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Abstract

Quaternary climate fluctuations have profoundly affected the current distribution patterns

and genetic structures of many plant and animal species in the Qinghai-Tibetan Plateau

(QTP) and adjacent mountain ranges, e.g. Tianshan (TSR), Altay, etc. In this greater area

disjunct distributions are prominent but have nevertheless received little attention with

respect to the historical processes involved. Here, we focus on Pedicularis kansuensis to

test whether the current QTP and TSR disjunction is the result of a recent Holocene range

expansion involving dispersal across arid land bridge(s) or a Pleistocene range fragmenta-

tion involving persistence in refugia. Two chloroplast DNA spacers were sequenced for 319

individuals from 34 populations covering the entire distribution range of this species in

China. We found a total of 17 haplotypes of which all occurred in the QTP, and only five in

the TSR. Overall genetic diversity was high (HT = 0.882, HS = 0.559) and higher in the QTP

than in the TSR. Genetic differentiation among regions and populations was relatively low

(GST = 0.366) and little evidence for a phylogeographic pattern emerged. The divergence

times for the four main lineages could be dated to the early Pleistocene. Surprisingly, the

two ubiquitous haplotypes diverged just before or around the Last Glacial Maximum (LGM)

and were found in different phylogenetic lineages. The Species Distribution Model sug-

gested a disappearance of P. kansuensis from the TSR during the LGM in contrast to a

relatively constant potential distribution in the QTP. We conclude that P. kansuensis colo-

nized the TSR after the LGM. The improbable long-distance dispersal by wind or water

across arid land seed flow may well have had birds or men as vector.
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Introduction

Tectonic events and climate fluctuations have profoundly shaped the current distribution pat-
terns and genetic structures of many plant and animal species in temperate zones of the North-
ern Hemisphere [1–4]. Since the early Cenozoic, the geology and topography of East Asia
underwent dramatic changes. Most notably is the uplift of the Qinghai-Tibetan Plateau (QTP)
and adjacent mountain ranges, e.g. Tianshan (TSR) and Altay Mts., which entailed pronounced
climatic and environmental dynamics in both space and time [5–7] and a strong effect on land-
scape and vegetation [8,9]. One consequence is the intense aridification of the Tarim Basin in
northwestern China [10–13], resulting in an arid area of about 6.00×105 km2 between the QTP
and the TSR [14].

The present day distribution of plant and animal species is strongly influenced by these his-
torical processes which potentially and iteratively led to range shifts, range expansion, range
contraction and/or range fragmentation. In this context, a disjunct distribution could either be
the result of long-distance dispersal from a source area into a suitable new area [15–18] or the
consequence of disruption of the previously continuous distribution range [19,20]. Phyloge-
netic relationship [16–18] and genetic diversity within a given species [21–24] are two aspects
frequently considered in order to unravel the historical processes involved. Theoretical and
empirical evidence suggests that, when the disjunction is due to recent long-distance dispersal,
individuals from separated regions will cluster together in a phylogenetic tree [16–18]. Addi-
tionally, the regions are characterized by different levels of genetic diversity [23,25] with the
newly colonized region harboring lower levels. By contrast, in the case of range fragmentation,
individuals from different regions will cluster by region [18,23] while levels of genetic diversity
remain comparable [19,20,24]. Obviously, the level and spatial distribution of genetic diversity
within a species is also dependent on the combination of life-history traits, e.g. longevity,
breeding system [26,27], which can mask the genetic imprint of historical processes.

Although numerous phylogeographical studies have been carried out in either the QTP
[4,28,29] or the greater Tianshan-Altay region [19,21,30–34], investigations addressing the his-
torical processes that led to disjunct distributions are scarce. The limited data available show
that plant species had low genetic diversity in Tianshan-Altay region, indicating a rapid coloni-
zation from the QTP and strong founder effects in the Tianshan-Altay region [35–37]. How-
ever, these studies included either samples from only one Altay population, i.e. the congeneric
Pedicularis longiflora [35], or plant species less representative of highland terrestrial plants, i.e.
the fern Lepisorus clathratus and the aquaticHippuris vulgaris [36,37]. Thus, it remains ques-
tionable whether the current QTP and TSR disjunctions are the result of a recent Holocene
range expansion involving dispersal across arid land bridge(s) or a Pleistocene range fragmen-
tation involving persistence in refugia.

