als pro<strong>du</strong>ce<br />

an intermediate colour, i.e. grey <strong>seed</strong>, <strong>du</strong>ring their<br />

senescent phase (Cook et al. 1971).<br />

Other particular, <strong>and</strong> sometimes complex, examples <strong>of</strong><br />

<strong>seed</strong> heteromorphism can be found in Ceratocapnos heterocarpus<br />

(Fumariaceae), Plantago coronopus (Plantaginaceae),<br />

Platystenom californicus (Papaveraceae), <strong>and</strong><br />

Fedia spp. (Valerianaceae; see references in Appendix).<br />

<strong>Ecological</strong> <strong>consequences</strong> <strong>of</strong> <strong>seed</strong><br />

heteromorphism<br />

Dispersal ability<br />

For most <strong>seed</strong>-heteromorphic <strong>and</strong> especially amphicarpic<br />

species, <strong>seed</strong> morphs differ in their dispersal ability. Typically<br />

in Asteraceae, peripheral achenes achieve lower dispersal<br />

than central achenes (Burtt 1977; Ellner & Shmida<br />

1984; McEvoy 1984; Venable & Levin 1985a; McEvoy<br />

& Cox 1987; Venable et al. 1987; Tanowitz et al. 1987;<br />

Imbert 1999). Telenius & Torstensson (1989) <strong>and</strong> Redbo-<br />

Torstensson & Telenius (1995) reported that winged<br />

<strong>seed</strong>s <strong>of</strong> Spergularia sp. are better dispersed by water than<br />

wingless <strong>seed</strong>s. In Cakile edentula, the upper segment <strong>of</strong><br />

the silique is probably more efficiently water-dispersed<br />

than the lower part (Payne & Maun 1981). The development<br />

<strong>of</strong> bracts in Chenopodiaceae or the lobes <strong>of</strong> anthocarp<br />

in Abronia also affect dispersal ability (Wilson 1974;<br />

M<strong>and</strong>ák & Pysˇek 2001b). For some species, morphs differ<br />

in their dispersal agents. For instance, in Picris<br />

echioides (Asteraceae) peripheral achenes, that remain enclosed<br />

within the involucral bract, may experience exozoochorous<br />

dispersal by mammals, whereas central achenes<br />

are wind-dispersed (Sorensen 1978). Such differentiation<br />

for dispersal agents has been reported also for<br />

Hypochoeris glabra (Baker & O’Dowd 1982), <strong>and</strong> for<br />

Senecio jacobea (McEvoy 1984). Heterocarpy also occurs<br />

in zoochorous species: for instance Thymelea velutina<br />

pro<strong>du</strong>ce both fleshy fruits dispersed by animals <strong>and</strong> dry<br />

barochorous fruits (Tébar & Llorens 1993).<br />

Dormancy <strong>and</strong> germination requirements<br />

Thickness <strong>and</strong> structure <strong>of</strong> the pericarp play a major<br />

role in germination, in particular for water absorption<br />

<strong>of</strong> the embryo tissue <strong>and</strong> for gas exchange (Taylorson<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 17<br />

& Hendricks 1977; Mohamed-Yasseen et al. 1994). In<br />

some Asteraceae <strong>of</strong> desert habitats the achenes remain<br />

enclosed within the involucral bracts, which form an<br />

important barrier against water absorption (Gutterman<br />

1993). Consequently, germination can only occur<br />

when rainfall is considerable, increasing the survival<br />

likelihood for <strong>seed</strong>lings. A similar strategy is found in<br />

some species with heteromorphic <strong>seed</strong>, such as the<br />

Chenopodiaceae in which the bracts enclosing the fruit<br />

are more or less permeable. Dormancy is influenced by<br />

differences in bract morphology among morphs (Beadle<br />

1952; Williams 1960; Williams & Harper 1965;<br />

Ungar 1971, 1979, 1987; Takeno & Yamaguchi 1991).<br />

Similarly, in the Brassicaceae <strong>seed</strong>s that remain enclosed<br />

within the silique show delayed germination<br />

compared those dispersed (Zohary 1962). A mixed<br />

strategy <strong>of</strong> germination has also been described for<br />

Platystemon californicus (Hannan 1980). McDonough<br />

(1975) compared water absorption between peripheral<br />

<strong>and</strong> central achenes in Grindelia squarrosa, <strong>and</strong> showed<br />

that water uptake was more rapid for central achenes.<br />

Actually, in many species with heteromorphic <strong>seed</strong>, the<br />

difference in <strong>seed</strong> size results from the structure <strong>of</strong> the<br />

pericarp or the mass ratio embryo/pericarp (Maurya<br />

& Ambasht 1973; Baskin & Baskin 1976; Burtt 1977;<br />

Flint & Palmblad 1978; Weiss 1980; Schat 1981; Clay<br />

1983; Ellner & Shmida 1984; McEvoy 1984; Venable<br />

& Levin 1985a; Ellner 1986; Tanowitz et al. 1987; Venable<br />

et al. 1987; Beneke et al. 1992a, b, 1993a; Rocha<br />

1996). This leads to a particular pattern <strong>of</strong> variation in<br />

germination dynamics: one morph (usually central achenes<br />

in the Asteraceae) germinates immediately when<br />

favourable conditions occur, while the second morph<br />

(peripheral achenes) shows delayed germination.<br />

Dormancy can also result from the chemical components<br />

<strong>of</strong> the <strong>seed</strong> coat (Mohamed-Yasseen et al. 1994).<br />

Experiments performed on Car<strong>du</strong>us (Bendall 1973)<br />

<strong>and</strong> Dimorphotheca species (Beneke et al. 1992a,<br />

1993a) suggest that the pericarp <strong>of</strong> each achene morph<br />

differ in their respective concentration <strong>of</strong> water-soluble<br />

germination inhibitors. In Salsola komarovii, shortwinged<br />

fruits contain more abscisic acid than longwinged<br />

ones, a difference that is associated with differences<br />

in germination rate (Takeno & Yamaguchi 1991).<br />

Finally, germination requirements (photoperiod, temperature,<br />

etc) can vary among morphs (Becker 1913;<br />

Koller 1957; Evenari 1963; Williams & Harper 1965;<br />

Cavers & Harper 1966; Brown & Mitchell 1984; Ruiz<br />

de Clavijo 1994). For instance, in the salt-tolerant species<br />

Salicornia europaea lateral <strong>and</strong> central <strong>seed</strong>s do not respond<br />

equally to salinity concentration (Grouzis et al.<br />

1976; Ungar 1979; Philipupillai & Ungar 1984; Berger<br />

1985). In contrast, for Arthrocnemum macrostachyum,<br />

salinity concentration greatly affects the final percentage<br />

<strong>of</strong> germination, but both <strong>seed</strong> morphs respond<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


18 E. Imbert<br />

nearly equally to changes in salinity (Khan et al. 1998;<br />

Khan & Gul 1998). The absence <strong>of</strong> chlorophyll in yellow<br />

<strong>seed</strong>s <strong>of</strong> Salsola volkensii also affects dormancy<br />

(Negbi & Tamari 1963).<br />

Differences in pericarp morphology do not always influence<br />

germination. Arctotis fastuosa, Arthrocnemum<br />

macrostachyum, Centaurea soltistialis, Charieis heterophylla,<br />

Crepis sancta, Dimorphotheca pluvialis, Galinsoga<br />

parviflora <strong>and</strong> Hypochoeris glabra are all heteromorphic<br />

but the different morphs do not have different<br />

germination requirements (references in Appendix). Furthermore,<br />

heterochrony <strong>of</strong> germination can vary among<br />

populations (Venable et al. 1987; Kigel 1992). For instance,<br />

in Bidens bipinnata heterochrony between peripheral<br />

<strong>and</strong> central achenes is important in Asian populations<br />

(Dakshini & Aggarwal 1974), but re<strong>du</strong>ced in<br />

South African populations (Brown & Mitchell 1984).<br />

The last point related to dormancy is the conservation<br />

<strong>of</strong> <strong>seed</strong> viability, i.e. the ability to remain viable<br />

when embryos cannot germinate. This character is poorly<br />

documented in species with heteromorphic <strong>seed</strong>, but<br />

is observed in heterocarpic Asteraceae (Imbert 1999).<br />

Yet, the delayed germination could be successful only<br />

if ungerminated <strong>seed</strong>s remain viable in the <strong>seed</strong> bank<br />

(Cohen 1966). Interspecific comparisons showed that<br />

large <strong>seed</strong>s, which contain more storage material <strong>and</strong> a<br />

thicker <strong>seed</strong> coat, could remain viable longer than<br />

small <strong>seed</strong>s (Priestley 1986). However, Thompson et<br />

al. (1993) suggested that there is a negative correlation<br />

between <strong>seed</strong> size <strong>and</strong> longevity. This pattern has been<br />

observed in Bidens pilosa (Rocha 1996), whereas in<br />

Crepis sancta the peripheral achenes are heavier <strong>and</strong><br />

remain viable longer than central ones (Imbert 1999).<br />

Actually, it seems that <strong>seed</strong> viability is mainly determined<br />

by the hardness <strong>of</strong> the <strong>seed</strong> coat, which acts as a<br />

physical defence against humidity <strong>and</strong> fungal infection<br />

(Mohamed-Yasseen et al. 1994). For instance, in<br />

Atriplex semibaccata <strong>and</strong> Blackiella inflata hard <strong>and</strong><br />

dark coloured <strong>seed</strong>s remain viable longer than s<strong>of</strong>t <strong>and</strong><br />

light ones (Beadle 1952).<br />

Seedling emergence, <strong>seed</strong>ling survival <strong>and</strong> growth<br />

Differences among morphs are <strong>of</strong>ten associated with differences<br />

in embryo size; therefore, a difference in <strong>seed</strong>ling<br />

success is expected. A positive relationship between <strong>seed</strong><br />

size <strong>and</strong> <strong>seed</strong>ling survival has been documented for a few<br />

species with heteromorphic <strong>seed</strong> (Koller & Roth 1964;<br />

Budd et al. 1979; Venable & Levin 1985a; Rai & Tripathi<br />

1987; Venable et al. 1987). Initial <strong>seed</strong>ling size also<br />

influences repro<strong>du</strong>ctive output for some heteromorphic<br />

species (Weiss 1980; Cheplick & Quinn 1982; Venable<br />

& Levin 1985b; Schnee & Waller 1986; Ellison 1987;<br />

Beneke et al. 1993b). Plants germinating from the largest<br />

<strong>seed</strong>s <strong>of</strong>ten have a competitive advantage (Weiss 1980;<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

Cheplick & Quinn 1982; Venable & Levin 1985b; Rai<br />

& Tripathi 1987; Imbert et al. 1997).<br />

For some species, plants from one <strong>seed</strong> morph appear<br />

to be more resistant to water stress (Koller &<br />

Roth 1964; Bendall 1973; Cheplick & Quinn 1982;<br />

Venable 1985b) or to nutrient deficiency (Galinsoga<br />

parviflora; Rai & Tripathi 1987). Such a difference<br />

suggests that the root/shoot ratio differs between plants<br />

from different <strong>seed</strong> morphs. Indeed, interspecific comparisons<br />

tend to show that larger embryos have a<br />

greater root/shoot ratio (Gleeson & Tilman 1994; but<br />

see Marañon & Grubb 1993). This difference has been<br />

also observed in intraspecific comparisons (Wulff 1986b),<br />

but in species with heteromorphic <strong>seed</strong> comparisons<br />

between morphs failed to show such difference (Baker<br />

& O’Dowd 1982; Beneke et al. 1993b). For instance,<br />

in the Asteraceae Crepis sancta peripheral achenes are<br />

three times heavier than central ones (0.27 vs. 0.10 mg;<br />

Imbert et al. 1996). Consistently, <strong>seed</strong>lings from peripheral<br />

achenes are larger than those from central<br />

ones (Table 2), <strong>and</strong> have greater above– <strong>and</strong> belowground<br />

parts, but the root/shoot ratio does not differ<br />

between the morphs (Table 2). Further experiments<br />

have shown that both morphs are equally affected by<br />

nutrient depletion (Imbert et al. 1997). Zhang (1995)<br />

reports similar results for Cakile maritima.<br />

Seed heteromorphism as<br />

a bet-hedging strategy<br />

It therefore appears that ecological differences between<br />

morphs can be important. This confirms the assertion<br />

<strong>of</strong> Harper (1977) who associated <strong>seed</strong> heteromorphism<br />

with a strategy combining “<strong>seed</strong>s for different<br />

ends or function ...”. The mixed strategy for germination,<br />

which has been established for at least thirty<br />

species, is presented as the major ecological conse-<br />

Table 2. Comparisons <strong>of</strong> <strong>seed</strong>ling size between achene morphs in Crepis<br />

sancta (Asteraceae). For each achene morph one thous<strong>and</strong> achenes were<br />

germinated in Petri dishes, each dish containing one disk <strong>of</strong> Whatmann<br />

paper which was regularly supplied with distilled water. Measurements were<br />

made on the first hundred <strong>seed</strong>lings <strong>of</strong> each achene morph. Maximal diameter<br />

<strong>of</strong> the two cotyledons was measured immediately after emergence.<br />

Length <strong>of</strong> the radicle was measured when the <strong>seed</strong>ling was totally separated<br />

from its <strong>seed</strong> coat. Once measured, <strong>seed</strong>lings were removed from the Petri<br />

dish. Seedlings were vi<strong>site</strong>d every 12 hours (means ± SE).<br />

Achene morph Cotyledon Radicle Root/shoot<br />

length (mm) length (mm) ratio<br />

Peripheral 5.40 ± 0.19 6.49 ± 0.22 1.41 ± 0.05<br />

Central 3.96 ± 0.05 4.67 ± 0.06 1.37 ± 0.04<br />

F 1,198 74.54 13.91 0.28<br />

P-value


quence <strong>of</strong> <strong>seed</strong> heteromorphism (Harper 1977; Lloyd<br />

1984; Silvertown 1984; Venable 1985a). Spreading<br />

<strong>of</strong>fspring in time, resulting from variation in germination<br />

time, could be efficient to re<strong>du</strong>ce sib competition<br />

(Cheplick 1996a). The efficiency <strong>of</strong> spreading indivi<strong>du</strong>als<br />

in time also represents a bet-hedging strategy, re<strong>du</strong>cing<br />

temporal variance in fitness, which is advantageous<br />

in highly variable <strong>and</strong> unpredictable habitats<br />

(Slatkin 1974; Gillespie 1977; Kaplan & Cooper<br />

1984). This major consequence <strong>of</strong> <strong>seed</strong> heteromorphism<br />

has been clearly formalised with the High<br />

Risk/Low Risk strategy by Venable (1985a).<br />

Identically, intra-indivi<strong>du</strong>al variation in <strong>seed</strong> morphology<br />

could optimise the respective <strong>seed</strong> shadows by<br />

maximising the spread <strong>of</strong> <strong>seed</strong>s in space (Augspurger<br />

& Franson 1993). For instance, in wind-dispersed<br />

<strong>seed</strong>s the dispersal distance depends on the terminal<br />

velocity that in turns depends on <strong>seed</strong> morphology<br />

(Sheldon & Burrows 1973). Therefore, any morphological<br />

variation contributes to variation in dispersal<br />

distance (Greene & Johnson 1989). Such variation is<br />

important to re<strong>du</strong>ce density-dependent effects, <strong>and</strong><br />

thus sib-competition, <strong>and</strong> to increase colonisation<br />

ability <strong>of</strong> new habitats. As presented above, in several<br />

species with heteromorphic <strong>seed</strong>, one morph has<br />

greater dispersal ability than the other one. This difference<br />

in dispersal is <strong>of</strong> interest, because the proportion<br />

<strong>of</strong> <strong>seed</strong>s that are potentially dispersed pro<strong>du</strong>ced by a<br />

single indivi<strong>du</strong>al can be related to the dispersal rate <strong>of</strong><br />

its progeny. A number <strong>of</strong> theoretical models exist for<br />

evolution <strong>of</strong> dispersal rate, although these are typically<br />

used for animals (e.g. Johnson & Gaines 1990; Ronce<br />

et al. 2001). Thus, species with heteromorphic <strong>seed</strong> are<br />

appropriate to empirically test theoretical predictions<br />

about the dispersal rate in plant species (Olivieri &<br />

Gouyon 1985; Imbert 2001; Imbert & Ronce 2001).<br />

Furthermore, there is an obvious trend that associates<br />

low dispersal ability with high <strong>seed</strong> dormancy, while<br />

<strong>seed</strong> morphs with high dispersal show re<strong>du</strong>ced dormancy<br />

