Diversity and distribution of vascular macrophytes in Ansupa Lake, Odisha, India

MUKTIPADA PANDA^{1,2,•}, RABINDRO NATH SAMAL¹, KRUPA SINDHU BHATTA¹, SASMITA LENKA¹, JAJNASENI ROUT¹, HEMANTA KUMAR PATRA², SUSANTA NANDA¹

¹Chilika Development Authority, Department of Forest and Environment, Govt. of Odisha, Plot No. C-11, BJB Nagar, Bhubaneswar 751014, Odisha, India. ^{*}email: muktipadapanda@gmail.com

²Post-Graduate Department of Botany, Utkal University. Bhubaneswar 751004, Odisha, India

Manuscript received: 14 March 2018. Revision accepted: 17 May 2018.

Abstract. Panda M, Samal RN, Bhatta KS, Lenka S, Rout J, Patra HK, Nanda S. 2018. Diversity and distribution of vascular macrophytes in Ansupa Lake, Odisha, India. Bonorowo Wetlands 1: 1-12. Macrophytes are indispensable component of any wetlands. They are the base of the trophic structure and variously affect function of aquatic ecosystem. Large invasion of macrophytes enforced for present studies in Ansupa Lake, the largest freshwater lake of the state Odisha (India) to identify the causative plant species. Regular field inspection, quadratic sampling and specimen collections were carried to identify the present macrophytes of the lake and their quantitative aspects like frequency of occurrences, abundance, values of diversity indices, adaptation and growth forms and species distribution etc. A total of 244 macrophyte species were identified that includes 182 semi-aquatic and 62 obligatory aquatic macrophytes. The latter group had 35% submerged, 15% free floating, 31% rooted floating and 19% marshy plant species. The comparison of growth form showed 66% annuals and remaining 34% perennial plants. The diversity indices resulted, Simpson complement index-0.561, Shannon-Weiner index-1.367, Species richness index 3.079 and Species evenness index-0.156. The study showed that the lake provides suitable habitats for existence of a diverse group of macrophytes but still due to large invasion of few species has threatened the lake which needs to be managed properly to restore the health of this natural resource for the benefit of mankind.

Keywords: Ansupa Lake, conservation, macrophyte diversity, species invasion

INTRODUCTION

Wetlands are the hotspots of biological diversity and invaluable for sustainable living. Plants in water are called macrophytes (Dodds 2002). They act as "biological engineers" in restoring water quality (Byers et al. 2006). It includes both flowering and non-flowering plants that start their life in and around water bodies (Chambers et al. 2008). A total of 2614 aquatic vascular macrophytes occur globally which represent only 1% of the total number of vascular plants (Ansari et al. 2017). Total number of aquatic plant species in Indian freshwaters exceeds 1200 (Gopal 1995). Many species of aquatic plant are invasive species (Oyedeji and Abowei 2012). These plants cause local losses of species diversity and alter ecosystem structure, resulting in a significant negative impact on aquatic biodiversity and water quality (Brundu 2015; Chamier et al. 2012; Wang et al. 2016; Zedler and Kercher 2004). In India, over 140 aquatic plants are reported to have attained the status of aquatic weeds in different situations (Gupta 2012; Naskar 1990; Shah and Reshi 2012; Varshney et al. 2008).

Ansupa Lake, the present study sites is the largest fresh water lake of the state Odisha (India) (Mohanty and Das 2008) and a lake of national importance (Das and Mohanty 2008). The lake provides livelihood provisions like fishing i.e., small indigenous fishes, table size fishes and ornamental fishes; agriculture, i.e., rice cultivation; edible

aquatic plants and ecotourism due to its unique biodiversity and natural scenery (Sarkar et al. 2015). More than 25,000 fishermen and local residence make their livelihood on the lake water (Das and Mohanty 2008; Mohanty and Das 2008). The average water depth of the lake was 4 meters (Das and Mohanty 2008). The lake receives annual rainfall between 800mm to 1300mm (Das and Mohanty 2008; Panda et al. 2016) and most during months of July and August, each year. It hosts 44 species of phytoplankton, 32 species of zooplanktons and 30 species of fishes (Patra and Patra 2007). Panda et al. (2016) for the first time reported occurrence of Hygroryza aristata (Retz.) Nees. ex Wt. and Arn., a wild relative of edible rice in Ansupa Lake as the only habitat in the state for this species. There is few published work on Ansupa Lake and the macrophytes study is very poorly reported (Das and Mohanty 2008; Mohanty and Das 2008; Varshney et al. 2008; Sarkar et al. 2015; Panda et al. 2016). All previous studies reported the progressive degradation conditions of the lake due to siltation, shrinkage of water spread area and invasions of aquatic plants (Das and Mohanty 2008; Mohanty and Das 2008; Sarkar et al. 2015; Panda et al. 2016).

Knowing the importance of Ansupa Lake, present studies were designed to identify the macrophyte diversity, the problematic weeds that need to be managed properly for the long term conservation of indigenous biota and creation of better livelihood opportunity from the lake.

Study area

Ansupa Lake is the largest fresh water lake of Odisha State, India, situated between latitude $20^{\circ} 26' 21''$ to $20^{\circ} 28' 52''$ N and $85^{\circ} 36' 25''$ to $85^{\circ} 36' 0''$ E longitude on the river bank of Mahanadi (Figure 1). The area of the lake is around 375 acres and 385 acres during the dry and rainy seasons, respectively (Mohanty and Das 2008).

MATERIALS AND METHODS

Field data collection and floristic study

The floristic studies were carried during November 2014 and an extensive regular field work from April to 2017. The recorded macrophytes were November identified with the help of available both regional and international scientific literatures (Calvert and Liessmann 2014; Campbell et al. 2010; Crow and Hellquist 2000; Das 2012; Gerber et al. 2004; Ghosh 2005; Gupta 2012; Haines 1921-1925; Naskar 1990). The scientific name and author were checked with, The plant citation list (http://www.theplantlist.org/) and International Plant Names Index (http://www.ipni.org/ipni/plantnamesearchpage.do). Quantitative status and ecological parameters were calculated from 25 fixed random plots, i.e. size, $1m \times 1m$ (Figure 1).

