Lecture 5: Subtree-based tree reconstruction
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“The analysis of large data sets could
proceed by division into overlapping
subsets which are classified separately and
then recombined to provide a single
classification”

A.D. Gordon, (J. Classif. 1986)
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w Part1:  Subtrees and supertrees
w Part2:  Compatibility
m Part3:  Defining sets
0 20x Head, shoulders, knees and toes
w Part4:  Specialist topic: “decisiveness”

[Definition] A phylogenetic X—tree
T displays a phylogenetic Y—tree, 7'
if T'| Y either equals 7' or is a
resolution of that tree (i.e. all the
splits of 7" are contained in T'| Y').

Counting trees 11

Quiz:

Suppose T'is a binary phylogenetic-tree on leaf set Y (subset of X).
How many binary phylogenetic X-trees display Y?

b(n)/b(k)

Rooted trees //\

n=|X|,k=1y]

A rooted phylogenetic tree 7 that displays 12|3 and 13|6 but not 13|4 nor 154




Display via quartet encodings

Given T e U(X) and T € U(Y') (where Y C X))

T displays T" <—= Q(T") C Q(T).

Similarly for rooted trees

Compatibility

A set P of trees is compatible if there is a phylogenetic
X-tree T that displays each tree

Example: P={12[34, 13|45, 1426}

1 3

6

If T is the only tree that displays each tree in P we say that P defines 7.

Equivalence of character compatibility and
(quartet) tree compatibility

C — Q(C)
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Lemma: Each character in C is homolasy-free on T'if and only if T'
displays all the quartets in Q(C).

How hard is it to tell if a set of trees is compatible?

In general it’s (NP)-hard, even for quartet trees
(so character compatibility is too, by last slide!)

But it’s easy in some special cases.....




Special case 1: Trees have same leaf sets

P={T1,....,. T} CU(X)

k

P is compatible <— ¥ = U ¥(T;) is p.c.

=1

Special case 2: Two trees

Given T and T5 on leaf sets X1, X5, let Y = X7 N Xy

{T1,T5} is compatible < {T1|Y,T5|Y} is

More generally £ trees, with £ fixed (FPT)
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Special case 3: Q quartets with |Q| = <Z)

*Recall from Part 2: [Colonius and Schultze 1981]

Q = Q(T) for some T € U(X) iff the following hold

abled € Q = aclbd, ad|be & Q
abled € Q = ablce € Q or aeled € Q.

Corollary:
If |Q| = <Z> then @ is compatible

& every subset of @) of size 3 is
1

Special case 4: Rooted trees

For a set R of rooted trees, there is a fast algorithm which determines
whether or not R is compatible (and if so constructs a canonical tree
Ap) that displays each tree in R.

Same applies for a set of unrooted trees that each contain a fixed leaf x

12




Aho et al tree (Ay) [1981]

T gp

TA
b e d a b f d

Our example from lecture 2:

Doy YOOOY
o RORCRO

These display 125, 23| 5, 34| 1 and 45| 1 — but there is no tree that does this!

Properties of the Aho tree

R1 = {ab|e,ac|d}
Ro = {ab|g1,ablgs, ..., ab|gn }
R = RiURs

Ap is a minimal tree that displays R
(but there can be exp. many such trees!)

Ap is a binary tree if and only if R defines a (that!) binary tree

Proposition [Bryant]

Ay is the Adams consensus tree of all the rooted X-trees
that display R

[Recall definition above]
A collection of phylogenetic trees 77, . . ., T defines a phylogenetic X—tree 7 if
X is the union of the leaf sets of the trees 7', . . ., T} and

there exists one, and only one phylogenetic X—tree that displays these trees,
this tree is 7.

and




The nice story: Rooted trees

R detines T'if and only if every interior edge of T'is
‘distinguished’ by some rooted triplet a4 | ¢ from R

PIC

The unrooted case (more interesting...)

Definition: For a binary phylogenetic tree 7, a quartet tree Xy|wz
distinguishes an interior edge e={u,v} of T'if T displays xy|wz and
and e is the only edge shared by the the paths from x to w and y to z

u \%
-
y ot

Observation: If Q defines 7 then T is binary and every
interior edge of T is distinguished by at least one
quaretfrom Q. So |Q| >n — 3

Warning:

0 ={12]45, 56|23, 34|16} distinguishes each interior edge
of the tree:

1 2 6 1
and also
6
5
3 2

‘Islands’ in NNNI (rooted) tree space

Theorem [Magnus Bordewich PhD thesis (2003)]

The set of rooted phylogenetic trees that display a set of
rooted trees is connected under (rooted) NNI operations.

1 2 6 1

'This does not hold for 5
unrooted trees! 6

Q ={12/45, 56/23, 34|16}




Sufficient condition for 0 to define T:

Suppose Q is compatible and distinguishes every interior edge of a
binary phylogenetic X-tree T.

Proposition: If there is an element of X that is a leaf of every tree in 0
then O defines T. [why?]