Here, we focus on Pedicularis kansuensis Maxim. (Orobanchaceae), a highland plant species
widespread in western China and Nepal, with a disjunct distribution between the QTP and the
TSR but not known from the Altay. This species was previously mis-identified as P. verticillata
in the TSR [38–41], but clarified to be P. kansuensis based on morphological and molecular evi-
dence [42]. It is an annual or facultative biennial hemiparasitic herb, occurring in moist grav-
elly ground or grassy slopes in subalpine zone at elevations between 1,800 and 4,600 m [43]. In
nearly twenty years, P. kansuensis has been reported to rapidly expand in population sizes and
becomeweedy in Bayanbulak Grassland of the Tianshan Mts., which has caused great loss of
herbage yield and threatened the local livestock industry [39,44].

In the present study we aim to unravel the historical processes that led to the current dis-
junctive distribution of P. kansuensis. Given the great extent of today's arid Tarim Basin which
separate the QTP and the TSR we propose two alternative scenarios: (a) P. kansuensis survived
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the LGM in situ or in refugia in the respective foothills. Here we would expect a strong phylo-
geographic signal, existence of unique regional haplotypes and comparable high levels of
genetic diversity. (b) P. kansuensis colonized the TSR from the northern fringes of the QTP via
long-distance seed dispersal after the LGM. Under this scenario we would expect to find a cer-
tain degree of genetic similarity between the source and sink regions, i.e. shared haplotypes,
but not a strong phylogeographic signal. Also, the sink region would be characterized by lower
levels of genetic diversity and evidence for rapid population expansion should be detectable.

Materials and Methods

Ethics statement

This study was conducted in accordance with the laws of the People’s Republic of China. No
specific permits were required for accessing the sampling locations. P. kansuensis is not an
endangered or protected species.

Plant sampling

Leaf tissue of P. kansuensis was collected from 34 populations across the Qinghai-Tibetan Pla-
teau (QTP) and the Tianshan region (TSR) in western China (Table 1). Three to 16 individuals
growing at least 20 m apart were sampled in each georeferenced population rendering a total
of 319 individuals. Fresh leaves were dried in silica gel and stored at room temperature until
DNA extraction. For all populations voucher specimens were deposited at the Herbarium of
the Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Xinjiang,
China (XJBI)(S1 Table).

DNA extraction, amplification and sequencing

Genomic DNA was extracted using a Plant Genomic DNA Isolation kit (Tiangen, Beijing,
China) following the manufacturer’s instructions. The trnL-trnF [45] and rpl32-trnL [46] inter-
genic regions, widely used in plant phylogeographical analyses [21,30,32], were amplified and
sequenced. PCR reactions were carried out in a total volume of 25 μL containing 20 ng tem-
plate DNA, 2.5 μL PCR buffer, 2 μL MgCl2 (25 mmol/L), 0.5 μL dNTPmix (2.5 mmol/L), 1 μL
each primer (5 pmol/L), and 0.3 μL (1 unit) Taq DNA polymerase. For DNA amplification a
T1 thermo-cycler (Biometra, Göttingen, Germany) was used with an initial denaturation at
94°C for 3 min, followed by 32 cycles of denaturation at 94°C for 30 s, annealing at 53°C for 45
s, extension at 72°C for 1 min, and a final extension of 10 min at 72°C. The PCR products were
checked on a 1.0% agarose gel, and then bidirectionally sequenced in a commercial laboratory
(Sangon, Shanghai, China) following standard sequencing protocols.

Genetic diversity and population structure

Chloroplast DNA (cpDNA) sequences were alignedwith CLUSTAL W [47] and postprocessed
manually. Insertions/deletions (indels) were coded as point mutations and received equal
weight to other mutations. Chloroplast DNA haplotypes were identified based on variations in
the aligned sequences of the trnL-trnF and rpl32-trnL spacers using DnaSP ver. 5.0 [48]. All of
the cpDNA non-coding region of each chloroplast haplotype and outgroup were deposited in
GenBankwith the accession numbers KX180093-KX180130 (S1 Table). Haplotype diversity
(h) and nucleotide diversity (π) for each population, for groups of populations and for all popu-
lations were calculated in ARLEQUIN 3.5 [49]. The effect of unequal sample sizes was assessed
by rerunning analyses with alternative input files created throughmultiple random reductions
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[50] scripted in R ver. 3.2.3 [51]. No significant differences between the curtailed and the full
data set were found so that we decided to proceed with analysis of the full dataset.

SAMOVA ver. 1.0 was used to investigate the spatial component in the dataset by definingK
groups of populations that are geographically homogeneous and genetically differentiated from
each other (10,000 iterations; range of 2� K� 10) [52]. The result file, a pairwise cpDNA FST dis-
tance matrix, was imported into BARRIER [53] which incorporatesMonmonier’s maximum-

Table 1. Details of sample locations, samples size (N), haplotypes, haplotype diversity (h) and nucleotide diversity (π) of 34 populations of Pedi-

cularis kansuensis surveyed for DNA sequence variation at two combined chloroplast regions.