Data analysis

The quadratic parameters like, Frequency and Abundance (Upadhyay et al. 2009), Whitford's index (A/F) (Whitford 1949), Species richness index (Margalef 1958), Simpson complement index (1-D_s) from Simpson Dominance index (Simpson 1949), Shannon-Wiener index (Shannon and Wiener 1963) and Species evenness index (J) (Pielou 1975) were calculated as follows:

$$Frequecy = \frac{No. of plots in which a species occurs}{Total no of plots sampled} \times 100$$

$$Abundance = \frac{Total number of individuals of a species in all quadrates}{Number of quadrates in which the species occured}$$

Species dispersion or Whitford's index $\binom{A}{F} = \frac{1}{Frequency}$

Species richness Index (RI) =
$$\frac{5-1}{\ln N}$$
 as per Margalef (1958)

Where, S is the total number of species in the community and N is the total number of individuals of all species of a community.

Figure 1. Location map of Ansupa Lake, Cuttack District, Odisha, India

Simpson dominance index $(D_S) = \Sigma P i^2$ as per Simpson (1949) Shannon – Wiener index = $-\Sigma$ Pi \log_n Pi as per Shannon – Weiner (1963)

Where,
$$Pi = \frac{Number of individual of one species}{Total number of all individuals}$$

Species Evenness Index (EI) = $\frac{H'}{\ln S}$ as per Pielou (1975)

Where, H' is the Shannon-Weiner index of the community and S is the total number of species in the community.

RESULTS AND DISCUSSION

A total of 244 vascular macrophytes were identified to occur in and shoreline areas of the lake. Out of the total record, 238 species were of flowering plants, i.e., Angiosperms (Table 1) and 6 species of non-flowering macrophytes, i.e., Pteridophyte (Table 2). All six pteridophytes were strictly aquatic species; they belong to only two families (i.e., Marsileaceae and Salviniaceae) and except Azolla microphylla Kaulf., which was an annual species others were perennial in their growth form (Table 2). The angiospermic macrophytes belong to a total of sixty families. Among these families, Poaceae and Cyperaceae were recorded as the most diversified families (Figure 2). The classification of all the recorded macrophytes on the basis of habitat preference showed 182 (75%) semi-aquatic species and 62 (25%) aquatic species (Figure 3). Categorization of total angiosperms revealed 137 (58%) dicot species and 101 (42%) monocot species (Figure 4). Among the dicot group, only 26 (19%) species were strictly aquatic and 111 (81%) species were semi-aquatic plants (Figure 5). Similarly, the monocot group had 30 species (30%) and 71 species (70%) as aquatic and semi-aquatic plants, respectively (Figure 6). The comparison of growth form showed 160 species (66%) annual and remaining 84 species (34%) as perennial macrophytes (Figure 7). The classification of total aquatic species displayed 35% submerged, 15% free floating, 31% rooted floating and 19% marshy plant species (Figure 8). The study of nativity resulted 56 species out of 244 species as exotic or non native macrophytes of India (Table 1 and Table 2). Quadratic study revealed quantitative status of twenty eight common macrophytes (Table 3). Maximum species diversity was recorded in the peripheral or shoreline plots. Most frequent and abundant species were Ceratophylum demersum L., Hydrila verticelastar (L.) Pers., Nelumbo nucefera Gaertn., Najas sp., Utricularia sp., Eichhornia crassipes (Mart.) Solm-Laub. and Salvinia molesta D. S. Mitch from interior of the lake. Other species like, Polygonum barbatum L., Hymenachne amplexicaulis (Rudge) Nees, Cyperus *iria* L., Alternanthera philoxeroides A. St-Hil., Cyperus rotundus L. were more abundant at the land water interface (i.e., marshy areas). The distribution pattern (i.e. Whitford's index) showed all species with more or less of contagious type of distribution (A/F > 0.05). The diversity indices study showed Simpson complement index-0.561, Shannon-Weiner index-1.367, Species richness index 3.079 and Species evenness index-0.156 (Figure 9).

Figure 2. Family wise recorded number of angiospermic macrophytes species

The study found occurrence of wide habitat variability that helped establishment of different group of aquatic and semi-aquatic vascular macrophytes in the lake. Many macrophytes showed seasonal changes of population status, influenced by water level (Dalu et al. 2012). This affects the value of diversity index of the ecosystem, as calculated by ratio between the number of species and the number of individuals in that community (Ansari et al. 2017). The low value of species evenness index showed the present species were not equally abundant, some species dominated over others. The lake hosts some unique macrophytes that found rarely elsewhere in the state. *Hygroryza aristata* (Retz.) Nees. Ex Wt. & Arn. and *Oryza rufipogon* Griff., the wild

Figure 3. Classification as per habitat requirement: Aquatic and semi-aquatic plants (%)

Figure 4. Classification into Angiosperm group: Diversity of dicot and monocot species (%)

Figure 5. Classification of dicots into habitat group: Aquatic and semi-aquatic dicots (%)

relative of edible rice were a common occurrence in the lake (Plate 1). The aesthetically important and endangerd plant species, *Gloriosa superba* L. has been recorded from shoreline areas of the lake for the first time (Plate 1). The semi-aquatic plants were diverse and many showed seasonal growth. Many of them were small herbaceous annual plants.

Strong infestation of *Nelumbo nucifera* Gaertn., *Eichhornia crassipes* (Mart.) Solm-Laub., *Salvinia molesta* D. S. Mitch, *Ceratophyllum demersum* L., *Hydrilla verticillata* (L.f.) Royle, *Najas indica* (Willd) Cham.; *Hymenachne amplexicaulis* (Rudge) Nees, other grasses and marshy vegetation were found negatively affecting the lake (Plate 2). Soil erosion from surrounded hills and siltation, decreased water flow due to closing of inlets and outlets with Mahanadi River, intensive fertilizer load are the possible factors for degradation of the lake.