Corollary:
There are subsets of Q(T) that define T of size #-3 (n =| X|)

21

The Bocker-Dress theorem:

Recall if O defines a tree then {/(Q) —-3- |Q|’ <0

exc(Q)

Definition: A set Q of quartet trees is “good” if

(i) Q defines a phylogenetic tree, and " ,
(ii) exc(Q) =0 PR TR T T
Theorem o D
[Bocker, Dress 1999; Griinewald 2012] WA

Any good set of (>2) quartets is the A NNES

disjoint union of precisely two good sets

22

Observations Definition: A set Q of quartet trees is
“good” if
(i) © defines a phylogenetic tree, and

(ii) exc(Q) = 0

Determining if Q defines a phylogenetic tree is NP-hard!
Determining if Q is ‘good’ is easy.
Determining if Q) contains within it an (unknown) ‘good’ subset is too!

Examples of ‘good’ sets include the ‘linked quartet systems’ (E. Price
and J. Rusinko, 2014).

'Maria Luisa Bonet, Simone Linz, and Katherine St. John (2012),
23

Key idea(s) in the proof of the B+D theorem:
Slim sets; ‘patchworks ;:ﬁﬁ' E

Griinewald’s proof relies on a strong (and suprising) sufficient
condition for a set P of phylogenetic trees to be definitive:

exc(P) = |L(P)| =3 = ) _ |Ew(T)|
Tep
P is slim if exc(P") > 0 for every non-empty subset P’ C P

Theorem:
Every slim set of binary phylogenetic trees is compatible.

Gruenewald, S. (2012) Slim sets of binary trees Original Research Article
Journal of Combinatorial Theory, Series A, Volume 119(2): 323-330

24




Quesiton: If 0 defines a phylogenetic tree, T, does it
always contain an excess-free subset that defines 17

I'e

a

"

® @ ©

Q = {12/35,24|57,13|47, 34|56, 15|67}

A minimum defining set of quartets has size #-3.

But how big can minimal defining set be?

25

But how big can minimal defining set be?

Theorem: [Dietrich, M., McCartin, C., and Semple, C. (2012)]

The largest minimal defining set of quartet trees on n leaves has size between:

1(n? —4n +3) and n®

Conjecture: Quadratic is the actual order!

26

Supertree methods

= Given different (usually incompatible) phylogenetic trees on
ovetlapping sets of species we want to combine them into a tree that
classifies all the species.

= Several methods. The main one in use is MRP (‘matrix recoding with

parsimony’).

u Any supertree method can be used as a consensus method:

0 Bryant’s result (lecture 3) implies that any MRP tree refines the strict consensus
tree

27

Quiz time. . ..

u s there a supertree method for rooted trees with this property:

o If every tree displays ab| ¢ then the supertree does too.

u Is there a supertree method for unrooted trees with this property:

o If every tree displays ab| «d then the supertree does too.

28
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Taxon coverage pattern

a X X

b x x Two taxon sets: {a,b, ¢ d)
c Ny Ny and {a,b,¢ e}

d X

o « S= {{”lbl"ld}:{albl"le}}

30

‘Deﬁnitions (“decisiveness”)

u Definition: Decisiveness (for T):

For a collection § = {Y}, ..., Y,} of subsets of X, with union X, §'is
decisive for a tree 7 provided that 7| Y, ..., T'| Y, defines 7.

i.e. T'is the only tree that displays T1Y,,....,T1Y,

u Definition: (Global decisiveness)

A collection S = {Y,, ..., Y,} of subsets of X, is phylogenetically
decisive if it is decisive for every phylogenetic X-tree.

Not phylogenetically decisive (for all trees)
Of the 15 possible binary cl xS X
unrooted trees for this
data set...

X
X

O Q O T
X X X

There are 6, like that below, ..and 9, like that below,

where the taxon coverage is where it is not decisive
decisive

a b C a C d

N Lo N L S
/ Ng b7 N

d b




Phylogenetically decisive
(for all trees)

a X X X
b X

c X X

d X

e X

Necessary condition:

(=00 1

..but not sufficient!

Example [from Peter Humphries, 2008]

= 8 taxa: 1,2,3,..8

= All 4-element subsets that contain {1,2},
or {3,4}, or {5,6} or {7,8}.

= Each column has 50% coverage.

1 \ X X X X
2 X |x X

3 X | X X | X X
4 X X X | X

5 X X | X

6 X X X XX

7 X | X X
8 X X

Theorem [S+Sanderson 2010]:

S is phylogenetically decisive < S satisfies the 4-way partition
property* for X,

*For all partitions of X into four parts:
there exists representative

a,, a,, ay, a, from each
block:

with {a,, a,, a;, a,} C Y, for
some ¥, €S

Examples
a | X X a a
b x | x ¢ bd 4 bd
cC| X | X e e
d| x \/ X
e X

1 X X X X X
2 X X X X

3 X | X X | X X
1 X X X | X

5 X X | x

6 X X X X | X

7 X | X X
8 X X X




Complexity of determining decisiveness?

= [¢f Manuel Bodirsky” s “No rainbow colouring problem’
for 3-partitions] i

u Theorem [June 15, 2012, Mareike Fischet]

There is an O(#'°k) algorithm for determining

phylogenetic decisiveness!

= THE END
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Part1:  Why models?
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Part 4: Specialist topic: Ancestral state reconstruction

Why models? é‘% a
¥si

Genetic characters ‘evolve’ on a (gene) tree under some random process.