(see also Olivieri & Berger 1985). This pattern<br />

fits with theoretical expectations about trade-<strong>of</strong>fs between<br />

dispersal in space <strong>and</strong> in time (Venable &<br />

Lawlor 1980; Olivieri 2001).<br />

All these ecological differences represent ultimate<br />

factors assuring the evolutionary success <strong>of</strong> mixed<br />

strategy in <strong>seed</strong> morphology. Indeed, <strong>seed</strong> heteromorphism<br />

is adaptive when <strong>seed</strong> morphs differ in their ecological<br />

behaviour (Lloyd 1984; Venable 1985a). However,<br />

the maintenance <strong>of</strong> <strong>seed</strong> heteromorphism can also<br />

be explained by the positive effect <strong>of</strong> <strong>seed</strong> size on competitive<br />

ability, <strong>and</strong> the trade-<strong>of</strong>f between <strong>seed</strong> size <strong>and</strong><br />

the number <strong>of</strong> <strong>seed</strong>s pro<strong>du</strong>ced by a single indivi<strong>du</strong>al.<br />

Geritz (1995) showed that, considering these two selective<br />

forces, intra-indivi<strong>du</strong>al variation in <strong>seed</strong> size represents<br />

an evolutionarily stable strategy (ESS) provided<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 19<br />

there is spatial variation in <strong>seed</strong>ling density. Indeed, in<br />

safe <strong>site</strong>s where <strong>seed</strong> density is high, the heaviest <strong>seed</strong>s<br />

are advantageous, while in low-density conditions, a<br />

small <strong>seed</strong> size is not disadvantaged. As small <strong>seed</strong>s are<br />

more numerous, they have a greater probability to join<br />

<strong>site</strong>s where the density is low. This has to be related to<br />

the relation between <strong>seed</strong> size <strong>and</strong> dispersal ability<br />

(Venable & Brown 1988). It can also be shown that<br />

intra-indivi<strong>du</strong>al variation for <strong>seed</strong> size represents an<br />

ESS in situations where <strong>seed</strong> predation is positively<br />

related to <strong>seed</strong> size (Geritz 1998). Recently, Fenner et<br />

al. (2002) demonstrated a positive relationship between<br />

capitulum size <strong>and</strong> pre-dispersal <strong>seed</strong> predation in<br />

some Asteraceae species. Therefore, considering the<br />

theoretical predictions obtained by Geritz (1998) <strong>and</strong><br />

these observations, it can be suggested that <strong>seed</strong> size<br />

variation should be positively correlated to capitulum<br />

size. As a corollary, <strong>seed</strong> heteromorphism is supposed<br />

to occur more <strong>of</strong>ten in species with large capitula than<br />

in species with small capitula. More data concerning<br />

the predation rate in species with heteromorphic <strong>seed</strong>,<br />

<strong>and</strong> in particular data concerning differences in predation<br />

rate among <strong>seed</strong> morphs, are thus needed.<br />

Seed heteromorphism in the genus Crepis<br />

Because <strong>seed</strong> heteromorphism represents a mixed strategy<br />

re<strong>du</strong>cing temporal variance in fitness, species with<br />

heteromorphic <strong>seed</strong> should mainly occur in unpredictable<br />

habitats such as the desert (Zohary 1962) <strong>and</strong> disturbed<br />

environments (Harper 1965). For instance, using the<br />

Flora <strong>of</strong> Israel, Ellner & Shmida (1981) observed that<br />

heteromorphism was more frequent in desert habitats<br />

(13.2% <strong>of</strong> 604 species) than in Mediterranean habitats<br />

(0.7 % <strong>of</strong> 1560 species). Telenius & Torstensson (1991)<br />

showed that Spergularia species with heteromorphic<br />

<strong>seed</strong>s mainly occurred in saltmarshes which can be considered<br />

as a frequently disturbed.<br />

It is also <strong>of</strong>ten stated that <strong>seed</strong> heteromorphism<br />

mainly occurs in monocarpic species, in particular because<br />

polycarpy allows spreading the risk <strong>of</strong> repro<strong>du</strong>ction<br />

over several years, <strong>and</strong> thus it is also a bet-hedging<br />

strategy (Venable & Brown 1988). Consistently,<br />

Plitmann (1986) reported a significant association between<br />

annual life cycle <strong>and</strong> heterocarpy in Turkish<br />

Asteraceae. In contrast, this relation was not observed<br />

in the genus Spergularia (Telenius & Torstensson<br />

1991; see also Ellner & Shmida 1981).<br />

It is not possible to test directly both statements<br />

with the species surveyed in the present review, because<br />

ecological <strong>and</strong> phenological information about<br />

non-heteromorphic sister species is missing in most<br />

cases. To deal with this topic, I focused on the genus<br />

Crepis which is well represented within the Appendix.<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


20 E. Imbert<br />

Fig. 1. Phylogenetic relationship among the 27 sections <strong>of</strong> the genus Crepis according to Babcock (1947). For section 15, the relations are numerous, <strong>and</strong><br />

thus are not represented. For each section, the number <strong>of</strong> species is given; “H” symbolizes the presence <strong>of</strong> at least one heterocarpic species within the section.<br />

Babcock (1947) pro<strong>du</strong>ced a monograph <strong>of</strong> this genus<br />

describing 196 species. Based on this study, 30 species<br />

can be considered as heterocarpic. In the Appendix,<br />

however, 28 Crepis species only are listed because two<br />

species described by Babcock are no longer recognised<br />

(C. cretica <strong>and</strong> C. corymbosa, see the Global Provisional<br />

Checklist). Because this review is based on the<br />

phylogenetic structure with 27 sections within the genus<br />

proposed by Babcock (1947, Fig. 1), it uses also the respective<br />

taxonomy. Although the phylogeny suggested<br />

by Babcock (1947) may change with time, it can still<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

be used to test a phylogenetic pattern in <strong>seed</strong> heteromorphism.<br />

To test for association between annual life<br />

cycle <strong>and</strong> <strong>seed</strong> heteromorphism, species were arranged<br />

in two classes: monocarpic (annual <strong>and</strong> biennial<br />

species) <strong>and</strong> polycarpic (perennial species). For the relationship<br />

between habitats <strong>and</strong> <strong>seed</strong> heteromorphism,<br />

habitats were first classified in dry habitats (including<br />

desert, sclerophyllous communities, rocky <strong>and</strong> s<strong>and</strong>y<br />

places) <strong>and</strong> wet habitats (river verges, grassl<strong>and</strong>, deci<strong>du</strong>ous<br />

<strong>and</strong> tropical forests). In a second step, to test<br />

for an association between predictability <strong>of</strong> habitats


<strong>and</strong> presence/absence <strong>of</strong> <strong>seed</strong> heteromorphism, species<br />

were arranged in five classical biogeographical areas<br />

(mediterranean, desert, tropical, continental, <strong>and</strong> temperate)<br />

assuming a greater unpredictability in mediterranean<br />

<strong>and</strong> desert areas than in other biomes, which is<br />

commonly stated in particular for annual precipitations<br />

(Ellner & Shmida 1981; Petit 1990). Mountains<br />

were added as a sixth biogeographical unit, <strong>and</strong> species<br />

were included in this category when their distribution<br />

were limited to mountainous habitats; this biome was<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 21<br />

Fig. 2. The relationship between presence/absence <strong>of</strong> heterocarpy <strong>and</strong> life cycle (monocarpic or polycarpic) in Crepis according to the phylogenetic relationship<br />

among the 27 sections (from Babcock 1947). “H” symbolizes the presence <strong>of</strong> at least one heterocarpic species in the section. Box with full lines, all<br />

species polycarpic; box with bold lines, all species monocarpic; <strong>and</strong> box with broken lines, the section contains both monocarpic (M) <strong>and</strong> polycarpic (P) species.<br />

Numbers represent section numbers (cf. Fig. 1).<br />

considered as predictable. Crepis species were sorted<br />

according to the description given by Babcock (1947).<br />

No statistical test was used since the data cannot be<br />

considered as independent.<br />

The heterocarpic species belong to 12 different sections,<br />

<strong>and</strong> it can be suggested that <strong>seed</strong> heteromorphism has<br />

evolved independently several times within the genus<br />

(Fig. 1). However, heterocarpy <strong>and</strong> monocarpy seem to be<br />

associated (Fig. 2). For instance, in section 20 (9 spp.) <strong>and</strong><br />

section 26 (7 spp.) all species are monocarpic <strong>and</strong> these<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


22 E. Imbert<br />

Fig. 3. The relationship between presence/absence <strong>of</strong> heterocarpy <strong>and</strong> habitat characteristics (wet vs dry) in Crepis according to the phylogenetic relationship<br />

among the 27 sections (from Babcock 1947). “H” symbolizes the presence <strong>of</strong> at least one heterocarpic species in the section. Box with full lines, all species<br />

occur in wet habitats; box with bold lines, all species occur in dry habitats; <strong>and</strong> box with broken lines, the section contains species from dry (D) <strong>and</strong> wet (W)<br />

habitats. Numbers represent section numbers (cf. Fig. 1).<br />

species, except one in each section, are heterocarpic. Furthermore,<br />

most heterocarpic species are monocarpic, <strong>and</strong> 24<br />

monocarpic species (out <strong>of</strong> 43, i.e. 55%) are heterocarpic<br />

(Table 3a). In the sections containing both monocarpic <strong>and</strong><br />

polycarpic species <strong>and</strong> heterocarpic species (9, 19, 23, 25<br />

<strong>and</strong> 27, Fig. 2), heterocarpic species are more frequently<br />

monocarpic than polycarpic (Table 3a), <strong>and</strong> monocarpic<br />

species tend to be more <strong>of</strong>ten heterocarpic (6 out <strong>of</strong> 14,<br />

43%) than polycarpic species (3 out 19, 16%; Table 3a).<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

Heterocarpic species occur more <strong>of</strong>ten either in dry<br />

habitats or in mediterranean-desert habitats (Table 3b).<br />

Considering only the sections where heterocarpic species<br />

occur or species that occupy either dry or wet habitats<br />

(Fig. 3), the association is less obvious as 13 heterocarpic<br />

species (out <strong>of</strong> 20) occupy dry habitats, while<br />

22 non-heterocarpic species (<strong>of</strong> 43) occupy the same<br />

habitats. Carrying out the same analysis with the biogeographical<br />

area (Fig. 4), heterocarpy appears as


Table 3. Number <strong>of</strong> heterocarpic <strong>and</strong> non-heterocarpic species in the<br />

genus Crepis according to (a) life cycle <strong>and</strong> (b) habitat. Data from Babcock<br />

(1947) but see text for details. Sections refer to phylogenetic relationship according<br />

to Babcock (1947, cf. Fig. 1).<br />

(a) Global data Sections 9, 19, 23, 25 <strong>and</strong> 27<br />

Mono- Poly- Total Mono- Poly- Total<br />

carpic carpic carpic carpic<br />

Heterocarpic 24 6 30 6 3 9<br />

Non-heterocarpic 19 147 166 8 16 24<br />

TOTAL 43 153 196 14 19 33<br />

(b) Habitat Biogeographical area<br />

Dry Wet Total Mediterranean Others Total<br />

+ desert<br />

Heterocarpic 21 9 30 25 5 30<br />

Non-heterocarpic 46 120 166 86 80 166<br />

TOTAL 67 129 196 111 85 196<br />

equally frequent in species present in mediterranean<br />

<strong>and</strong> desert areas (20 <strong>of</strong> 44) as in species occurring in<br />

other biogeographical area (5 <strong>of</strong> 11).<br />

Of course, an improved phylogeny <strong>of</strong> the genus Crepis<br />

– which is to be expected for the next years – <strong>and</strong> a phylogenetically<br />

corrected approach would further improve<br />

knowledge about the relationship between heterocarpy,<br />

life cycle <strong>and</strong> habitats. Furthermore, a similar analysis on<br />

other genera would be desirable. However, the present<br />

analysis suggests that heterocarpic species are more <strong>of</strong>ten<br />

monocarpic than polycarpic species, while the relationship<br />

between heterocarpy <strong>and</strong> habitats is less obvious.<br />

Ontogenetic constraints as proximate factors<br />

Environmental factors may pro<strong>du</strong>ce morphological<br />

variation among repeated organs within the same indivi<strong>du</strong>al,<br />

since plants have a mo<strong>du</strong>lar architecture. For<br />

instance, ambient light conditions <strong>and</strong> osmotic pressure<br />

affect leaf size <strong>and</strong> shape in hydrophytes (Bachmann<br />

1983; Niklas 1997), <strong>and</strong> foliar morphology<br />

varies between immersed leaves <strong>and</strong> aerial ones (the socalled<br />

“heterophylly”, see Wells & Pigliucci 2000).<br />

This morphological differentiation corresponds to<br />

plasticity, i.e. the modification <strong>of</strong> the expression <strong>of</strong> a<br />

given genotype according to environmental conditions.<br />

Such a mechanism can explain heterocarpy observed in<br />

Halogeton glomeratus (Chenopodiaceae), as black <strong>and</strong><br />

brown fruits are pro<strong>du</strong>ced at different stages <strong>of</strong> the life<br />

cycle <strong>of</strong> a single plant, depending on light intensity <strong>and</strong><br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 23<br />

photoperiod (Williams 1960). Heterophylly can also<br />

result from changes in the state <strong>of</strong> the meristem <strong>du</strong>e either<br />

to its position or to ageing (Bongard-Pierce et al.<br />

1996; Briggs & Walter 1997). A famous example is<br />

Hedera helix where leaves on vegetative stems are morphologically<br />

different from leaves on repro<strong>du</strong>ctive<br />

stems. Senescent plants <strong>of</strong> the Euphorbiaceae Croton<br />

setigerus pro<strong>du</strong>ce <strong>seed</strong>s that differ in colour <strong>and</strong> chemical<br />

composition from those pro<strong>du</strong>ced earlier in the repro<strong>du</strong>ctive<br />

stage (Cook et al. 1971). Some studies on<br />

the causes <strong>of</strong> heterophylly provide possible mechanisms<br />

for the <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism, but<br />

the analogy may work only for some species. Indeed, a<br />

major feature <strong>of</strong> <strong>seed</strong> heteromorphism is its independence<br />

from environmental conditions (Lloyd 1984). It<br />

thus appears necessary to develop a specific model for<br />

the <strong>ontogeny</strong> <strong>of</strong> heterospermy <strong>and</strong> heterocarpy.<br />

The spike represents the primary organisation <strong>of</strong><br />

most inflorescences in angiosperms. Spikes are characterised<br />

by apical growth <strong>and</strong> developing axillary buds.<br />

This development leads to a sequential maturation <strong>of</strong><br />

flowers, <strong>and</strong> flowers near the bottom <strong>of</strong> the axis mature<br />

first, i.e. the order <strong>of</strong> flowering <strong>and</strong> <strong>seed</strong> maturation is<br />

acropetal. Seeds in the bottom <strong>of</strong> the axis receive resources<br />

earlier than those at the tip <strong>of</strong> the axis. Proximity<br />

to vascular tissues can also affect fruit <strong>and</strong> <strong>seed</strong> size<br />