Figure 6. Classification of monocots into habitat groups: Aquatic and semi-aquatic monocots (%)

Figure 7. Classification of macrophytes into growth forms: Growth form of macrophytes (%)

Figure 8. Classification of aquatic plants into their adaptation group: Adaptation forms of aquatic plants (%)

Figure 9. Diversity indices from quadrate data

Plant family	Si. No.	Plant species	Plant group	Macrophyte type	Life form
Acanthaceae	1	Andrographis paniculata (Burm.f.) Wall. ex Nees	D	Semi-aquatic	Annual
	2	Hygrophila auriculata (Schum) Heine	D	Semi-aquatic	Annual
	3	Hygrophila schulli (BuchHam.) M.R.Almeida & S.M. Almeida	D	Semi-aquatic	Annual
	4	Justicia diffusa Willd	D	Semi-aquatic	Annual
	5	*Ruellia tuberosa L.	D	Semi-aquatic	Annual
Aizoaceae	6	Trianthema portulacastrum L.	D	Semi-aquatic	Annual
Alismataceae	7	Alisma plantago-aquatica L.	M	Aquatic (S)	Annual
	8	Limnophyton obtusifolium (L.) Miq.	M	Aquatic (S)	Annual
	9 10	Sagitaria sagitijolia L. Sagittaria guayanansis yar Jannula D. Don	M	Aquatic (S)	Annual
	10	Sagitaria trifolia L	M	Aquatic (S)	Annual
Amaranthaceae	12	* Achyranthes aspera L	D	Semi-aquatic	Annual
marannaceae	13	Aerva lanata (L.) Juss ex Schult	D	Semi-aquatic	Annual
	13	*Alternanthera paronychioides A. St-Hil	D	Semi-aquatic	Annual
	15	*Alternanthera philoreroides (Mart) Griseb	D	Semi-aquatic	Annual
	16	*Alternanthera sessilis (L.) DC.	D	Semi-aquatic	Annual
	17	*Amaranthus spinosus L.	D	Semi-aquatic	Annual
	18	*Amaranthus viridis L	D	Semi-aquatic	Annual
	19	*Celosia argentea L	D	Semi-aquatic	Annual
	20	*Gomphreng celosioides Mart	D	Semi-aquatic	Annual
Amarvllidaceae	21	Crinum latifolium L.	M	Aquatic (S)	Annual
i initi j initiaceae	22	Crinum viviparum (Lam.) R. Ansari & V.J.Nair	M	Aquatic (RF)	Annual
Apiaceae	23	Centella asiatica (L.) Urb.	D	Semi-aquatic	Perennial
1	24	* <i>Hvdrocotvle modesta</i> Cham. & Schltdl.	D	Semi-aquatic	Perennial
Aponogetonaceae	25	Aponogeton natans (L.) Engl. & Krause	М	Aquatic (S)	Annual
1 0	26	Alocasia indica (Roxb.) Schott	М	Semi-aquatic	Perennial
Araceae	27	Colocasia esculenta (L.) Schott	М	Semi-aquatic	Perennial
	28	*Pistia stratiotes L.	М	Aquatic (FF)	Perennial
Asteraceae	29	*Ageratum conyzoides L.	D	Semi-aquatic	Perennial
	30	Blumea lacera (Burm.f.) DC.	D	Semi-aquatic	Annual
	31	Caesulia axillaris Roxb.	D	Semi-aquatic	Annual
	32	*Chromolaena odorata (L.) King & H.E. Robins.	D	Semi-aquatic	Perennial
	33	Cyanthillium cinereum (L.) H. Rob	D	Semi-aquatic	Annual
	34	*Eclipta alba (L.)	D	Semi-aquatic	Annual
	35	Eclipta prostrata (L.) L.	D	Semi-aquatic	Annual
	36	Enydra fluctuans Lour.	D	Aquatic (S)	Annual
	37	<i>Emilia sonchifolia</i> (L.) DC	D	Semi-aquatic	Annual
	38	*Gnaphalium polycaulon Pers.	D	Semi-aquatic	Annual
	39	Grangea maderaspatana L.	D	Semi-aquatic	Annual
	40	<i>Mikania cordata</i> (Burm.f.) Robinson	D	Semi-aquatic	Annual
	41	Sphaeranthus indicus L.	D	Semi-aquatic	Annual
	42	Spilanthes paniculata Wall. Ex DC.	D	Semi-aquatic	Annual
	43	Synedrella nodiflora (L.) Gaertn.	D	Semi-aquatic	Annual
D '	44	Xanthium strumarium L.	D	Semi-aquatic	Annual
Boraginaceae	45	Coldenia procumbens L.	D	Semi-aquatic	Annual
C	46	Heliotropium indicum L.	D	Semi-aquatic	Annual
Capparaceae	4/	Cleome monophylia L.		Semi-aquatic	Annual
Carrianhuasaa	40	*Delugamen prostructure (Forgels) Age & Sel	ע ח	Semi-aquatic	Annual
Carlophyaceae	49 50	Constantially domain I	D D	A quatic (S)	Doronnial
Colchicoceae	51	Cleriosa superba I	M	Aquatic (5)	Perennial
Commelinaceae	52	Commelina benghalensis I	M	Semi-aquatic	Perennial
Commennaetae	52	Commelina erecta L	M	Semi-aquatic	Perennial
	54	Commelina longifolia I am	M	Semi-aquatic	Perennial
	55	Cvanotis axillaris (L.) D.Don ex Sweet	M	Semi-aquatic	Perennial
	56	*Evolvulus numularius (L.) L.	M	Semi-aquatic	Perennial
	57	Murdannia nudiflora (Linn.) Brenan.	M	Semi-aquatic	Annual
	58	Murdannia spirata (L.) Bruckn.	M	Semi-aquatic	Annual
Convolvulaceae	59	*Inomoea aquatica Forssk.	D	Aquatic (RF)	Perennial
	60	*Inomora carnea Jaca ssp. Fistulosa (Mart. ex Choisy) Austin	D	Semi-aquatic	Perennial

Table 1.	List of An	giospermic 1	nacrophyte	recorded from	n Ansupa	Lake, O	disha, I	India