Population code Sample location Coordinates (N/E) Altitude (m) N Haplotypes h (S±D) π (S±D) ×10−3

TSG Tianshan group 42 5 0.718±0.042 10.393±5.243

BLK Balikun, XJ 43˚21’/93˚42’ 2085 14 H1,H2,H3,H4,H5 0.736±0.107 6.989±3.793

BY Bayanbulak, XJ 42˚840/83˚720 2458 11 H1,H2,H3 0.618±0.104 10.575±5.757

HM Hami, XJ 43˚150/93˚380 1921 8 H2 0 0

WLMQ Urumqi, XJ 43˚110/86˚850 2031 9 H1,H2,H4,H5 0.750±0.112 7.053±4.015

QTPG Qinghai-Tibetan Plateau group 277 17 0.889±0.011 7.344±3.690

SN1 Sunan, GS 39˚020/99˚280 2497 13 H1,H3,H5 0.641±0.097 3.161±1.845

SN2 Sunan, GS 38˚30/100˚250 2445 10 H4 0 0

TJ Tianjun, QH 37˚050/98˚520 2533 16 H1,H2,H4,H5,H14 0.825±0.045 9.183±4.862

QL Qilian, QH 38˚050/100˚20 2972 8 H1,H2,H3,H7 0.750±0.139 9.113±5.211

GC Gangcha, QH 37˚20/100˚310 3428 12 H1,H2,H4,H5,H14 0.727±0.113 8.983±4.880

DT Datong, QH 37˚170/101˚240 3712 14 H1,H2,H4,H7 0.692±0.094 4.282±2.408

HY Huangyuan, GS 36˚250/101˚130 3375 10 H1,H4,H5,H7,H14 0.844±0.080 3.101±1.864

CD1 Chengduo, GS 33˚210/97˚080 4500 7 H1 0 0

XH1 Xunhua, QH 35˚360/102˚410 2792 8 H1,H3 0.536±0.123 3.017±1.876

SD Shandan, GS 38˚270/101˚110 2358 15 H1,H3,H5 0.629±0.086 3.206±1.846

TZ Tianzhu, GS 37˚090/102˚50 2613 11 H1,H2,H13 0.473±0.162 4.304±2.476

LT1 Lintan, GS 34˚410/103˚340 2800 7 H6,H7,H15 0.714±0.127 10.019±5.841

ZK1 Zeku, QH 35˚180/101˚560 2824 10 H1,H7,H14 0.689±0.104 2.033±1.293

ZK2 Zeku, QH 35˚050/101˚360 3426 10 H1 0 0

LX Linxia, GS 35˚340/102˚460 3175 3 H1 0 0

GD Gande, QH 34˚000/100˚020 4153 4 H1,H5,H7 0.833±0.222 1.566±1.261

LT Litang, SC 30˚10/99˚580 3656 9 H1,H2,H4,H11,H12 0.833±0.098 7.795±4.413

KD Kangding, SC 30˚020/101˚30 4346 8 H1,H11 0.536±0.123 0.336±0.352

DG Dege, SC 31˚410/98˚330 3162 10 H1,H7,H9,H10,H17 0.867±0.071 5.705±3.246

DC Daocheng, SC 29˚070/100˚120 3778 8 H6,H7 0.536±0.123 1.007±0.756

JD Jiangda, XZ 31˚320/98˚20 3440 11 H2,H7,H10,H17 0.491±0.175 5.507±3.106

GZ Ganzhi, SC 31˚380/99˚480 3385 6 H1,H10 0.333±0.215 0.418±0.425

YJ Yajiang, SC 30˚000/100˚40 4173 7 H1,H2,H4,H9,H11 0.905±0.103 7.832±4.618

DZ Dazhi, XZ 29˚460/91˚500 3910 10 H2,H7 0.467±0.132 8.766±4.866

MK Mangkang, ZX 29˚270/98˚380 3681 6 H2,H8,H12 0.600±0.215 6.345±3.908

DQ Dingqing, XZ 31˚060/96˚210 4321 10 H2,H6,H7,H8,H9 0.756±0.130 9.109±5.047

SD2 Songduo, XZ 29˚520/92˚310 4231 6 H1,H7 0,333±0.215 0.209±0.275

CD2 Changdu, XZ 31˚210/97˚290 3730 7 H1,H9,H16 0.667±0.160 11.211±6.508

SX Suoxian, XZ 31˚480/93˚430 3979 12 H9,H12,H15,H17 0.455±0.170 4.523±2.567

NQ Naqu, XZ 31˚440/92˚390 4432 9 H9,H12,H15,H16 0.778±0.110 10.604±5.919

Total 319 17 0.882±0.010 8.010±4.004

Abbreviation of Chinese Provinces: GS-Gansu, QH-Qinghai, SC-Sichuan, XJ-Xinjiang, XZ-Xizang (Tibet).

