Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Empirical support for the biogeochemical niche hypothesis in forest trees

Abstract

The possibility of using the elemental compositions of species as a tool to identify species/genotype niche remains to be tested at a global scale. We investigated relationships between the foliar elemental compositions (elementomes) of trees at a global scale with phylogeny, climate, N deposition and soil traits. We analysed foliar N, P, K, Ca, Mg and S concentrations in 23,962 trees of 227 species. Shared ancestry explained 60–94% of the total variance in foliar nutrient concentrations and ratios whereas current climate, atmospheric N deposition and soil type together explained 1–7%, consistent with the biogeochemical niche hypothesis which predicts that each species will have a specific need for and use of each bio-element. The remaining variance was explained by the avoidance of nutritional competition with other species and natural variability within species. The biogeochemical niche hypothesis is thus able to quantify species-specific tree niches and their shifts in response to environmental changes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Phylogenetic diagram of foliar N concentration (percentage of dry weight) (25,112 datapoints) in the phylogenetic tree.
Fig. 2: Phylogenetic diagram of foliar P concentration (percentage of dry weight) (25,112 datapoints) in the phylogenetic tree.
Fig. 3: Phylogenetic diagram of foliar N/P ratio (25,112 datapoints) in the phylogenetic tree.
Fig. 4: Phylogenetic diagram of PC1 scores (25,112 datapoints) in the phylogenetic tree.
Fig. 5: Plot of the first two roots of functional discriminant analysis using P. pinaster, P. halepensis, Q. ilex, Q. petraea and Q. robur as dependent categorical grouping factors, and foliar N, P, K, S, Ca and Mg concentrations and pairwise ratios as continuous independent variables.
Fig. 6: Plot of PCA cases and variables superimposed, defined by the first two components of the PCA, with foliar N, P, K, Ca, Mg and S concentrations as variables and with soil orders as cases.

Similar content being viewed by others

Data availability

All data are available at the Global Ecology Unit CREAF-CSIC-UAB (glonuteco.creaf.cat/data/).

Code availability

All code is available at the Global Ecology Unit CREAF-CSIC-UAB (glonuteco.creaf.cat/data/).

References

  1. Tracy, C. R. & Christian, K. A. Ecological relations among space, time, and thermal niche axes. Ecology 67, 609–615 (1986).

    Article  Google Scholar 

  2. Peterson, A. T., Soberon, J. & Sanchez-Cordero, V. Conservatism of ecological niches in evolutionary time. Science 285, 1265–1267 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Hirzel, A. H., Hausser, J., Chessel, D. & Perrin, N. Ecological-niche factor analysis: how to compute habitat-suitability maps without absence data? Ecology 83, 2017–2036 (2002).

    Article  Google Scholar 

  4. Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).

    Article  Google Scholar 

  5. Wright, J. W., Davies, K. F., Lau, J. A., McCall, A. C. & McKay, J. K. Experimental verification of ecological niche modelling in a heterogeneous environment. Ecology 87, 2433–2439 (2006).

    Article  PubMed  Google Scholar 

  6. Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).

    Article  PubMed  Google Scholar 

  7. Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).

    Article  Google Scholar 

  8. Herrel, A., Spithoven, L., Van Damme, V. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: testing the divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).

    Article  Google Scholar 

  9. Mouillot, D. et al. Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. Oecologia 145, 345–353 (2005).

    Article  PubMed  Google Scholar 

  10. Kraft, N., Valencia, R. & Ackerly, D. D. Functional traits and niche based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Peñuelas, J., Sardans, J., Ogaya, R. & Estiarte, M. Nutrient stoichiometric relations and biogeochemical niche in coexisting plant species: effect of simulated climate change. Pol. J. Ecol. 56, 613–622 (2008).

    Google Scholar 

  12. Peñuelas, J. et al. Faster returns on “leaf economics” and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2010).

    Article  Google Scholar 

  13. Peñuelas, J. et al. The bioelements, the elementome and the “biogeochemical niche”. Ecology 100, e02652 (2019).

    Article  PubMed  Google Scholar 

  14. Sardans, J. et al. Factors influencing the foliar elemental composition and stoichiometry in forest trees in Spain. Persp. Plant Ecol. Evol. Syst. 18, 52–69 (2016).

