CYPSELA MORPHOLOGY AND ITS TAXONOMIC SIGNIFICANCE WITHIN THE GENUS SCORZONERA L. (CICHOREAE-ASTERACEAE) FROM PAKISTAN AND KASHMIR

RUBINA ABID^{*}, SYED RAZA MEHDI, SANA RIAZ, DURDANA KANWAL, M. IMRAN AND AFSHEEN ATHER

Department of Botany, University of Karachi, Pakistan *Corresponding author's email: rubinaku@yahoo.com

Abstract

Morphological characters of cypsela for 17 species of the genus *Scorzonera* L. were examined from Pakistan and Kashmir to assess their taxonomic significance. Macro and micro morphological characters of cypsela, pappus and carpopodium were studied by light and scanning electron microscopy. The genus showed considerable variations in the morphological characters of cypsela. However, linear shape was found to be dominant and ribbed surface was prevalent within the genus. Pappi were found in one or two series. Carpopodium was basal or sub basal with the variety of shapes. The data obtained was also analyzed numerically and found rewarding to strengthen the taxonomic decisions at specific levels.

Key words: Scorzonera, Asteraceae, Cypsela, Pakistan, Kashmir.

Introduction

The genus Scorzonera L. is considered as polyphyletic (Shi & Kilian, 2011) and one of the largest genera of the tribe Cichoreae (Asteraceae). Cypselas are known for their remarkable features which can be used additionally as well as individually as a taxonomic marker to differentiate various groups of the family Asteraceae (Frangiote-Pallone & de Souza, 2014). Importance of cypsela morphology was highlighted in the family Asteraceae by various taxonomists (Pandey & Singh, 1980; Pandey et al., 1983; Puttock, 1994; Martins & Oliveira, 2007; Julio & Oliveira, 2009; Marzinek & Oliveira, 2010; Shamso et al., 2021) and have been used for taxonomic evaluation at various levels (Dittrich, 1968; Kynclova, 1970; Haque and Godward, 1984; Lovell et al., 1986; Mateu and Guemes, 1993; Breitwiesser and Ward, 2005; Swelenkomo et al., 2007; Kothari et al., 2012; Frangiote-Pallone & de Souza, 2014). Similarly, a series on cypsela morphology for various tribes or groups of Asteraceae was published from Pakistan (Abid & Qaiser, 2002; Abid & Zehra, 2007; Abid & Ali, 2010; Abid & Qaiser, 2015). While, cypsela of the tribe Lactuceae were studied by various workers, such as Das and Mukherji (2008) examined cypsela diversity of 7 species distributed in 5 genera viz., Hieracium L., Koelpinia Pall., Hedypnois Mill., Agoseris Ret', and Leontodon L. Similarly, Dasgupta & Mukherji (2007) utilized cypsela morphology as a taxonomic marker in 8 species viz., Crepis alpina L., C. aspera L., C. dioscoroides L., C. foetida L., Hieracium laevigatum Willd., Leontodon autumnalis L., Sonchus oleraceus L., Taraxacum laevigatum (Willd.) DC. Bereich, where cypsela characters were proved to be an additional tool to strengthen the taxonomic decisions. Although from Pakistan various groups of Asteraceae have got attention for their cypsela morphology but the genus Scorzonera seems to be ignored regarding to its cypsela. Thus, in the present studies macro and micro morphological characters of cypsela for the genus Scorzonera were examined to strengthen the specific delimitation of the genus.

Materials and Methods

Seventeen species of the genus Scorzonera L. were studied for their cypsela morphology from herbarium (2-10 specimens/species specimens and 5-10 cypsela/specimen) under stereomicroscope (Nikon XN Model), compound microscope (Nikon Type 102) and scanning electron microscope (JSM-6380A). For scanning electron microscopy (SEM) mature cypselas were directly mounted on metallic stub using double adhesive tape and coated with gold for a period of 6 minutes in sputtering chamber and observed under SEM. The terminologies used are in accordance with Lawrence (1970), Radford et al., (1974) and Stearn (1983) with slight modifications. Numerical analysis was carried out to recognize the relationship and variations of taxa within the genus Scorzonera. Hierarchical clustering was performed by using Euclidean distance index with the computer package (Anon., 2012). Each taxon was treated as an operational taxonomic unit (OTU). Macro and micro morphological characters of cypsela viz., shape, surface, colour, size, pappus series, number, colour, size, carpopodium shape, position, diameter of carpopodium and diameter of foramen of carpopodium were examined. Characters were recorded as presence or absence and coded as 1 or 0 respectively and the average values of the quantitative characters were directly used (Tables 1-3; Figs. 1-8).