doi:10.1371/journal.pone.0165700.t001
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difference algorithm [54] to visualize the geographic location of genetic breaks among (groups of)
populations. Using this method, we divided the distribution range of P. kansuensis populations
into two groups, Tianshan group (TSG) and QTP group (QTPG). Furthermore, isolation by dis-
tance (IBD) [55], the correlation between genetic and geographical distance was checked with a
Mantel test [56] using ALLELES IN SPACE (AIS) [57]. Genetic structurewas assessedwith an
Analysis of Molecular Variance (AMOVA) [58] in ARLEQUIN 3.5 [49] with significance tests
based on 10,000 permutations. Parameters of within-population gene diversity (HS), total gene
diversity (HT), and genetic differentiation (GST,NST) were estimated according to Pons and Petit
[59]. Significant phylogeographic structurewas inferred by testing whetherNST was significantly
greater thanGST using U-statistic. IfNST is significantly higher thanGST, closely related haplo-
types occurmore often in the same populations than less closely related haplotypes, indicating the
presence of phylogeographical structure [59].

Phylogenetic relationship and divergence time

Phylogenetic relationships among P. kansuensis cpDNA haplotypes were analyzed using
Neighbor-joining (NJ), Maximum parsimony (MP) and Maximum Likelihood (ML) algo-
rithms implemented in MEGA ver. 6.0 [60], with P. violascens and P. verticillata as outgroups.
Gaps in sequences were treated as the fifth character state. We constructedMP trees using a
heuristic search with 1,000 random additions of sequences and tree-bisection reconnection
(TBR) branch swapping. The ML and MP trees were computed with 1,000 bootstrap replicates
in Kimura’s two-parameter model. Furthermore, NETWORK ver. 4.6 [61] was used to con-
struct median-joining networks to detect genealogical relationships among the haplotypes of P.
kansuensis. The gaps were treated as a single mutation event.

Divergence times for different P. kansuensis lineages were estimated through a Bayesian
approach implemented in BEAST ver. 1.8.1 [62]. In runningMODELTEST ver. 3.7 [63], gener-
alized time reversible (GTR) substitution model and Gamma site heterogeneity model were
selected as the best-fit nucleotide substitution model for our dataset of aligned sequences.
Due to a lack of fossils of P. kansuensis or its congeneric relatives, substitution rates were used
for approximate divergence times. For most angiosperms, the cpDNA substitution rates are
estimated to vary between 1.0 and 3.0×10−9 substitutions per site per year [s/s/y], while
8.24×10−9 for trnL-trnF [64]. Because P. kansuensis is an annual or biennial herb and trnL-
trnF was used in this study, the value of 3.0 and 8.24×10−9 was specified in BEAST with an
additional uncorrelated lognormal relaxed molecular clock assumption. The Markov chain
Monte Carlo (MCMC) chains were run for 10,000,000 generations, sampling every 1,000 gen-
erations. The combined parameters were checked in TRACER ver. 1.5 [65]. The Bayesian
trees were combined and annotated by TREE ANNOTATOR ver. 1.8.1 (part of the BEAST
1.8.1 package).

Population demographic analyses

To investigate whether populations or groups of populations experienced any population
expansion, Tajima’s D [66] and Fu & Li’s D� [67] were calculated using ARLEQUIN 3.5 [49].
In addition, mismatch distribution analysis was also calculated in ARLEQUINwith 1,000
parametric bootstrap replicates. The sum of squared deviations (SSDs) between observed and
expectedmismatch distribution were computed and P values were calculated as the proportion
of simulations producing a larger SSD than the observedSSD. The raggedness index (HRag)
and its significancewere also calculated to quantify the smoothness of the observedmismatch
distribution [68].
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Species distribution modelling

Lastly, in order to estimate the current potential distribution range of P. kansuensis as well as
during the Last Glacial Maximum (LGM; 21 ka before present), a species distributionmodel
(SDM) was computed using the maximum entropy algorithm implemented in MAXENT 3.3.1
[69]. Present day climate data available from theWorld Clim database (34 stations, 19 biocli-
matic variables, 2.5 arcmin resolution) [70] (available at http://www.worldclim.org/download)
along with 34 tested geographical data produced by ourselves were used to estimate the present
potential distribution range. The community climate systemmodel (CCSM) [71] was then
employed to generate the potential distribution during the LGM. To test the reliability of the
results, goodness of fit between the model and the training data was assessed by analyzing the
area under the receiver operating characteristic curve (AUC). Finally, a jackknife test was per-
formed to measure the relative importance of climatic variables on the occurrence prediction
for every distributionmodel.