The gene tree is also random (even conditional on the species tree), due to

‘lineage sorting’ (or LGT).
Some questions:
* Will existing methods (parsimony etc) recover the correct tree?

* If not, can can approaches do so (e.g. corrections, ML, Bayesian
methods)?

* How much data do we need (to find a tree, or branch length, or resolve a
polytomy or estimate an ancestral states) accurately?

40




Example: The “Felsenstein Zone” (1978)

Joseph Felsenstein

41

Does it happen?

Melold
Tenebrio
Aedes

Polistes
Flea
Scorpionfly
Lacewing
Antlion

(D ) Cercopid

J. Huelsenbeck 1998: Is the
Felsenstein Zone a fly trap?

42

Example 2 (process changes across a tree)

1417111 1100,

250

a2 y%f“?'ma-}‘” I

Orni-
thischia SoUrischia

»ide
Synap-
sida
Anspsida

Ancestral
amniote

18S rRNA .

Simplest model: 2-state symmetric model
A m
le = rete c a , 0
S %

p = probability initial and final state are different

’ p =5 (1 —exp(~2rr)




Simplest model: 2-state symmetric model

A

N
le = Tete c a , f
A

o pe= o(1- exp(~2L))

=
)}

le = —% log(1 — 2p,)
Path P connecting two vertices of z,y of T
1
P(f(r) # f)) = 50— [](1—2p0))

eeP

45

Remarks
A
C
LY
e, A
Reversibility

Change events on edges are independent

(more generally, change events on paths are
independent if the paths are edge-disjoint).

The 2p version of the model

46

Alternative ways to view the 2-state model

pa=P{x: f(x) # f(n)} = A)

4
P1 P4 o= (1 —p1)(1 = p2)(1 = p3)(1 — ps)(1 — ps) + p1p2papa(1l — ps)
Ps +p1p2ps(1 — pa)(1 — pa) + papaps (1 — p1)(1 — p2).
P2 P3
2 3

Discrete fourier analysis for the 2-state model

po = (1 =p1)(1 —p2)(1 — p3)(1 — pa)(1 — ps) + p1papapa(l — ps)

1 4
+p1p2ps(1 — p3)(1 — pa) + p3paps(1 — p1)(1 — pa).
pr P4
Ps 1
R =S DR Sl | QRCEE™S
p2 P3 BCn] ecP(T,B)
) 3 |B|=0 mod 2

1
Py = g(l + 21Xy + T3Ty + T1T3T5 + ToT3Ts + T1T4Ts + ToTyTs + T1ToT3Ty)

(1 + xy79 + T34 — 212375 — ToX3Ty — T1TyT5 — TolyTy + T1T2T3T4 )

| =

P2 =

48




Application 1: Felsenstein zone

1 4
E[A] = p2s — p12
P P4
1
pas = < (1 — 2y — 232y — 212325 + ToXa5 + Ty XY L5 — TaXg 5 + Ty TaT3Ty)

Ps5 8
1

P2 P3 P12 = Q(] + 212 + 3Ty — T1T3T5 — TaX3T5 — T)TYTs — TaTyTs + T1TaT3Ty)
; 3

p1=ps=P,ps=p3=p5=0Q

ﬁ E[A] > 0 precisely if P? > Q(1 — Q)

Excercise: Solve the general case!

49

Some observations and further results

= MP is inconsistent when #=4. Lengths of edges can be arbitrarily small.
= But if the edge lengths are clock-like it is consistent for #»=4

= For #=5 this inconsistency occurs even at with clock-like branch lengths.
u It’s worse when #=0!

m For nlarge enough MP can even be inconsistent when all edges have the
same length (not clock-like).

i C e

binary phylogenetic trees provided all edges have equal length of / (or less).

Conjecture: For some />0, MP is consistent on all

50

Application 2: Phylogenetic invariants

1 4
p1 P4
Ps5 . n—1
A Hadamard matrix of rank 2
P2 P3
2

T1T2x3x4 = (T122)(T324)

(33156'3565)(332334565) = (171$4$U5)($U2563$C5)

These correspond to two quadratic equations in the p4 values.

51

Application 3: Homoplasy-rich characters are always
unlikely...

P(f) < 27Ps(fST)
Why?

This is best possible  sup P(f) — 2—ps(f,T)

For any binary character data, the maximum likelihood tree(s) under the
2-state model, in with edge lengths chosen freely for each character are
precisely the maximum parsimony tree(s).

Similar for the r-state symmetric model (but Menger’s argument no longetr works!)s,




Statistically consistent methods for inferring a tree

Corrected distances

ML (maximum likehood)
o RAxML, PhyML, etc

0 Usual version is ‘average ML

Bayesian methods
o MrBayes, '
o BEAST

o Can comparérsﬁpport for hypotheses by averaging over all
trees

Statistically consistent methods

Is ML more accurate on all trees than MP?

1 4
p1 P4
Ps
P2 P3
2 3

“Farris Tree”
lim lim P(ML returns correct tree) = 1

L—o00 k—oo

1
lim lim P(ML returns correct tree) < —
k—00 L—00 2

The dangers of doing simulations....