Observations and Results

General cypsela characters of the genus *Scorzonera* **L.**: Cypselas 4.5-16 mm long, linear, triangular, narrow elliptic, oblong or narrow oblong, sometimes stipitate, colour brown, light brown, yellow, white, off-white, pale white, grayish white or grayish, surface ribbed (4-12 ribs), reticulate, appressedly reticulate, reticulate-foveate, appressedly reticulate-foveate, scalariform, favulariate, sulcate, lineate, undulately lineate, sparsely areolate, aculeate, muricate, verrucate, appressedly verrucate or appressedly papillate, indumentum puberulose, silky hairs or glabrous. Pappus uniseriate or biseriate, interwined plumose above often scabrid below, 7-35 mm long, 20-50 in number, brown, yellow, golden, white, dirty white, silky white or gray. Carpopodium developed, poorly developed or absent, sometimes with ring, elliptic, obliquely elliptic, transversally ovate, square, rounded or irregular in shape, basal or sub basal in position, diameter of carpopodium 129-884 (μ m), diameter of foraman of carpopodium 101-435 (μ m).Presently 17 species viz., *Scorzonera baluchistanica*, *S. codringtonii*, *S. ferganica*, *S. gageoides*, *S. hondae*, *S. intricata*, *S. koelpinoides*, *S. litwinowii*, *S. longipapposa*, *S. papposa*, *S. paradoxa*, *S. pusilla*, *S. raddeana*, *S. seidlitzii*, *S. tortuosissima*, *S. tunicata* and *S. virgata* are investigated.

Key to the species

1	+ Pappus uniseriate	
	- Pappus biseriate	
2	+ Cypsela hairy	
	- Cypsela glabrous	
3	+ Cypsela brown	
	- Cypsela yellow or grayish	
4	+ Cypsela surface reticulate	S. gageoides
	- Cypsela surface aerolate, verrucate	S. litwinowii
5	+ Cypsela surface deeply sulcate, aculeate	S. codringtonii
	- Cypsela surface muricate	S. seidlitzii
6	+ Cypsela linear	
	- Cypsela linear-oblong, narrow elliptic, triangular or stipitate	
7	+ Carpopodium not developed	S. koelpinoides
	- Carpopodium developed	
8	+ Carpopodium sub-basal	S. hondae
	- Carpopodium basal	
9	+ Carpopodium irregular without ring	S. virgata
	- Carpopodium elliptic or rounded ring	
10	+ Cypsela 9-10mm, carpopodium elliptic ring	S. baluchistanica
	- Cypsela 15mm, carpopodium rounded ring	S. raddeana
11	+ Cypsela not linear-oblong, carpopodium basal	
	- Cypsela linear-oblong, carpopodium sub-basal	S. seidlitzii
12	+ Cypsela yellow	S. ferganica
	- Cypsela brown	
13	+ Cypsela 4.5mm, surface appressedly reticulate	S. paradoxa
	- Cypsela 14-16mm, reticulate-foveate verrucate	S. tunicate
14	+ Cypsela white, pappus bristles 40-50 in number	
	- Cypsela grayish white, pappus bristles 30 in number	S. tortuosissima
15	+ Cypsela surface lineated verrucate	S. hondae
	- Cypsela surface scalariform	S. longipapposa
16	+ Cypsela 4.5 mm long, pappus uniseriate	S. paradoxa
	- Cypsela 6.7 mm long, pappus biseriate	S. papposa