Results

Chloroplast variation and haplotype distribution

The aligned sequences of trnL-trnF and rpl32-trnLwere 830 bp and 770 bp in length, respec-
tively, with a total length of the combined alignments of 1,600 bp. Variable sites showed 40
substitutions and 15 indels. In total, 17 haplotypes (H1-H17) were identified (Fig 1, Table 1).
Among these, H1 and H2 were widespread haplotypes, occurring in 23 (67.65%) and 16
(47.06%) populations, respectively. All 17 haplotypes were found in the QTP and only five in the
TSR (H1-H5). Thus, no haplotype was exclusive for the TSR. Population contained a maximum
of five haplotypes and a minimum of one. There was no significant correlation between the num-
ber of sampled individuals per population and the number of haplotypes (R = 0.3; P> 0.05).

Genetic diversity and structure

Haplotype diversity (h) ranged from 0.000 to 0.905 and the YJ (Yajiang) population in the Sich-
uan Hengduan Mts. contributed the highest value (Table 1, Fig 1). Nucleotide diversity (π) var-
ied between 0.000 and 11.210×10−3 with a maximum present in the CD2 (Changdu) population
in SE Tibet (Table 1, Fig 1). Total genetic diversity based on haplotype variation across all popu-
lations wasHT = 0.882 and the average within-population diversity wasHS = 0.559 (Table 2).

The permutation test showed that there was no significant difference betweenGST = 0.366
and NST = 0.376 (U = 0.11; P> 0.05). Thus, the hypothesis of a strong phylogeographic pattern
was rejected. In the SAMOVA analyses, FCT values decreased progressively as the values for K
number of groups increased from 2 to 10 with no unambigous number of K supported. Also
here the hypothesis of a phylogeographic pattern was rejected. Furthermore, the Mantel test
revealed a significant correlation between genetic and geographical distances (R = 0.127,
P< 0.001) over all populations. However, a genetic break (barrier) separating the TSR popula-
tions from those of the QTP was found with a robustness of 90% (Fig 2). This barrier corre-
sponds to the arid land between the two disjunctive geographic regions. Hierarchical analysis
of molecular variance (AMOVA) showed that a low variation (2.52%) was partitioned to the
two putative groups of populations, while 33.03% and 64.44% variation was partitioned among
populations within groups and within populations, respectively (Table 3).

Phylogenetic and genealogical relationships of cpDNA haplotypes

The topology of the Neighbor-joining (NJ) tree calculated for 17 haplotypes from 319 P. kan-
suensis individuals is shown in Fig 3. Four clades were strongly supported (� 94% bootstrap
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support). The haplotypes in clade I and II mainly occurred in populations from the SE of the
QTP with the exception of H2, a widespread haplotype present in 16 populations. Clade IV
contained four haplotypes which all stem from the NE edge of the QTP and the TSR. Clade III
was the most complicated one, containing 7 haplotypes distributed in 33 populations. Among
these haplotypes, H1 represented the most widespread haplotype in our study, occurring in 23
populations. H9-H11 were found in the SE of the QTP. H5 was found in the NE of the QTP
and in the TSR. The results of the median-joining network obtained by NETWORK ver. 4.6
[61] showed the same phylogenetic relationship as those revealed by the NJ tree (Fig 3). Also,

Fig 1. Sample sites (population codes as in Table 1) and geographic distribution of chloroplast DNA (cpDNA) haplotypes (H1-H17)

detected in 34 populations of Pedicularis kansuensis in the Qinghai-Tibetan Plateau (QTP) and the Tianshan region (TSR). Pie charts

show the different haplotypes and their frequency in each population.

doi:10.1371/journal.pone.0165700.g001
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the maximum parsimony (MP) and maximum likelihood (ML) trees were essentially identical
to the NJ tree with respect to the major clades and were thus not shown here.