(Diggle 1995; Susko & Lovett-Doust 2000). Considering<br />

the different levels <strong>of</strong> hierarchy (position <strong>of</strong> the infrutescence<br />

within the indivi<strong>du</strong>al, position <strong>of</strong> the fruit<br />

within the infrutescence, position <strong>of</strong> the <strong>seed</strong> within the<br />

fruit), this development leads to an intra-indivi<strong>du</strong>al<br />

variation in <strong>seed</strong> size. Such variation has been observed<br />

for various species (Cavers & Harper 1966; Harper et<br />

al. 1970; Schaal 1980; Hendrix 1984; Wulff 1986a;<br />

Roach 1987; Mehlman 1993; Senseman & Oliver 1993;<br />

Crochemore et al. 1994; Lokker & Cavers 1995; Simons<br />

& Johnston 2000; Susko & Lovett-Doust 2000). Such<br />

processes are <strong>of</strong>ten used to explain positional effects on<br />

<strong>seed</strong> maturation, abortion (Diggle 1995; Gutiérrez et al.<br />

1996; Susko & Lovett-Doust 1998) <strong>and</strong> germination requirements<br />

(Baskin & Baskin 1998), <strong>and</strong> may influence<br />

developmental stability (Simons & Johnston 1997). Accordingly,<br />

most examples <strong>of</strong> <strong>seed</strong> size variation are related<br />

to developmental constraints <strong>du</strong>e to the hierarchy<br />

<strong>of</strong> development. In other words, intra-indivi<strong>du</strong>al variation<br />

might be the result <strong>of</strong> architectural or physiological<br />

constraints (McGinley et al. 1987; Diggle 1995). While<br />

a continuous variation is not sufficient to define heteromorphism<br />

(see Intro<strong>du</strong>ction), this model can explain<br />

<strong>seed</strong> heteromorphism in species that present a variation<br />

in <strong>seed</strong> morphology between two extremes, like in<br />

Atriplex species (Chenopodiaceae) <strong>and</strong> Abronia sp.<br />

(Nyctaginaceae). However, developmental contraints<br />

has also to take the apical dominance into account. Indeed,<br />

in Cakile sp. (Brassicaceae) <strong>and</strong> Xanthium stru-<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


24 E. Imbert<br />

Fig. 4. The relationship between presence/absence <strong>of</strong> heterocarpy <strong>and</strong> biogeographical origin (mediterranean <strong>and</strong> deserts vs. others) in Crepis according to<br />

the phylogenetic relationship among the 27 sections (from Babcock 1947). “H” symbolizes the presence <strong>of</strong> at least one heterocarpic species in the section. Box<br />

with bold lines, all species occur in either mediterranean or desert areas; box with full lines: all species occur in other areas; box with broken lines: the section<br />

contains species from mediterranean or desert areas (M) <strong>and</strong> from other areas (O). Numbers represent section numbers (cf. Fig. 1).<br />

marium (Asteraceae) fruits are dispermic <strong>and</strong> <strong>seed</strong>s in<br />

the upper position are the heaviest (Shull 1911; Thornton<br />

1935; Maun & Payne 1989; Zhang 1993).<br />

The capitulum <strong>of</strong> Asteraceae is supposed to directly<br />

derive from a spike, resulting from condensation <strong>of</strong> the<br />

axis (Harris 1995), <strong>and</strong> flower development is thus<br />

centripetally. Following the ontogenic arguments presented<br />

above, we expect peripheral achenes to be heavier<br />

than central ones. Several authors have reported<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

that in Tragopogon <strong>du</strong>bius, where <strong>seed</strong> size decreases<br />

linearly from the periphery towards the centre (McGinley<br />

1989; Maxwell et al. 1994; see also Zohary 1950),<br />

<strong>and</strong> consistently in most heterocarpic Asteraceae, morphological<br />

differentiation between achene morphs is<br />

related to position within the capitulum, peripheral<br />

achenes being heavier than central ones. However, in<br />

Car<strong>du</strong>us pycnocephalus, C. tenuiflorus, Centaurea solstitialis<br />

(Olivieri & Berger 1985), Picris radicata (Ell-


ner & Shmida 1984) <strong>and</strong> Bidens pilosa (Rocha 1996)<br />

central achenes are heaviest. Gardocki et al. (2000)<br />

found no relation between flower position <strong>and</strong> <strong>seed</strong><br />

morph in Calen<strong>du</strong>la sp., <strong>and</strong> all <strong>seed</strong> types can be pro<strong>du</strong>ced<br />

by peripheral flowers.<br />

Because the capitulum is a very condensed structure,<br />

constraints for space are not the same in the periphery as<br />

in the centre. For instance, the package <strong>of</strong> central achenes<br />

implies that they are straight, while peripheral achenes<br />

can be curved-shaped, as observed in Crepis sancta. Furthermore,<br />

in some species (e.g. Crepis leontodontoides,<br />

Hedypnois cretica, Picris echioides, Picris galilea), peripheral<br />

achenes are enclosed in involucral bracts. Several<br />

authors (Zohary 1950; McEvoy 1984; Venable<br />

1985a) have argued that the condensed inflorescence <strong>of</strong><br />

Asteraceae favours heterocarpy.<br />

The position <strong>of</strong> <strong>seed</strong>s within the indivi<strong>du</strong>al can also<br />

influence the chemical composition, in particular <strong>of</strong> the<br />

<strong>seed</strong> coat (Gutterman 1983; Gonzalez-Rabanal et al.<br />

1994; Gutterman 1994; Maxwell et al. 1994). Jaim<strong>and</strong><br />

& Rezaee (1995) reported that the chemical composition<br />

<strong>of</strong> achenes <strong>of</strong> sunflowers varies according to their<br />

position within the capitulum. This observation is consistent<br />

with the variations in the concentration in germination<br />

inhibitor <strong>of</strong> some heterocarpic Asteraceae.<br />

Developmental constraints can easily explain bimodality<br />

<strong>of</strong> <strong>seed</strong> size, <strong>and</strong> the curved shape <strong>of</strong> peripheral<br />

achenes in the Asteraceae, but are not sufficient to explain<br />

the tremendous morphological differentiation observed<br />

in certain species. Whatever the ontogenetic process initialising<br />

the differentiation among <strong>seed</strong> morphs, there<br />

must exist, as for phenotypic plasticity, a genetically controlled<br />

mechanisms that either inhibits or enforces<br />

morphological differentiation (Bachmann 1983). For instance<br />

in Malva moschata (Malvaceae), leaf morphology<br />

varies with leaf position within stems, <strong>and</strong> esterase activities<br />

show striking differences between leaf types<br />

(Bachmann 1983). The tremendous morphological differentiation<br />

among <strong>seed</strong> morphs necessarily implies the<br />

pro<strong>du</strong>ction <strong>of</strong> at least one chemical component.<br />

Bachmann (1983) proposed a model largely based<br />

upon observations on the <strong>ontogeny</strong> <strong>of</strong> the capitulum:<br />

Assuming that there (1) is only one hormone involved<br />

in the differentiation between peripheral <strong>and</strong> central<br />

achenes, (2) C i is the concentration <strong>of</strong> this hormone at<br />

time i, <strong>and</strong> (3) the hormone is only pro<strong>du</strong>ced when the<br />

meristem is in a vegetative stage or quiescent. When environmental<br />

conditions (i.e. temperature or photoperiod)<br />

are suitable for plants to repro<strong>du</strong>ce, the vegetative<br />

meristem transforms into flower buds. The concentration<br />

<strong>of</strong> the hormone has thus an initial <strong>and</strong> maximal<br />

value (C 1). Peripheral parts <strong>of</strong> the meristem stop mitotic<br />

activity <strong>and</strong> start to differentiate into florets. Therefore,<br />

in these peripheral cells C i has the value C 1, or less<br />

if the hormone is not time-stable. Conversely, central<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 25<br />

parts <strong>of</strong> the bud still show mitotic activity, <strong>and</strong> C i is divided<br />

by two for each cell division. Such a model leads<br />

to a gradient in hormone concentration from the periphery<br />

towards the centre <strong>of</strong> the capitulum. Bachmann<br />

(1983) suggested that this model can also be applied to<br />

floret differentiation (ligulate in periphery <strong>and</strong> tubulate<br />

in centre) <strong>and</strong> sexual differentiation.<br />

This model is based upon a morphogen gradient<br />

<strong>and</strong> it may also apply for other types <strong>of</strong> inflorescence,<br />

where the flower buds in the lower part having higher<br />

hormonal concentrations. For instance, in the Araceae,<br />

sexual morphs vary along the inflorescence: in the<br />

lower part, flowers are female, median flowers are<br />

hermaphroditic <strong>and</strong> male in the upper part. Such variation<br />

may be <strong>du</strong>e to a similar morphogen gradient<br />

(Boubes & Barabé 1996; Barabé & Jean 1996). Furthermore,<br />

it is important to note that the model leads<br />

to a cell-specific development, i.e. the gradient <strong>of</strong> the<br />

morphogen is independent <strong>of</strong> primordium boundaries<br />

(Bachmann 1983). For instance in Car<strong>du</strong>us species,<br />

the outer side <strong>of</strong> achenes <strong>of</strong> intermediate morphology<br />

have a peripheral-like morphology while the inner side<br />

is morphologically close to central achenes (Olivieri et<br />

al. 1983; see also Fig. 4 in Bachmann 1983). Finally,<br />

we have to note that in many examples <strong>of</strong> heterospermy<br />

<strong>and</strong> heterocarpy, the morphological differentiation<br />

relies upon the importance <strong>of</strong> development <strong>of</strong> a<br />

particular structure (beak in Hypochoeris glabra, wing<br />

in Spergularia marina, pappus in several Asteraceae<br />

species etc.), which can be the result <strong>of</strong> heterochrony.<br />

Heterochrony has been invoked to explain other differentiation<br />

such as evolution <strong>of</strong> corolla shape in the<br />

Delphinium genus (Guerrant 1982) or differentiation<br />

between gamopetaly <strong>and</strong> sympetaly (Stebbins 1974).<br />

Therefore, the hormonal factor could be a growth factor<br />

(Bachmann et al. 1984). Note that the model could<br />

also work with an inhibitor agent.<br />

This model explaining the <strong>ontogeny</strong> <strong>of</strong> differentiation<br />

between <strong>seed</strong> types leads to the conclusion that<br />

morphological differentiation is independent <strong>of</strong> any paternal<br />

contribution. Indeed, the differentiation among<br />

morphs only results from maternal effects, <strong>and</strong> there is<br />

no genetic difference among <strong>seed</strong> morphs that control<br />

for morphological differentiation. For instance, in Calen<strong>du</strong>la<br />

arvensis (Asteraceae), differentiation between<br />

peripheral <strong>and</strong> central ovules started before anthesis<br />

(Pomplitz 1956). The same observations have been<br />

made in Car<strong>du</strong>us sp. (I. Olivieri, pers. comm.). Consequently,<br />

differences among morphs are non-genetic maternal<br />

effects (Imbert et al. 1999). Furthermore, <strong>seed</strong><br />

heteromorphism is considered as intra-indivi<strong>du</strong>al<br />

variation, i.e. a variation within a single plant, <strong>and</strong> a<br />

relevant way to interpret the character is to consider<br />

the respective proportions <strong>of</strong> each <strong>seed</strong> type pro<strong>du</strong>ced<br />

by a single indivi<strong>du</strong>al (e.g. Imbert 2001).<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


26 E. Imbert<br />

Conclusion<br />

Considering species with heteromorphic <strong>seed</strong>, several<br />

characters are involved in the differentiation. This is<br />

particularly true for heterocarpy in the Asteraceae,<br />

where achenes differ in mass, the size <strong>of</strong> the pappus<br />

<strong>and</strong> the structure <strong>of</strong> the pericarp. Species with <strong>seed</strong> heteromorphism<br />

are therefore biological models which are<br />

suitable to test some theoretical predictions about the<br />

evolution <strong>of</strong> dispersal rates or germination strategies.<br />

In most amphicarpic species, subterranean fruits are<br />

pro<strong>du</strong>ced first, while aerial fruits are only pro<strong>du</strong>ced<br />

when conditions are good enough (Zeide 1978; Cheplick<br />

& Quinn 1982). Therefore, considering aerial <strong>seed</strong>s<br />

have a better dispersal ability than subterranean ones<br />

(which <strong>of</strong>ten not disperse at all), dispersal rate is higher<br />

in good than in poor habitats. However, the interpretation<br />

<strong>of</strong> results obtained in amphicarpic species, <strong>and</strong><br />

more generally in species pro<strong>du</strong>cing both chasmogamous<br />

<strong>and</strong> cleistogamous flowers (see Clay 1982), is<br />

complex because the proportions <strong>of</strong> flower types are<br />

also influenced by allocation to different repro<strong>du</strong>ctive<br />

strategies (obligate self-pollination vs. open pollination).<br />

In the Asteraceae Crepis sancta, the observed pattern<br />

was the reverse: in bad conditions plants increase<br />

allocation to dispersed achenes (the central ones). Conversely,<br />

in Hypochoeris glabra (Baker & O’Dowd<br />

1982) <strong>and</strong> Catananche lutea (Ruiz de Clavijo & Jiminez<br />

1998) the proportion <strong>of</strong> central achenes decreases when<br />

plant density increases (see also Imbert & Ronce 2001).<br />

Environmental conditions also affect the proportions <strong>of</strong><br />

<strong>seed</strong> morphs in Atriplex triangularis (Ungar 1987) <strong>and</strong><br />

Atriplex sagittata (M<strong>and</strong>ák & Pysˇek 1999a). Concerning<br />

genetic variation <strong>of</strong> <strong>seed</strong> morph proportions, some<br />

experiments have been made with species pro<strong>du</strong>cing<br />

cleistogamous flowers (Clay 1982; Cheplick & Quinn<br />

1988), <strong>and</strong> significant heritabilities have been obtained<br />

in Crepis sancta (Imbert 2001) <strong>and</strong> Heterosperma pinnatum<br />

(Venable & Burquez 1989), but data are scarce.<br />

Along the same topic, the observed genetic variation<br />

under controlled conditions or the phenotypic variation<br />

observed in natural populations suggest that some indivi<strong>du</strong>als<br />

do not present the character, i.e. some indivi<strong>du</strong>als<br />

are not heteromorphic. Those indivi<strong>du</strong>als should<br />

represent the basis for future research on the genetics <strong>of</strong><br />

the presence/absence <strong>of</strong> the character.<br />

Although few observations have been collected on<br />

proximal mechanisms leading to heterospermy <strong>and</strong><br />

heterocarpy, the importance <strong>of</strong> developmental constraints<br />

is <strong>of</strong>ten suggested (Dowling 1933; Zohary<br />

1950; McEvoy 1984; Venable 1985a). Few experiments<br />

have examined the genetic regulation required to<br />

pro<strong>du</strong>ce heteromorphic fruits <strong>and</strong> <strong>seed</strong>s. In the genus<br />

Microseris, interspecific cross-breeding showed that<br />

the hairy character was under the control <strong>of</strong> two<br />

epistatic loci (Bachmann & Chambers 1981; Bach-<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

mann et al. 1984), <strong>and</strong> the expression <strong>of</strong> each locus<br />

seems to be under the control <strong>of</strong> a third locus (Mauthe<br />

et al. 1984). With the same materials, Mauthe et al.<br />

(1984) have also shown that at least two loci control<br />

for the colour <strong>of</strong> the pericarp. In the genus Spergularia,<br />

crossing between monomorphic <strong>and</strong> heteromorphic indivi<strong>du</strong>als<br />

suggested a genetic system with two loci involved<br />

(Sterk & Dijkhuizen 1972). Developmental genetics<br />

should help to study the ontogenetic processes.<br />

For instance, investigation <strong>of</strong> capitulum development<br />

<strong>of</strong> cultivated ornamental Gerbera showed that the in<strong>du</strong>ction<br />

<strong>of</strong> genes contributing to organ differentiation<br />

within the floret proceeds centripetally in the capitulum<br />

(Yu et al. 1999; Kotilainen et al. 2000). Furthermore,<br />

gene expression is known to vary according to<br />

cell position. For instance, the cycloidea gene is known<br />

to control floral asymmetry in Antirrhinum (Luo et al.<br />

1996), <strong>and</strong> recent experiments have shown that the differentiation<br />

between ligulate florets (in the periphery <strong>of</strong><br />

the capitulum) <strong>and</strong> tubulate florets (in the centre <strong>of</strong> the<br />

capitulum) is correlated to differences in expression <strong>of</strong><br />

this gene in Senecio vulgaris (E. Coen, pers. comm.).<br />

Acknowledgement. I am very grateful to Isabelle Olivieri,<br />

Ophélie Ronce, Anders Telenius <strong>and</strong> Carl Freeman for critical<br />

reading <strong>of</strong> the manuscript, <strong>and</strong> to Joel Mathez for his help with<br />

the taxonomy <strong>of</strong> the cited species. Johannes Kollmann, Gregory<br />

Cheplick <strong>and</strong> an anonymous reviewer improved the clarity <strong>of</strong><br />

the presentation. The final version <strong>of</strong> this manuscript was<br />

written while I was supported by a postdoctoral fellowship<br />

from European Community “Plant Dispersal” allocated to<br />

B. Vosman. This is contribution ISEM 2002–011 <strong>of</strong> the “Institut<br />

des Sciences de l’Evolution” in Montpellier.<br />

References<br />

Andersson IA, Carlström A, Franzén R, Karlén Th &<br />

Nybom H (1983) A revision <strong>of</strong> the Aethionema saxatile<br />

complex (Brassicaceae). Willdenowia 13: 3–42.<br />

Augspurger CK & Franson SE (1993) Consequences for <strong>seed</strong><br />

distribution <strong>of</strong> intra-crop variation in wing-loading <strong>of</strong><br />

wind-dispersed species. Vegetatio 107/108: 121–131.<br />

Austenfeld F-A (1988) Seed dimorphism in Salicornia europaea,<br />

nutrient reserves. Physiologia Plantarum 73: 502–504.<br />

Babcock EB (1947) The Genus Crepis. California Press,<br />

Berkeley.<br />

Bachmann K (1983) Evolutionary genetics <strong>and</strong> the genetic<br />

control <strong>of</strong> morphogenesis in flowering plants. Evolutionary<br />

Biology 16: 157–208.<br />

Bachmann K & Chambers KL (1981) Genes regulating the<br />

appearance <strong>of</strong> two kinds <strong>of</strong> fruits in Microseris strain B87<br />

(Asteraceae, Compositae). Experientia 37: 29–31.<br />

Bachmann K & Chambers KL (1990) Heritable variation for<br />

heterocarpy in Microseris bigelovii (Asteraceae-Lactuceae).<br />

Beiträge zur Biologie der Pflanzen 65: 123–146.