	_		Tabl	e 1. Cypsela morpho	ological characters of the gen	is Scorzonera.			
Name of taxa					Cypse	la		-	
		Size (mm)		Shape	Colour		Surface		Indumentum
Scorzonera baluchistanica		9-10		Linear	Grayish white	retic	ulate-foveate		Glabrous
S. codringtonii		12-15	Z	larrow elliptic	Yellow	deeply	sulcate, acule:	ate	Puberulose
S. ferganica		15	Z	larrow elliptic	Yellow	reticu	lated verrucat	G	Glabrous
S. gageoides		7		Linear	Brown		Reticulate		Silky hairs
S. hondae		5-8		Linear	White	lines	ated verrucate		Glabrous
S. intricata		10		Linear	Pale white		Reticulate		Glabrous
S. koelpinoides		9-11		Linear	White	Γ	Reticulate		Glabrous
S. litwinowii		5-7		Linear	Light Brown	sparsely a	areolate, verru	icate	Silky hairs
S. longipapposa		10-12	Ι	inear-oblong	White	S	calariform		Glabrous
S. papposa		6-7		Triangular	Brown	lineated sulcate	e, appressedly	verrucate	Glabrous
S. paradoxa		4.5	Tri	angular, stipitate	Brown	Appres	ssedly reticula	te	Glabrous
S. pusilla		9-12		Linear	White		Sulcate		Glabrous
S. raddeana		15		Linear	Grayish-Brown	reticulate-fovea	te, favulariate	d verrucate	Glabrous
S. seidlitzii		13-14		Linear	Grayish		Muricate	01	sparsely puberulose
S. tortuosissima		8-10	Ι	inear-oblong	Grayish white	nndı	ulately lineate		Glabrous
S. tunicata		14-16	Narro	w elliptic, stipitate	Brown	reticulate-	foveated verr	ucate	Glabrous
S. virgata		10-15		Linear	Brown-off-white	lineate, ap	pressedly pap	illate	Glabrous
					Table 1. (Cont'd.).				
			Pappus			Са	rpopodium		
Name of taxa		Length		į			:	Diameter of	Diameter of
	Series	(uuu)	Number	Colour	Shape		Position	carpopodium (µm)	foraman of carpopodium (µm)
Scorzonera baluchistanica	Uniseriate	15	25-30	Dirty white	Elliptic with rir	<u>م</u>	Basal	557	351
S. codringtonii	Uniseriate	16-18	38-40	Yellow	Elliptic with rir	<u>a</u>	Basal	733	108
S. ferganica	Uniseriate	12	30-40	Brown	Obliquely elliptic wi	th ring	Basal	815	103
S. gageoides	Uniseriate	7-8	35	Dirty white	Absent			ı	
S. hondae	Uniseriate	10-16	40-45	Dirty white	Distorted rounded with	nout ring	Sub basal	711	340
S. intricata	Biseriate	10-20	30	Dirty white	Transversally ovate w	ith ring	Basal	695	424
S. koelpinoides	Uniseriate	14-17	30	Dirty white	Absent		I	I	ı
S. litwinowii	Uniseriate	9-11	35	Dirty white	Absent		I	I	ı
S. longipapposa	Uniseriate	22-24	40-45	Dirty white	Irregular shape without ring	(undeveloped)	Sub basal	ı	ı
S. papposa	Biseriate	12-14	40-50	Silky white	Elliptic without r	ing	Basal	I	ı
S. paradoxa	Uniseriate	10-12	30-40	Silky white	Irregular shape with	ut ring	Basal	,	
S. pusilla	Biseriate	20-35	35-40	Silky white	Transversally ovate w	ith ring	Basal	817	435
S. raddeana	Uniseriate	15-18	35	Gray	Rounded with ri	ng	Basal	781	106
S. seidlitzii	Uniseriate	17	20-22	Yellow	Transversally ovate w	ith ring	Basal	129	101
S. tortuosissima	Uniseriate	14-20	30	Dirty white	Elliptic without r	ing	Sub basal	I	ı
S. tunicata	Uniseriate	15-20	35-38	Gloden-Brown	Square without ring (poorl	y developed)	Basal	444	203
S. virgata	Uniseriate	10-20	40	Gloden-Brown	Irregular shape with	out ring	Basal	875	405