Lineage divergence time and population spatial expansion

Divergence times between the haplotypes ranged from 2.339 to 0.034 Mya when the value of
3.0×10−9 s/s/y was specified in BEAST, while 0.885 to 0.012 Mya for 8.24×10−9 s/s/y (Fig 3).
The mismatch distribution for pairwise differences over all populations and two geographical

Table 2. Estimates of average gene diversity results for Pedicularis kansuensis within regions.

Region HS HT GST NST

All data 0.559 ±0.047 0.882 ±0.025 0.366 ±0.050 0.376 ±0.069

Tianshan group 0.526 ±0.178 0.753 ±0.109 0.301 ±0.225 0.481 ±0.269

QTP group 0.556 ±0.051 0.880 ±0.029 0.368 ±0.051 0.386 ±0.074

Abbreviations: HS—average gene diversity within populations; HT—total gene diversity; GST—inter population differentiation; NST—number of substitution

types.

doi:10.1371/journal.pone.0165700.t002

Fig 2. Location of inter-population genetic breaks in Pedicularis kansuensis in the Qinghai-Tibetan Plateau (QTP) and

Tianshan region (TSR). Outlines represent the polygons of the Voronoï tessellation with the centers of the populations omitted. Red

line represent the barrier. The distribution range of P. kansuensis was divided into two groups, Tianshan group (TSG) and QTP group

(QTPG).

doi:10.1371/journal.pone.0165700.g002
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groups were clearly multimodal (Fig 4), indicating that this species has not experienced a sud-
den expansion. This was corroborated by positive and insignificant Tajima’s D and Fu & Li’s
D� tests (Table 4).

Species distribution modeling

The 'area under the curve' (AUC) values for the training and the test data of P. kansuensis
amounted to 0.998 and 0.995, respectively, indicating good performance of the present-day

Table 3. Analysis of molecular variance for 34 sampled populations of Pedicularis kansuensis based on two cpDNA spacer sequence data.

Source of variation d.f. Sum of squares Variance components Percentage of variation Fixation Index

Among groups 1 2.763 0.01146 2.52 FSC: 0.33886

Among pops. within groups 32 54.029 0.14998 33.03 FST: 0.3555

Within pops. 285 83.397 0.29262 64.44 FCT: 0.02525

Total 318 140.188 0.45895

Abbreviation: d.f.—degrees of freedom. FCT—correlation of chlorotypes within groups relative to the total; FSC—correlation within populations relative to

groups; FST—correlation within populations relative to the total.

doi:10.1371/journal.pone.0165700.t003

Fig 3. The NJ tree topology (left) and network (right) of the 17 cpDNA haplotypes detected in Pedicularis kansuensis and their

divergence times estimated with the average evolutionary rate based on BEAST analysis. The values above the branch represent

the bootstrap values for NJ (left), MP (middle) and ML (right) analyses, respectively. The values under the branching represent the

divergence time (in million years ago), based on 3.0×10−9 substitutions per site per year [s/s/y] and 8.24×10−9 s/s/y. The circle sizes in the

network are proportional to haplotype frequency, and the black points represent outgroups.

doi:10.1371/journal.pone.0165700.g003
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Fig 4. Mismatch distribution analysis of cpDNA sequence data from all sampled populations in the

Qinghai-Tibetan Plateau group (QTPG) and the Tianshan group (TSG).

doi:10.1371/journal.pone.0165700.g004
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distribution range and the Last GlacialMaximum community climate systemmodel (LGM-
CCSM) as visualized in Fig 5. The current potential distribution range of P. kansuensis included
the east of the QTP as well as the TSR, coincidingwell with the species’ extant distribution. By
contrast, the predicted distribution for the LGM showed occurrences only in the east of the QTP.

Discussion

Genetic Diversity and Genetic Structure

In this study, we detected 17 haplotypes from 319 P. kansuensis individuals belonging to 34 pop-
ulations in the QTP and the TSR. In comparison with P. longiflora, a congeneric species of P.
kansuensis which shares many life-history traits (e.g. annual/biennial, insect-pollinated, out-
crossing, mid-successional) and has an almost matching distribution range on the QTP with
northernmost occurrences in either the Tianshan or the Altay Mts. [43,72,73], the haplotype
diversity was slightly higher in P. kansuensis (HT = 0.882 vs.HT = 0.770), though the number of
haplotypes found was less than that in P. longiflora (30 haplotypes, 41 populations, 910 individu-
als) [35]. When compared with less related plant species studied in both the QTP and the Tian-
shan region, haplotype diversity of P. kansuensis was also higher (e.g.Aconitum gymnandrum

Table 4. Parameters of mismatch distribution analyses, Tajima’s D and Fu & Li’s D* tests.