54

Problems for reconstructing a tree
(even when the model is known and nice!)

Short interior edges A

Long edges

Many taxa (7)

55

Finite state models: short and long edges

k = sequence length needed to accurately
A reconstruct this tree

as T grows, k grows at rate exp(cT)

What about is t shrinks?

B D
Finite state model a ﬁ
as t — 0, k grows at rate t% ~/

but if T'=t then as t — 0, k grows at the rate %

56




Examples of deep and controversial
phylogenetic resolutions

Origin of metazoa

(~550-600 mya)

Origin of photosynthesis
(>2.5 bya)

Rooting the ‘tree’ of life
(~3.5 bya)

Deep divergences

1
k=0 (5

‘ L—© (M)
n

1
Question: How do these two factors L = © exp(CT) )
(short, long) interact? €

58

cat

How does the required sequence length (for tree
reconstruction) depend on 7 (=# taxa)?

mushroom daisy rice bacteria
Cat ........ ACCCGTCGTT....
Daisy .... CACCATCGTT...
Rice....... AACCAGCGTT...

#data-sets of k characters for n species, over an r-letter alphabet

= (r")F = pn* b(n) = 2(n1os(m)

=k > c-log(n)

Fine, but what about 'evolved' data

Suppose we evolve k characters independently on a tree m

under a 2-state symmetric model with (87 6

Theorem 1 [Erdos, PL, Szekeley, S, Warnow (1999)]

For some (‘stringy’) trees accurate tree reconstruction is possible with k& = © (log(n))

p(e) € [p, P] for every edge e

But for other (‘bushy’) trees our approach required k — © (nt)

However, for almost all trees it suffices to have: k = © (log(n)s)

Conjecture: Provided that P < % (1 - %
accurate tree reconsttuction can be achieved for ALL trees with & = ©(log(n))

U Theorem 2 [Daskalakis, Mossel, Roch (2011)]

This conjecture holds (and is tight)




Can adding more taxa help (even if you don’t care about them)?

Add taxa build tree ignore the added taxa

Sequence length required to find the correct tree (on the
subset of species) can be reduced logarithmically this way

61

Specialist topic: a model that generates homoplasy-
free data

e — p(e)

time

1234586 6 7

Kimura and Crow’s “infinite alleles” model.
The probability of any partition can be computed via Mobius inversion (Evans et al. 2004) 62

How many such ‘evolved' characters are needed?

P = max{p(e)},p = min{p(e) : e is interior}

Theorem [Mossel +S, 2004]

For P < %, the number of characters k needed to corrected reconstruct T'
(w.p. >1—¢) is: k:c-@
= Proof relies on combinatorial arguments, and
basic property of branching processes.

u P>, k changes to poly(x).

63

Does finding a tree need more data than to ‘test’ if a given
one is correct? -

u Reconstructing:

o Given k characters generated by (unknown) tree T:

= Weneed log(n) sites for finite-state and infinite state models to reconstruct 7.

u Testing:

o Given data, and candidate tree, T,,is 7= 17,7

Theorem
0 For finite-state data we still need log(#) sites to test
O But for infinite-state data a constant(!) number of sites suffices
* Teasing:
Given data, and that ‘T =T, or T5’, which is tree is it?

THE END
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‘Yule model

Number of Number of genera i i E i

species in genus | Observed | Calculated E i

1 131 . ol i

2 35 g i

3 2 AR =

1 I 2 - i

5 16 = i i

6 9 i i

- s . Ll

X N

g 13

,“” 3 From 'Branching processes in biology' Kimmel and Axelrod
14
| — —1—g/A

P(N =n)~n~179/
Total 208 | 2030

'G. U. Yule, A mathematical theory of evolution. Based on the Conclusions of Dr. J.C.
Willis, F.R.S. Phil. Trans. Roy. Soc. 213 (1925), 21-87. 67

Where do evolutionary
trees comes from?

%\“Q&

time

Forestry Uit men treefelling in Soutbern lialy

68




Another viewpoint

time

Simplest speciation model:
pure birth (constant rate)

Yule (pure birth) model

Each lineage gives birth independently at
some constant rate A

Grow for time ¢, or till it has » leaves, or
condition on both » and ¢

s%

Kingman coalescent trees

-0.01

70

Birth-death models: simplest case (constant
birth-death rates) )\ = constant, ;1 = constant

present \—/4& —\c -4 — — — — [, -\ — a b e d c
Itime -
“Reconstructed tree” Sean Nee
E(N;) = e 11
The ‘reconstructed’ tree can be
conditioned on
The ‘pull of the present’ and _ A

. [N - A

n, or tor ‘push of the past’ By, 74
* pand ? &N
e tand the event that »>0 Sl LA

71

“Pull of the present/push of the past”

A = constant, y = constant

— w/ E(N;) = e

“Reconstructed tree”

1000
Sean Nee
b-d
3 Jt
g 100 b
=
= PHILOSOPHICAL THE (
- TRANsacTions THE ROYAL
s o1 SOCIETY
£
3 10 1 Rates can be from
= Phylogenies
a0 oe. Ewand C. Mokmes. Acert M. May a3 Pad M. Marvey
P Tegns. R Soc Long 81994 344, don: 10.1008/r5D, 1994 0054, putiished 29 Aprl 1994
b-d
0 2 4 6 8 10

time 72




A nice (but also annoying) property of
constant b-d models Q

Two extensions where 77’5 just so lovely....