    Article  Google Scholar 

  15. Sardans, J. et al. Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions. Glob. Ecol. Biogeogr. 24, 240–255 (2015).

    Article  Google Scholar 

  16. Urbina, I. et al. Shifts in the elemental composition of plants during a very severe drought. Environ. Exp. Bot. 111, 63–73 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Urbina, I. et al. Plant community composition affects the species biogeochemical niche. Ecosphere 8, e01801 (2017).

    Article  Google Scholar 

  18. White, P. J. et al. Testing distinctness of shoot ionomes of angiosperm families using the Rothamsted Park grass continuous hay experiment. N. Phytol. 196, 101–109 (2012).

    Article  CAS  Google Scholar 

  19. Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).

    Article  PubMed  Google Scholar 

  20. Sun, L. K. et al. Leaf elemental stoichiometry of Tamarix Lour. Species in relation to geographic, climatic, soil, and genetic components in China. Ecol. Eng. 106, 448–457 (2017).

    Article  Google Scholar 

  21. Neugebauer, K. et al. Variation in the angiosperm ionome. Physiol. Plant. 163, 306–322 (2018).

    Article  CAS  Google Scholar 

  22. Gillman, L. N., Keeling, D. J., Gardner, R. C. & Wright, S. D. Faster evolution of highly conserved in tropical plants. J. Evol. Biol. 23, 1327–1330 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Puurtinen, M. et al. Temperature-dependent mutational robustness can explain faster molecular evolution at warm temperatires, affecting speciation rate and global patterns of species diversity. Ecography 39, 1025–1033 (2016).

    Article  Google Scholar 

  24. Kellner, A., Ritz, C. M., Schlittenhaedt, P. & Hellwig, F. H. Genetic differentiation in the genus Lithops L. (Ruschoideae, Aizoaceae) reveals a high level of convergent evolution and reflects geographic distribution. Plant Biol. 13, 368–380 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Jwa, N. S. & Hwang, B. K. Convergent evolution of pathogen effectors toward reactive oxygen species signaling networks in plants. Front. Plant Sci. 8, 1687 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Molina-Montenegro, M. A. et al. Is the success of plant invasions the result of rapid adaptive evolution in seed traits? Evidence from a latitudinal rainfall gradient. Front. Plant Sci. 9, 208 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Anacker, B. L. & Strauss, S. Y. Ecological similarity is related to phylogenetic distance between species in a cross-niche field transplant experiment. Ecology 97, 1807–1818 (2016).

    Article  PubMed  Google Scholar 

  28. Reich, P. B. & Oleksyn, J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc. Natl Acad. Sci. USA 101, 11001–11106 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).

    Article  Google Scholar 

  30. Kerkhoff, A. J., Enquist, B. J., Elser, J. J. & Fagan, W. F. Plantallometry, stoichiometry and the temperature-dependence of primary productivity. Glob. Ecol. Biogeogr. 14, 585–598 (2005).

    Article  Google Scholar 

  31. Yuan, Z. Y. & Chen, H. Y. H. Global trends in senesced-leaf nitrogen and phosphorus. Glob. Ecol. Biogeogr. 18, 532–542 (2009).

    Article  Google Scholar 

  32. Vitousek, P. M., Porder, S., Houlton, B. Z. & Chadwick, O. A. Terrestrial phosphorus limitation: mechanisms, implications and nitrogen–phosphorus interactions. Ecol. Appl. 20, 5–15 (2010).

    Article  PubMed  Google Scholar 

  33. McGroddy, M. E., Daufresne, T. & Hedin, L. O. Scaling of C/N/P stoichiometry in forest worldwide: implications of terrestrial Redfield-type ratios. Ecology 85, 2390–2401 (2004).

    Article  Google Scholar 

  34. Townsend, A. R., Cleveland, C. C., Asner, G. P. & Bustamante, M. M. C. Controls over foliar N:P ratios in tropical rainforest. Ecology 88, 107–118 (2007).

    Article  PubMed  Google Scholar 

  35. Lovelock, C. E., Feller, I. C., Ball, M. C., Ellis, J. & Sorell, B. Testing the growth rate vs. geochemical hypothesis for latitudinal variation in plant nutrients. Ecol. Lett. 10, 1154–1163 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, 1995).