BONOROWO WETLANDS 8 (1): 1-12, June 2018

	61	*Ipomoea pes-tigridis L.	D	Semi-aquatic	Perennial
	62	Merremia tridentata (L.) Hall. f.	D	Semi-aquatic	Perennial
Costaceae	63	Costus speciosus (J.Koenig) Sm.	М	Semi-aquatic	Perennial
Crassulaceae	64	Bryonhyllum calycinum Salish.	D	Semi-aquatic	Perennial
Cucurbitaceae	65	Mukia maderaspatana (L.) M. Roem.	D	Semi-aquatic	Annual
	66	Cucumis melo L	D	Semi-aquatic	Annual
Cyperaceae	67	Cynerus alonecuroides Rotth	M	Semi-aquatic	Annual
Syperaetae	68	*Cuperus previfalius (Rotth) Hassk	M	Semi-aquatic	Perennial
	69	Cyperus cenhalotes Vahl	M	Semi-aquatic	Perennial
	70	Cyperus compressus I	M	Semi-aquatic	Annual
	70	Cyperus commbosus Botth	M	Semi-aquatic	Perennial
	72	Cyperus difformis I	M	Semi-aquatic	Annual
	72	Cyperus uijjormis L.	M	Semi-aquatic	Annual
	73	Cyperus nuspun L	M	Semi-aquatic	Derennial
	75	Cyperus inioriculus Reiz.	M	Semi aquatic	Appual
	75	Cyperus ritu L.	M	Semi-aquatic	Derennial
	70	Cyperus plutystylis K. Bl.	M	Semi-aquatic	Perennial
	70	Cyperus polysiuchyos Rollo.	M	Semi-aquatic	Doronnial
	70	Cyperus rotundus L.	IVI M	Semi-aquatic	Perennial Danamial
	/9	Cyperus strigosus L.	M	Semi-aquatic	Perennial
	80	<i>Eleocharis acutangula</i> (Roxb.) schutt.	M	Aquatic (RE)	Perennial
	81	Echinochloa crus-galli (L.) P. Beauv.	M	Semi-aquatic	Annual
	82	Eleocharis dulcis (Burm.f.) Irin. ex Henschel	M	Semi-aquatic	Perennial
	83	Fimbristylis dipsacea (Rottb.) C.B. Clarke	M	Semi-aquatic	Annual
	84	Fimbristylis ferruginea (L) Vahl.	M	Semi-aquatic	Perennial
	85	Fimbristylis littoralis Gaudich.	M	Semi-aquatic	Annual
	86	Fimbristylis miliacea (L.) Vahl	M	Semi-aquatic	Annual
	87	Fuirena ciliaris (L.) Roxb.	M	Semi-aquatic	Annual
	88	*Kyllinga tenuifolia Steud.	М	Semi-aquatic	Annual
	89	Lipocarpha chinensis (Osbeck) J.Kern.	М	Semi-aquatic	Annual
	90	Cyperous compactus Retz.	М	Semi-aquatic	Annual
	91	Pycreus pumilus (L.) Nees	М	Semi-aquatic	Annual
	92	Schoenoplectus articulatus (L.) Palla	М	Semi-aquatic	Annual
	93	Schoenoplectus grossus (L.f.) Palla	М	Semi-aquatic	Perennial
	94	Schoenoplectiella supina (L.) Lye	М	Semi-aquatic	Annual
Elatinaceae	95	*Bergia ammannioides Roxb. ex Roth	D	Semi-aquatic	Annual
	96	Bergia capensis L.	D	Semi-aquatic	Perennial
Eriocaulaceae	97	Eriocaulon quinquangulare L.	М	Semi-aquatic	Perennial
Euphorbiaceae	98	Acalypha indica L.	D	Semi-aquatic	Annual
	99	*Croton bonplandianus (Baill.) Kuntze	D	Semi-aquatic	Annual
	100	Euphorbia hirta L.	D	Semi-aquatic	Annual
	101	* <i>Euphorbia prostrata</i> Aiton.	D	Semi-aquatic	Annual
	102	Jatropha gossypiifolia L.	D	Semi-aquatic	Perennial
	103	*Phyllanthus tenellus Roxb.	D	Semi-aquatic	Perennial
	104	*Ricinus communis L.	D	Semi-aquatic	Perennial
Fabaceae	105	Aeschvnomene aspera L.	D	Semi-aquatic	Annual
	106	Aeschynomene indica L	D	Semi-aquatic	Annual
	107	Alvsicarnus vaginalis (L.) DC.	D	Semi-aquatic	Annual
	108	*Cassia tora L	D	Semi-aquatic	Annual
	109	*Crotalaria pallida Aiton	D	Semi-aquatic	Perennial
	110	Crotalaria avinavefolia I	D	Semi-aquatic	Perennial
	111	Zornia dinhvlla (L.) Pers	D	Semi-aquatic	Annual
	112	Senna obtusifolia (L.) H S Irwin & Barneby	D	Semi-aquatic	Annual
	112	*Senna occidentalis (L.) Link	D	Semi-aquatic	Annual
	113	Senha bicciaentatis (L.) Link Seshania higpinoga (Joog.) W.F. Wt		Semi-aquatic	Annual
Continuosas	114	Loppog dishotomg Willd	D	Semi-aquatic	Amual
Undragharitagaga	115	Hopped alcholoma Willd.	D	Semi-aquatic	Annual
rryurocharitaceae	110	Hydrilla vorticillate (L f) Doylo	IVI NA	Aquatic (S)	Annual Doronnial
	11/	<i>Ilyurilla verilcillala</i> (L.I.) Köyle	IVI M	Aquatic (S)	Perennial
	118	Ottolia aliamoidoa (L.) Dore	IVI M	Aquatic (S)	Perennial
	119	Unena ansmolaes (L.) Pers.	IVI M	Aquatic (S)	Perennial
Harden - 111	120	<i>valusneria natans</i> (Lour.) H. Hara	M	Aquatic (S)	Annual
Tydrophyllaceae	121	<i>ayarolea zeylanica</i> (L.) Vani.	D	Aquatic (RE)	Annual
Lamiaceae	122	Anisometes indica (L.) O. Kuntze.	D	Semi-aquatic	Perennial
	123	Leucas aspera (Willd.) Link	D	Semi-aquatic	Annual
T	124	Pogostemon quadrifolius (Benth.) F. Muell.	D	Semi-aquatic	Annual
Lemnaceae	125	<i>Spirodela polyrrhiza</i> (L.) Schleid.	М	Aquatic (FF)	Perennial
	126	Lemna gibba L.	Μ	Aquatic (FF)	Annual