present \of -\ /& - - - - f;-\ - ‘ : ’
Ttimc \ { { ¢ s ‘/, :
“Reconstructed tree” ’\ > ’ Amaury Tanja
X / Lambert Stadler
f = fraction sampled at present \
X N
X |V J— -
A2 p2 1= f) time \ A= )\(t),ILL—/J/(t,CL)
Conditioning on # (or # and /) the reconstructed tree has the same
distribution as complete sampling with adjusted birth-death rates
A= fA f=p—M1-f) A=At,N),u=u(t,N,a)
73 74
Less is more... Real trees A=At N), 1= p(t,N,a)
“S\. { { ‘ ;] \‘2 A ¥ S ({ ; 'iy‘, / Ttime - ok /////*/v 3 = () Markov moxlel
C " = o //
\ it Evolutionary tree Reconstructed tree % 30| ) ///_/’
\\' . ANE ‘,///*// ar - #=-10
Ls } . et ,/*/ . T
\ A=At,N),p=p(t,N,a) ORI k
T ¥ */'//f : *
3k £ ok B k% * * *
Proposition: [Aldous; Lambert and Stadler] B U= Ta DA medd
10 3 100 30

All such models (as well as Kingman’s coalescent model!) lead to same
distribution on the reconstructed tree (ignoring branch lengths) — namely the
Yule-Harding distribution (lecture 1)

75

Size of parent clade
FIG. 3. Splits in the tree of Chase et al (1993), and approvimate median
lines for the beta-splitting model. Note the log-log scale.

From: Aldous, D. (2001). Stochastic Models and Descriptive Statistics for Phylogenetic Trees, from Yule to Today. Statistical Science 16:
23-34 76




Life gets even better if we are slightly less general

time ' '\" o )\ - A(t)7 /J’ — ILL(t7 a’)

77

Models where the reconstructed tree can be
described by a ‘coalescent point process’
A= At), u = p(t,a)

llll ‘
H,
n " Hs - 4 Allows
I A ' conditioning on 7, ¢ or
Hs nand #
H,,H,,..., ii.d. random variables with some distribution F'

Example: A pure-birth process 1 — F(t) = [P(H > t) — M

How long are the branches?

Speciation rate = 1/million years

so the expected value of L equals
1 million years

79

The bus ‘paradox’

"It wouldn't hurt to wait around for a little while.”

You turn up at a bus stop, with no idea when the next bus will
arrive.

If buses arrive regularly every 20 mins what is your expected
waiting time?

If buses arrive randomly every 20 mins what is your expected
waiting time?

80




Length of a randomly selected branch

"It wouldn't hurt to wait around for a little while.”

Expected value of L is 1 million years

81

A pure-birth tree evolves with each lineage randomly TW

Quiz

generating a new lineage on average once every 1
million years (no extinction).

Look at the tree when it has 100 species T
What is the expected length of a randomly selected

extant branch? s
Answer 1: 1 million years? x T
Answer 2: 500,000 years? v

82

The tree puzzle (T):

\ \
\ Y

\ \ /

tree reaches n+1 = 5 tips

What about ancestral lineages? 83

Solution 1. Conditioning on 7:
Grow tree till it has #+1 leaves (then go back 1 second!)
p, = average length of the # pendant edges

7, = average length of the #-1 internal edges

Theorem:

1

]E[pn] = E[Zn] = ﬁ

same for both!

84




The tree puzzle (II):

A tree evolves with each lineage randomly generating a new lineage on
average once every 1 million years (no extinction).

Look at the tree after 500 million years

What is the expected length of a randomly selected (extant or ancestral)
lineage?

Answer 1: 1 million years?

Answer 2: 500,000 years? V

85

Solution 2: Conditioning on #

In a binary Yule tree, grown for time 7 let

(9 = expected length of the average pendant edge
#(#) = expected length of the average interior edge

Theorem: ; C;f = E[N;] = 2eM
E[p(t)] = 55 +O(e™) a_
. 1 B dt
E[z(t)]:ﬁ—l—O(e t) L—I4+P
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What about a ‘specific’ edge b o
(e.g. a ‘root edge’)? 4

A tree evolves with each lineage randomly generating A
a new lineage on average once every 1 million
years (no extinction).

Look at the tree when it first has 100 species

What is the expected length of a randomly selected
root lineage?

Answer 1: 1 million years?
E[Lln]=l(1—l)
A

n

Answer 2: 500,000 years?

Answer 3: 990,000 years VY 7

The tree puzzle (III):

Now suppose extinction occurs at the same rate as speciation (one per
one million years). Suppose we observe a tree today that has 100
species.

What is the expected length of a randomly selected extant lineage?
Answer 1: 1 million years?

Answer 2: 500,000 years? ¥
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What do ‘real’ trees look like?

0 Current plant and animal diversity preserves at most 1-2% of
the species that have existed over the past 600 my . [Erwim,
PNAS 2008 ].