<u>S. No.</u>	Character description
	Cypsela
1.	Length (mm)
	Shape
2.	Narrow elliptic : Absent (0), Present (1)
3.	Linear : Absent (0), Present (1)
4.	Narrow oblong : Absent (0), Present (1)
5	Triangular: Absent (0) Present (1)
5.	Surface
	Binde (1) Decent (1)
0. 7	Riged : Absent (0), Present (1)
/.	A manager discussion (0), Present (1)
ð. 0	Appressediy reliculate : Absent (0), Present (1)
9.	Reticulate-foveate : Absent (0), Present (1)
10.	Appressedly reticulate-foveate : Absent (0), Present (1)
11.	Sulcate : Absent (0), Present (1)
12.	Lineate : Absent (0), Present (1)
13.	Favulariate : Absent (0), Present (1)
14.	Scalariform : Absent (0), Present (1)
15.	Undulate : Absent (0), Present (1)
16.	Areolate : Absent (0), Present (1)
17.	Aculeate : Absent (0), Present (1)
18.	Verrucate/ Appressedly verrucate : Absent (0), Present (1)
19.	Appressedly papillate : Absent (0), Present (1)
	Indumentum
20.	Muricate : Absent (0), Present (1)
21.	Lanate : Absent (0), Present (1)
22.	Silky hairs : Absent (0), Present (1)
23.	Puberulose : Absent (0), Present (1)
24.	Glabrous : Absent (0), Present (1)
	Colour
25.	Yellow : Absent (0), Present (1)
26.	Brown : Absent (0), Present (1)
27.	Light brown : Absent (0). Present (1)
28.	Pale white : Absent (0), Present (1)
29.	White : Absent (0). Present (1)
30.	Grev : Absent (0), Present (1)
31.	Grevish white : Absent (0). Present (1)
	Pannus series
32	University : Absent (0) Present (1)
32.	Biseriate : Absent (0), Present (1)
33. 34	Size · Length (mm)
54.	Size . Lengui (min)
25	Vallaw: Absort (0) Present (1)
33. 26	Present (1) Present (1)
30. 27	Brown : Absent (0) , Present (1)
37.	Dirty white : Absent (0), Present (1)
38.	White : Absent (0), Present (1)
39.	Silky white : Absent (0), Present (1)
40.	Grey : Absent (0), Present (1)
41.	Golden : Absent (0), Present (1)
	Carpopodium
42.	Ring : Absent (0), Present (1)
43.	Elliptic: Absent (0), Present (1)
44.	Obliquely elliptic: Absent (0), Present (1)
45.	Rounded : Absent (0), Present (1)
46.	Distorted rounded : Absent (0), Present (1)
47.	Transversally ovate : Absent (0), Present (1)
48.	Square : Absent (0), Present (1)
49.	Irregular shape : Absent (0), Present (1)
	Position
50.	Basal : Absent (0), Present (1)
51.	Sub basal : Absent (0), Present (1)
52.	Diameter of carpopodium (µm)
53	Diameter of foraman of carponodium (um)

Discussion

Cypsela characteristics have been effectively used by various authors for specific delimitation within the family Asteraceae (Mukherjee, 2000; Abid & Qaiser, 2002; Abid & Ali, 2010; Karaismailoglu, 2015; Sirin et al., 2017; Shamso et al., 2021). In the present study, 17 species of the genus Scorzonera (Cichoreae) have been numerically analyzed for their cypsela characters. The cypsela of Scorzonera are characterized by the presence of ribs. Abid & Qaiser (2015) also reported ribs as persistent character in Lactuca and its allied genera from Cichoreae. The genus Scorzonera can be divided into two groups by the presence or absence of Carpopodium (Coskuncelebi, 2016). Similarly, on the other hand, dendrogram based on cypsela morphology clearly indicates the establishment of two main groups viz., group I comprised of S. intricata, S. pusila, S. seidlitzii, S, baluchistanica, S. raddeana, S. codringtonii, S. ferganica, S. tunica, S. virgata, S. papposa and S. paradoxa with basal carpopodium except S. intricata where carpopodium was absent and group II includes S. longipapposa, S. tortuosissima, , S. litwinowii, S. hondae with sub-basal carpopodium except S. gageoides and S. Koelpinioides where carpopodium was absent. Similarly, Ayaz et al., (2020) also reported the basal, sub-basal or lateral carpopodium in Cichoreae (Asteraceae).