Bachmann K & Price HJ (1979) Variability <strong>of</strong> the inflorescence<br />

<strong>of</strong> Microseris laciniata (Compositae, Cichoriaceae).<br />

Plant Systematics <strong>and</strong> Evolution 131: 17–34.<br />

Bachmann K, Chambers KL & Price HJ (1984) Genetic components<br />

<strong>of</strong> heterocarpy in Microseris hybrid B87 (Asteraceae,<br />

Lactuceae). Plant Systematics <strong>and</strong> Evolution 148: 149–164.<br />

Baker GA & O’Dowd DJ (1982) Effects <strong>of</strong> parent plant density<br />

on the pro<strong>du</strong>ction <strong>of</strong> achene type in the annual<br />

Hypochoeris glabra. Journal <strong>of</strong> Ecology 70: 201–215.<br />

Barabé D & Jean RV (1996) The constraints <strong>of</strong> global form<br />

on phyllotactic organization, the case <strong>of</strong> Symplocarpus<br />

(Araceae). Journal <strong>of</strong> Theoretical Biology 178: 393–397.<br />

Barbour MG (1970) Germination <strong>and</strong> early growth <strong>of</strong> the<br />

str<strong>and</strong> plant Cakile maritima. Bulletin <strong>of</strong> the Torrey<br />

Botanical Club 97: 13–22.<br />

Baskin JM & Baskin CC (1976) Germination dimorphism in<br />

Heterotheca subaxillaris var. subaxillaris. Bulletin <strong>of</strong> the<br />

Torrey Botanical Club 103: 201–206.<br />

Baskin CC & Baskin JM (1998) Seeds, Ecology, Biogeography,<br />

<strong>and</strong> Evolution <strong>of</strong> Dormancy <strong>and</strong> Germination. Academic<br />

Press, San Diego.<br />

Batt<strong>and</strong>ier MA (1883) Sur quelques cas d’hétéromophisme.<br />

Bulletin de la Société Botanique de France 238–244.<br />

Beadle NCW (1952) Studies on halophytes I. The germination<br />

<strong>of</strong> <strong>seed</strong>s <strong>and</strong> establishment <strong>of</strong> <strong>seed</strong>lings <strong>of</strong> 5 species <strong>of</strong><br />

Atriplex in Australia. Ecology 53: 49–52.<br />

Becker W (1913) Uber die Keimung verschiedenartiger<br />

Früchte und Samen bei derselben Species. Beihefte<br />

Botanisches Centralblatt 29: 216–243.<br />

Bendall GM (1973) Some aspects <strong>of</strong> the biology, ecology <strong>and</strong><br />

control <strong>of</strong> slender thistles, Car<strong>du</strong>us tenuiflorus Curt. <strong>and</strong><br />

C. pycnocephalus L. (Compositae) in Tasmania. M.<br />

Agric. thesis, University <strong>of</strong> Tasmania.<br />

Beneke K, von Teichman I, van Rooyen MW & Theron GK<br />

(1992a) Fruit polymorphism in ephemeral species <strong>of</strong><br />

Naquamal<strong>and</strong>. I. Anatomical differences between polymorphic<br />

diaspores <strong>of</strong> two Dimorphotheca species. South<br />

African Journal <strong>of</strong> Botany 58: 448–455.<br />

Beneke K, von Teichman I, van Rooyen MW & Theron GK<br />

(1992b) Fruit polymorphism in ephemeral species <strong>of</strong><br />

Naquamal<strong>and</strong>. II. Anatomical differences between polymorphic<br />

diaspores <strong>of</strong> Arctotis fastuosa <strong>and</strong> Ursinia cakilefolia.<br />

South African Journal <strong>of</strong> Botany 58: 456–460.<br />

Beneke K, van Rooyen MW, Theron GK & van de Venter HA<br />

(1993a) Fruit polymorphism in ephemeral species <strong>of</strong> Naquamal<strong>and</strong>.<br />

III. Germination differences between the polymorphic<br />

diaspores. Journal <strong>of</strong> Arid Environments 24: 333–344.<br />

Beneke K, van Rooyen MW, Theron GK & van de Venter<br />

HA (1993b) Fruit polymorphism in ephemeral species <strong>of</strong><br />

Naquamal<strong>and</strong>. IV. Growth analyses <strong>of</strong> plant cultivated<br />

from the dimorphic diaspores. Journal <strong>of</strong> Arid Environments<br />

24: 345–360.<br />

Berger A (1985) Seed dimorphism <strong>and</strong> germination behaviour<br />

in Salicornia patula. Vegetatio 61: 137–143.<br />

Bisch<strong>of</strong> F (1978) Common Weeds from Iran, Turkey, the<br />

Near East <strong>and</strong> North Africa. GTZ, Eschborn.<br />

Bongard-Pierce DK, Evans MMS & Poethig RS (1996) Heteroblastic<br />

features <strong>of</strong> leaf anatomy in maize <strong>and</strong> their genetic<br />

regulation. International Journal <strong>of</strong> Plant Sciences<br />

157: 331–340.<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 27<br />

Boubes C & Barabé D (1996) Développement de l’inflorescence<br />

et des fleurs <strong>du</strong> Philodendron acutatum Schott<br />

(Araceae). Canadian Journal <strong>of</strong> Botany 74: 909–918.<br />

Briggs D & Walters SM (1997) Plant Variation <strong>and</strong> Evolution.<br />

Cambridge University Press, Cambridge.<br />

Brown NAC & Mitchell JJ (1984) Germination <strong>of</strong> the polymorphic<br />

fruits <strong>of</strong> Bidens bipinnata. South Africa Journal<br />

<strong>of</strong> Botany 3: 55–58.<br />

Budd GD, Thomas EL & Allison JCS (1979) Vegetative regeneration<br />

depth <strong>of</strong> germination <strong>and</strong> <strong>seed</strong> dormancy in<br />

Commelina benghalensis L. Rhodesian Journal <strong>of</strong> Agricultural<br />

Research 17: 151–153.<br />

Burke A (1995) Geigeria alata in the Namib desert, <strong>seed</strong> heteromorphism<br />

in an extremely arid environment. Journal<br />

<strong>of</strong> Vegetation Science 6: 473–478.<br />

Burtt BL (1977) Aspects <strong>of</strong> diversification in the capitulum.<br />

The Biology <strong>and</strong> Chemistry <strong>of</strong> the Compositae (eds. VH<br />

Heywood, JB Harborne & BL Turner), pp. 41–59. Academic<br />

Press, London.<br />

Callahan H & Waller DM (2000) Phenotypic integration<br />

<strong>and</strong> the plasticity <strong>of</strong> integration in an amphicarpic annual.<br />

International Journal <strong>of</strong> Plant Sciences 161: 89–98.<br />

Campbell CS, Quinn JA, Cheplick GP & Bell TJ (1983)<br />

Cleistogamy in grasses. Annual Review <strong>of</strong> Ecology <strong>and</strong><br />

Systematics 14: 411–441.<br />

Cavers PB & Harper JL (1966) Germination polymorphism<br />

in Rumex crispus <strong>and</strong> Rumex obtusifolius. Journal <strong>of</strong><br />

Ecology 54: 367–382.<br />

Cheplick GP (1983) Differences between plants arising from<br />

aerial <strong>and</strong> subterranean <strong>seed</strong>s in the amphicarpic annual<br />

Cardamine chenopodifolia (Cruciferae). Bulletin <strong>of</strong> the<br />

Torrey Botanical Club 110: 442–448.<br />

Cheplick GP (1996a) Do <strong>seed</strong> germination patterns in cleistogamous<br />

annual re<strong>du</strong>ce the risk <strong>of</strong> sibling competition?<br />

Journal <strong>of</strong> Ecology 84: 247–255.<br />

Cheplick GP (1996b) Cleistogamy <strong>and</strong> <strong>seed</strong> heteromorphism<br />

in Triplasis purpurea (Poaceae). Bulletin <strong>of</strong> the Torrey<br />

Botanical Club 123: 25–33.<br />

Cheplick GP & Clay K (1989) Convergent evolution <strong>of</strong> cleistogamy<br />

<strong>and</strong> <strong>seed</strong> heteromorphism in two perennial grasses.<br />

Evolutionary Trends in Plants 3: 127–136.<br />

Cheplick GP & Gr<strong>and</strong>staff K (1997) Effects <strong>of</strong> s<strong>and</strong> burial<br />

on purple s<strong>and</strong>grass (Triplasis purpurea), the significance<br />

<strong>of</strong> <strong>seed</strong> heteromorphism. Plant Ecology 133: 79–89.<br />

Cheplick GP & Quinn JA (1982) Amphicarpum purshii <strong>and</strong><br />

the “pessimistic strategy” in amphicarpic annuals with<br />

subterranean fruit. Oecologia 52: 327–332.<br />

Cheplick GP & Quinn JA (1988) Quantitative variation <strong>of</strong><br />

life history traits in amphicarpic peanutgrass (Amphicarpum<br />

purshii) <strong>and</strong> its evolutionary significance. American<br />

Journal <strong>of</strong> Botany 75: 123–131.<br />

Cheplick GP & Sung LY (1998) Effects <strong>of</strong> maternal nutrient<br />

environment <strong>and</strong> maturation position on <strong>seed</strong> heteromorphism,<br />

germination, <strong>and</strong> <strong>seed</strong>ling growth in<br />

Triplasis purpurea (Poaceae). International Journal <strong>of</strong><br />

Plant Sciences 159: 338–350.<br />

Cheplick GP & Wickstrom VM (1999) Assessing the potential<br />

for competition on a coastal beach <strong>and</strong> the significance<br />

<strong>of</strong> variable <strong>seed</strong> mass in Triplasis purpurea. Journal<br />

<strong>of</strong> the Torrey Botanical Club Society 126: 296–306.<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


28 E. Imbert<br />

Clay K (1982) Environmental <strong>and</strong> genetic determinants <strong>of</strong><br />

cleistogamy in a natural population <strong>of</strong> the grass Danthonia<br />

spicata. Evolution 36: 734–741.<br />

Clay K (1983) The differential establishment <strong>of</strong> <strong>seed</strong>lings<br />

from chasmogamous <strong>and</strong> cleistogamous flowers in natural<br />

populations <strong>of</strong> the grass Danthonia spicata. Oecologia<br />

57: 183–188.<br />

Cohen D (1966) Optimizing repro<strong>du</strong>ction in a r<strong>and</strong>omly<br />

varying environment. Journal <strong>of</strong> Theoretical Biology<br />

12: 119–129.<br />

Cook AD, Atsatt PR & Simon CA (1971) Doves <strong>and</strong> dove<br />

weed, multiple defenses against avian predation. Bio-<br />

Science 21: 277–281.<br />

Corkidi L, Rincon E & Vazquez-Yanes C (1991) Effets <strong>of</strong><br />

light <strong>and</strong> temperature on germination <strong>of</strong> heteromorphic<br />

achenes <strong>of</strong> Bidens odorata (Asteraceae). Canadian Journal<br />

<strong>of</strong> Botany 69: 574–579.<br />

Correns C (1906) Das Keimen der beiderlei Früchte der Dimorphoteca<br />

pluvialis. Berichte der Deutschen Botanischen<br />

Gesellschaft 24: 173–176.<br />

Crochemore ML, Huyghe C, Papineau J & Julier B (1994)<br />

Intra-plant variability in <strong>seed</strong> size <strong>and</strong> <strong>seed</strong> quality in<br />

Lupinus albus L. Agronomie 14: 5–13.<br />

Dakshini KMM & Aggarwal SK (1974) Intracapitular<br />

cypsele dimorphism <strong>and</strong> dormancy in Bidens bipinnata.<br />

Biologia Plantarum (Praha) 16: 469–471.<br />

Davy AJ, Bishop GF & Costa CSB (2001) Salicornia L. (Salicornia<br />

pusilla J. Woods, S. ramosissima J. Woods, S. europaea<br />

L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball<br />

& Tutin, S. fragilis P.W. Ball & Tutun <strong>and</strong> S.<br />

dolichostachya Moss). Journal <strong>of</strong> Ecology 89: 681–707.<br />

Diggle PK (1995) Architectural effects <strong>and</strong> the interpretation<br />

<strong>of</strong> patterns <strong>of</strong> fruit <strong>and</strong> <strong>seed</strong> development. Annual Review<br />

<strong>of</strong> Ecology <strong>and</strong> Systematics 26: 531–552.<br />

Dowling RE (1933) The repro<strong>du</strong>ction <strong>of</strong> Plantago coronopus,<br />

an example <strong>of</strong> morphological <strong>and</strong> biological <strong>seed</strong> dimorphism.<br />

Annals <strong>of</strong> Botany 47: 861–872.<br />

Dyksterhuis EJ (1945) Axillary cleistogenes in Stipa leucotricha<br />

<strong>and</strong> their role in nature. Ecology 26: 195–199.<br />

Ellison AM (1987) Effect <strong>of</strong> <strong>seed</strong> dimorphism on the densitydependent<br />

dynamics <strong>of</strong> experimental populations <strong>of</strong><br />

Atriplex triangularis (Chenopodiaceae). American Journal<br />

<strong>of</strong> Botany 74: 1280–1288.<br />

Ellner S (1986) Germination dimorphism <strong>and</strong> parent-<strong>of</strong>fspring<br />

conflict in <strong>seed</strong> germination. Journal <strong>of</strong> Theoretical<br />

Biology 123: 173–185.<br />

Ellner S & Shmida A (1981) Why are adaptations for long-range<br />

<strong>seed</strong> dispersal rare in desert plants ? Oecologia 51: 133–144.<br />

Ellner S & Shmida A (1984) Seed dispersal in relation to<br />

habitat in the genus Picris (Compositae) in mediterranean<br />

<strong>and</strong> arid regions. Israel Journal <strong>of</strong> Botany 33: 25–39.<br />