0 Set extinction rate = speciation rate?

0 Problem: If extinction rate =speciation rate the tree is
guaranteed to eventually die out eventually!

0 Solution?: Condition on the tree not dying out (or having n
species today)

89

Less ‘realistic models’ can fit the data better:

0 Real reconstructed trees generally look more like Yule trees with
zero extinction rate than birth-death trees with extinction rate =
speciation rate (conditioned on n species today)

[McPeek (2008) Amer. Natur. 172: E270-284:

Analysed 245 chordate, arthropod, mollusk, and magnoliophyte
trees]

90

Predicting future phylogenetic diversity loss

Question.

If a random 10% of species from some clade
were to disappear in the next 100 years due to
current high rates of extinction, how much
evolutionary heritage would be lost?

Prediction is very cﬁj%uft, €s ecz’a@ about the-

ﬂmm Niels Bohr, Danish physicist (1885-1962)
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Predict the proportion of diversity that remains if each leaf survives with
independently with probability .




“..80 percent of the underlying tree can
survive even when approximately 95
percent of species are lost.” Nee and
May, Science, 1997

For Yule model, let 77,(p) be the expected phylogenetic diversity in a Yule
tree, grown for time t, under a ‘field of bullets’ model with taxon survival
probability p.

[note 2 random processes]

. 7, ( Expected future diversit
a(p) =lim, = p) w(p) = xpected future diversity

z,(1) - Expected present diversity

Ru

0.0 0.2 04 06

95

§ 7 Theorem:
—-plog(p)
) o Y
I-p
93 n,(p»:”f::Mu”[flogwmfme'”] 94
A more recent result (2013):
—plog(p)
u(p) = 1, “..80 percent of the underlying tree can Expected future diversity
P survive even when approximately 95 . u(p)= Expected prosent diversit
percent of species are lost.” Nee * Instead of ratio of expected values, what pected prese crsity
o and May, Science, 1997 about expected value of ‘biodiversity ratio”? [ future diversity
------------ present diversity
£ 21 o
g «_84 percent of the underlying tree is ¢ What about actual distribution of the
2 I lost when approximately 95ype?~cenf of biodiversity ratio? And at finite times? future d‘_VerSIFy
species are lost.” present diversity
g T T T T 1

* What about more general speciation-
extinction models?




Theorem |birth rate = A(#), extinction rate = u(%,a)|

As the number 7 of species in a random tree of height T grows,
the biodiversity ratio converges converges almost sutely to a
constant T{(p).

1—Fr(t)
Jo et

I = Fr)dt

mr(p) =

future diversity

————7,(p) | —"—=N(0,0%)
present diversity

Specialist topic: Ancestral state reconstruction

Minimum evolution (parsimony’): @ @ o

Need tree topology but not
branch lengths or model

Majority Rule

Don’t even need tree
Definition:

For a method M that estimates the ancestral
state at a node v of a tree from leaf data, and a
model of character state change, the Accuracy
Need tree, branch lengths and model e

Maximum likelihood

Pr(M(leaf data)= state of v]

98

Which is more accurate for root state prediction from an
‘evolved’ character: parsimony or majority?

2 —n— —n—

99

Q2. Is it easier to estimate the ancestral state at the root of the tree,
or an interior node?

t/2

t/2

e
(b)

Root state can be estimated with low precision but
all other interior nodes can be

Root state can be estimated with high precision but
no other node can be

100




What happens on a ‘typical’ tree?

Grow a Yule (pure-birth) tree at
speciation rate A for time ¢ oAb S LAl AL

Evolve a binary state from the root to t
the tips binary character (mutation rate m) \

X

Estimate the root state from the tip states using maximum parsimony.
. . . 1
Let P, = probability our estimate is correct F, =S, + EE’

Question: what happens to P, as ¢ becomes large?

101

Dynamical system

‘iff =—~(A+m)S, + mD, + A(S} +2S,E,);
t
b,

dt

=—(A+m)D, + mS, + MD} +2D,E,);

dE,
dt

m = mutation rate (of states),
A = birth rate (of tree)

=-AE,+ ME} +2S,D,);

B=S+2E,
2
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'six is (just) enough'’:

speciation rate

If ————— <6, then we lose all information about the
mutation rate
ancestral state as ¢ grows (min evolution).
speciation rate
If —————— >6,then wedon’t
mutation rate

- P, > lim P, = f(z) where
t— 00

f(z) = % (14 VT =62)(1 = 22))

0 002 004 006 008 07 092 014 016 018 x = mutation rate/speciation rate
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Comparisons (simulations)

1
0.9 ——
08
—— PARSIMON
P 07 " MAJORITY
UKELIHO
06
05 —
04
A P O RN e AR R D P P D
FEF I T ISR T F P TS
1
- Hanson-Smith, V., Kolaczkowski, B. and Thornton, ].W. (2010). Robustness of ancestral 104

sequence reconstruction to phylogenetic uncertainty. Mol. Biol. Evol. 27: 1988-99,




W}k@é—iﬁ?&%Bngomé’eEw;@l?state reconstruction

speciation rate

————— <4, then any method loses a// information about the
mutation rate

ancestral state as t grows (we’ll see why in 10 mins!).