Groups Mismatch distribution analyses Tajima’s D test (P) Fu & Li’s D* tests (P)

SSD (PSSD) HRag (PHRag)

Total 0.024(0.500) 0.028(0.120) 1.310(0.906) 16.720(0.982)

Tianshan group 0.096(0.120) 0.280(0.390) 3.126(0.999) 21.651(1.000)

QTP group 0.015(0.640) 0.022(0.510) 0.856(0.814) 13.363(0.999)

Abbreviations: HRag (PHRag)—raggedness statistic (probability of raggedness statistic); SSD (PSSD)—sum of the square deviations (probability of sum of

the square deviations).

doi:10.1371/journal.pone.0165700.t004

Fig 5. Potential distribution range for Pedicularis kansuensis under current climate conditions (left) and during the Last Glacial Maximum

(LGM; right) based on the community climate system model (CCSM).

doi:10.1371/journal.pone.0165700.g005
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(HT = 0.739) [74], Angelica nitida (HT = 0.818) [75], Cupressus spp. (HT = 0.249 toHT = 0.791)
[76],H. vulgaris (HT = 0.604) [37], Juniperus sabina (HT = 0.57) [21] and the Chinese popula-
tions of Ligularia hodgsonii (HT = 0.869) [77]). This comparison still holds true when only hap-
lotype diversity of populations from the TSR are considered (Tables 1 and 2) [35–37], despite
the fact that P. kansuensis haplotype diversity was lower in the TSR than in the QTP (HT = 0.753
vs.HT = 0.880). Unlikely, the high level of total genetic diversity can be attributed to a short life-
history trait such as longevity or the outcrossing breeding system of P. kansuensis. Considerable
gene flow among populations and regions may have played a role in shaping the genetic struc-
ture, as deduced from the low levels of genetic differentiation among populations in the entire
study area (GST = 0.366), the QTP (GST = 0.368), or the TSR (GST = 0.301) (Table 2).

Gene flow of cpDNA is only possible via means of seeds or clonal plant fragments.
[78,79]. In the absence of asexual means for reproduction in P. kansuensis, our results, i.e.
high genetic diversity within population and low population differentiation, suggest relatively
frequent seed exchange among populations. The seeds of P. kansuensis, however, have no
obvious morphological adaptations to wind, water or animal dispersal [80,81]. Nevertheless,
water flow has been shown to be an effective way of seed dispersal for P. kansuensis [82], but
the hydrography of the Tarim Basin makes this option improbable. Also, secondarywind dis-
persal across frozen land surfaces seems unlikely given the elevational gradients and north-
erly winter wind direction [83]. Animal activities, especiallymigratory birds, as well as
transportation of contaminated herbage seedsmay have played a role in the dispersal of seeds
across the Tarim Basin [84–86] despite the fact that direct observations are lacking. These lat-
ter two options could well explain why we did not find a strong phylogeographic signal with
a clear separation of populations from the QTP and the TSR. The SAMOVA results rendered
no support for a distinct number of K groups of populations, the comparison of GST and NST

values showed no significant difference (Table 2; U = 0.11; P> 0.05) and only 2.52% of the
molecular variance could be contributed to differences among the two regions (Table 3). The
genetic barrier is thus very weak despite being detected with high robustness (Fig 2) in BAR-
RIER. Just like the limited available studies of species with a similar distribution pattern, we
found no convincing evidence for genetic differentiation in P. kansuensis between the QTP
and the TSR [35–37].