Ernst A (1906) Das Keimen der dimorphen Früchte von<br />

Synedrella nodiflora (L.) Grtn. Berichte der Deutschen<br />

Botanischen Gesellschaft 24: 450–458.<br />

Evenari M (1963) Zur Keimungsökologie zweier<br />

Wüstenpflanzen. Mitteilungen der Floristisch-Soziologischen<br />

Arbeitsgemeinschaft 10: 70–81.<br />

Feinbrun-Dothan N & Zohary M (1978) Flora Palaestina,<br />

Part 3 – Ericaceae to Compositae. The Israel Academy <strong>of</strong><br />

Sciences <strong>and</strong> Humanities, Jerusalem.<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

Fenner M (1985) Seed Ecology. Chapman <strong>and</strong> Hall, London.<br />

Fenner M, Cresswell JE, Hurley RA & Baldwin T (2002) Relationship<br />

between capitulum size <strong>and</strong> pre-dispersal <strong>seed</strong><br />

predation by insect larvae in common Asteraceae. Oecologia<br />

130: 72–77.<br />

Flint SD & Palmblad IG (1978) Germination dimorphism<br />

<strong>and</strong> developmental flexibility in the ruderal weed Heterotheca<br />

gr<strong>and</strong>iflora. Oecologia 36: 33–43.<br />

Forsyth C & Brown NAC (1982) Germination <strong>of</strong> the dimorphic<br />

fruits <strong>of</strong> Bidens pilosa L. New Phytologist 90:<br />

151–164.<br />

Frankton C & Bassett IJ (1968) The genus Atriplex<br />

(Chenopodiaceae) in Canada. I. Three intro<strong>du</strong>ced species,<br />

A. heterosperma, oblinfolia <strong>and</strong> hortensis. Canadian Journal<br />

<strong>of</strong> Botany 46: 1309–1313.<br />

Gardocki ME, Zablocki H, El-Keblawy A & Freeman DC<br />

(2000) Heterocarpy in Calen<strong>du</strong>la micrantha (Asteraceae),<br />

the effects <strong>of</strong> competition <strong>and</strong> availability <strong>of</strong> water on the<br />

performance <strong>of</strong> <strong>of</strong>fspring from different fruit morphs.<br />

Evolutionary Ecology Research 2: 701–718.<br />

Geritz SAH (1995) Evolutionarily stable <strong>seed</strong> polymorphism<br />

<strong>and</strong> small-scale variation in <strong>seed</strong>ling density. The American<br />

Naturalist 146: 685–707.<br />

Geritz SAH (1998) Coevolution <strong>of</strong> <strong>seed</strong> size <strong>and</strong> <strong>seed</strong> predation.<br />

Evolutionary Ecology 12: 891–911.<br />

Gibson JP (2001) <strong>Ecological</strong> <strong>and</strong> genetic comparison between<br />

ray <strong>and</strong> disc achene pools <strong>of</strong> the heteromorphic<br />

species Prionopsis ciliata (Asteraceae). International Journal<br />

<strong>of</strong> Plant Sciences 162: 137–145.<br />

Gillespie JH (1977) Natural selection for variances in <strong>of</strong>fspring<br />

numbers, a new evolutionary principle. The American<br />

Naturalist 111: 1010–1014.<br />

Gleeson SK & Tilman D (1994) Plant allocation, growth<br />

rate <strong>and</strong> successional status. Functional Ecology 8:<br />

543–550.<br />

Gonzalez-Rabanal F, Casal M & Trabaud L (1994) Effects<br />

<strong>of</strong> high temperatures, ash <strong>and</strong> <strong>seed</strong> position in the inflorescence<br />

on the germination <strong>of</strong> three Spanish grasses.<br />

Journal <strong>of</strong> Vegetation Science 5: 289–294.<br />

Greene DF & Johnson EA (1989) A model <strong>of</strong> wind dispersal<br />

<strong>of</strong> winged or plumed <strong>seed</strong>s. Ecology 70: 339–347.<br />

Grouzis M, Berger A & Heim G (1976) Polymorphisme et<br />

germination des graines chez trois espèces annuelles <strong>du</strong><br />

genre Salicornia. Oecologica Plantarum 11: 41–52.<br />

Guerrant EOJ (1982) Neotenic evolution <strong>of</strong> Delphinium<br />

nudicaule (Ranunculaceae), a humming-bird pollinated<br />

larkspur. Evolution 36: 699–712.<br />

Gutierrez D, Menendez R & Obeso JR (1996) Effect <strong>of</strong><br />

ovule position on <strong>seed</strong> maturation <strong>and</strong> <strong>seed</strong> weight in<br />

Ulex europeaus <strong>and</strong> Ulex gallii (Fabaceae). Canadian<br />

Journal <strong>of</strong> Botany 74: 848–853.<br />

Gutterman Y (1983) Mass germination <strong>of</strong> plants under<br />

desert conditions. Effects <strong>of</strong> environmental factors <strong>du</strong>ring<br />

<strong>seed</strong> maturation, dispersal, germination <strong>and</strong> establishment<br />

<strong>of</strong> desert annual <strong>and</strong> perennial plants in the Negev<br />

highl<strong>and</strong>s, Israel. Developments in Ecology <strong>and</strong> Environmental<br />

Quality (ed. HI Shuval), pp. 1–10. Balaban ISS,<br />

Rehovot, Philadelphia.<br />

Gutterman Y (1993) Seed Germination in Desert Plants.<br />

Springer-Verlag, Heidelberg.


Gutterman Y (1994) Long-term <strong>seed</strong> position influences on<br />

<strong>seed</strong> germinability <strong>of</strong> the desert annual, Mesembryathenum<br />

nodiflorum L. Israel Journal <strong>of</strong> Plant Sciences 42:<br />

197–205.<br />

Hannan GL (1980) Heteromericarpy <strong>and</strong> <strong>du</strong>al <strong>seed</strong> germination<br />

modes in Platystemon californicus (Papaveraceae).<br />

Madroño 27: 164–170.<br />

Harper JL (1965) Establishment, aggression, <strong>and</strong> cohabitation<br />

in weedy species. The Genetics <strong>of</strong> Colonizing Species<br />

(eds. HG Baker & GL Stebbins), pp. 243–268. Academic<br />

Press, New York.<br />

Harper JL (1977) Population Biology <strong>of</strong> Plants. Academic<br />

Press, London.<br />

Harper JL, Lovell PH & Moore KG (1970) The shapes <strong>and</strong><br />

sizes <strong>of</strong> <strong>seed</strong>s. Annual Review <strong>of</strong> Ecology <strong>and</strong> Systematics<br />

1: 327–356.<br />

Harris EM (1995) Inflorescence <strong>and</strong> floral <strong>ontogeny</strong> in<br />

Asteraceae, a synthesis <strong>of</strong> historical <strong>and</strong> current concepts.<br />

The Botanical Review 61: 93–278.<br />

Hendrix SD (1984) Variation in <strong>seed</strong> weight <strong>and</strong> its effects<br />

on germination in Pastinaca sativa L. (Umbelliferae).<br />

American Journal <strong>of</strong> Botany 71: 795–802.<br />

Heyn CC, Dagan O & Nachman B (1974) The annual Calen<strong>du</strong>la<br />

species, taxonomy <strong>and</strong> relationships. Israel Journal<br />

<strong>of</strong> Botany 23: 169–201.<br />

Hickey M & King C (2000) The Cambridge Illustrated<br />

Glossary <strong>of</strong> Botanical Terms. Cambridge University Press,<br />

Cambridge.<br />

Imbert E (1999) The effects <strong>of</strong> achene dimorphism on the<br />

dispersal in time <strong>and</strong> space in Crepis sancta (Asteraceae).<br />

Canadian Journal <strong>of</strong> Botany 77: 508–513.<br />

Imbert E (2001) Capitulum characters in the <strong>seed</strong> heteromorphic<br />

species Crepis sancta (Asteraceae), variance partioning<br />

<strong>and</strong> inference for the evolution <strong>of</strong> dispersal rate.<br />

Heredity 86: 78–86.<br />

Imbert E & Ronce O (2001) Phenotypic plasticity for dispersal<br />

ability in the <strong>seed</strong> heteromorphic Crepis sancta (Asteraceae).<br />

Oikos 93: 126–134.<br />

Imbert E, Escarré J & Lepart J (1996) Achene dimorphism<br />

<strong>and</strong> among-population variations in some biological traits<br />

in Crepis sancta (Asteraceae). International Journal <strong>of</strong><br />

Plant Sciences 157: 309–315.<br />

Imbert E, Escarré J & Lepart J (1997) Seed heteromorphism<br />

in Crepis sancta (Asteraceae), performance <strong>of</strong> two morphs<br />

in different environments. Oikos 79: 325–332.<br />

Imbert E, Escarré J & Lepart J (1999) Local adaptation <strong>and</strong><br />

non-genetic maternal effects among three populations <strong>of</strong><br />

Crepis sancta (Asteraceae). Écoscience 6: 223–229.<br />

Jaim<strong>and</strong> K & Rezaee MB (1995) Variability in <strong>seed</strong> composition<br />

<strong>du</strong>e to plant population <strong>and</strong> capitula zones <strong>of</strong> sunflower.<br />

Agrochimica 39: 177–183.<br />

Johnson ML & Gaines MS (1990) Evolution <strong>of</strong> dispersal,<br />

theoretical models <strong>and</strong> empirical tests using birds <strong>and</strong><br />

mammals. Annual Review <strong>of</strong> Ecology <strong>and</strong> Systematics 21:<br />

449–480.<br />

Joley DB, Maddox DM, Mackey BE, Schoenig SE &<br />

Casanave KA (1997) Effect <strong>of</strong> light <strong>and</strong> temperature on<br />

germination <strong>of</strong> dimorphic achenes <strong>of</strong> Centaurea solstitialis<br />

in California. Canadian Journal <strong>of</strong> Botany 75:<br />

2131–2139.<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 29<br />

Kaplan RH & Cooper WS (1984) The evolution <strong>of</strong> developmental<br />

plasticity in repro<strong>du</strong>ction characteristics, an application<br />

<strong>of</strong> the “adaptive coin-flipping” principle. The<br />

American Naturalist 123: 393–410.<br />

Khan MA & Gul B (1998) High salt tolerance in germinating<br />

dimorphic <strong>seed</strong>s <strong>of</strong> Arthrocnemum indicum. International<br />

Journal <strong>of</strong> Plant Sciences 159: 826–832.<br />

Khan MA, Ungar IA & Gul B (1998) Action <strong>of</strong> compatible<br />

osmotica <strong>and</strong> growth regulators in alleviating the effect <strong>of</strong><br />

salinity on the germination <strong>of</strong> dimorphic <strong>seed</strong>s <strong>of</strong> Arthrocnemun<br />

indicum L. International Journal <strong>of</strong> Plant Sciences<br />

159: 313–317.<br />

Kigel J (1992) Diaspore heteromorphism <strong>and</strong> germination in<br />

populations <strong>of</strong> the ephemeral Hedypnois rhagadioloides<br />

(L.) FW Schmidt (Asteraceae) inhabiting a geographic<br />

range <strong>of</strong> increasing aridity. Acta Oecologica 13: 45–53.<br />

Koller D (1957) Germination-regulating mechanisms in<br />

some desert <strong>seed</strong>s. IV. Atriplex dimorphostegia Kar. et Kir.<br />

Ecology 38: 1–13.<br />

Koller D & Roth N (1964) Studies <strong>of</strong> the ecological <strong>and</strong> physiological<br />

significance <strong>of</strong> amphicarpy in Gymnarrhena micrantha<br />

(Compositae). American Journal <strong>of</strong> Botany 51: 26–35.<br />

Kotilainen M, Elomaa P, Uimari A, Albert VA, Yu D & Teeri<br />

TH (2000) GRC1, an AGL2-like MADS box gene, participates<br />

in the C function <strong>du</strong>ring stamen development in<br />

Gerbera hydrida. The Plant Cell 12: 1893–1902.<br />

Lloyd DG (1984) Variation strategies <strong>of</strong> plants in heterogeneous<br />

environments. Biological Journal <strong>of</strong> the Linnean<br />

Society 21: 357–385.<br />

Lokker C & Cavers PB (1995) The effects <strong>of</strong> physical damage<br />

on <strong>seed</strong> pro<strong>du</strong>ction in flowering plants <strong>of</strong> Saponaria<br />

<strong>of</strong>ficinalis. Canadian Journal <strong>of</strong> Botany 73: 235–243.<br />

Luo D, Carpenter R, Vincent C, Copsey L & Coen E (1996) Origin<br />

<strong>of</strong> floral asymmetry in Antirrhinum. Nature 383: 794–799.<br />

Mabberley DJ (1997) The Plant Book. Cambridge University<br />

Press, Cambridge.<br />

Maire R (1965) Dicotyledonae, Rhoedales, Papaveracea,<br />

sf. Fumarioidae p.p.; Capparidaceae, Cruciferae p.p.<br />

Flore de l’Afrique <strong>du</strong> Nord (ed. P Quézel), vol. 12. Paul<br />

Lechevalier, Paris.<br />

M<strong>and</strong>ák B (1997) Seed heteromorphism <strong>and</strong> the life cycle <strong>of</strong><br />

plants, a literature review. Preslia, Praha 69: 129–159.<br />

M<strong>and</strong>ák B & Pysˇek P (1999a) Effects <strong>of</strong> plant density <strong>and</strong><br />

nutrient levels on fruit polymorphism in Atriplex<br />

sagittata. Oecologia 119: 63–72.<br />

M<strong>and</strong>ák B & PysˇekP (1999b) How does density <strong>and</strong> nutrient<br />

stress affect allometry <strong>and</strong> fruit pro<strong>du</strong>ction in the heterocarpic<br />

species Atriplex sagittata (Chenopodiaceae).<br />

Canadian Journal <strong>of</strong> Botany 77: 1106–1119.<br />

M<strong>and</strong>ák B & Pysˇek P (2001a) The effects <strong>of</strong> light quality, nitrate<br />

concentration <strong>and</strong> presence <strong>of</strong> bracteoles on germination<br />

<strong>of</strong> different fruit types in the heterocarpous<br />

Atriplex sagittata. Journal <strong>of</strong> Ecology 89: 149–158.<br />

M<strong>and</strong>ák B & Pysˇek P (2001b) Fruit dispersal <strong>and</strong> <strong>seed</strong> banks<br />

in Atriplex sagittata, the role <strong>of</strong> heterocarpy. Journal <strong>of</strong><br />

Ecology 89: 159–165.<br />

Marañon T & Grubb PJ (1993) Physiological basis <strong>and</strong> ecological<br />

significance <strong>of</strong> the <strong>seed</strong> size <strong>and</strong> relative growth<br />

rate relationship in Mediterranean annuals. Functional<br />

Ecology 7: 591–599.<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


30 E. Imbert<br />

Martin A (1996) Germination et dispersion des graines chez<br />

Glaucium flavum Crantz (Papaveraceae). Acta Botanica<br />

Malacitana 21: 71–78.<br />

Mathez J & Xena de Enrech N (1985) Heterocarpy, fruit<br />

polymorphism <strong>and</strong> discriminating dissemination in the<br />

genus Fedia (Valerianaceae). Genetic Differentiation <strong>and</strong><br />

Dispersal in Plants (eds. P Jacquard, G Heim & J<br />

Antonovics), pp. 431–441. NATO, Berlin.<br />

Mattatia J (1977a) The amphicarpic species Lathyrus ciliolatus.<br />

Botanical Notiser 129: 437–444.<br />

Mattatia J (1977b) Amphicarpy <strong>and</strong> variability in Pisum fulvum.<br />

Botanical Notiser 130: 27–34.<br />

Maun MA & Payne AM (1989) Fruit <strong>and</strong> <strong>seed</strong> polymorphism<br />

<strong>and</strong> its relation to <strong>seed</strong>ling growth in the genus<br />