Group I is further divided into two sub-groups i.e., group I_A and group I_B. Group I_A has cypsela with the variety of white shades, yellow or grey and group I_B has brown cypselas. However, Bhar & Mukherjee (2004) stated that colour of cypsela varies with maturity but we found colour as consistent character in Scorzonera species. Within group IA, S. codringtonii and S. ferganica are closely placed due to their yellow and narrow elliptic cypsela but remains separate due to their distinct cypsela surface i.e. deeply sulcate, aculeate in former and reticulated verrucate in later one. While, S. baluchistanica and S. raddeana were placed together for having reticulate-foveate and favulariated verrucate cypsela and can be distinguished by dirty white pappus and elliptic carpopodium in S. baluchistanica and grey pappus and rounded carpopodium in S. raddeana. Similarly, S. intricata, S. pusila and S. seidlitzii remains together due to their similar carpopodium i.e., transversally ovate with ring. Among them S. seidlitzii remains separate by its uniseriate pappus pappus. While, S. intricata and S. pusilla are differentiated by their reticulate and sulcate cypsela surface respectively. In group $I_B S$. tunicata and S. virgata are placed together due to their golden-brown pappus while other two species of this sub-group i.e., S. papposa and S. paradoxa are placed together due to silky white pappus. While, all the four species in in this group have distinct cypsela surfaces.

Similarly, group II was bifurcated into groups II_A and II_B . In group II_A *S. longipapposa* and *S. tortuosissima* occupied the same clad due to linear-oblong cypselas and remained separate by their distinct cypsela surfaces i.e.,

scalariform and undulately lineate respectively. While species in group II_B have linear cypsela. Hussein & Eldemerdash (2016) also reported cypsela shape as diagnostic character of species within family Asteraceae. Similar findings were reported by Abid & Zehra (2007). Within group II_B *S. gageoides* and *S. litwinowii* were found to be closely related due to their brown coloured cypsela with silky hairs (Ghafoor *et al.*, 2017) but have distinct cypsela surfaces. While, other two species i.e., *S. hondae* and *S. koelpinioides* have white and glabrous cypselas and remain distinct by well-developed carpopodium in *S. hondae* and undeveloped carpopodium in *S. koelpinioides*. Thus, from the ongoing discussion it is evident that cypsela morphological characters provides additional micromorphological characters for the specific delimitation of the genus *Scorzonera* from Pakistan.

Fig. 1. Dendrogram showing the relationship of the species within the genus Scorzonera.

				Γ	able 3.	Data	matrix	of Sc	orzone	ra spe	cies scu	ored f	or 53 (charac	ters pı	esent i	in tabl	e 2.								
Name of species	1	7	3	4	S	9	7	8	6	10 1	1 1	2 1	3 1	4 1:	5 16	17	18	19	20	21	22	23	24	25	26 2	57
Scorzonera baluchistanica	10	0	1	0	0	0	0	0	1	0) () () (0 (0	0	0	0	0	0	0	0	1	0	0	0
S. codringtonü	15	1	0	0	0	0	0	0	0	0	1		0	0	0	1	0	0	0	0	0	0	1	1	0	0
S. ferganica	15	1	0	0	0	0	1	0	0	0	0		0	0	0	0	1	0	0	0	0	0	0	1	0	0
S. gageoides	2	0	1	0	0	0	1	0	0	0	0)	0	0	0	0	0	0	0	1	1	0	0	0	1	0
S. hondae	×	0	1	0	0	0	0	0	0	0	0	_	0	0	0	0	1	0	0	0	0	0	0	0	0	0
S. intricata	10	0	1	0	0	0	1	0	0	0	0)	0	0	0	0	0	0	0	0	0	0	1	0	0	0
S. koelpinioides	10	0	1	0	0	0	1	0	0	0	0	•	0	0	0	0	0	0	0	0	0	0	1	0	0	0
S. litwinowii	9	0	1	0	0	0	0	0	0	0	0	-	0	0	1	0	1	0	0	1	0	0	0	0	0	1
S. longipapposa	10	0	1	1	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	1	0	1	0
S. papposa	9	0	0	0	1	1	0	0	0	0	1	-	0	0	0	0	1	0	0	0	0	0	1	0	1	0
S. paradoxa	S	0	0	0	1	0	0	1	0	0	0)	0	0	0	0	0	0	0	0	0	0	1	0	1	0
S. pusilla	12	0	1	0	0	0	0	0	0	0	1		0	0	0	0	0	0	0	0	0	0	1	0	0	0
S. raddeana	15	0	1	0	0	0	0	0	1	0	0		1	0	0	0	0	0	0	0	0	0	1	0	1	0
S. seidlitzii	14	0	1	0	0	0	0	0	0	0	0)	0	0	0	0	0	0	1	0	0	1	0	0	0	0
S. tortuosissima	10	0	1	1	0	0	0	0	0	0	0	_	0	1	0	0	0	0	0	0	0	0	1	0	0	0
S. tunicata	15	1	0	0	0	0	0	0	1	0	0	•	0	0	0	0	1	0	0	0	0	0	1	0	1	0
										Table	3. (Cc		-													
Name of species	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52 5	33
Scorzonera baluchistanica	0	0	0	1	1	0	15	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	1	0 5	57 3	51
S. codringtonii	0	0	0	0	1	0	18	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	33 1	08
S. ferganica	0	0	0	0	1	0	12	0	1	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	15 1	03
S. gageoides	0	0	0	0	1	0	×	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. hondae	0	1	0	0	1	0	16	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	1 7	11 3	40
S. intricata	1	0	0	0	0	0	20	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	9 0	95 4	24
S. koelpinioides	0	1	0	0	1	0	15	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. litwinowii	0	0	0	0	1	0	11	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
S. longipapposa	0	0	0	0	1	0	24	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
S. papposa	0	0	0	0	0	1	14	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	1	0	0	0
S. paradoxa	0	0	0	0	1	0	12	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0
S. pusilla	0	1	0	0	0	1	30	0	0	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	17 4	35
S. raddeana	0	0	1	0	1	0	18	0	0	0	0	0	1	0	1	0	0	1	0	0	0	0	1	0	81 1	90
S. seidlitzii	0	0	1	0	1	0	17	1	0	0	0	0	0	0	1	0	0	0	0	1	0	0	1	0	29 1	01
S. tortuosissima	0	0	0	1	1	0	18	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	0
S. tunicata	0	0	0	0	1	0	18	0	1	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	44 2	03
S. virgata	0	0	0	0	1	0	15	0	1	0	0	0	0	1	0	0	0	0	0	0	0	1	1	0	75 4	05