  37. Zhang, Y. et al. Log-term trends in total inorganic nitrogen and sulfur deposition in US from 1990 to 2010. Atmos. Chem. Phys. 18, 9091–9106 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horn, K. J. et al. Growth and survival relationships of 71 tree species with nitrogen and sulfur deposition across the conterminous U.S. PLoS ONE 14, e0212984 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Papanikolaou, N., Britton, A. J., Helliwell, R. C. & Johnson, D. Nitrogen deposition, vegetation burning and climate warming act independently on microbial community structure and enzyme activity associated with decomposing litter in low-alpine heath. Glob. Change Biol. 16, 3120–3132 (2010).

    Google Scholar 

  40. Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. N. Phytol. 193, 696–704 (2012).

    Article  CAS  Google Scholar 

  41. Sardans, J. et al. Foliar and soil concentrations and stoichiometry of nitrogen and phosphorus across European Pinus sylvestris forests: relationships with climate, N deposition and tree growth. Funct. Ecol. 30, 676–689 (2016).

    Article  Google Scholar 

  42. Peñuelas, J. et al. Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 4, 2934 (2013).

    Article  PubMed  CAS  Google Scholar 

  43. Penuelas, J. et al. Increasing atmospheric CO2 concentrations correlate with declining nutritional status of European forests. Commun. Biol. 3, 125 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmad, N. & Mermut, A. Vertisols and Technologies for their Development 1st edn, Vol. 24 (Elsevier, 1996).

  45. Nishiue, A., Nanzyo, M., Kanno, H. & Takahashi, T. Properties and classification of volcanic ash soils around Lake Kuwanuma on the eastern footslope of Mt. Funagata in Miyagi prefecture, northeastern Japan. Soil Sci. Plant Nutr. 60, 848–862 (2014).

    Article  CAS  Google Scholar 

  46. De la Riva, E. G. et al. Biogeochemical and ecomorphological niche segregation of Mediterranean woody species along a local gradient. Fron. Plant Sci. 8, 1242 (2017).

    Article  Google Scholar 

  47. Yu, Q. et al. Stoichiometry homeostasis of vascular plants in the inner Mongolia grassland. Oecologia 166, 1–10 (2011).

    Article  PubMed  Google Scholar 

  48. Sardans, J., Albert Rivas-Ubach, A. & Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review. Biogeochemistry 111, 1–39 (2012).

    Article  Google Scholar 

  49. Gracia, C., Burriel, J. A., Ibàñez, J. J., Mata, T. & Vayreda, J. Inventari ecològic i forestal de Catalunya: regió forestal V (CREAF, 2004).

  50. Fick, A. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  51. Lang, R. Verwitterung und Bodenbildung als Einfuehrung in die Bodenkunde (Schweizerbart Science Publishers, 1920).

  52. Köppen, W. Klassification der Klimate nach Tempertur, Niederschlag and Jahreslauf. Petermanns Geog. Mitt. 64, 243–248 (1918).

    Google Scholar 

  53. De Martonne, E. Nouvelle carte mondiale de l’indece d’aridité. Ann. Géogr. 51, 242–250 (1942).

    Google Scholar 

  54. Emberger, L. La vegetation de la región Mèditerranéenne, essai d’une classification des groupements vegetaux. Rev. Gén. Bot. 42, 641–662, 705–721 (1930).

  55. Vorösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article  PubMed  CAS  Google Scholar 

  56. R Development Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).

  57. Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies, and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).

    Article  Google Scholar 

  58. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

  59. Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  60. Blomberg, S. P., Garland, T. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).

    Article  PubMed  Google Scholar 

  61. Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).

    Article  Google Scholar 

  62. Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).

    Article  Google Scholar 

  64. Revell, L. J. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol. Evol. 4, 754–759 (2013).

    Article  Google Scholar 

  65. Raamsdonk, L. M. et al. A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 19, 45–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Hadfield, J. D. MCMC methods for multi-response generalised linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 2 (2010).

Download references

Acknowledgements

The authors thank the European Research Council Synergy (grant no. ERC-SyG-2013-610028 IMBALANCE-P), the Spanish Government (grant no. PID2019-110521GB-I00) and the Catalan Government (grant no. SGR 2017-1005). M.F.-M. is a postdoctoral fellow of the Research Foundation–Flanders.