Cakile. Canadian Journal <strong>of</strong> Botany 67: 2743–2750.<br />

Maurya AN & Ambasht RS (1973) Significance <strong>of</strong> <strong>seed</strong> dimorphism<br />

in Alyscarpus monolifer DC. Journal <strong>of</strong> Ecology<br />

61: 213–217.<br />

Mauthe S, Bachmann K, Chambers KL & Price HJ (1984)<br />

Independent responses <strong>of</strong> two fruit characters to developmental<br />

regulation in Microseris douglasii (Asteraceae,<br />

Lactuceae). Experientia 40: 1280–1281.<br />

Maxwell CD, Zobel A & Woodfine D (1994) Somatic polymorphism<br />

in the achenes <strong>of</strong> Tragopogon <strong>du</strong>bius. Canadian<br />

Journal <strong>of</strong> Botany 72: 1282–1288.<br />

McDonough WT (1975) Germination polymorphism in<br />

Grindelia squarrosa. Northwest Science 49: 190–200.<br />

McEvoy PB (1984) Dormancy <strong>and</strong> dispersal in dimorphic achenes<br />

<strong>of</strong> tansy ragwort Senecio jacobaea. Oecologia 61: 160–168.<br />

McEvoy PB & Cox CS (1987) Wind dispersal distance in dimorphic<br />

achenes <strong>of</strong> ragwort, Senecio jacobaea. Ecology<br />

68: 2006–2015.<br />

McGinley MA (1989) Within <strong>and</strong> among plant variation in<br />

<strong>seed</strong> mass <strong>and</strong> pappus size in Tragopogon <strong>du</strong>bius. Canadian<br />

Journal <strong>of</strong> Botany 67: 1298–1304.<br />

McGinley MA, Temme DH & Geber MA (1987) Parental<br />

investment in <strong>of</strong>fspring in variable enviroments, theoretical<br />

<strong>and</strong> empirical considerations. The American Naturalist<br />

130: 370–398.<br />

McNamara J & Quinn JA (1977) Resource allocation <strong>and</strong><br />

repro<strong>du</strong>ction in populations <strong>of</strong> Amphicarpum purshii<br />

(Gramineae). American Journal <strong>of</strong> Botany 64: 17–23.<br />

Mehlman DW (1993) Seed size <strong>and</strong> <strong>seed</strong> packaging variation<br />

in Baptisia lanceolata (Fabaceae). American Journal <strong>of</strong><br />

Botany 80: 735–742.<br />

Mohamed-Yasseen Y, Barringer SA, Splittstoesser WA &<br />

Costanza S (1994) The role <strong>of</strong> <strong>seed</strong> coats in <strong>seed</strong> viability.<br />

The Botanical Review 60: 426–439.<br />

Montégut J (1970) Clé de détermination des semences et des<br />

mauvaises herbes. Versaille, Ecole Nationale Supérieure<br />

d’Horticulture de Versailles.<br />

Negbi M & Tamari B (1963) Germination <strong>of</strong> chlorophyllous<br />

<strong>and</strong> achlorophyllous <strong>seed</strong>s <strong>of</strong> Salsola volkensii <strong>and</strong><br />

Aellinia autrani. Israel Journal <strong>of</strong> Botany 12: 124–135.<br />

Niklas KJ (1997) The Evolutionary Biology <strong>of</strong> Plants. The<br />

Chicago University Press, Chicago.<br />

Olivieri I (2001) The evolution <strong>of</strong> dispersal <strong>and</strong> other traits<br />

in metapopulation. Integrating Ecology <strong>and</strong> Evolution in<br />

a Spatial Context (eds. J Antonovics & J Silvertown), pp.<br />

245–268. Blackwell Science, Oxford.<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

Olivieri I & Berger A (1985) Seed dimorphism for dispersal,<br />

physiological, genetic <strong>and</strong> demographic aspects. Genetic<br />

Differentiation <strong>and</strong> Dispersal in Plants (eds. P Jacquard,<br />

G Heim & J Antonovics), pp. 413–429. NATO ASI series,<br />

Springer-Verlag, Berlin.<br />

Olivieri I & Gouyon PH (1985) Seed dimorphism for dispersal,<br />

theory <strong>and</strong> implications. Structure <strong>and</strong> Functioning <strong>of</strong><br />

Plant Populations (eds J Hack & JW Woldentrop), pp.<br />

77–99. North Holl<strong>and</strong> Publishing Company, Amsterdam.<br />

Olivieri I, Swan M & Gouyon PH (1983) Repro<strong>du</strong>ctive system<br />

<strong>and</strong> colonizing strategy <strong>of</strong> two species <strong>of</strong> Car<strong>du</strong>us<br />

(Compositae). Oecologia 60: 114–117.<br />

Payne AM & Maun MA (1981) Dispersal <strong>and</strong> floating ability<br />

<strong>of</strong> dimorphic fruit segments <strong>of</strong> Cakile edentula var. lacustris.<br />

Canadian Journal <strong>of</strong> Botany 59: 2595–2602.<br />

Petit DP (1990) Contribution à l’étude de l’évolution des<br />

Car<strong>du</strong>ées et Lactucées (Composées). PhD thesis, University<br />

<strong>of</strong> Montpellier.<br />

Philipupillai J & Ungar IA (1984) The effect <strong>of</strong> <strong>seed</strong> dimorphism<br />

on the germination <strong>and</strong> survival <strong>of</strong> Salicornia europaea L.<br />

populations. American Journal <strong>of</strong> Botany 71: 542–549.<br />

Plitmann U (1973) Biological flora <strong>of</strong> Israel. 4. Vicia sativa<br />

subsp. amphicarpa (Dorth) Aschers & Graebn. Israel<br />

Journal <strong>of</strong> Botany 22: 178–194.<br />

Plitmann U (1986) Alternative modes in dispersal strategies<br />

with an emphasis on herbaceous plants <strong>of</strong> the Middle<br />

East. Proceedings <strong>of</strong> the Royal Society <strong>of</strong> Edinburg 89:<br />

193–202.<br />

Pomplitz R (1956) Die Heteromorphie der Früchte von Calen<strong>du</strong>la<br />

arvensis unter besonderer Berücksichtigung der<br />

Stellungs- und Zahlenverhältnisse. Beiträge zur Biologie<br />

der Pflanzen 32: 331–369.<br />

Porras R & Muñoz JM (2000) Achene heteromorphism in<br />

the cleistogamous species Centaurea melitensis. Acta Oecologica<br />

21: 231–243.<br />

Priestley DA (1986) Seed Aging, Implications for Seed Storage<br />

<strong>and</strong> Persistence in the Soil. Cornell University Press,<br />

New York.<br />

Quézel P & Santa A (1962) La nouvelle flore de l’Algérie et<br />

des régions désertiques méridionales. Paris, CNRS.<br />

Rabinowitz D & Rapp JK (1979) Dual dispersal in hairgrass,<br />

Agrostis hiemalis (Walt.) B.S.P. (Graminea). Bulletin<br />

<strong>of</strong> the Torrey Botanical Club 106: 32–36.<br />

Rai JPN & Tripathi RS (1987) Germination <strong>and</strong> plant survival<br />

<strong>and</strong> growth <strong>of</strong> Galingosa parviflora Cav. as related<br />

to food <strong>and</strong> energy content <strong>of</strong> its ray- <strong>and</strong> disc-achenes.<br />

Acta Oecologica 8: 155–165.<br />

Redbo-Torstensson P & Telenius A (1995) Primary <strong>and</strong> secondary<br />

<strong>seed</strong> dispersal by wind <strong>and</strong> water in Spergularia<br />

salina. Ecography 18: 230–237.<br />

Roach DA (1987) Variation in <strong>seed</strong> <strong>and</strong> <strong>seed</strong>ling size in Anthoxanthum<br />

odoratum. The American Midl<strong>and</strong> Naturalist<br />

117: 258–264.<br />

Rocha OJ (1996) The effects <strong>of</strong> achene heteromorphism on<br />

the dispersal capacity <strong>of</strong> Bidens pilosa L. International<br />

Journal <strong>of</strong> Plant Sciences 157: 316–322.<br />

Ronce O, Olivieri I, Clobert J & Danchin E (2001) Perspectives<br />

on the study <strong>of</strong> dispersal evolution. Dispersal (eds. J<br />

Clobert, E Danchin, AA Dhondt & JD Nichols), pp.<br />

341–357. Oxford University Press, Oxford.


Ruiz de Clavijo E (1994) Heterocarpy <strong>and</strong> <strong>seed</strong> polymorphism<br />

in Ceratocapnos heterocarpa (Fumariaceae). International<br />

Journal <strong>of</strong> Plant Sciences 155: 196–202.<br />

Ruiz de Clavijo E (1995) The ecological significance <strong>of</strong> fruit<br />

heteromorphism in the amphicarpic species Catananche<br />

lutea (Asteraceae). International Journal <strong>of</strong> Plant Sciences<br />

156: 824–833.<br />

Ruiz de Clavijo E (2001) The role <strong>of</strong> dimorphic achenes in<br />

the biology <strong>of</strong> the annual weed Leontodon longirrostris.<br />

Weed Research 41: 275–286.<br />

Ruiz de Clavijo E & Jimenez MJ (1998) The influence <strong>of</strong><br />

achene type <strong>and</strong> plant density on growth <strong>and</strong> biomass allocation<br />

in the heterocarpic annual Catananche lutea<br />

(Asteraceae). International Journal <strong>of</strong> Plant Sciences 159:<br />

637–647.<br />

Salisbury EJ (1958) Spergularia salina <strong>and</strong> Spergularia<br />

margina <strong>and</strong> their heteromorphic <strong>seed</strong>s. Kew Bulletin 1:<br />

41–51.<br />

Schaal BA (1980) Repro<strong>du</strong>ctive capacity <strong>and</strong> <strong>seed</strong> size in<br />

Lupinus texensis. American Journal <strong>of</strong> Botany 67:<br />

703–709.<br />

Schat H (1981) Seed polymorphism <strong>and</strong> germination ecology<br />

<strong>of</strong> Plantago coronopus L. Acta Oecologica 2: 367–380.<br />

Schnee BK & Waller DM (1986) Repro<strong>du</strong>ctive behavior <strong>of</strong><br />

Amphicarpaea bracteata (Leguminosae), an amphicarpic<br />

annual. American Journal <strong>of</strong> Botany 73: 376–386.<br />

Senseman SA & Oliver LR (1993) Flowering patterns, <strong>seed</strong><br />

pro<strong>du</strong>ction <strong>and</strong> somatic polymorphism <strong>of</strong> three weed<br />

species. Weed Science 41: 418–425.<br />

Sheldon JC & Burrows FM (1973) The dispersal effectiveness<br />

<strong>of</strong> the achene-pappus units <strong>of</strong> selected Compositae in<br />

steady winds with convection. New Phytologist 72:<br />

665–675.<br />

Shull CA (1911) The oxygen minimum <strong>and</strong> the germination<br />

<strong>of</strong> Xanthium <strong>seed</strong>s. Botanical Gazette 52: 453–476.<br />

Silvertown JW (1984) Phenotypic variety in <strong>seed</strong> germination<br />

behavior, the <strong>ontogeny</strong> <strong>and</strong> evolution <strong>of</strong> somatic polymorphism<br />

in <strong>seed</strong>s. The American Naturalist 124: 1–16.<br />

Simons AM & Johnston MO (1997) Developmental instability<br />

as a bet-hedging strategy. Oikos 80: 401–406.<br />

Simons AM & Johnston MO (2000) Variation in <strong>seed</strong> traits<br />

<strong>of</strong> Lobelia inflata (Campanulaceae), sources <strong>and</strong> fitness<br />

<strong>consequences</strong>. American Journal <strong>of</strong> Botany 87: 124–132.<br />

Slatkin M (1974) Hedging one’s evolutionary bets. Nature<br />

250: 704–705.<br />

Smith CC & Fretwell SD (1974) The optimal balance between<br />

size <strong>and</strong> number <strong>of</strong> <strong>of</strong>fspring. The American Naturalist<br />

108: 499–506.<br />

Smith M & Keevin TM (1998) Achene morphology, pro<strong>du</strong>ction<br />

<strong>and</strong> germination, <strong>and</strong> potential for water dispersal in<br />

Boltonia decurrens (decurrent false aster), a threatened<br />

floodplain species. Rhodora 100: 69–81.<br />

Sorensen AE (1978) Somatic polymorphism <strong>and</strong> <strong>seed</strong> dispersal.<br />

Nature 276: 174–176.<br />

Stebbins GL (1974) Flowering Plants. Evolution above the<br />

Species Level. Arnold, London.<br />

Sterk AA (1969) Biosystematic studies on Spergularia media<br />

<strong>and</strong> Spergularia marina in Netherl<strong>and</strong>s. III. The variability<br />

<strong>of</strong> S. media <strong>and</strong> S. marina in relation to the environment.<br />

Acta Botanica Neerl<strong>and</strong>ica 18: 561–577.<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 31<br />

Sterk AA & Dijkhuizen L (1972) The relation between the<br />

genetic determination <strong>and</strong> the ecological significance <strong>of</strong><br />

the <strong>seed</strong> wing in Spergularia media <strong>and</strong> S. marina. Acta<br />

Botanica Neerl<strong>and</strong>ica 21: 481–490.<br />

Susko DJ & Lovett-Doust L (1998) Variable patterns <strong>of</strong> <strong>seed</strong><br />

maturation <strong>and</strong> abortion in Alliaria petiolata (Brassicaceae)<br />

Canadian Journal <strong>of</strong> Botany 76: 1677–1686.<br />

Susko DJ & Lovett-Doust L (2000) Patterns <strong>of</strong> <strong>seed</strong> mass variation<br />

<strong>and</strong> their effects on <strong>seed</strong>ling traits in Alliaria petiolata<br />

(Brassicaceae). American Journal <strong>of</strong> Botany 87: 56–66.<br />

Takeno K & Yamaguchi H (1991) Diversity in <strong>seed</strong> germination<br />

behavior in relation to heterocarpy in Salsola komarovii<br />

Iljin. The Botanical Magazine 104: 207–215.<br />

Tanowitz BD, Salopek PF & Mahall BE (1987) Differential germination<br />

<strong>of</strong> ray <strong>and</strong> disc achenes in Hemizonia increscens<br />

(Asteraceae). American Journal <strong>of</strong> Botany 74: 303–312.<br />

Taylorson RB & Hendricks SB (1977) Dormancy in <strong>seed</strong>s.<br />

Annual Review <strong>of</strong> Plant Physiology 28: 331–354.<br />

Tébar FJ & Llorens I (1993) Heterocarpy in Thymelea velutina<br />

(Poiret ex Camb.) Endl., a case <strong>of</strong> phenotypic adaptation<br />

to Mediterranean selective pressures. Botanical<br />

Journal <strong>of</strong> the Linnean Society 111: 295–300.<br />

Telenius A (1992) Seed heteromorphism in a population <strong>of</strong><br />

Spergularia media in relation to the ambient vegetation<br />

density. Acta Botanica Neerl<strong>and</strong>ica 41: 305–318.<br />

Telenius A & Torstensson P (1989) The <strong>seed</strong> dimorphism <strong>of</strong><br />

Spergularia marina in relation to dispersal by wind <strong>and</strong><br />

water. Oecologia 80: 206–210.<br />

Telenius A & Torstensson P (1991) Seed wings in relation to<br />

<strong>seed</strong> size in the genus Spergularia. Oikos 61: 216–222.<br />

Thompson K, B<strong>and</strong> SR & Hodgson JG (1993) Seed size <strong>and</strong> shape<br />

predict persistence in soil. Functional Ecology 7: 236–241.<br />

Thornton NC (1935) Factors influencing germination <strong>and</strong><br />

developement <strong>of</strong> dormancy in Cocklebur <strong>seed</strong>s. Contribution<br />

Boyce Thompson Institut 7: 477–496.<br />

Trapp EJ (1988) Dispersal <strong>of</strong> heteromorphic <strong>seed</strong>s in Amphicarpus<br />

bracteata (Fabaceae). American Journal <strong>of</strong> Botany<br />

75: 1535–1539.<br />

Troumbis A & Trabaud L (1987) Dynamique de la banque<br />

de graines de deux espèces de cistes dans les maquis grecs.<br />

Acta Oecologica 8: 167–179.<br />

Ungar IA (1971) Atriplex patula var. hastata (L.) Gray <strong>seed</strong><br />

dimorphism. Rhodora 73: 548–551.<br />

Ungar IA (1979) Seed dimorphism in Salicornia europaea L.<br />

Botanical Gazette 140: 102–108.<br />

Ungar IA (1987) Population ecology <strong>of</strong> halophyte <strong>seed</strong>s. The<br />