Theorem [Mossel +S, 2014]

1 1 4dm
Pr(M t — 4+ - (1-—
r(MR correct) > 5 + 5 3

THE END 108

Specialist topic 2: Modelling lateral gene transfer (LGT)

Ancestral genome sizes specify the minimum rate of
lateral gene transfer during prokaryote evolution
I3
-

fi
u In prokaryotes, if nearly all genes have been
transferred between lineages many times is it
meaninsless to talk about a species ‘tree’?
Biology Direct ot v

Phylogenetic modeling of lateral gene transfer
Review [Open Access] reconstructs the pattern and relative timing
@aryotic evolution and the tre e are two different things of spe(ia(ions
c Bapleste® aurcen A O'Malley?, G Beiko®, Marc Ercshefsky?,
Laura Franklin-Hall®, Q Lapointe?,
gan, Yan Boucher” and William Martin®

Gongoly 1 S2080, Rastion Bounkau ™, Sophie 5. Abby™", Ui Tanwier*™, and Vincen Sacbior>!

The tree of one percent .
Tal Dagan and William Martin Lateral gene transfer as a support for the tree of life

Sophle 5. Abby"*“*, Lrk Tarrier* ", Mascio Cowy*”, and Viecert Dbl

106

Question:

Suppose we have some ‘species tree’ (e.g. the tree of bacterial cell
divisions). Under a model of independent random LGT events when can
we recover this tree from the associated gene trees.

Possibilities for the LGT rates in the model:

A Likelihood Framework to Measure Horizontal Gene Transfer

Rate of transfer from x to y is constant Simone Linz,* Achim Radtke,* and Ardt von Haescler? 3§
A e 5 8

Rate of transfer from x to y depends on the branches .

Rate of transfer from x to y depends on d(x,y) and/or time 4

In all cases, the number of LGT events in the tree
has a Poisson distribution

107

Can we reconstruct a tree under rampant LGT?

Theorem [c.f also Roch and Snir 2013]

Triplet-based (R*) tree reconstruction is a statistically consistent estimator of
the species tree under the random LGT model if the expected number G of
LGTs per gene is ‘not too high’.

= Example: for Yule trees with n leaves the following
n—2
G< 7= i
~ 3In(n/2) o —

Particular case: [S,Linz, Huson, Sanderson]

Take n=200 (Yule-shape tree), and suppose each gene is transferred on
average 10 times. Then the species tree is identifiable from sufficiently
many gene trees.
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Can we reconstruct a tree under rampant LGT?

Theorem 1 [Roch and Snir, 2013] ., = |

Under the bounded rates (e.g. Yule model), it is possible to reconstruct
the topology of a phylogenetic tree for # taxa wh.p. from N =
Q(log(n)) gene tree topologies if the expected number of LGT
transfers is no more than a constant times #/log().

Theorem 2

Under the Yule model, it is not possible to reconstruct the
= topology of a phylogenetic tree wh.p. from NN gene trees if
the expected number of LGT events is more than €(z log(I\))

Roch, S., Snir, S, 2013. Recovering the tree-like trend of evolution despite
extensive lateral genetic transfer: a probabilistic analysis. J. Comput. Biol. 20 109
(2),93-112.

Proportion families with LGT 0.3 substitutionsisite

Lateral gene transfer as a support fov the tree of life

e Tarmior* %, Mamcko o™, and Vincant Dautin*™

Sophie 5. Abby™

o, |

"’///

\\:/ _/.-:» 7 .rwu “‘\'\ \\\\“\E\:){;

THE END 1

Lectures 9-10: Phylogenetic Networks I

Phylogenetic
Networks

PHYLOGENETIC NETWORKS

MORE POWERFUL THAN YOU THINK

David Morrison

ALOGICAL

. GENE
orld of Pl G
Mlke Steel World of HYLObEhE {E/ORKS N

\Il\\T
ON

from F. Delsuc and N. Lartillot y
ALLAN

Winthrop lectures, 2014 WILSON
@ ceNTRE

Why networks?

w Excplicit networks:

o  Species evolution is sometimes reticulate due to:
= Hybrid species
= Genetic exchange (eg. Lateral gene transfer)

= Endosymbiosis

o Usually represented by rooted networks

w [mplicit networks:

o shows conflicting signals in the data

(even if evolution is tree-like)
= SplitsGraphs
= Neighbor-Net (very widely used)
=  Endosymbiosis

o Usually represented by unrooted networks

Metazoan phylogeny: From Huson and Bryant (2006).

http://phylonetworks.blogspot.co.nz/2012/06/rooted-networks- of genetic networks in
for-exploratory-data.html studies, Mol. Biol. Evol.