Extensive survival in the QTP through the Quaternary

The divergence of all P. kansuensis haplotypes could be dated back to 2.339 (0.850) Mya time
window that coincides with the early or middle Pleistocene, suggesting that P. kansuensis with-
stood the extensive climate changes during the Quaternary. During this period, the QTP had
experienced four major glaciations [87] and several glacial and interglacial cycles [88]. Based
on the estimated divergence times of main lineages and most of the haplotypes, we presume
that the Quaternary climatic oscillationsmay have greatly shifted distribution range of P. kan-
suensis in the QTP, affected its divergence events, and shaped its phylogeographic structure,
just as reported in other plant species [1–4,28,29,89]. Based on recent phylogeographical stud-
ies in the demographic history of plant species from the QTP, two main refugiumhypotheses
have been proposed. One hypothesis suggested some speciesmay have retreated to the eastern
or south-eastern plateau edge (e.g. Hengduan Mts.) as refugia during the Quaternary glacial
periods, and then recolonizedQTP and its surrounding regions during the interglacial phases
or at the end of the Last Glacial Maximum (LGM) [35,90–95].While the other hypothesis sug-
gested some speciesmay have also survived at QTP and its surrounding regions in situ through
the Quaternary [96,97]. Previous studies in NW China showed species survival in East Tian-
shan Mountains [22] and Ili (Yili) Valley [33] during the Quaternary. Refugia are usually
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correlated with high levels of genetic diversity and unique haplotypes [98]. In this study, H1
and H2 were widespread haplotypes, occurred in 23 (67.65%) and 16 (47.06%) populations,
respectively. Some haplotypes (e.g. H8, H9, H10, H11, H15, H16, and H17) occurred in the SE
QTP, Hengduan-Himalayan Mts. While H3, H5, H13, and H14 occurred in the NE QTP (e.g.
QilianMts.) and Tianshan Mts. It seems that P. kansuensis might have survived in known refu-
gial areas at SE QTP (e.g. Hengduan Mts.) and the edge of NE QTP (e.g. QilianMts.). However,
the results of mismatch analyses (Fig 3) and Tajima’s D and Fu & Li’s D� tests (Table 3) indi-
cated that recent range expansion was rejected, given that P. kansuensis survived extensively in
the plateau during the LGM. This was also confirmed by the results of SDM that the LGM
potential distributions did not show obviously shrink in the QTP in comparison with the cur-
rent distributions (Fig 5).

Long-distance dispersal from the QTP to the TSR after the LGM

In this study, all 17 detected haplotypes were found in the QTP, while only five (H1-H5) in the
TSR (Fig 1). All five haplotypes (H1-H5) found in the TSR also occurred in NE of the QTP, of
which H1 and H2 were widespread over the entire distribution range (Fig 1). In the phyloge-
netic tree, neither the five (H1-H5) nor the three (H3-H5) haplotypes formed a single clade,
but rather clustered with other haplotypes (Fig 3). The divergence time of H1-H5 corresponded
to the divergence time of all haplotypes and was dated back to the early Pleistocene, at 2.339
(0.850) Mya, while the one for H3-H5 to 0.620 (0.225) Mya, and H3 and H4 to 0.17 (0.062)
Mya. Furthermore, a wide arid region barrier between the TSR and the QTP had developed
and aridification begun by the early Pleistocene [99]. The divergence times of the shared haplo-
types were later than the enlarging of aridification (Fig 3). The predication was confirmed by
the low molecular variance between groups (2.52%, Table 3). Therefore, the disjunctive distri-
bution of P. kansuensis was unlikely the result of a range fragmentation, but shaped by long-
distance dispersal crossing the wide arid land. Generally, long-distance dispersal is character-
ized by a movement from high genetic diversity region to low genetic diversity region [23,25].
The index of genetic diversity (HT) of the QTPG is significant higher than the TSG (HT = 0.880
vs.HT = 0.753) (Table 2). By this token, long-distance dispersal throughout arid land from the
QTP, especially the northeast of the QTP, to the TSR could be the reason for the disjunctive
distribution of P. kansuensis. In P. longiflora, the single haplotype that genetically connected
the Altay Mts. with the NE of the QTP was also estimated to have diverged around 0.138 Mya.
Both P. longiflora and P. kansuensis show lower level of genetic diversity in the Tianshan-Altay
region than of the QTP. Given that the cradle of the genus Pedicularis is likely in the Heng-
duan-Himalayan Mts. at the SE of the QTP [100], the NWChinese Tianshan and Altay Mts.
were presumably colonized from the QTP earliest during the last interglacial of the late Pleisto-
cene [87]. At that time the arid land barrier between the different mountain ranges as seen
today must have been discontinuous to allow for seed flow. Evidence for this scenario is how-
ever lacking.

The species distributionmodel (SDM) results show an absence of P. kansuensis from the
TSR during the LGM (Fig 5). This indicates that colonization must have occured after the
LGM, hence rather recently. This corroborates the genetic findings. Nevertheless, the reliablity
of the SDM is to be taken with caution as we failed to detect any range expansion or contrac-
tion in the QTP which would be an intuitive assumption (Table 3, Fig 3).

Conclusion

Based on phylogeographical and species distributionmodeling analyses, we propose that P. kan-
suensis has survived on the QTP throughout the LGM. The present day disjunct distribution in

Long-Distance Dispersal and Pedicularis kansuensis

PLOS ONE | DOI:10.1371/journal.pone.0165700 November 2, 2016 13 / 19



the Qinghai-Tibetan Plateau and the Tianshan Region is likely the result of multiple bird or
human assisted long-distance seed dispersal events crossing the arid land of Tarim Basin after
the LGM, particularly from the northeastern fringes of the QTP to the Tianshan Mts.
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