Fig. 2. Scanning electron micrographs. *Scorzonera baluchistanica*: A, upper part of cypsela; B, surface; C, carpopodium. *S. codringtonii*: D, upper part of cypsela; E, surface; F, carpopodium. *S. ferganica*: G, upper part of cypsela; H, surface; I, carpopodium (Scale bars: A, G= 1 mm; D= 500 μ m; C, E, F, H, I= 100 μ m; B= 20 μ m).

Fig. 3. Scanning electron micrographs. *Scorzonera hondae*: A, upper part of cypsela; B, surface; C, carpopodium. *S. intricata*: D, upper part of cypsela; E, surface; F, carpopodium. *S. litwinowii*: G, surface. *S. longipapposa*: H, upper part of cypsela; I, surface (Scale bars: A, D, H= 1 mm; B, E, F, G= 100 μ m; C= 20 μ m; I= 10 μ m).

Fig. 4. Scanning electron micrographs. *Scorzonera longipapposa*: A, carpopodium. *S. papposa*: B, upper part of cypsela; C, D, surface; E, carpopodium. *S. paradoxa*: F, upper part of cypsela; G, surface; H, carpopodium. *S. pusilla*: I, upper part of cypsela (Scale bars: I= 1 mm; B, F= 500 μ m; D= 200 μ m; A, E, H= 100 μ m; G= 50 μ m; C= 10 μ m).

Fig. 5. Scanning electron micrographs. *Scorzonera pusilla*: A, surface; B, carpopodium. *S. raddeana*: C, surface; D, carpopodium. *S. seidlitzii*: E, surface; F, carpopodium. *S.* sp. nov. B: G, upper part of cypsela; H, surface; I, carpopodium. (Scale bars: G=1 mm; D, $F=200 \mu \text{m}$; B, C, E, H, $I=100 \mu \text{m}$; $A=10 \mu \text{m}$).

Fig. 6. Scanning electron micrographs. *S. tunicata*: A, upper part of cypsela; B, C, D, surface. E, carpopodium. *S. virgata*: F, upper part of cypsela; G, surface; H, carpopodium (Scale bars: A, F = 1 mm; $D = 500 \text{ }\mu\text{m}$; C, $E = 200 \text{ }\mu\text{m}$; $H = 100 \text{ }\mu\text{m}$; B, $G = 10 \text{ }\mu\text{m}$).