Botanical Review 53: 301–334.<br />

Venable DL (1985a) The evolutionary ecology <strong>of</strong> <strong>seed</strong> heteromorphism.<br />

The American Naturalist 126: 577–595.<br />

Venable DL (1985b) Ecology <strong>of</strong> achene dimorphism in Heterotheca<br />

latifolia III. Consequences <strong>of</strong> varied water availibility.<br />

Journal <strong>of</strong> Ecology 73: 757–763.<br />

Venable DL & Brown JS (1988) The selective interactions <strong>of</strong><br />

dispersal, dormancy <strong>and</strong> <strong>seed</strong> size as adaptations for re<strong>du</strong>cing<br />

risk in variable environments. The American Naturalist<br />

131: 360–384.<br />

Venable DL & Burquez AM (1989) Quantitative genetics <strong>of</strong><br />

size, shape, life-history <strong>and</strong> fruit characteristics <strong>of</strong> the <strong>seed</strong>heteromorphic<br />

compo<strong>site</strong> Heterosperma pinnatum. I. Variation<br />

within <strong>and</strong> among populations. Evolution 43: 113–124.<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


32 E. Imbert<br />

Venable DL & Lawlor L (1980) Delayed germination <strong>and</strong><br />

dispersal in desert annuals, escape in space <strong>and</strong> time. Oecologia<br />

46: 272–282.<br />

Venable DL & Levin DA (1985a) Ecology <strong>of</strong> achene dimorphism<br />

in Heterotheca latifolia. I. Achene structure,<br />

germination <strong>and</strong> dispersal. Journal <strong>of</strong> Ecology<br />

73: 133–145.<br />

Venable DL & Levin DA (1985b) Ecology <strong>of</strong> achene dimorphism<br />

in Heterotheca latifolia. II. Demographic variation<br />

within populations. Journal <strong>of</strong> Ecology 73: 743–755.<br />

Venable DL, Burquez AM, Corral G, Morales E & Espinosa<br />

F (1987) The ecology <strong>of</strong> <strong>seed</strong> heteromorphism in<br />

Heterosperma pinnatum in Central Mexico. Ecology<br />

68: 65–76.<br />

Vuillemin J & Bulard C (1981) Ecophysiologie de la germination<br />

de Cistus albi<strong>du</strong>s L et Cistus monspeliensis L. Naturalia<br />

monspeliensia 46: 1–11.<br />

Wagenknecht BL (1960) Revision <strong>of</strong> Heterotheca section<br />

Heterotheca (Compositae). Rhodora 62: 61–76/97–107.<br />

Weiss PW (1980) Germination, repro<strong>du</strong>ction <strong>and</strong> interference<br />

in the amphicarpic annual Emex spinosa. Oecologia<br />

45: 244–251.<br />

Wells CL & Pigliucci M (2000) Adaptive phenotypic plasticity,<br />

the case <strong>of</strong> heterophylly in aquatic plants. Perspectives<br />

in Plant Ecology, Evolution <strong>and</strong> Systematics<br />

3: 1–18.<br />

Werker E & Many T (1974) Heterocarpy <strong>and</strong> its <strong>ontogeny</strong><br />

in Aellinia autrani (Post) Zoh., light <strong>and</strong> electron-microscope<br />

study. Israel Journal <strong>of</strong> Botany 23: 132–144.<br />

Wertis BA & Ungar IA (1986) Seed demography <strong>and</strong><br />

<strong>seed</strong>ling survival in a population <strong>of</strong> Atriplex triangularis<br />

Willd. The American Midl<strong>and</strong> Naturalist 116:<br />

152–162.<br />

Westoby M (1981) How diversified <strong>seed</strong> germination behavior<br />

is selected? The American Naturalist 118: 882–885.<br />

Wiggins IL (1980) Flora <strong>of</strong> Baja California. Stanford University<br />

Press, Stanford.<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36<br />

Williams CM (1960) Biochemical analyses, germination <strong>and</strong><br />

pro<strong>du</strong>ction <strong>of</strong> black <strong>and</strong> brown <strong>seed</strong>s <strong>of</strong> Halogeton glomeratus.<br />

Weeds 8: 452–461.<br />

Williams JT & Harper JL (1965) Seed dimorphism <strong>and</strong> germination.<br />

I. The influence <strong>of</strong> nitrates <strong>and</strong> low temperatures<br />

on the germination <strong>of</strong> Chenopodium album. Weed<br />

Research 5: 141–150.<br />

Wilson RC (1974) Abronia, II. Anthocarp polymorphism<br />

<strong>and</strong> anatomy for the nine species <strong>of</strong> Abronia found in California.<br />

Aliso 8: 113–128.<br />

Wulff RD (1986a) Seed size variation in Desmodium paniculatum.<br />

I. Factors affecting <strong>seed</strong> size. Journal <strong>of</strong> Ecology 74: 87–98.<br />

Wulff RD (1986b) Seed size variation in Desmodium paniculatum.<br />

II. Effects on <strong>seed</strong>ling growth <strong>and</strong> physiological<br />

performance. Journal <strong>of</strong> Ecology 74: 99–114.<br />

Yu D, Kotilainen M, Pöllänen E, Mehto M, Elomaa P, Helariutta<br />

Y, Albert VA & Teeri TH (1999) Organ identity genes<br />

<strong>and</strong> modified patterns <strong>of</strong> flower development in Gerbera<br />

hybrida (Asteraceae). The Plant Journal 17: 51–62.<br />

Zeide B (1978) Repro<strong>du</strong>ctive behavior <strong>of</strong> plants in time. The<br />

American Naturalist 112: 636–639.<br />

Zhang J (1993) Seed dimorphism in relation to germination<br />

<strong>and</strong> growth <strong>of</strong> Cakile edentula. Canadian Journal <strong>of</strong><br />

Botany 71: 1231–1235.<br />

Zhang J (1995) Differences in phenotypic plasticity between<br />

plants from dimorphic <strong>seed</strong>s <strong>of</strong> Cakile edentula. Oecologia<br />

102: 353–360.<br />

Zohary M (1950) Evolutionary trends in the fruiting head <strong>of</strong><br />

Compositae. Evolution 4: 103–109.<br />

Zohary M (1962) Plant Life <strong>of</strong> Palestine. The Ronald Press<br />

Company, USA.<br />

Zohary M (1966) Flora Palaestina, Part 1 – Equisetaceae to<br />

Moringaceae. The Israel Academy <strong>of</strong> Sciences <strong>and</strong> Humanities,<br />

Jerusalem.<br />

Zohary M (1972) Flora Palaestina, Part 2 – Plantanaceae to<br />

Umbelliferae. The Israel Academy <strong>of</strong> Sciences <strong>and</strong> Humanities,<br />

Jerusalem.


Appendix<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 33<br />

List <strong>of</strong> <strong>seed</strong> heteromorphic species. An asterisk indicates that the taxon is not referenced in the Global Provisional Checklist made by the International Organization<br />

for Plant Information (www.bgbm.fu-berlin.de/IOPI/GPC/default.htm, last updated 27 November 2000). The name <strong>of</strong> the species is given in parentheses<br />

when the named used in the cited reference is different from the name given in the checklist.<br />

Family Species References<br />

Apiaceae * Peucedanum spreitzenh<strong>of</strong>eri Dingl. Zohary (1972)<br />

Apiaceae * Tordylium aegyptiacum (L.) Lam. Zohary (1972)<br />

Apiaceae Torilis nodosa (L.) Gaertner Montégut (1970)<br />

Asteraceae * Aaronsohnia factorovskyi Warb. & Eig. Zohary (1962)<br />

Asteraceae Achyrachaena mollis Schauer Becker (1913)<br />

Asteraceae Anacyclus clavatus (Desf.) Pers. Bisch<strong>of</strong> (1978)<br />

Asteraceae Anacyclus radiatus Loisel. Petit (1990)<br />

Asteraceae Anthemis chia L. Feinbrun-Dothan & Zohary (1978)<br />

Asteraceae * Anthemis cornucopiae Boiss. Feinbrun-Dothan & Zohary (1978)<br />

Asteraceae * Anthemis leucanthemifolia Boiss. & Bl. Feinbrun-Dothan & Zohary (1978)<br />

Asteraceae * Arctotis fastuosa Jacq. Beneke et al. (1992b, (1993a, b)<br />

Asteraceae Bidens bipinnata L. Dakshini & Aggarwal (1974), Brown & Mitchell (1984)<br />

Asteraceae Bidens pilosa L. Forsyth & Brown (1982), Corkidi et al. (1991) (B. odorata Cav.), Rocha (1996)<br />

Asteraceae Bidens tripartita L. Montégut (1970) (B. tripartitus)<br />

Asteraceae Boltonia decurrens (Torr. & Gray) Wood Smith & Keevin (1998)<br />

Asteraceae Buphthalmum salicifolium L. Becker (1913)<br />

Asteraceae Calen<strong>du</strong>la arvensis L. Zohary (1962) (C. aegyptiaca), Heyn et al. (1974),<br />

Gardocki et al. (2000) (C.micrantha)<br />

Asteraceae * Calen<strong>du</strong>la eriocarpa Becker (1913)<br />

Asteraceae Calen<strong>du</strong>la <strong>of</strong>ficinalis L. Becker (1913)<br />

Asteraceae * Calen<strong>du</strong>la pachysperma Zoh. Heyn et al. (1974)<br />

Asteraceae Calen<strong>du</strong>la palaestina Boiss. Heyn et al. (1974)<br />

Asteraceae Calen<strong>du</strong>la stellata Cav. Becker (1913), Heyn et al. (1974), Petit (1990)<br />

Asteraceae Calen<strong>du</strong>la suffruticosa Vahl. Becker (1913) (C. microphylla)<br />

Asteraceae Calen<strong>du</strong>la tripterocarpa Rupr. Heyn et al. (1974), Feinbrun-Dothan & Zohary (1978)<br />

Asteraceae Car<strong>du</strong>us pycnocephalus L. Olivieri et al. (1983), Olivieri & Gouyon (1985)<br />

Asteraceae Car<strong>du</strong>us tenuiflorus Curt. Olivieri et al. (1983), Olivieri & Gouyon (1985)<br />

Asteraceae Carthamus arborescens L. Quézel & Santa (1962)<br />

Asteraceae Carthamus lanatus L. Petit (1990)<br />

Asteraceae Catananche caerula L. Petit (1990)<br />

Asteraceae Catananche lutea L. Becker (1913), Ruiz de Clavijo (1995), Ruiz de Clavijo & Jimenez (1998)<br />

Asteraceae * Centaurea aegyptiaca L. Zohary (1962)<br />

Asteraceae Centaurea hyalolepis Boiss. Zohary (1962)<br />

Asteraceae Centaurea melitensis L. Porras & Muñoz (2000)<br />

Asteraceae Centaurea solstitialis L. Olivieri & Berger (1985), Petit (1990), Joley et al. (1997)<br />

Asteraceae * Chardinia xeranthemoides Desf. Becker (1913)<br />

Asteraceae * Charieis heterophylla Becker (1913)<br />

Asteraceae Chrysanthemum carinatum Schousboe Becker (1913) (C. carinatum album)<br />

Asteraceae Chrysanthemum coronarium L. Becker (1913)<br />

Asteraceae Chrysanthemum frutescens L. Becker (1913)<br />

Asteraceae Chrysanthemum segetum L. Becker (1913) (C. segetum gr<strong>and</strong>iflorum L.), Montégut (1970)<br />

Asteraceae * Chrysanthemum viscosum L. Becker (1913)<br />

Asteraceae Coleostephus myconis (L.) Reichenb. fil. Becker (1913)<br />

Asteraceae * Crepis aculeata (DC) Boiss. Babcock (1947)<br />

Asteraceae Crepis alpina L. Babcock (1947)<br />

Asteraceae * Crepis amplexifolia (Godr.) Willk Babcock (1947)<br />

Asteraceae Crepis aspera L. Becker (1913) (Endoptera aspera DC), Babcock (1947)<br />

Asteraceae Crepis atheniensis Babc. Babcock (1947)<br />

Asteraceae * Crepis Balliana Babc. Babcock (1947)<br />

Asteraceae * Crepis connexa Babc. Babcock (1947)<br />

Asteraceae Crepis dioscoridis L. Becker (1913) (Endoptera dioscoridis DC), Babcock (1947)<br />

Asteraceae * Crepis eritreënsis Babc. Babcock (1947)<br />

Asteraceae Crepis foetida L. Babcock (1947), Petit (1990)<br />

Asteraceae Crepis hokkaidoensis Babc. Babcock (1947)<br />

Asteraceae * Crepis juvenalis Delile Babcock (1947)<br />

Asteraceae Crepis leontodontoides All. E. Imbert, pers. observ.<br />

Asteraceae * Crepis Muhlisii Babc. Babcock (1947)<br />

Asteraceae Crepis multiflora Sibth & Sm. Babcock (1947)<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


34 E. Imbert<br />

Family Species References<br />

Asteraceae Crepis neglecta L. Babcock (1947) (C. corymbosa Ten., C. cretica Boiss.)<br />

Asteraceae * Crepis nigricans Viv. Babcock (1947)<br />

Asteraceae * Crepis palaestina (Boiss.) Bornm. Babcock (1947), Zohary (1962)<br />

Asteraceae Crepis pulchra L. Babcock (1947)<br />

Asteraceae Crepis rubra L. Becker (1913), Babcock (1947)<br />

Asteraceae Crepis sancta (L.) Babc. Babcock (1947)<br />

Asteraceae * Crepis Shimperi Schultz-Bip. Babcock (1947)<br />

Asteraceae * Crepis syriaca (Bornm.) Babc. Babcock (1947)<br />

Asteraceae * Crepis Thomsonii Babc. Babcock (1947)<br />

Asteraceae Crepis tybakiensis Vierh. Babcock. (1947)<br />

Asteraceae Crepis vesicaria L. Babcock (1947), Petit (1990)<br />

Asteraceae * Crepis xylorrhiza Sch. & Bip. Babcock (1947)<br />

Asteraceae Crepis zacintha (L.) Babc. Becker (1913) (Zacintha verrucosa Grtn.), Babcock (1947)<br />

Asteraceae Dimorphotheca hybrida Becker (1913)<br />

Asteraceae * Dimorphotheca montana E. Imbert, pers. observ.<br />

Asteraceae Dimorphotheca pluvialis (L.) Moench. Correns (1906), Becker (1913)<br />

Asteraceae * Dimorphotheca polyptera DC Beneke et al. (1992a, 1993a)<br />

Asteraceae Dimorphotheca sinuata DC Beneke et al. (1992a, 1993a, b)<br />

Asteraceae * Dimorphotheca zeyhea E. Imbert, pers. observ.<br />

Asteraceae Filago vulgaris Lam. Petit (1990) (F. germanica)<br />

Asteraceae Galinsoga parviflora Cav. Becker (1913), Rai & Tripathi (1987)<br />

Asteraceae Garhadiolus angulosus Jaub. & Spach. Feinbrun-Dothan & Zohary (1978)<br />

Asteraceae * Geigeria alata Burke (1995)<br />

Asteraceae Grindelia papposa Nesom & Suh Gibson (2001) (Prionopsis ciliata (Nutt.) Nutt.)<br />

Asteraceae Grindelia squarrosa (Pursh.) Dunal McDonough (1975)<br />

Asteraceae Gymnarhena micrantha Desf. Evenari (1963), Koller & Roth (1964)<br />

Asteraceae Hedypnois arenaria (Schousboe) DC. Petit (1990)<br />

Asteraceae Hedypnois cretica (L.) Dum.-Cours. Becker (1913), Kigel (1992) (H. rhagadioloides (L.) F.W. Schmidt)<br />