Author information

Authors and Affiliations

Authors

Contributions

J.S. and J.P. conceived, designed and supervised the project. J.S., H.V., I.A.J., J.P. and P.Z. searched the bibliography and gathered data. J.S., H.V., P.Z., M.F.-M., A.R., P.C., M.O., I.A.J. and J.P. checked the data and contributed to data accuracy selection. J.S., H.V., G.F.-A., J.P. and M.F.-M. developed the statistical analyses. J.S., J.P., M.F.-M., H.V. and G.F.-A. created the tables and figures. J.S. wrote the paper. J.P., H.V., G.P., A.G.-G., M.F.-M., G.F.-A., A.R., P.C., M.O. and I.A.J. revised the manuscript. All authors read and revised the final version of the manuscript.

Corresponding author

Correspondence to Jordi Sardans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Map of plot situation.

Map of the plot locations.

Extended Data Fig. 2 Phylogenetic diagram of foliar K concentration.

Phylogenetic diagrams of the foliar K concentration (25 112 datapoints) along the phylogeny tree obtained by using function phylosig of the package phytools in R (Revell59) representing the value structure used to estimate phylogenetic signal in the different variables. The function contmap estimates the ancestral characters at internal nodes using maximum likelihood and assuming Brownian motion as a model for trait evolution (Felsenstein63), and then interpolates ancestral condition along the branches of the tree (Revell64).

Extended Data Fig. 3 Phylogenetic diagram of foliar S concentration.

Phylogenetic diagrams of the foliar S concentration (25 112 datapoints) along the phylogeny tree obtained by using function phylosig of the package phytools in R (Revell59) representing the value structure used to estimate phylogenetic signal in the different variables. The function contmap estimates the ancestral characters at internal nodes using maximum likelihood and assuming Brownian motion as a model for trait evolution (Felsenstein63), and then interpolates ancestral condition along the branches of the tree (Revell64).

Extended Data Fig. 4 Phylogenetic diagram of foliar Ca concentration.

Phylogenetic diagrams of the foliar Ca concentration (25 112 datapoints) along the phylogeny tree obtained by using function phylosig of the package phytools in R (Revell59) representing the value structure used to estimate phylogenetic signal in the different variables. The function contmap estimates the ancestral characters at internal nodes using maximum likelihood and assuming Brownian motion as a model for trait evolution (Felsenstein63), and then interpolates ancestral condition along the branches of the tree (Revell64).

Extended Data Fig. 5 Phylogenetic diagram of foliar Mg concentration.

Phylogenetic diagrams of the foliar Mg concentration (25 112 datapoints) along the phylogeny tree obtained by using function phylosig of the package phytools in R (Revell59) representing the value structure used to estimate phylogenetic signal in the different variables. The function contmap estimates the ancestral characters at internal nodes using maximum likelihood and assuming Brownian motion as a model for trait evolution (Felsenstein63), and then interpolates ancestral condition along the branches of the tree (Revell64).

Extended Data Fig. 6 Foliar N, P and K concentrations of the trees growing on different soil types.

Foliar N, P and K concentrations (Mean ± S.E., % dry weight) (25 112 datapoints) of the trees growing on different soil types. Different letters represent significantly (P<0.005) disticnt values among different soil types (Soil Taxonomy soil Orders) analyzed using Bayesian phylogenetic linear mixed models with soil orders as fixed effects using the MCMCglmm package66 in R.

Extended Data Fig. 7 Foliar N/P, N/K and P/K concentrations ratios of the trees growing on different soil types.

Foliar N/P, N/K and P/K concentrations ratio (Mean ± S.E) (25 112 datapoints) of the trees growing on different soil types. Different letters represent significantly (P<0.005) disticnt values among different soil types (Soil Taxonomy soil Orders) analyzed using Bayesian phylogenetic linear mixed models with soil orders as fixed effects using the MCMCglmm package66 in R.

Extended Data Fig. 8 European area of distribution and distribution area overlap.

Representation of the European area of distribution and distribution area overlap with the corresponding sampled sites by the ICP Forest iniciative of Picea abies and Quercus robur (A), Abies alba and Quercus petraea (B) and Pinus sylvestris and Fagus sylvativa (C).

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Tables 1–15.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sardans, J., Vallicrosa, H., Zuccarini, P. et al. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat Ecol Evol 5, 184–194 (2021). https://doi.org/10.1038/s41559-020-01348-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01348-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing