Lecture 5: Subtree-based tree reconstruction

"The analysis of large data sets could procceed by division into overlapping
subsets which are classified separately and
then recombined to provide single then recombined to provide a single
classification'
A.D. Gordon, (J. Classif. 1986

Mike Steel

ALLAN WILSON CENTRE

Winthrop lectures, 2014

Outline

- Part 1: Subtrees and supertrees
- Part 2: Compatibility
- Part 3:

Defining sets

- 20x Head, shoulders, knees and toes
- Part 4: Specialist topic: "decisiveness"

Counting trees II

Quiæ:
Suppose T is a binary phylogenetic-tree on leaf set Y (subset of X). How many binary phylogenetic X-trees display Y ?

$$
b(n) / b(k) \quad n=|X|, k=|Y|
$$

Rooted trees

[^0]
Display via quartet encodings

Given $T \in U(X)$ and $T^{\prime} \in U(Y)$ (where $Y \subseteq X$)
T displays $T^{\prime} \Longleftrightarrow Q\left(T^{\prime}\right) \subseteq Q(T)$.

Similarly for rooted trees
\qquad

Equivalence of character compatibility and (quartet) tree compatibility

$$
\mathcal{C} \mapsto Q(\mathcal{C})
$$

Lemma: Each character in C is homolasy-free on T if and only if T displays all the quartets in $Q(C)$.

Compatibility

A set P of trees is compatible if there is a phylogenetic
X-tree T that displays each tree

- Example: $P=\{12|34,13| 45,14 \mid 26\}$

If T is the only tree that displays each tree in P we say that P defines T.

How hard is it to tell if a set of trees is compatible?

In general it's (NP)-hard, even for quartet trees (so character compatibility is too, by last slide!)

But it's easy in some special cases.....

Special case 1: Trees have same leaf sets

$$
\mathcal{P}=\left\{T_{1}, \ldots, T_{k}\right\} \subseteq U(X)
$$

\mathcal{P} is compatible $\Longleftrightarrow \Sigma=\bigcup_{i=1}^{k} \Sigma\left(T_{i}\right)$ is p.c.

Special case 3: Q quartets with $|Q|=\binom{n}{4}$
-Recall from Part 2: [Colonius and Schultze 1981]
$Q=Q(T)$ for some $T \in U(X)$ iff the following hold
$a b|c d \in Q \Rightarrow a c| b d, a d \mid b c \notin Q$
$a b|c d \in Q \Rightarrow a b| c e \in Q$ or $a e \mid c d \in Q$.

Corollary:

If $|Q|=\binom{n}{4}$ then Q is compatible
\qquad

Special case 2: Two trees

Given T_{1} and T_{2} on leaf sets X_{1}, X_{2}, let $Y=X_{1} \cap X_{2}$

$$
\left\{T_{1}, T_{2}\right\} \text { is compatible } \Longleftrightarrow\left\{T_{1}\left|Y, T_{2}\right| Y\right\} \text { is }
$$

$$
\text { More generally } k \text { trees, with } k \text { fixed (FPT) }
$$

Special case 4: Rooted trees

For a set R of rooted trees, there is a fast algorithm which determines whether or not R is compatible (and if so constructs a canonical tree A_{R}) that displays each tree in R .

Same applies for a set of unrooted trees that each contain a fixed leaf x

Aho et al tree $\left(A_{R}\right)$ [1981]

Properties of the Aho tree

A_{R} is a minimal tree that displays R
(but there can be exp. many such trees

$$
\begin{gathered}
\mathcal{R}_{1}=\{a b|c, a c| d\} \\
\mathcal{R}_{2}=\left\{a b\left|g_{1}, a b\right| g_{2}, \ldots, a b \mid g_{n}\right\}
\end{gathered}
$$

$$
\mathcal{R}=\mathcal{R}_{1} \cup \mathcal{R}_{2}
$$

A_{R} is a binary tree if and only if R defines a (that!) binary tree

Proposition [Bryant]
A_{R} is the Adams consensus tree of all the rooted X-trees that display R

Our example from lecture 2:

These display $12|5,23| 5,34 \mid 1$ and $45 \mid 1$ - but there is no tree that does this!

[Recall definition above]

A collection of phylogenetic trees T_{1}, \ldots, T_{k} defines a phylogenetic X-tree T if

$$
X \text { is the union of the leaf sets of the trees } T_{1}, \ldots, T_{k} \text { and }
$$

there exists one, and only one phylogenetic X-tree that displays these trees, and this tree is T.

T_{1}

T_{2}

T_{3}

T

The nice story: Rooted trees

- R defines T if and only if every interior edge of T is 'distinguished' by some rooted triplet $a b \mid c$ from R

PIC

Warning:

$Q=\{12|45,56| 23,34 \mid 16\}$ distinguishes each interior edge of the tree:

The unrooted case (more interesting...)

- Definition: For a binary phylogenetic tree T, a quartet tree $x y \mid w z$ distinguishes an interior edge $\mathrm{e}=\{u, v\}$ of T if T displays $\mathrm{xy} \mid \mathrm{wz}$ and and e is the only edge shared by the the paths from x to w and y to z

Observation: If Q defines T then T is binary and every interior edge of T is distinguished by at least one quaretfrom Q. So $|Q| \geq n-3$

'Islands' in NNI (rooted) tree space

Theorem [Magnus Bordewich PhD thesis (2003)]
The set of rooted phylogenetic trees that display a set of rooted trees is connected under (rooted) NNI operations.

Sufficient condition for Q to define T :

- Suppose Q is compatible and distinguishes every interior edge of a binary phylogenetic X-tree T.

Proposition: If there is an element of X that is a leaf of every tree in Q then Q defines T. [why?]

Corollary:

There are subsets of $Q(T)$ that define T of size $n-3(n=|X|)$
\qquad

Observations

Definition: A set Q of quartet trees is "good" if
(i) Q defines a phylogenetic tree, and
(ii) $\operatorname{exc}(Q)=0$

- Determining if Q defines a phylogenetic tree is NP-hard ${ }^{1}$
- Determining if Q is 'good' is easy.
- Determining if Q contains within it an (unknown) 'good' subset is too!
- Examples of 'good' sets include the 'linked quartet systems' (E. Price and J. Rusinko, 2014).
${ }^{1}$ Maria Luisa Bonet, Simone Linz, and Katherine St. John (2012),

The Böcker-Dress theorem:

Recall if Q defines a tree then $\underbrace{L(Q)-3-|Q|}_{\operatorname{exc}(Q)} \leq 0$
Definition: A set Q of quartet trees is "good" if
(i) Q defines a phylogenetic tree, and
(ii) $\operatorname{exc}(Q)=0$

Theorem

[Böcker, Dress 1999; Grünewald 2012] Any good set of (≥ 2) quartets is the
 disjoint union of precisely two good sets

Key idea(s) in the proof of the $B+D$ theorem:

Slim sets; 'patchworks' 区安

- Grünewald's proof relies on a strong (and suprising) sufficient condition for a set P of phylogenetic trees to be definitive:

$$
\operatorname{exc}(\mathcal{P})=|L(\mathcal{P})|-3-\sum_{T \in \mathcal{P}}\left|E_{\text {int }}(T)\right|
$$

\mathcal{P} is slim if $\operatorname{exc}\left(\mathcal{P}^{\prime}\right) \geq 0$ for every non-empty subset $\mathcal{P}^{\prime} \subseteq \mathcal{P}$

Theorem:

Every slim set of binary phylogenetic trees is compatible.

Quesiton: If Q defines a phylogenetic tree, T, does it always contain an excess-free subset that defines T ?

$$
Q=\{12|35,24| 57,13|47,34| 56,15 \mid 67\}
$$

A minimum defining set of quartets has size $n-3$.

But how big can minimal defining set be?

Supertree methods

- Given different (usually incompatible) phylogenetic trees on overlapping sets of species we want to combine them into a tree that classifies all the species.
- Several methods. The main one in use is MRP ('matrix recoding with parsimony').
- Any supertree method can be used as a consensus method:
- Bryant's result (lecture 3) implies that any MRP tree refines the strict consensus tree

But how big can minimal defining set be?

Theorem: [Dietrich, M., McCartin, C., and Semple, C. (2012)]

The largest minimal defining set of quartet trees on n leaves has size between

$$
\frac{1}{4}\left(n^{2}-4 n+3\right) \text { and } n^{3}
$$

Conjecture: Quadratic is the actual order!

Quiz time....

- Is there a supertree method for rooted trees with this property:
- If every tree displays $a b \mid c$ then the supertree does too.
- Is there a supertree method for unrooted trees with this property:
- If every tree displays $a b \mid c d$ then the supertree does too.

Definitions ("decisiveness")

- Definition: Decisiveness (for T):

For a collection $\boldsymbol{S}=\left\{Y_{1}, \ldots, Y_{k}\right\}$ of subsets of X, with union X, \boldsymbol{S} is decisive for a tree T provided that $T\left|Y_{1}, \ldots, T\right| Y_{k}$ defines T.
i.e. T is the only tree that displays $T\left|Y_{1}, \ldots, T\right| Y_{k}$

- Definition: (Global decisiveness)

A collection $S=\left\{Y_{1}, \ldots, Y_{k}\right\}$ of subsets of X, is phylogenetically decisive if it is decisive for every phylogenetic X-tree.

Taxon coverage pattern
\qquad

	Gene1	Gene2
a	x	x
b	x	x
c	x	x
d	x	
e		x

Two taxon sets: $\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}\}$ and $\{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{e}\}$
$S=\{\{a, b, c, \boldsymbol{d}\},\{a, b, c, e \in\}$

Phylogenetically decisive

(for all trees)

\boldsymbol{a}	x	x	x
\boldsymbol{b}	x	x	x
\boldsymbol{c}	x	x	
\boldsymbol{d}	x		x
\boldsymbol{e}		x	x

Necessary condition:

$$
\binom{X}{3} \subseteq \bigcup_{j=1}^{k}\binom{Y_{j}}{3} . \quad \begin{aligned}
& \text { Why? } \\
& \text {..but not sufficient! }
\end{aligned}
$$

Theorem [S+Sanderson 2010]:

S is phylogenetically decisive $\Leftrightarrow S$ satisfies the 4-way partition property* for X.
*For all partitions of X into four parts:

Example [from Peter Humphries, 2008]

- 8 taxa: 1,2,3,...,8
- All 4-element subsets that contain $\{1,2\}$, or $\{3,4\}$, or $\{5,6\}$ or $\{7,8\}$.
- Each column has 50% coverage.

Examples

a	x	x
b	x	x
c	x	x
d	x	
e		x

Complexity of determining decisiveness?

- [cf. Manuel Bodirsky's 'No rainbow colouring problem' for 3-partitions]
- Theorem [June 15, 2012, Mareike Fischer]

There is an $\mathrm{O}\left(n^{16} k\right)$ algorithm for determining phylogenetic decisiveness!

- THE END

Outline

- Part 1: Why models?
- Part 2: Markov processes on trees
- Part 3: Statistical methods for inference
- 20x pushups
- Part 4: Specialist topic: Ancestral state reconstruction

Lecture 6: Stochastic models I

Mike Steel

from F. Delsuc and N. Lartillo

Winthrop lectures, 2014

- ALLAN WILSON CENTRE

Why models?

Genetic characters 'evolve' on a (gene) tree under some random process.
The gene tree is also random (even conditional on the species tree), due to 'lineage sorting' (or LGT).

Some questions:

- Will existing methods (parsimony etc) recover the correct tree?
- If not, can can approaches do so (e.g. corrections, ML, Bayesian methods)?
- How much data do we need (to find a tree, or branch length, or resolve a polytomy or estimate an ancestral states) accurately?

Example: The "Felsenstein Zone" (1978)

Joseph Felsenstein

\qquad

Example 2 (process changes across a tree)

Does it happen?

J. Huelsenbeck 1998: Is the
Felsenstein Zone a fly trap?

Simplest model: 2-state symmetric model

Simplest model: 2-state symmetric model

C

$$
\begin{aligned}
p_{e} & =\frac{1}{2}\left(1-\exp \left(-2 l_{e}\right)\right) \\
l_{e} & =-\frac{1}{2} \log \left(1-2 p_{e}\right)
\end{aligned}
$$

Path P connecting two vertices of x, y of T :

$$
\mathbb{P}(f(x) \neq f(y))=\frac{1}{2}\left(1-\prod_{e \in P}\left(1-2 p_{e}\right)\right)
$$

Alternative ways to view the 2-state model

$$
p_{A}=\mathbb{P}(\{x: f(x) \neq f(n)\}=A)
$$

$$
p_{6}=\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)\left(1-p_{4}\right)\left(1-p_{5}\right)+p_{1} p_{2} p_{3} p_{4}\left(1-p_{5}\right)
$$

$$
+p_{1} p_{2} p_{5}\left(1-p_{3}\right)\left(1-p_{4}\right)+p_{3} p_{4} p_{5}\left(1-p_{1}\right)\left(1-p_{2}\right)
$$

Remarks

Reversibility
Change events on edges are independent
(more generally, change events on paths are independent if the paths are edge-disjoint).

The $2 p$ version of the model

Discrete fourier analysis for the 2-state model

$$
p_{\emptyset}=\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{3}\right)\left(1-p_{4}\right)\left(1-p_{5}\right)+p_{1} p_{2} p_{3} p_{4}\left(1-p_{5}\right)
$$

$+p_{1} p_{2} p_{5}\left(1-p_{3}\right)\left(1-p_{4}\right)+p_{3} p_{4} p_{5}\left(1-p_{1}\right)\left(1-p_{2}\right)$.

$$
p_{A}=\frac{1}{2^{n-1}} \sum_{\substack{B \subseteq[n] \\|B|=0 \bmod 2}}(-1)^{|A \cap B|} \prod_{e \in P(T, B)}\left(1-2 p_{e}\right)
$$

$p_{\emptyset}=\frac{1}{8}\left(1+x_{1} x_{2}+x_{3} x_{4}+x_{1} x_{3} x_{5}+x_{2} x_{3} x_{5}+x_{1} x_{4} x_{5}+x_{2} x_{4} x_{5}+x_{1} x_{2} x_{3} x_{4}\right)$
$p_{12}=\frac{1}{8}\left(1+x_{1} x_{2}+x_{3} x_{4}-x_{1} x_{3} x_{5}-x_{2} x_{3} x_{5}-x_{1} x_{4} x_{5}-x_{2} x_{4} x_{5}+x_{1} x_{2} x_{3} x_{4}\right)$

Application 1: Felsenstein zone

$$
\mathbb{E}[\Delta]=p_{23}-p_{12}
$$

$$
p_{1}=p_{4}=P, p_{2}=p_{3}=p_{5}=Q
$$

$\mathbb{E}[\Delta]>0$ precisely if $P^{2}>Q(1-Q)$
Exercise: Solve the general case!

Some observations and further results

- MP is inconsistent when $n=4$. Lengths of edges can be arbitrarily small.
- But if the edge lengths are clock-like it is consistent for $n=4$

$$
p_{23}=\frac{1}{8}\left(1-x_{1} x_{2}-x_{3} x_{4}-x_{1} x_{3} x_{5}+x_{2} x_{3} x_{5}+x_{1} x_{4} x_{5}-x_{2} x_{4} x_{5}+x_{1} x_{2} x_{3} x_{4}\right)
$$

- For $n=5$ this inconsistency occurs even at with clock-like branch lengths.
- It's worse when $n=6$!

$$
p_{12}=\frac{1}{8}\left(1+x_{1} x_{2}+x_{3} x_{4}-x_{1} x_{3} x_{5}-x_{2} x_{3} x_{5}-x_{1} x_{4} x_{5}-x_{2} x_{4} x_{5}+x_{1} x_{2} x_{3} x_{4}\right)
$$

- For n large enough MP can even be inconsistent when all edges have the same length (not clock-like).

Conjecture: For some $l>0$, MP is consistent on all binary phylogenetic trees provided all edges have equal length of l (or less).

Application 3: Homoplasy-rich characters are always unlikely...

$$
\mathbb{P}(f) \leq 2^{-\operatorname{ps}(f, T)}
$$

Why?
This is best possible $\sup \mathbb{P}(f)=2^{-\operatorname{ps}(f, T)}$

$$
0<l_{*}<\infty
$$

For any binary character data, the maximum likelihood tree(s) under the 2-state model, in with edge lengths chosen freely for each character are precisely the maximum parsimony tree(s).

These correspond to two quadratic equations in the p_{A} values.

Statistically consistent methods for inferring a tree

- Corrected distances
- ML (maximum likehood)
- RAxML, PhyML, etc
- Usual version is 'average ML'
- Bayesian methods
- MrBayes,
- BEAST
- Can compare support for hypotheses by averaging over all trees

Problems for reconstructing a tree

(even when the model is known and nice!)

- Short interior edges A
- Long edges

- Many taxa (n)

Statistically consistent methods

- Is ML more accurate on all trees than MP?

$\lim _{k \rightarrow \infty} \lim _{k \rightarrow \infty} \mathbb{P}(M L$ returns correct tree $)=1$
$\lim _{k \rightarrow \infty} \lim _{L \rightarrow \infty} \mathbb{P}(M L$ returns correct tree $) \leq \frac{1}{2}$
- The dangers of doing simulations....

Finite state models: short and long edges
$k=$ sequence length needed to accurately
 reconstruct this tree
as T grows, k grows at rate $\exp (c T)$
What about is t shrinks?

Finite state model
as $t \rightarrow 0, k$ grows at rate $\frac{1}{t^{2}}$

but if $T=t$ then as $t \rightarrow 0, k$ grows at the rate $\frac{1}{t}$

Examples of deep and controversial

 phylogenetic resolutions- Origin of metazoa ($\sim 550-600$ mya)

- Origin of photosynthesis (>2.5 bya)

- Rooting the 'tree' of life (~ 3.5 bya)

How does the required sequence length (for tree reconstruction) depend on n (=\# taxa)?

> CatACCCGTCGTT.... Daisy CACCATCGTT... Rice.....AACCAGCGTT...

\#data-sets of k characters for n species, over an r-letter alphabet

$$
=\left(r^{n}\right)^{k}=r^{n k} \quad b(n)=2^{\Omega(n \log (n))}
$$

Deep divergences

$$
\begin{aligned}
k & =\Theta\left(\frac{1}{\epsilon^{2}}\right) \\
k & =\Theta\left(\frac{\exp (c T)}{n}\right)
\end{aligned}
$$

Question: How do these two factors (short, long) interact?

Fine, but what about 'evolved' data

Suppose we evolve k characters independently on a tree under a 2 -state symmetric model with

$$
p(e) \in[p, P] \text { for every edge } e
$$

Theorem 1 [Erdos, PL, Szekeley, S, Warnow (1999)]
For some ('stringy') trees accurate tree reconstruction is possible with $k=\Theta(\log (n))$
But for other ('bushy') trees our approach required $k=\Theta\left(n^{t}\right)$
However, for almost all trees it suffices to have: $k=\Theta\left(\log (n)^{s}\right)$
Conjecture: Provided that $P<\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right)$ accurate tree reconstruction can be achieved for ALL trees with $k=\Theta(\log (n))$

$$
\Rightarrow k \geq c \cdot \log (n)
$$

Theorem 2 [Daskalakis, Mossel, Roch (2011)]
This conjecture holds (and is tight)

Can adding more taxa help (even if you don't care about them)?

Add taxa \Rightarrow build tree \Rightarrow ignore the added taxa

Sequence length required to find the correct tree (on the subset of species) can be reduced logarithmically this way

How many such 'evolved' characters are needed?
$P=\max \{p(e)\}, p=\min \{p(e): e$ is interior $\}$

Theorem [Mossel +S, 2004]
For $P<\frac{1}{2}$, the number of characters k needed to corrected reconstruct T

$$
(\text { w.p. }>1-\epsilon) \text { is: } k=c \cdot \frac{\log (n)}{p}
$$

- Proof relies on combinatorial arguments, and

> basic property of branching processes.

- $P>1 / 2, k$ changes to $\operatorname{poly}(n)$.

Specialist topic: a model that generates homoplasy-

 free data
$\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Kimura and Crow's "infinite alleles" model.
The probability of any partition can be computed via Mobius inversion (Evans et al. 2004) 62

Does finding a tree need more data than to 'test' if a given one is correct?

- Reconstructing:

- Given k characters generated by (unknown) tree T :
- We need $\log (n)$ sites for finite-state and infinite state models to reconstruct T.
- Testing:
- Given data, and candidate tree, T_{c}, is $T=T_{c}$?Theorem
- For finite-state data we still need $\log (n)$ sites to test
- But for infinite-state data a constant(!) number of sites suffices
- Teasing:

Given data, and that ' $T=T_{1}$ or T_{2} ', which is tree is it?

Lecture 7-8: Stochastic models II

Outline

- Part 1: Speciation/extinction models
- Part 2: Shapes of trees
- Part 3: Predicting future PD
- 20 x deep breaths
- Part 4: Specialist topic: Predicting the past

Where do evolutionary

 trees comes from?
time

A nice (but also annoying) property of constant b-d models

$f=$ fraction sampled at present

$$
\lambda \geq \mu \geq \lambda(1-f)
$$

Conditioning on n (or n and t) the reconstructed tree has the same distribution as complete sampling with adjusted birth-death rates

$$
\hat{\lambda}=f \lambda \quad \hat{\mu}=\mu-\lambda(1-f)
$$

Less is more...

Evolutionary tree

$$
\lambda=\lambda(t, N), \mu=\mu(t, N, a)
$$

Proposition: [Aldous; Lambert and Stadler]
All such models (as well as Kingman's coalescent model!) lead to same distribution on the reconstructed tree (ignoring branch lengths) - namely the Yule-Harding distribution (lecture 1)

Two extensions where it's just so lovely....

Real trees

$$
\lambda=\lambda(t, N), \mu=\mu(t, N, a)
$$

Life gets even better if we are slightly less general

$$
\lambda=\lambda(t), \mu=\mu(t, a)
$$

$$
\lambda=\lambda(t, N), \mu=\mu(t, N, a)
$$

How long are the branches?

Speciation rate $=1 /$ million years so the expected value of L equals 1 million years

Models where the reconstructed tree can be described by a 'coalescent point process'

$$
\lambda=\lambda(t), \mu=\mu(t, a)
$$

Example: A pure-birth process $1-F(t)=\mathbb{P}(H>t)=e^{-\lambda t}$

The bus 'paradox'

You turn up at a bus stop, with no idea when the next bus will arrive.

If buses arrive regularly every 20 mins what is your expected waiting time?

1. If buses arrive randomly every 20 mins what is your expected waiting time?

Length of a randomly selected branch

Expected value of L is 1 million years

The tree puzzle (I):

The tree puzzle (II):

A tree evolves with each lineage randomly generating a new lineage on average once every $\mathbf{1}$ million years (no extinction).

Look at the tree after 500 million years

What is the expected length of a randomly selected (extant or ancestral) lineage?

Answer 1: 1 million years?

Answer 2: 500,000 years?

What about a 'specific' edge

(e.g. a 'root edge')?

A tree evolves with each lineage randomly generating a new lineage on average once every $\mathbf{1}$ million years (no extinction).

Look at the tree when it first has 100 species

What is the expected length of a randomly selected root lineage?
Answer 1: 1 million years?

Answer 2: 500,000 years?
$E[L \mid n]=\frac{1}{\lambda}\left(1-\frac{1}{n}\right)$

Answer 3: 990,000 years

Solution 2: Conditioning on t :

In a binary Yule tree, grown for time t, let
$p(t)=$ expected length of the average pendant edge
$i(t)=$ expected length of the average interior edge

$$
\begin{aligned}
& \text { Theorem: } \\
& \qquad \begin{aligned}
\mathbb{E}[p(t)] & =\frac{1}{2 \lambda}+O\left(e^{-t}\right) \\
\mathbb{E}[i(t)] & =\frac{1}{2 \lambda}+O\left(e^{-t}\right)
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d L}{d t} & =\mathbb{E}\left[N_{t}\right]=2 e^{\lambda t} \\
\frac{d I}{d t} & =\lambda P \\
L & =I+P
\end{aligned}
$$

The tree puzzle (III):

Now suppose extinction occurs at the same rate as speciation (one per one million years). Suppose we observe a tree today that has 100 species.

What is the expected length of a randomly selected extant lineage?
Answer 1: 1 million years?

Answer 2: 500,000 years?

What do 'real' trees look like?

- Current plant and animal diversity preserves at most $1-2 \%$ of the species that have existed over the past 600 my ". [Erwim, PNAS 2008].
- Set extinction rate $=$ speciation rate?
- Problem: If extinction rate =speciation rate the tree is guaranteed to eventually die out eventually!
- Solution?: Condition on the tree not dying out (or having n species today)

Predicting future phylogenetic diversity loss

Question:

If a random 10% of species from some clade were to disappear in the next 100 years due to current high rates of extinction, how much evolutionary heritage would be lost?

Trediction is very difficult, especially about the future. Niels Bohr, Danish physicist (1885-1962)

Less 'realistic models' can fit the data better:

- Real reconstructed trees generally look more like Yule trees with zero extinction rate than birth-death trees with extinction rate $=$ speciation rate (conditioned on n species today)
- [McPeek (2008) Amer. Natur. 172: E270-284:

Analysed 245 chordate, arthropod, mollusk, and magnoliophyte trees]

Predict the proportion of diversity that remains if each leaf survives with independently with probability p.

For Yule model, let $\pi_{t}(p)$ be the expected phylogenetic diversity in a Yule tree, grown for time t, under a 'field of bullets' model with taxon survival probability p.

[note 2 random processes]

$$
\pi(p):=\lim _{t \rightarrow \infty} \frac{\pi_{t}(p)}{\pi_{t}(1)} \quad \mu(p)=\frac{\text { Expected future diversity }}{\text { Expected present diversity }}
$$

Theorem:

$$
\pi(p)=\frac{-p \log (p)}{1-p}
$$

$\pi,(p)-\frac{2 p}{(1-p) \lambda} e^{\omega^{2}[}\left[-\log (p+(1-p))^{2 \mu}\right]$

A more recent result (2013):

- Instead of ratio of expected values, what
$\mu(p)=\frac{\text { Expected future diversity }}{\text { Expected present diversity }}$ about expected value of 'biodiversity ratio'?

$$
E\left[\frac{\text { future diversity }}{\text { present diversity }}\right]
$$

- What about actual distribution of the biodiversity ratio? And at finite times?

$$
\frac{\text { future diversity }}{\text { present diversity }}
$$

- What about more general speciationextinction models?

Theorem [birth rate $=\lambda(t)$, extinction rate $=\mu(t, a)]$

As the number n of species in a random tree of height T grows, the biodiversity ratio converges converges almost surely to a constant $\pi_{T}(p)$.

$$
\pi_{T}(p)=p \frac{\int_{0}^{T} \frac{1-F_{T}(t)}{1-(1-p) F_{t}(t)} d t}{\int_{0}^{T}\left(1-F_{T}(t)\right) d t}
$$

$$
\sqrt{n p}\left(\frac{\text { future diversity }}{\text { present diversity }}-\pi_{T}(p)\right) \xrightarrow{D} N\left(0, \sigma^{2}\right)
$$

Specialist topic: Ancestral state reconstruction

Minimum evolution ('parsimony'):
Need tree topology but not
branch lengths or model

Majority Rule

Don't even need tree

Maximum likelihood

Need tree, branch lengths and model

Definition

For a method M that estimates the ancestral state at a node v of a tree from leaf data, and a model of character state change, the Accuracy of M at v is:
$\operatorname{Pr}(M$ (leat data) $=$ state of $v]$

Q2. Is it easier to estimate the ancestral state at the root of the tree, or an interior node?

Root state can be estin
no other node can be

Root state can be estimated with low precision but
all other interior nodes can be

What happens on a 'typical' tree?

Grow a Yule (pure-birth) tree at
speciation rate λ for time t

Evolve a binary state from the root to the tips binary character (mutation rate m)

Estimate the root state from the tip states using maximum parsimony.
Let $P_{t}=$ probability our estimate is correct $P_{t}=S_{t}+\frac{1}{2} E_{t}$
Question: what happens to P_{t} as t becomes large?
\qquad

six is (just) enough':

If $\frac{\text { speciation rate }}{\text { mutation rete }}$
<6, then we lose all information about the ancestral state as t grows (min evolution).

If $\frac{\text { speciation rate }}{\text { mutation rate }}>6$, then we don't

$$
\begin{aligned}
P_{t} & \geq \lim _{t \rightarrow \infty} P_{t}=f(x) \text { where } \\
f(x) & =\frac{1}{2}(1+\sqrt{(1-6 x)(1-2 x)})
\end{aligned}
$$

Dynamical system

$$
\begin{gathered}
\frac{d S_{t}}{d t}=-(\lambda+m) S_{t}+m D_{t}+\lambda\left(S_{t}^{2}+2 S_{t} E_{t}\right) ; \\
\frac{d D_{t}}{d t}=-(\lambda+m) D_{t}+m S_{t}+\lambda\left(D_{t}^{2}+2 D_{t} E_{t}\right) \\
\frac{d E_{t}}{d t}=-\lambda E_{t}+\lambda\left(E_{t}^{2}+2 S_{D} D_{t}\right)
\end{gathered}
$$

$m=$ mutation rate (of states),
$\lambda=$ birth rate (of tree)

$$
P_{t}=S_{t}+\frac{1}{2} E_{t}
$$

Comparisons (simulations)

Whatialissutpmajokityesuleq state reconstruction

If $\frac{\text { speciation rate }}{\text { mutation rate }}$
<4, then any method loses all information about the ancestral state as t grows (we'll see why in 10 mins!).

Theorem [Mossel +S, 2014]
$\operatorname{Pr}(\mathrm{MR}$ correct $)>\frac{1}{2}+\frac{1}{2}\left(1-\frac{4 m}{\lambda}\right)$

THE END

Question:

Suppose we have some 'species tree' (e.g. the tree of bacterial cell divisions). Under a model of independent random LGT events when can we recover this tree from the associated gene trees.

Possibilities for the LGT rates in the model:

Rate of transfer from x to y is constant
Rate of transfer from x to y depends on the branches
Rate of transfer from x to y depends on $\mathrm{d}(x, y)$ and/or time

In all cases, the number of LGT events in the tree has a Poisson distribution
A Likelihood Framework to Measure Horizontal Gene Transfer

Specialist topic 2: Modelling lateral gene transfer (LGT)

```
Ancestral genome sizes speciry the moimum rate 
~=-\infty
```


- In prokaryotes, if nearly all genes have been transferred between lineages many times is it meaningless to talk about a species 'tree'?

```
Biology Direct
Periv. Noryotic evolution and the tree of life are two different things
Prokarootic evolution and the tree of life are two difirent,n+ming
Phylogenetic modeling of lateral gene transfer
reconstructs the pattern and relative timing
l}\begin{array}{l}{\mathrm{ reconstructs the pattern and relative timing}}\\{\mathrm{ of speciations }}
```


Opinion
The tree of one percent
Tal Dagan and William Martin

Lateral gene transfer as a support for the tree of life

Can we reconstruct a tree under rampant LGT?

Theorem [c.f. also Roch and Snir 2013]

Triplet-based $\left(\mathrm{R}^{*}\right)$ tree reconstruction is a statistically consistent estimator of the species tree under the random LGT model if the expected number G of LGTs per gene is 'not too high'.

Example: for Yule trees with n leaves the following

$$
G \leq \frac{n-2}{3 \ln (n / 2)}
$$

Particular case: [S,Linz, Huson, Sanderson]
Take $n=200$ (Yule-shape tree), and suppose each gene is transferred on average 10 times. Then the species tree is identifiable from sufficiently many gene trees.

Can we reconstruct a tree under rampant LGT?

Theorem 1 [Roch and Snir, 2013]

Under the bounded rates (e.g. Yule model), it is possible to reconstruct the topology of a phylogenetic tree for n taxa w.h.p. from $N=$ $\Omega(\log (n))$ gene tree topologies if the expected number of LGT transfers is no more than a constant times $n / \log (n)$.

Theorem 2

Under the Yule model, it is not possible to reconstruct the topology of a phylogenetic tree w.h.p. from N gene trees if the expected number of LGT events is more than $\Omega(n \log (N))$

Roch, S., Snir. S., 2013. Recovering the tree-like trend of evolution despite
extensivive eateral genetic transfer: a probabilistic analysis. J. Comput. Biol. 20
(2), $93-112$. (2), 93-112.

Lectures 9-10: Phylogenetic Networks I

Mike Steel

THE END

Why networks?

- Explicit networkes:

- Species evolution is sometimes reticulate due to
- Hybrid species
- Genetic exchange (eg. Lateral gene transfer)
- Endosymbiosis
- Usually represented by rooted networks

- Implicit networks:

- shows conflicting signals in the data (even if evolution is tree-like)
- SplitsGraphs
- Neighbor-Net (very widely used)
- Endosymbiosis
- Usually represented by unrooted networks

Reticulate evolution

However, sometimes inheritance is from multiple ancestors, because of reticulate
events, e.g:

1) Hybrid speciation
2) Lateral gene transfer
3) Recombination

Directed graphs: Basics

In any directed graph $D=(V, A)$
sum of out-degrees $=$
sum of in-degrees $=|A|$.

Definition: $D=(V, A)$ is acyclic if it has no directed cycles ("D.A.G")

Trees or networks?

"molecular phylogeneticists will have failed to find the 'true tree' not because their methods are inadequate or because they have chosen the wrong genes, but because the history of life cannot properly be represented as a tree."
W. F. Doolittle, 1999

Phylogenetic network:

- A phylogenetic network on X is an acyclic network with a single (root) vertex of in-degree $0, X=$ set of vertices of out-degree 0 , and no vertices with
in-degree $=$ out-degree $=1$.
- Unlike phylogenetic trees there are an infinite number of phylogenetic networks on X.
- Example: Cluster networks

Three types of network:

Tree child: each non-leaf vertex has at least one non-reticulate child (\Rightarrow Tree path property)

Regular: isomorphic to the Hasse diagram of its clusters

Normal: tree child, no vertices of out-degree 1, no redundant arcs

Theorem 1: Every normal network is regular.

Regular
Theorem 2: If $N=(V, A)$ is a normal network, then:
(i) the number r of reticulate vertices is at most $n-1$
(ii) $\quad|V| \leq\left(n^{2}-n+1\right) / 2$
c.f. regular

Willson, S.J. 2010. Properties of normal phylogenetic networks, Bulletin of Mathematical Biology 72 : $340-358$.

Binary phylogenetic networks

Recall (Willson):
If $N=(V, A)$ is a normal network, then:
(i) the number r of reticulate vertices is at most $n-1$
(ii) $|V| \leq\left(n^{2}-n+1\right) / 2$

Theorem:

If $N=(V, A)$ is a tree-child binary network, then:
(i) the number r of reticulate vertices is at most $n-1$
(ii) $|V| \leq 4 n-3$

Binary phylogenetic networks

- Root has out-degree 2
- A vertex with out-degree 2 has in-degree 1 (and the set of vertices of out-degree 0 is X)
- All other vertices either have in-degree 1 and out-degree 2 or in-degree 2 and out-degree 1 (reticulate vertices)
$n=|X|, r=\#$ reticulate vertices, $t=\#$ tree vertices

$$
\begin{gathered}
|V|=n+t+r+1 \\
t=n+r-2
\end{gathered} \square \begin{aligned}
& |V|=2 t+3 \\
& |A|=3 r+2 n-2 \\
& |A|-|V|+1=r
\end{aligned}
$$

Why?

$$
r+2 t+2=|A|=2 r+t+n
$$

in

Special classes of [binary] phylogenetic networks

A reticulation network is a binary phylogenetic network whose arc set A is the disjoint union of a set of reticulation arcs, and a
set A_{T} of tree arcs, and such that:

- Each reticulation arc ends at a reticulation vertex;
- Each reticulation vertex has at least one incoming reticulation arc;
- Every interior vertex has at least one outgoing tree arc.

\qquad

Additional bells and whistles

- A reticulation network is time-consistent if there is a 'time-stamp' function
$t: V(\mathcal{N}) \rightarrow \mathbb{R}^{\geq 0}$ such that for each $\operatorname{arc}(u, v)$
$t(u)=t(v)$ if (u, v) is a reticulation arc and $t(u)<t(v)$ otherwise

- "Level k " (if N is binary it is level k if k is the maximum number of reticulations in any biconnected component of N)

Tree 'displayed' by a network

Quiz: Is it easy or hard to determine if a given tree is displayed by a given network?

Theorem: [van Iersel et al. 2010]
It is NP-hard, even for regular networks.
There is is a poly-time algorithm for tree-child binary networks and normal networks (also level- k networks).

Mathematical questions about phylogenetic networks

- How many trees do they contain (display)?
- Do these trees allow us to reconstruct the network?
- Given two trees what is the simplest network that contains them?
- What about parsimony?
- How many networks are there?
\qquad

The set of all trees displayed by a network: $\operatorname{Tr}(N)$
Observations

If N has r reticulation vertices, then N displays at most 2^{r} trees
N can have much fewer than 2^{r} displayed trees (so one tree is displayed several times). For example, this network displays F_{t} trees ($F=$ Fibonacci number)

The set of all trees displayed by a network: $\operatorname{Tr}(N)$

Theorem 1*

If N is normal and binary then N displays exactly 2^{r} trees.

Theorem 2**

Let N be a binary tree-child phylogenetic network on X. There is an $\mathrm{O}\left(n^{2}\right)$ algorithm $(n=|\mathrm{X}|)$ to decide whether or not N displays a rooted phylogenetic tree with leaf set X twice.

[^1]
When does $\operatorname{Tr}(N)=\operatorname{Tr}(M)$ imply $N=M$?

Theorem [Willson, 2011]

If N is regular (or normal) then $\operatorname{Tr}(N)$ determines N.

Moreover, there is a poly-time algorithm
for reconstructing N from $\operatorname{Tr}(N)$.

Does $\operatorname{Tr}(N)$ determine N ?

Not in general? Some networks display the same set of trees
Example:

Hybridization number of two (binary) trees

Given two binary phylogenetic X-trees $\mathcal{T}, \mathcal{T}^{\prime}$ let:

$$
h\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=\min \left\{h(\mathcal{N}): \mathcal{N} \text { displays } \mathcal{T}, \mathcal{T}^{\prime}\right\}
$$

$$
h\left(\mathcal{T}, \mathcal{T}^{\prime}\right) \leq n-2
$$

Quiz: Is computing $h\left(T, T^{\prime}\right)$ easy or hard?

Relationship to tree-rearrangement operations

- rSPR (rooted subtree prune and regraft)

$$
d_{\mathrm{rSPR}}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=1 \Leftrightarrow h\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=1
$$

$$
d_{\mathrm{rSPR}}\left(\mathcal{T}, \mathcal{T}^{\prime}\right) \leq h\left(\mathcal{T}, \mathcal{T}^{\prime}\right)
$$

How much less?

Theorem 1

n/2
Theorem 2
For all $n>3$, even there exist two binary phylogenetic X-trees with: $d_{\mathrm{rSPR}}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=2$, and $h\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=n / 2$

For all $n>3$, there exist two binary phylogenetic X-trees with:
$h\left(\mathcal{T}, \mathcal{T}^{\prime}\right)-d_{\mathrm{rSPR}}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=n-\lceil 2 \sqrt{n}\rceil$
Moreover, this is sharp
Baroni, M., Grunewald, S., Moulton, V., and Semple, C. (2005). Bounding the number of hybridisation events for a consistent evolutionary history. Journal of Mathematical Biology, $51,171-182$.
[Humphries, P.J. and Semple, C.]

Hybridization number of two (binary) trees

Maximum acyclic agreement forest for T and T'

Theorem [Baroni, Gruenewald, Moutton, Semple 2005]

$$
h=4
$$

* $h\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=m_{a}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$

त $d_{\mathrm{rSPR}}\left(\mathcal{T}, \mathcal{T}^{\prime}\right)=m\left(\mathcal{T}, \mathcal{T}^{\prime}\right) \square d_{\mathrm{rSPR}}\left(\mathcal{T}, \mathcal{T}^{\prime}\right) \leq h\left(\mathcal{T}, \mathcal{T}^{\prime}\right)$

$$
+\left[\text { Bordewich and Semple, 2004] } \quad h\left(\mathcal{T}, \mathcal{T}^{\prime}\right) \leq n-2\right.
$$

Back to our question:

*NP-hard (but there are algorithms based on max. agreement acyclic forest)

Grass (Poaceae) Data Set
$n=30$
$h=8$
time $=19 \mathrm{~s}$

Counting networks

Recall (lecture 1!):

$$
r b(n) \sim \frac{1}{\sqrt{2}}\left(\frac{2}{e}\right)^{n} n^{n-1}=2^{n \log _{2} n+O(n)}
$$

Theorem [Mcdiarmid, Semple, Welsh 2014]
The number of tree-child (or normal) binary networks on n leaves is

$$
2^{2 n \log _{2} n+O(n)}
$$

Almost all tree child (or normal) networks with n leaves have $(1+\mathrm{o}(1)) n$ reticulate vertices and $(4+\mathrm{o}(1)) n$ vertices in total.

McDiarmid, C., Semple, C. and Welsh, D. (2014). Counting phylogenetic networks.
McDiarmid, C., Semple, C. and Wel
Annals of Combinatorics (in press).

Challenges questions: (phylogenetic networks)

From

 and Steven Kelk

Leo van Iersel Problem 1 Is the Hybridization Number problem fixed-parameter tractable (FPT)?

Problem 2 Does there exist a polynomial-time 2approximation algorithm for MAF on two binary trees?

Problem 3 Is there an FPT algorithm for finding a level- k phylogenetic network consistent with a give dense set of rooted triplets, if k is the parameter?

Is a network just something you get by adding edges to a phylogenetic tree?

Yes - for tree child networks

No - for some others - e.g. at right (not tree-sibling)

Why networks?

- Explicit networks:

- Species evolution is sometimes reticulate due to:
- Hybrid species
- Genetic exchange (eg. Lateral gene transfer)
- Endosymbiosis
- Usually represented by rooted networks
- Implicit networks:
- shows conflicting signals in the data (even if evolution is tree-like)
- SplitsGraphs
- Neighbor-Net (very widely used)
- Endosymbiosis
- Usually represented by unrooted networks

Implicit networks

- Two splits $A_{1} \mid B_{1}$ and $A_{2} \mid B_{2}$ of X are compatible, if one of the following intersections is empty:

$$
A_{1} \cap A_{2}, A_{1} \cap B_{2}, B_{1} \cap A_{2}, B_{1} \cap B_{2}
$$

Two incompatible splits:

Weakly compatible splits

The 3 splits are weakly compatible if at least one of the white regions and at least one of the grey regions is empty

Split Network

(a) Split network N
$S_{1}=\{a, b, c\} \mid\{d, e, f\}$ $S_{2}=\{a, e, f\}\{b, c, d\}$ $S_{3}=\{a, f\}\{b, c, d, e\}$ $S_{4}=\{a, b, f\}\{c, d, e\}$
(b) Non-trivial splits

(c) Split $S_{2}=\frac{|a, e, f|}{[b, c, d \mid}$

Weakly compatible: Example and properties

- If Σ is weakly compatible then Σ has size $\mathrm{O}\left(n^{2}\right)$.
- Σ is weakly compatible iff $\mathrm{Q}(\Sigma)$ has at most two of the three possible resolutions of each quartet
- Connection to 'weak hierarchies':

$$
A \cap B \cap C \in\{A \cap B, A \cap C, B \cap C\} \forall A, B, C \in \mathcal{W}
$$

Split Decomposition [Bandelt and Dress]

- Notice that a tree metric d can be written as

$$
\begin{aligned}
d & =\sum_{\sigma \in \Sigma(T)} w_{\sigma} d_{\sigma} \\
d_{\sigma}(x, y) & =1 \text { iff } \sigma \text { separates } x \text { and } y \\
& \text { else } 0
\end{aligned}
$$

- Moreover, if $|X|=4$ then for any d

$$
d=\sum_{\sigma \in W} c_{\sigma} d_{\sigma}
$$

Example

- Split network for primate lentiviruses from whole-genome-based distances using split decomposition:

(Salemi et al, 2003) PLVsyk

Split Decomposition [Bandelt and Dress]

- Theorem: [Bandelt and Dress ~late 1980s]

Every distance function on a set X has a unique representation of the form:

$$
d=\sum_{\sigma \in W} c_{\sigma} d_{\sigma}+\delta
$$

where W is a weakly compatible set of X-splits $c_{\sigma}>0$ for all $\sigma \in W$ and δ is 'split prime'

Circular split system

Definition:

Σ is circular if there is a circular
 ordering of X so that each split in Σ is of the form $\left\{x_{p}, x_{p+1}, \ldots, x_{q}\right\} \mid X-\left\{x_{p}, x_{p+1}, \ldots, x_{q}\right\}$

How hard is it to determine if Σ is circular?

Circular split system implies weakly compatible (but not conversely!)

- Example:

$$
\begin{aligned}
& T_{1}, T_{2} \in U(X) \\
& \Sigma=\Sigma\left(T_{1}\right) \cup \Sigma\left(T_{2}\right)
\end{aligned}
$$

- Σ is always weakly compatible
- But not necessarily cyclic!

Cyclic split systems correspond to outer-labelled planar

 networks- Theorem A set of splits on X is cyclic if and only if it can be represented by an outer-labeled planar network
"NeighborNet"

"Outer-labeled planar" networks

- Example
$\{a, b, d, e, h\} \mid\{c, f, g\}$ $\{a, c, d, e, g, h\} \mid\{b, f\}$ $\{a, c, e, g\} \mid\{b, d, f, h\}$ $\{a, c, g\} \mid\{b, d, e, f, h\}$ $\{a, c, e, f, g\} \mid\{b, d, h\}$ $\{a, e, h\} \mid\{b, c, d, f, g\}$

$\{a, b\} \mid\{c, d, e, f, g, h\}$
$\{a, b, c, d, e, f\} \mid\{g, h\}$
$\{a, b, c, f, g, h\} \mid\{d, e\}$
$\{a, e, f, h\} \mid\{b, c, d, g\}$
- Consensus splits (Holland et al, 2004)
- Input: Trees on identical taxon sets
- Determine splits in more than $\mathrm{X} \%$ of trees
- For $>50 \%$, result is compatible
- Consensus super splits
(Huson et al, 2004, Whitfield et al 2008)
- Input: Trees on overlapping taxon sets
- Use Z-closure to complete partial splits
- Use "distortion filter" to implement consensus methods

Split Networks from Trees

- Split network for consensus splits on 106 gene trees for yeast:

Useful online resources

Online resources:

The Genealogical World of Phylogenetic Networks phyloseminar.org phylobabble PhyloWiki
 Winthrop lectures, 2014

[^0]: A rooted phylogenetic tree \mathcal{T} that displays $12 \mid 3$ and $13 \mid 6$ but not $13 \mid 4$ nor $15 \mid 4$

[^1]: Special case of Corollary 3.4 of Tree-average distances on certain phylogenetic network
 ave their weights uniquely determined. Algorithms for Molecular Biology (2012) 7:13