Asteraceae Hemizonia increscens (Hall ex Keck) Tanowitz Tanowitz et al. (1987)<br />

Asteraceae Heterosperma pinnatum Cav. Venable et al. (1987)<br />

Asteraceae * Heterospermun Xanthii Becker (1913)<br />

Asteraceae Heterotheca chrysopsides DC. Wagenknecht (1960)<br />

Asteraceae Heterotheca gr<strong>and</strong>iflora Nutt. Wagenknecht (1960), Flint & Palmblad (1978)<br />

Asteraceae Heterotheca inuloides Cass. Wagenknecht (1960)<br />

Asteraceae Heterotheca leptoglossa DC. Wagenknecht (1960)<br />

Asteraceae Heterotheca psammophila Wagenkn. Wagenknecht (1960)<br />

Asteraceae Heterotheca subaxillaris (Lam.) Britt. & Rusby Becker (1913) (H. Lamarckii), Wagenknecht (1960) (H. latifolia Buckl.)<br />

Baskin & Baskin (1976), Venable & Levin (1985a, b) (H. latifolia Buckl.)<br />

Asteraceae Hyoseris radiata L. E. Sahnoune, pers. comm.<br />

Asteraceae Hyoseris scabra L. Petit (1990), E. Imbert, pers. observ.<br />

Asteraceae Hypochoeris achyrophorus L. Petit (1990)<br />

Asteraceae Hypochoeris glabra L. Becker (1913), Baker & O’Dowd (1982)<br />

Asteraceae Hypochoeris radicata L. Petit (1990)<br />

Asteraceae * Laya elegans Becker (1913)<br />

Asteraceae * Laya gl<strong>and</strong>ulosa Becker (1913)<br />

Asteraceae * Laya heterotricha Becker (1913)<br />

Asteraceae * Laya platyglossa Becker (1913)<br />

Asteraceae Leontodon maroccanus (Pers.) Ball. Petit (1990)<br />

Asteraceae Leontodon muelleri (Schultz-Bip.) Fiori Quézel & Santa (1962) (L. hispi<strong>du</strong>lus (Del.) Boiss.), Petit (1990)<br />

Asteraceae Leontodon salzmanii (Schultz-Bip.) Ball Petit (1990)<br />

Asteraceae Leontodon taraxacoides (Vill.) Mérat Becker (1913) (Thrincia hirta Roth.), Quézel & Santa (1962) (L. saxatilis Lam.),<br />

Burtt (1977), Ruiz de Claivo (2001) (L. longirrostris (Finch & PD Sell) Talavera)<br />

Asteraceae Leontodon tuberosus L. Zohary (1962) (Thrincia tuberosa), Feinbrun-Dothan & Zohary (1978)<br />

(Thrincia tuberosa L.)<br />

Asteraceae Microseris bigelovii (Gray) Schultz-Bip. Bachmann & Chambers (1990)<br />

Asteraceae Microseris douglasii (DC.) Schultz-Bip. Bachmann & Price (1979)<br />

Asteraceae Pallenis spinosa (L.) Cass. Feinbrun-Dothan & Zohary (1978)<br />

Asteraceae * Picris amalecitana (Boiss.) Eig Feinbrun-Dothan & Zohary (1978), Ellner & Shmida (1984)<br />

Asteraceae * Picris asplenioides Petit (1990)<br />

Asteraceae * Picris cupuligera Petit (1990)<br />

Asteraceae * Picris damascena Boiss & Gaill. Zohary (1962), Feinbrun-Dothan & Zohary (1978), Ellner & Shmida (1984)<br />

Asteraceae Picris echioides L. Sorensen (1978), Petit (1990) (Helminthotheca echioides)<br />

Asteraceae * Picris galilea (Boiss.) Benth. & Hook Feinbrun-Dothan & Zohary (1978), Ellner & Shmida (1984)<br />

Asteraceae Picris hispanica (Willd.) P.D. Sell Quézel & Santa (1962) (Leontodon hispanicus Poiret)<br />

Asteraceae * Picris intermedia Zohary (1962), Ellner & Shmida (1984)<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36


Family Species References<br />

Consequences <strong>and</strong> <strong>ontogeny</strong> <strong>of</strong> <strong>seed</strong> heteromorphism 35<br />

Asteraceae * Picris radicata (Forssk.) Less. Feinbrun-Dothan & Zohary (1978), Ellner & Shmida (1984)<br />

Asteraceae Picris sprengeriana (L.) Poir. Feinbrun-Dothan & Zohary (1978)<br />

Asteraceae Podolepis canescens DC. Becker (1913)<br />

Asteraceae Reichardia intermedia (Schultz-Bip) Coutinho Feinbrun-Dothan & Zohary (1978)<br />

Asteraceae Reichardia tingitana (L.) Roth Zohary (1962), Feinbrun-Dothan & Zohary (1978), Ellner & Shmida (1981)<br />

Asteraceae Rhagadiolus stellatus (L.) Gaertn. Becker (1913) (R. e<strong>du</strong>lis), Petit (1990)<br />

Asteraceae Sanvitalia procumbens Lam. Becker (1913)<br />

Asteraceae Senecio gallicus Chaix Zohary (1972) (S. coronopifolius)<br />

Asteraceae Senecio jacobaea L. McEvoy (1984), McEvoy & Cox (1987)<br />

Asteraceae Sigesbeckia orientalis L. Becker (1913)<br />

Asteraceae Synedrella nodiflora (L.) Gaertn Ernst (1906), Becker (1913)<br />

Asteraceae Thrincia hispida Roth. Becker (1913)<br />

Asteraceae Tolpis barbata (L.) Gaertn. Becker (1913)<br />

Asteraceae Tragopogon <strong>du</strong>bius Scop. Maxwell et al. (1994), McGinley (1989) (Tragopogon <strong>du</strong>bious L.)<br />

Asteraceae Tragopogon hybri<strong>du</strong>s (L.) Schultz-Bip. Becker (1913) (Geropogon glaber L.), Feinbrun-Dothan & Zohary (1978)<br />

(Geropogon hybri<strong>du</strong>s (L.) Schultz-Bip.), Petit (1990)<br />

Asteraceae * Ursinia cakilefolia DC Beneke et al. (1992b, 1993a)<br />

Asteraceae Xanthium strumarium L. Shull (1911) (X. pennsylvanicum <strong>and</strong> X. glabratum),<br />

Thornton (1935) (X.canadense Mill.), Senseman & Oliver (1993)<br />

Asteraceae Xanthocephalum gymnospermoides (Gray.) Bent. & Hook. Becker (1913)<br />

Asteraceae Ximenesia enceliodes (Cav.) Bent. & Hook. fil. Becker (1913)<br />

Asteraceae Zinnia elegans Jacq. Becker (1913)<br />

Asteraceae Zinnia peruviana (L.) L. Becker (1913) (Z. pauciflora)<br />

Asteraceae * Zinnia verticillata Becker (1913)<br />

Brassicaceae Aethionema carneum (Banks & Sol.) Fedtsch. Zohary (1966)<br />

Brassicaceae Aethionema heterocarpum Trev. Zohary (1966) (A. heterocarpum J. Gay)<br />

Brassicaceae Aethionema saxatile (L.) R. Br. Andersson et al. (1983)<br />

Brassicaceae Cakile edentula (Bigelow) Hook. Maun & Payne (1989) (C. edentula var. edentula et var. lacustris),<br />

Zhang (1993, 1995)<br />

Brassicaceae Cakile maritima Scop. Becker (1913), Barbour (1970), Maun & Payne (1989) (C. maritima var. maritima)<br />

Brassicaceae * Cardamine chenopodifolia Pers. Batt<strong>and</strong>ier (1883), Becker (1913), Cheplick (1983)<br />

Brassicaceae Erucaria microcarpa Boiss. Ellner & Shmida (1981) (Reboudia pinnata)<br />

Brassicaceae Erucaria rostrata Boiss. Zohary (1962) (Erucaria boveana)<br />

Brassicaceae Fezia pterocarpa Pitard Maire (1965)<br />

Brassicaceae Hirschfeldia incana (L.) Lagrze-Fossat Zohary (1962)<br />

Brassicaceae Rapistrum rugosum (L.) All. Becker (1913)<br />

Brassicaceae Sinapis alba L. Zohary (1966)<br />

Caryophyllaceae Pteranthus dichotomus Forssk. Evenari (1963)<br />

Caryophyllaceae Spergularia canadensis (Pers.) G. Don Telenius & Torstensson (1991)<br />

Caryophyllaceae Spergularia echinosperma Celak. Telenius & Torstensson (1991)<br />

Caryophyllaceae Spergularia embergeri Monnier Telenius & Torstensson (1991)<br />

Caryophyllaceae Spergularia fasiculata Phil. Telenius & Torstensson (1991)<br />

Caryophyllaceae Spergularia fimbriata Murb. Telenius & Torstensson (1991)<br />

Caryophyllaceae Spergularia macrotheca Robinson Telenius & Torstensson (1991)<br />

Caryophyllaceae Spergularia marina (L.) Griseb. Salisbury (1958) (S. salina J.S.& C.B. Presl), Sterk (1969),<br />

Telenius & Torstensson (1989), Redbo-Torstensson & Telenius (1995)<br />

Caryophyllaceae Spergularia maritima (All.) Chiov. Salisbury (1958) (S. marginata Kittel), Sterk (1969) (S. media),<br />

Telenius (1992), Redbo-Torstensson & Telenius (1995) (S. media (L.) C. Presl.)<br />

Caryophyllaceae Spergularia tangerina Monnier Telenius & Torstensson (1991)<br />

Caryophyllaceae Spergularia villosa Cambess. Telenius & Torstensson (1991)<br />

Chenopodiaceae * Aellenia autrani (Post) Zoh. Negbi & Tamari (1963), Werker & Many (1974)<br />

Chenopodiaceae Arthrocnenum macrostachyum (Moric.) Moris Khan et al. (1998), Khan & Gul (1998) (A. indicum Willd.)<br />

Chenopodiaceae Atriplex dimorphostegia Kar & Kir Koller (1957)<br />

Chenopodiaceae Atriplex hortensis L. Becker (1913), Frankton & Basset (1968)<br />

Chenopodiaceae Atriplex micrantha Ledeb. Frankton & Basset (1968) (A. heterosperma Bunge)<br />

Chenopodiaceae Atriplex oblongifolia Waldst. & Kit Frankton & Basset (1968)<br />

Chenopodiaceae Atriplex patula L. Ungar (1971)<br />

Chenopodiaceae Atriplex prostrata (Boucher) ex. DC Wertis & Ungar (1986) (A. triangularis Willd.), Ellison (1987) (A. triangularis)<br />

Perspectives in Plant Ecology Evolution <strong>and</strong> Systematics (2002) 5, 13–36


36 E. Imbert<br />

Family Species References<br />

Chenopodiaceae Atriplex sagittata Borkh. Becker (1913) (A. nitens Schkuhr), M<strong>and</strong>ák & Pysˇek (1999a, b, 2001a, b)<br />

Chenopodiaceae Atriplex semibaccata R.Br. Beadle (1952)<br />

Chenopodiaceae Axyris amaranthoides L. Becker (1913)<br />

Chenopodiaceae Blackiella inflata (F. Mueller) Aaelen Beadle (1952) (Atriplex inflata)<br />

Chenopodiaceae Chenopodium album L. Williams & Harper (1965)<br />

Chenopodiaceae Halogeton glomeratus (Bieb.) C.A. Mey. Williams (1960)<br />

Chenopodiaceae Salicornia europaea L. Ungar (1979), Philipupillai & Ungar (1984), Austenfeld (1988)<br />

Grouzis et al. (1976), Berger (1985) (S. patula Duval-Jouve)<br />

Chenopodiaceae * Salsola komarovii Iljin Takeno & Yamaguchi (1991)<br />

Chenopodiaceae Salsola volkensii Asch. & Schw. Negbi & Tamari (1963)<br />

Chenopodiaceae Sennellia spongiosa (F. Mueller) Aellen Beadle (1952) (Atriplex spongiosa)<br />

Cistaceae Cistus albi<strong>du</strong>s L. Vuillemin & Bullard (1981)<br />

Cistaceae Cistus creticus L. Troumbis & Trabaud (1987)<br />

Cistaceae Cistus monspeliensis L. Vuillemin & Bulard (1981)<br />

Cistaceae Cistus salviifolius L. Troumbis & Trabaud (1987)<br />

Commelinaceae Commelina benghalensis L. Budd et al. (1979)<br />

Euphorbiaceae Croton setigerus (Hook.) Benth. Cook et al. (1971) (Emerocarpus setigerus)<br />

Fabaceae * Alysicarpus monilifer DC Maurya & Ambasht (1973)<br />

Fabaceae Amphicarpaea bracteata (L.) Fern. Schnee & Waller (1986), Trapp (1988), Callahan & Waller (2000)<br />

Fabaceae * Lathyrus ciliolatus Sam. ex. Rech. f. Mattatia (1977a)<br />

Fabaceae Pisum fulvum Sibth. & Sm. Mattatia (1977b) (P. fulvum Sibth. & Sm. var amphicarpum Warb & Eig.)<br />

Fabaceae Vicia sativa subsp. amphicarpa (Dorth.) Aschers & Graebn Plitmann (1973)<br />

Fumariaceae Ceratocapnos heterocarpa Durieu Ruiz de Clavijo (1994)<br />

Nyctaginaceae Abronia alpina Br<strong>and</strong>eg. Wilson (1974)<br />

Nyctaginaceae Abronia crux-maltae Kell. Wilson (1974)<br />

Nyctaginaceae Abronia latifolia Eschs. Wilson (1974)<br />

Nyctaginaceae Abronia maritima Nutt. ex S. Wats. Wilson (1974), Wiggins (1980)<br />

Nyctaginaceae Abronia nana S. Wats. Wilson (1974)<br />

Nyctaginaceae Abronia pogonantha Heimerl. Wilson (1974)<br />

Nyctaginaceae Abronia turbinata Torr. ex. S. Wats. Wilson (1974)<br />

Nyctaginaceae Abronia umbellata Lam. Wilson (1974), Wiggins (1980)<br />

Nyctaginaceae Abronia villosa S. Wats. Wilson (1974), Wiggins (1980)<br />

Papaveraceae Glaucium flavum Crantz Martin (1996)<br />

Papaveraceae Platystemon californicus Benth. Hannan (1980)<br />

Plantaginaceae Plantago coronopus L. Dowling (1933), Schat (1981)<br />

Poaceae Agrostis hyemalis (Walt) B.S.P. Rabinowitz & Rapp (1979)<br />

Poaceae Amphibromus scabrivalvis (Trin) Swallen Cheplick & Clay (1989)<br />

Poaceae Amphicarpum purshii Kunth. McNamara & Quinn (1977), Cheplick & Quinn (1982)<br />

Poaceae Danthonia spicata (L.) Beauv. Clay (1982, 1983), Cheplick & Clay (1989)<br />

Poaceae Echinochloa crus-galli (L.) Beauv. Montégut (1970)<br />

Poaceae Nasella leucotricha (Trin. & Rupr.) Pohl. Dyksterhuis (1945) (Stipa leucotricha Trin. & Rupr.)<br />

Poaceae Triplasis purpurea (Walt) Chapm. Cheplick (1996b), Cheplick & Gr<strong>and</strong>staff (1997), Cheplick & Sung (1998)<br />

Poaceae Cheplick & Wickstrom (1999)<br />

Polygonaceae Emex spinosa (L.) Campd. Weiss (1980)<br />

Rubiaceae Asperula arvensis L. Montégut (1970)<br />

Thymeleaceae * Thymelea velutina (Poiret ex Camb.) Endl. Tébar & Llorens (1993)<br />

Valerianaceae Fedia cornucopiae (L.) Gaertn. Mathez & Xena de Enrech (1985) (F. graciliflora Fisch. & Meyer)<br />

Valerianaceae * Fedia pallescens Mathez Mathez & Xena de Enrech (1985)<br />

Perspectives in Plant Ecology, Evolution <strong>and</strong> Systematics (2002) 5, 13–36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!