	127	Lemna aequinoctialis Welw	М	Aquatic (FF)	Annual
	128	Wolffia globosa (Roxb.) Hartog & Vander Plas	М	Aquatic (FF)	Annual
Lentibulariaceae	129	<i>Utricularia aurea</i> Lour.	D	Aquatic (S)	Annual
	130	<i>Utricularia inflexa</i> Forssk.	D	Aquatic (S)	Annual
	131	<i>Utricularia bifida</i> L.	D	Aquatic (S)	Annual
Linderniaceae	132	Lindernia crustacea (L.) F.Muell.	D	Semi-aquatic	Annual
Lythraceae	133	Ammannia baccifera L.	D	Semi-aquatic	Annual
	134	Ammannia multiflora Roxb.	D	Semi-aquatic	Annual
	135	Ammannia octandra L.f.	D	Semi-aquatic	Annual
	136	Rotala densiflora (Roth. ex Roem. & Schult.) Koehne	D	Semi-aquatic	Annual
	137	Rotala indica (Willd.) Koehne	D	Semi-aquatic	Annual
Malvaceae	138	Abutilon indicum (L.) Sweet	D	Semi-aquatic	Annual
	139	Corchorus aestuans L.	D	Semi-aquatic	Annual
	140	Sida cordifolia L.	D	Semi-aquatic	Annual
	141	Urena lobata L.	D	Semi-aquatic	Annual
Martyniaceae	142	*Martynia annua L.	D	Semi-aquatic	Annual
Menyanthaceae	143	Nymphoides hydrophylla (Lour.) Kuntze	D	Aquatic (RF)	Annual
	144	Nymphoides indica (L.) Kuntze	D	Aquatic (RF)	Annual
Mimosaceae	145	*Mimosa pudica L.	D	Semi-aquatic	Perennial
	146	Neptunia oleracea Lour.	D	Aquatic (RF)	Perennial
	147	Neptunia plena (L.) Benth.	D	Aquatic (RF)	Perennial
Molluginaceae	148	Glinus oppositifolius (L.) Aug. DC	D	Semi-aquatic	Annual
	149	Mollugo pentaphylla L.	D	Semi-aquatic	Annual
Haloragaceae	150	Myriophyllum tetrandrum Roxb.	D	Aquatic (RE)	Annual
c	151	* <i>Myriophyllum aquaticum</i> (Vell.) Verdc.	D	Aquatic (RE)	Perennial
	152	Myriophyllum verticillatum L.	D	Aquatic (RE)	Annual
Najadaceae	153	Najas faveolata A. Br. ex Magam.	М	Aquatic (S)	Perennial
C C	154	Najas indica (Willd) Cham.	М	Aquatic (S)	Perennial
	155	Najas marina L.	М	Aquatic (S)	Perennial
Nelumbonaceae	156	Nelumbo nucifera Gaertn.	D	Aquatic (RF)	Perennial
Nyctaginaceae	157	Boerhavia diffusa L.	D	Semi-aquatic	Annual
	158	Boerhavia repens L.	D	Semi-aquatic	Annual
Nymphaeaceae	159	Euryale ferox Salisb.	D	Aquatic (RF)	Perennial
5 I	160	Nymphaea nouchali Burm.f.	D	Aquatic (RF)	Perennial
	161	Nymphaea pubescens Willd.	D	Aquatic (RF)	Perennial
	162	Nymphaea rubra Roxb. ex Andrews	D	Aquatic (RF)	Perennial
Onagraceae	163	Ludwigia prostrata Roxb.	D	Semi-aquatic	Annual
C	164	Ludwigia adscendens (L.) H. Hara	D	Aquatic (RF)	Perennial
	165	Ludwigia octovalvis (Jacq.) P.H. Raven	D	Semi-aquatic	Annual
	166	Ludwigia perennis L.	D	Semi-aquatic	Annual
Oxalidaceae	167	Oxalis corniculata L.	D	Semi-aquatic	Annual
Plantaginaceae	168	*Scoparia dulcis L.	D	Semi-aquatic	Annual
Poaceae	169	Apluda mutica L.	М	Semi-aquatic	Annual
	170	Arundinella pumila (Hochst. ex A.Rich) Steud	М	Semi-aquatic	Annual
	171	Axonopus compressus (Sw.) P.Beauv.	М	Semi-aduatic	Perennial
	172	Brachiaria deflexa (Schumach.) C.E.Hubb. ex Robyns	М	Semi-aquatic	Annual
	173	Brachiaria mutica (Forssk.) Stapf.	М	Semi-aduatic	Perennial
	174	Brachiaria ramosa (L.) Stapf	М	Semi-aquatic	Annual
	175	Brachiaria reptans (L.) C.A.Gardner & C.E.Hubb	М	Semi-aquatic	Annual
	176	*Chloris barbata Sw.	М	Semi-aquatic	Annual
	177	Cvrtococcum longipes (Hook.f.) A.Camus	М	Semi-aquatic	Perennial
	178	Cynodon dactylon (L.) Pers.	М	Semi-aduatic	Perennial
	179	*Dactvloctenium aegyptium (L.) Willd.	М	Semi-aduatic	Annual
	180	Dichanthelium sp	М	Semi-aquatic	Annual
	181	Echinochloa colona (L.) Link	M	Semi-aquatic	Annual
	182	Echinochlog crus-galli (L.) P.Beauv.	M	Semi-aquatic	Annual
	183	Echinochlog stagning (Retz.) Beauv	M	Semi-aquatic	Annual
	184	Eleusine indica (L.) Gaertn	M	Semi-aquatic	Annual
	185	Elvtrophorus spicatus (Willd) A Camus	M	Semi-aquatic	Annual
	186	Eragrostis ciliaris (L) R Br	M	Semi-aquatic	Annual
	187	Eragrostis gangetica (Roxh) Steudel	M	Semi-aquatic	Annual
	188	Eragrostis janonica (Thunh) Trin	M	Semi-aquatic	Perennial
	189	Eragrostis nilosa (L.) P Beauv	M	Semi-aquatic	Annual
	190	Eragrostis priosa (E.) P. Beauv. Eragrostis tenella (L.) P. Beauv ex Roem & Schult	M	Semi-aquatic	Annual
	101	Hugroryza aristata (Retz) Nees ev Wight & Arn	M	$\Delta $ quatic (RF)	Perennial
	107	*Humanachna amplaviagulis (Dudge) Noos	IVI NA	Δ quatic (NF)	Perennial
	192	Loorsia horandra Sw	IVI M	Semi aquatic	Deronnial
	173	псетыи пелинити Бм.	11/1	Senn-aquatic	i ciciiilai