Fig. 7. Light micrographs. Scorzonera codringtonii: A, cypsela. S. ferganica: B, cypsela. S. gageoides: C, cypsela. S. hondae: D, cypsela. S. intricata: E, cypsela. S. litwinowii: F, cypsela (Scale bars: A, B, C, E = 2 mm; D, F = 1 mm).

Fig. 8. Light micrographs. S. pusilla: A, cypsela. S. raddeana: B, cypsela. S. seidlitzii: C, cypsela. S. tortuosissima: D, cypsela. S. tunicata: E, cypsela. S. virgata: F, cypsela (Scale bars: A, B, C, D, E, F = 2 mm).

References

- Abid, R. and M. Qaiser. 2015. Cypsela morphology of *Lactuca* L. and its allied genera (Cichoreae-Asteraceae) from Pakistan and Kashmir. *Pak. J. Bot.*, 47(5): 1937-1955.
- Abid, R. and N. Ali. 2010. Cypsela Morphology and its taxonomic significance for the tribe Senecioneae (Asteraceae) from Pakistan. *Pak. J. Bot.*, Special Issue (S.I. Ali Festschrift) 42: 117-133.
- Abid, R. and N. Zehra 2007. Micromorphology of cypsela and its taxonomic significance of some genera in the tribe Inuleae from Pakistan. *Pak. J. Bot.*, 39(5): 1407-1416.
- Abid, R.D. and M. Qaiser. 2002. Cypsela morphology of *Inula* L. (s.str.) and its allied genera (Inuleae-Compositae) from Pakistan and Kashmir. *Pak. J. Bot.*, 34(3): 207-223.
- Anonymous, 2012. IBM SPSS 18 for windows XP 2002. "Angiosperm Phylogeny Website". Retrieved 15 July 2014.
- Ayaz, S., M. Ahmed, M. Zafar, M.I. Ali, S. Sultana, M.R. Mustafa, O. Kilic, D.N. Cobanoglu, A. Demirpolat, A. Ghani, R. Afza, K. Ahmad, M. Munir, N. Kalsoom and J. Raza. 2020. Taxonomic significance of cypsela morphology in tribe Cichoreae (Asteraceae) using light microscopy and scanning electron microscopy. *Mic. Res. Tech.*, 83: 239-248.
- Bhar, I. and S.K. Mukherjee. 2004. Macromorphological and micromorphological study of cypselas in seven species of the tribe Anthemideae (Asteraceae). J. Econ. Taxon. Bot., 28: 788-794.
- Breitwieser, I. and J.M. Ward. 2005. Morphological evidence for the tribal position of Haastia (Asteraceae). New Zealand J. Bot., 43: 767-777.
- Coskuncelebi, K., S. Makbul and S. Okur. 2016. Studies on the achene morphology of Turkish species of *Scorzonera* L. (Asteraceae) using light and scanning electron microscopy. *Phytotaxa*, 247(1):1-26.
- Das, D. and S.K. Mukherjee. 2008. Diversity of cypsela features in seven species of the tribe Lactuceae (Asteraceae). J. Econ. Taxon. Bot., 32(2): 282-297.
- Dasgupta, A. and S. Mukherjee. 2007. Cypsela morphology as a taxonomic marker in the study of some members of the tribe Lactuceae(Asteraceae). J. Econ.Taxon. Bot., 31(3): 584-590.
- Dittrich, M. 1968. Morphologische Utersuchungen an den Fruchten fer subtribus Cichoreae-Centaureinae (Compositae). *Willdenowia*, 5: 67-107.
- Frangiote-Pallone, S. and L.A. De souza. 2014. Pappus and cypsela ontogeny in Asteraceae: Structural consideration of the tribe category. *Revista Mexicana de Bioidversidad*, 86: 62-77.
- Haque, M.Z. and M.B.E. Godward. 1984. New records of the carpopodium in Compositae and its taxonomic use. *Bot. J. Linn. Soc.*, 89: 321-340.
- Hussein, H. and M.M. Eldemerdash. 2016. Comparative morphology and surface microsculpture of cypsela in some taxa of the Asteraceae and their taxonomic significance. *Egypt. J. Bot.*, 56: 409-422.
- Julio, P.G.S. and D.M.T. Oliveira. 2009. Morfoanatomia comparada e ontogênese do pericarpo de Bidens gardneri Baker e *B. pilosa* L. (Asteraceae). *Revista Brasileira de Botânica*, 32: 109-116.