_

BONOROWO WETLANDS 8 (1): 1-12, June 2018

	194	Oryza rufipogon Griff.	М	Semi-aquatic	Perennial
	195	Panicum sumatrense Roth	М	Semi-aquatic	Perennial
	196	*Paspalum dilatatum Poir	М	Semi-aquatic	Annual
	197	Paspalum distichum L.	М	Semi-aquatic	Perennial
	198	Paspalum vaginatum Sw.	М	Semi-aquatic	Annual
	199	Setaria pumila (Poir.) Roem. & Schult.	М	Semi-aquatic	Annual
	200	Saccharum spontaneum L	М	Semi-aquatic	Perennial
	201	Setaria glauca (L.) Beauv.	М	Semi-aquatic	Annual
	202	Sporobolus coromandelianus (Retzi.) Kunth	М	Semi-aquatic	Annual
Papilionaceae	203	Sesbania bispinosa (Jacq.) W.Wight.	D	Semi-aquatic	Annual
Polygonaceae	204	*Persicaria glabrum (Willd.) M.Gomez	D	Semi-aquatic	Perennial
	205	*Polvgonum barbatum L.	D	Semi-aquatic	Perennial
	206	Polvgonum plebeium R. Br.	D	Semi-aquatic	Annual
	207	*Rumex maritimus L.	D	Semi-aquatic	Annual
Pontederiaceae	208	Eichhornia crassines (Mart.) Solm-Laub.	М	Aquatic (RF)	Perennial
	209	Monochoria hastata (L.) Solm.	М	Aquatic (RF)	Perennial
	210	Monochoria vaginalis (Burm f.) Presl.	М	Aquatic (RE)	Perennial
Portulacaceae	211	Portulaca oleracea L.	D	Semi-aquatic	Annual
Potamogetonaceae	212	*Potamogeton nodosus Poir.	М	Aquatic (S)	Annual
U	213	Stuckenia pectinata (L.) Börner	М	Aquatic (S)	Perennial
Rubiaceae	214	Dentella repens (L.) Forst. et Forst.	D	Semi-aquatic	Annual
	215	Oldenlandia diffusa (Willd.) Roxb.	D	Semi-aquatic	Annual
	216	Mitracarpus hirtus (L.) DC.	D	Semi-aquatic	Annual
	217	Oldenlandia corvmbosa L.	D	Semi-aquatic	Annual
Scrophulariaceae	218	Bacopa monnieri (L.) Pennell.	D	Semi-aquatic	Annual
1	219	Dopatrium junceum (Roxb.) Buch-Ham. ex Benth.	D	Aquatic (RE)	Annual
	220	Limnophila aquatica (Roxb.) Alston	D	Aquatic (RE)	Annual
	221	Limnophila heterophylla (Roxb.) Benth.	D	Aquatic (RE)	Annual
	222	Limnophila indica (L.) Druce	D	Aquatic (RE)	Annual
	223	Limnophila sessiliflora (Vahl) Blume	D	Aquatic (RE)	Annual
	224	Lindernia anagallis (Burm.f.) Pennel	D	Semi-aquatic	Annual
	225	Lindernia antipoda (L.) Alston	D	Semi-aquatic	Annual
	226	Lindernia parviflora (Roxb.) Haines	D	Semi-aquatic	Annual
	227	Mecardonia procumbens (Mills.) Small	D	Semi-aquatic	Annual
	228	Scoparia dulcis L.	D	Semi-aquatic	Annual
	229	*Verbascum chinense (L.) Santapau	D	Semi-aquatic	Annual
Solanaceae	230	Physalis minima L.	D	Semi-aquatic	Annual
Sphenocleaceae	231	Sphenoclea zeylanica Gaertn.	D	Semi-aquatic	Annual
Sterculiaceae	232	Melochia corchorifolia L.	D	Semi-aquatic	Annual
Trapaceae	233	Trapa natans L. var. bispinosa (Roxb.) Makino	D	Aquatic (RF)	Perennial
Typhaceae	234	* <i>Typha angustata</i> Bory & Chaub.	Μ	Aquatic (RE)	Perennial
Verbenaceae	235	*Lantana camara L.	D	Semi-aquatic	Perennial
	236	*Lippia javanica (Burm.f.) Spreng.	D	Semi-aquatic	Perennial
	237	Phyla nodiflora (L.) Greene	D	Semi-aquatic	Annual
Violaceae	238	Hybanthus enneaspermus (L.) F.Muell.	D	Semi-aquatic	Annual

Note: D= Dicot, M= Monocot, S= Submerged, FF= Free floating, RF= Rooted floating, RE= Rooted erect, *=Exotic or non native species (Un-marked species are native or indigenous to India)

Table 2	. List of Non	-flowering (Pter	idophyte) macro	phytes of Ansupa	Lake (Odisha), India
---------	---------------	------------------	-----------------	------------------	----------------------

Family	S. No.	Plant species	Habitat group	Life form
Marsileaceae	1	Marsilea minuta L.	Aquatic (RF)	Perennial
	2	Marsilea quadrifolia L.	Aquatic (RF)	Perennial
Salviniaceae	3	*Azolla microphylla Kaulf.	Aquatic (FF)	Annual
	4	Azolla pinnata R.Br.	Aquatic (FF)	Perennial
	5	*Salvinia minima Baker	Aquatic (FF)	Perennial
	6	*Salvinia molesta D.S. Mitch	Aquatic (FF)	Perennial

Note: RF=Rooted floating, FF=Free floating, *= Exotic or non native species (Un-marked species are native or indigenous to India)

Table 3. Quantitave status of important macrophytes of Ansupa Lake, Odisha, India

Macrophyte species	Total count	Total plots where recorded	Frequency	Abundance	Abundance/ frequency (A/F)
Eichhornia crassipes (Mart.) Solm-Laub.	31	4	16	7.75	0.484
Ipomoea aquatica Forssk.	17	3	12	5.67	0.472
Cyperus strigosus L.	14	2	8	7.0	0.875
Cyperus iria L.	60	1	4	60.0	15.00
Cyperus rotundus L.	20	1	4	20.0	5.00
Ludwigia adscendens (L.) H. Hara	13	2	8	6.5	0.813
Ludwigia perennis L.	20	3	12	6.67	0.556
Alternanthera philoxeroides (Mart.) Griseb.	25	1	4	25.0	6.250
Salvinia molesta D.S. Mitch	37	3	12	12.33	1.028
Salvinia minima Baker	6	1	4	6.0	1.500
Cyperus compressus L.	62	2	8	31.0	3.875
Kyllinga tenuifolia Steud.	2	1	4	2.0	0.500
Hydrilla verticillata (L.f.) Royle	1240	12	48	103.33	2.153
Ceratophyllum demersum L.	4060	21	84	193.33	2.302
Najas faveolata A. Br. ex Magam.	335	9	36	37.22	1.034
Nymphaea pubescens Willd.	6	4	16	1.5	0.094
Trapa natans L. var. bispinosa (Roxb.) Makino	8	1	4	8.0	2.00
Nelumbo nucifera Gaertn.	57	16	64	3.56	0.056
Pistia stratiotes L.	11	3	12	3.67	0.306
Spirodela polyrrhiza (L.) Schleid.	54	4	16	13.5	0.844
<i>Utricularia</i> sp.	171	4	16	42.75	2.672
Lemna gibba L.	78	7	28	11.14	0.398
Azolla pinnata R Br.	29	5	20	5.8	0.290
Polygonum barbatum L.	38	1	4	38.0	9.500
Marsilea quadrifolia L.	20	3	12	6.67	0.556
Aponogeton natans (L.) Engl. & Krause	5	1	4	5.0	1.250
Hygroryza aristata (Retz.) Nees ex Wight & Arn	7	2	8	3.5	0.438
Lindernia parviflora (Roxb.) Haines	10	2	8	5.0	0.625

Plate 1. Some taxonomically important taxa from Ansupa Lake, Odisha, India. Note: A. Oryza rufipogon, B. Hygroryza aristata, C. Ottelia alismoides, D. Gloriosa superba

Plate 2. Invasive weed species of Ansupa Lake, Odisha, India. Note: A-B. Eichhornia crassipes, C-D. Nelumbo nucifera, E. Salvinia molesta, F. Ceratophyllum demersum, G. Najas indica, H. Hymenachne amplexicaulis

Besides being having these troublesome weeds, the lake also hosts many macrophytes that are used as food, fodder or medicine by the local households. Control of invasion and their management is a tedious and need multiple strategies. Management of this invasive grass must include a combination of strategies such as winter burning, herbicide application and hydroperiod control. The floating rotted macrophyte *Euryale ferox* Salisb., once occurred in the lake (recorded in October 2014) is now extinct from the lake. Implementation of physical (mechanical) methods and dredging to required depth will reduce current infested weeds and further regular monitoring, participation of both Governments agency and local community thought to restore a long term functioning of the lake.

General comments

Aquatic macrophytes are indispensable constituent of any wetland. They provide habitat to various aquatic fauna, act as primary producers, oxygenate water, maintain water quality, do nutrient cycling, stabilize shoreline of lakes, provide substrate for growth of algae, provide shelter to benthic fauna and breeding ground for fishes, check inflow of silt, reduce nutrient load by self utilizing and minimize development of algal blooms (Naskar 1990; Bornette and Puijalon 2009; Ansari et al. 2017). But, sometimes environments enforce and help for invasion of exotic weeds in aquatic ecosystems which negatively affect the entire ecosystem. These plants compete with native species and many times facilitate for loss or extinction of less aggressive and indigenous species (Stallings et al. 2015).In many instances they affect negatively to human activities (e.g. fishing, swimming, navigation and irrigation) and degrade the physical, chemical or biological aspects (Basak et al. 2015). In India, about 140 aquatic plants have been reported as attained the status of aquatic weeds (Naskar 1990, Gupta 2012) and many of them found in Ansupa Lake. The wetlands in India are also gradually shrinking and under severe anthropogenic pressure (Pattanaik et al. 2008; Udayakumar and Ajithadoss 2010). Regular physical visits, application of geospatial remote sensing techniques, monitoring of change in floristic composition, maintaining required depth, reducing fertilizer use in agriculture in nearby cultivation lands, creation of green coverage in surrounding barren lands can save native biota from alien species to invade many aquatic ecosystems.

ACKNOWLEDGEMENTS

Authors are thank full to Ministry of Environment, Forest and Climate Change for providing financial assistance for Conservation and Management of Ansupa Lake, Odisha, India for the year 2016-2017 under the National Plan for Conservation of Aquatic Eco-systems (NPCA).