- Karaismailoglu, M.C. 2015. Morphological and anatomical features of cypsela of some *Crepis* taxa (Asteraceae) from Turkey and their taxonomic importance. *Pak. J. Bot.*, 47(4): 1473-1480.
- Kothari, J.M. Sharma and K.C. Sharma. 2012. Micromorphology of fruit surfaces in some taxa of the tribe Anthemideae (Asteraceae) and their taxonomic significance. *Ind. J. Plt. Sc.*, 1: 40-55.
- Kynclova, M. 1970. Comparative morphology of achenes of the tribe Anthemideae Cass. (Asteraceae) and its taxonomic significance. *Preslia (Praha)*, 42: 33-53.
- Lawrence, G.H.M. 1970. Taxonomy of Vascular plants, The Macmillan Company, Collier-Macmillan Canada, Ltd., Toronto, Ontario, New York.
- Lovell, P.H., C.D. Maxwell and N. Jacob. 1986. Varieties in cypsela morphology in *Soliva valdiviana* and *S. pterosperma* (Anthemideae, Asteraceae) in a local population at Auckland, Newzealand . *New Zealand J. Bot.*, 24: 657-664.
- Martins, M.A.G. and D.M.T. Oliveira. 2007. Morfoanatomia comparada dos frutos em desenvolvimento de Vernonia brevifolia Less. e *V. herbacea* (Vell.) Rusby (Asteraceae). *Revista Brasileira de Botânica*, 30: 99-110.
- Marzinek, J. and D.M.T. Oliveira. 2010. Structure and ontogeny of the pericarp of six Eupatorieae (Asteraceae) with ecological and taxonomic considerations. Anais da Academia Brasileira de Ciências., 82: 279-291.
- Mateu, I. and J. Guemes. 1993. Estudio carpologico del genero Launaea Cass. (Asteraceae) en europa. *Bot. Soc. Brot. Ser.*, 2, 66: 85-95.
- Mukherjee, S.K. 2000. Comparative morpho-anatomical studies of cypselas of some members of the tribe Cichoreae (Asteraceae) by LM and SEM. Jr. Ind. Bot. Soc., 79: 43-52.
- Pandey, A.K. and R.P. Singh. 1980. Development and structure of seeds and fruits in tribe Vernonieae-some Vernonia and Elephantopus species. *Flora.*, 169: 443-452.
- Pandey, A.K., S. Chopra and R.P. Singh. 1983. Development and structure of seeds and fruits in Compositae, tribe Inuleae. *Proceed. Indian Acad. Sci., Plant Sci.*, 92: 467-471.
- Puttock, C.F. 1994. Anatomy and morphology of Cremnothamnus (Asteraceae) a new genus for *Helichrysum thomsonii. Aust. Syst. Bot.*, 7: 569-583.
- Radford, A.E., W.C. Dickison, J.R. Massey and C. Ritchie Bell. 1974. Vascular Plants Systematics. Harper & Row, New York, Evanston, San Francisco, London.
- Shamso, E.M., H.A. Hosni, D. Ahmed and K. Shaltout. 2021. Achene characteristics of some taxa of Asteraceae from the Northwestern Mediterranean coast of Egypt. *Egypt. J. Bot.*, 61(1): 1-31.
- Shi, Z. and N. Kilian. 2011. Asteraceae. *Fl. China*, 20-21. 5-206. Science press, Beijing, China.
- Sirin, E., K. Ertugrul and T. Uysal. 2017. Achene micromorphology of the genus *Cyanus* Mill. (compositae) in Turkey and its taxonomic importance. *Phytotaxa.*, 313(1): 77-90.
- Stearn, T.W. 1983. Botanical Latin, 3 rd edition. David & Charles. Britain.
- Swelankomo, N., L. Mucina and P.P.J. Herman. 2007. Phenetic classification of cypselas in Ursinia (Anthemideae, Asteraceae). S. Afr. J. Bot., 73(2): 316.

(Received for publication 5 September 2021)