REFERENCES

- Ansari AA, Saggu S, Al-Ghanim SM, Abbas ZK, Gill SS, Khan FA, Dar MI, Naikoo MI, Khan AA. 2017. Aquatic plant biodiversity: A biological Indicator for the Monitoring and Assessment of Water Quality. In: Ansari AA, Gill SS, Abbas ZK, Naeem M (eds). Plant Biodiversity: Monitoring, Assessment and Conservation. CAB International, Wallingford.
- Basak SK, Ali MM, Islam MS, Shaha PR. 2015. Aquatic weeds of Haor area in Kishoregonj district, Bangladesh: Availability, Threats and Management Approaches. Intl J Fish Aquat Stud 2 (6): 151-156.
- Bornette G, Puijalon S. 2009. Macrophytes: Ecology of Aquatic Plants. In Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd., Chichester, UK.
- Brundu G. 2015. Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats. Hydrobiologia 746: 61-79.
- Byers EJ, Cuddington K, Jones CG, Talley TS, Hastings A, Lambrinos JG, Crooks JA, Wilson WG. 2006. Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 21: 493-500.
- Calvert G, Liessmann L. 2014. Wetland Plants of the Townsville-Burdekin Flood Plain. Lower Burdekin Landcare Association Inc., Ayr.
- Campbell S, Higman P, Slaughter B, Schools E. 2010. A field Guide to Invasive Plants of Aquatic and Wetland Habitats for Michigan. Michigan State University Extension, East Lansing, MI, USA.
- Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9-26.
- Chamier J, Schachtschneider K, Maitre DC, Ashton PJ, Wilgen BW. 2012. Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. Water SA 38 (2): 345-356.
- Crow GE, Hellquist CB. 2000. Aquatic and Wetland Plants of Northeastern North America. The University of Wisconsin Press, Madison, WI.
- Dalu T, Clegg B, Nhiwatiwa T. 2012. Aquatic macrophytes in a tropical African reservoir: diversity, communities and the impact of reservoir-level fluctuations. Trans R Soc S A 67 (3): 117-125.
- Das CR, Mohanty S. 2008. Integrate Sustainable Environmental Conservation of Ansupa Lake: A famous water resource of Orissa, India. Special Issue on Dev. in Water Resources & Power Sectors in Orissa. Water Energ Intl 65 (4): 62-66.
- Das NR. 2012. Introduction to Aquatic and Semi-aquatic Plants of India. Kalyani Publishers, Punjab, India.
- Dodds WK. 2002. Freshwater Ecology: Concepts and Environmental Applications. Academic Press, New York.
- Gerber A, Cilliers CJ, Ginkel C. van, Glen R. 2004. Easy identification of Aquatic plants: A guide for the identification of water plants in and around South African impoundments. South Africa Department of Water Affairs, Pretoria.
- Ghosh SK. 2005. Illustrated aquatic and wetland plants in harmony with mankind. Standard Literature, 76, Acharya Jagadish Chandra Bose Road, Kolkata, India.
- Gopal B. 1995. Biodiversity in Freshwater Ecosystems Including Wetlands, Biodiversity and Conservation in India, A Status Report. Zoological Survey of India, Calcutta.
- Gupta OP. 2012. Weedy aquatic plants: Their utility, menace and management. Agrobios, India.
- Haines HH. 1921-1925. The Botany of Bihar and Orisha, 6 parts. London, Botanical Survey of India, Culcutta.
- Margalef DR. 1958. Information theory in ecology. Year Book of the Society for General Systems Research 3: 36-71.
- Mohanty S, Das CR. 2008. Community Mobilization and Participation in Implementing Integrated Sustainable Conservation of Ansupa Lake, a Famous Wetland of Orissa. In: Sengupta M, Dalwani R (eds). Proceedings of Taal 2007: The 12th World Lake Conference 1240-1246.
- Naskar KR. 1990. Aquatic & Semi-aquatic plants of the lower Ganga delta. Daya Publishing House, Delhi.
- Oyedeji AA, Abowei JFN. 2012. The Classification, Distribution, Control and Economic Importance of Aquatic Plants. Intl J Fish Aquat Sci 1 (2): 118-128.
- Panda SP, Sahoo HK, Subudhi HN, Sahu AK, Mishra P. 2016. Ecofloristic diversity of Ansupa Lake, Odisha (India) with special reference to aquatic macrophytes. J Biodiv Photon 116: 537-552.
- Patra S, Patra AK. 2007. Environment impact assessment of a fresh water ecosystem operating in Ansupa Lake: An urgent need for

development of fishery resources. In: Proc. Nat. Sem. on Environment pollution and its protection issues in Orissa. Organised by Department of Zoology G.S.College. Athagarh.1-2 Sept. 95-98.

Pattanaik C, Prasad SN, Reddy CS. 2008. Warning bells in Ansupa Lake, Orissa. Curr Sci 64 (5): 560.

- Pielou EC. 1975. Ecological Diversity. John Wiley and Sons, New York. Sarkar SD, Ekka A, Sahoo AK, Rashith CM, Lianthuamluaia, Roychowdhury A. 2015. Role of floodplain wetlands in supporting livelihood: A case study of Ansupa Lake in Odisha. J Environ Sci Comput Sci Eng Technol 4 (3): 819-826.
- Shah MA, Reshi ZA. 2012. Invasion by alien macrophytes in freshwater ecosystems of India. In: Bhatt et al. (eds). Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent. CAB International, Wallingford, UK.
- Shannon CE, Wiener W. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA.
- Simpson EH. 1949. Measurement of diversity. Nature 163: 688.
- Stallings KD, Seth-Carley D, Richardson RJ. 2015. Management of Aquatic Vegetation in the Southeastern United states. J Integrat Pest Manag 6 (1): 1-5.

- Udayakumar M, Ajithadoss K. 2010. Angiosperms, Hydrophytes of five ephemeral lakes of Thiruvallur District, Tamil Nadu, India. Chicklist 6 (2): 270-274.
- Upadhyay VP, Malviya HS, Behura S, Rout DK. 2009. Ecological methods for biodiversity assessment in EIA. Indian J Environ Ecoplan 16(1):157-168.
- Varshney JG, Sushilkumar, Mishra JS. 2008. Current Status of Aquatic Weeds and Their Management in India. In: Sengupta M, Dalwani R (eds). Proceedings of Taal 2007: The 12th World Lake Conference. Jaipur, India, 28 October- 2 November 2007.
- Wang H, Wang Q, Bowler PA, Xiong W. 2016. Invasive aquatic plants in China. Aquat Invas 11 (1): 1-9.
- Whitford PB. 1949. Distribution of woodland plants in relation to succession and clonal growth. Ecology 30: 199-208.
- Zedler JB, Kercher S. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23: 431-452.