Trees vs networks

Reticulate evolution

However, sometimes inheritance is from multiple ancestors, because of reticulate
events, e.g:

1) Hybrid speciation
2) Lateral gene transfer

3) Recombination

H. praecox
H. debilis

H. neglectus
H. petiolaris

H. anomalus ——————»

H. annuus

H. argophyl/u\

H. bolanderi
H. exilis

Ewkarya Archaca

Trees or networks? fi

S A “molecular phylogeneticists will have failed to find
the ‘true tree’ not because their methods are
inadequate or because they have chosen the
wrong genes, but because the history of

)

life cannot properly be represented as a tree.’
W. F. Doolittle, 1999

Directed graphs: Basics

In any directed graph D = (I, A) /
sum of out-degrees = /
sum of in-degrees = |A]. @

Definition: D = (I,A) is acyelic if it has no directed cycles (“D.A.G”)

@%@/f 3\5
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Phylogenetic network:

= A phylogenetic network on X is an acyclic network
with a single (root) vertex of in-degree 0, X = set of
vertices of out-degree 0, and no vertices with

in-degree= out-degree=1.
= Unlike phylogenetic trees there are an infinite number of
phylogenetic networks on X.

u Example: Cluster networks

116




Three types of network:

Tree child: each non-leaf vertex has at least one non-reticulate child
(=> Tree path property)
a b c d

Regular:  isomorphic to the Hasse diagram of its clusters A network that s not tree-child

Normal:  tree child, no vertices of out-degree 1, no redundant arcs
Tree child
Theorem 1: Every normal network is regular. Notmal
Regular
Theotem 2: If N=(V, A) is a normal network, then:
(i) the number r of reticulate vertices is at most n — 1
. 9

(“) |V‘ S (n —-n+ 1)/2 c.f regular

Willson, S.J. 2010. Properties of normal phylogenetic networks, Bulletin of

Mathematical Biology 72: 340-358. u7

Binary phylogenetic networks

* Root has out-degree 2

* A vertex with out-degree 2 has in-degree 1
(and the set of vertices of out-degree 0 is X)

* All other vertices either have in-degree 1 and out-degree 2 or
in-degree 2 and out-degree 1 (reticulate vertices)

n = |X|,r = # reticulate vertices, t = # tree vertices

Vi=n+t+r+1 [V|=2t+3

t=mr—=2 |A| =3r+2n—2
[ 4] = V] +1=r

Why?

r+2t+2=A=2r+t+n

ouT N

118

Binary phylogenetic networks

Recall (Willson):
If N=(V, A) is a normal network, then:
(i) the number r of reticulate vertices is at most n — 1

(i) V| < (n® —n+1)/2

Theorem:

If N = (I",.A) is a tree-child binary network, then:
(i) the number rof reticulate vertices is at most 7 — 1

(i) V| < 4n — 3

McDiarmid, Semple, Welsh (2014). Phylogenetic networks

that display a tree twice. Bull. Math. Biol. (in press). 119

Special classes of [binary] phylogenetic networks

/ \\
. . . . . / N\
A reticulation network is a binary phylogenetic , :
network whose arc set A is the disjoint union of a set %TX\ \
of reticulation arcs, and a / \
a b c d ¢

set A of tree arcs, and such that:

* Each reticulation arc ends at a reticulation vertex; PAN
* FEach reticulation vertex has at least one incoming L\ \\\
. . / N\
reticulation arc; A RN
. . : £\ _—
* Every interior vertex has at least one outgoing tree /TN, VY
a ) c ¢
arc. ,
N\
/N0 \
NN\
N\
N\

/ N\ \4- \’]

a b 120




Additional bells and whistles

A reticulation network is zzme-consistent if there is a ‘time-stamp’ function

t: V(N) — R=% such that for each arc (u,v)

t(u) = t(v) if (u,v) is a reticulation arc and t(u) < ¢(v) otherwise

“Level £” (if N is binary it is level £ if £ is the maximum number of
reticulations in any biconnected component of IN)
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Mathematical questions about phylogenetic networks

How many trees do they contain (display)?
Do these trees allow us to reconstruct the network?

Given two trees what is the simplest network that
contains them?

What about parsimony?

How many networks are there?

Tree ‘displayed’ by a network

Quiz: Is it easy or hard to determine if a given tree
is displayed by a given network?

Theorem: [van Iersel et al. 2010]
It is NP-hard, even for regular networks.

There is is a poly-time algorithm for tree-child binary networks and
normal networks (also level-k networks).

123

The set of all trees displayed by a network: Tr(IN)

»e
Observations ps
W

If N has rreticulation vertices, then IN displays at most 2" trees

N can have much fewer than 2" displayed trees (so one tree is
displayed several times). For example, this
network displays I, trees (I = Fibonacci number). <\

N\ \
\

Linz, S., St John, K., and Semple, C. (2013). Counting trees in a phylogenetic
network is #P-complete SIAM Journal on Computing, 42, 1768-1776.
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The set of all trees displayed by a network: Tr(IN)

Theorem 1%

If Nis normal and binary then IN displays exactly 27 trees.

Theorem 2%*¥

Let N be a binary tree-child phylogenetic network on X.
There is an O(#?) algorithm (#» =|X|) to decide whether or not N
displays a rooted phylogenetic tree with leaf set X twice.

*Special case of Corollary 3.4 of Tree-average distances on certain phylogenetic networks **Phylogenetic networks that display a tree twigg
have their weights uniquely determined. Algorithms for Molecular Biology (2012) 7:13 Paul Cordue Simone Linz Charles Semple (submitted)

Does Tr1(IN) determine N?

Not in general? Some networks display the same set of trees

Example:

126

When does TAN)=Tr(M) imply N=M?

e
Theorem [Willson, 2011] Ol s

If Nis regulat (or normal) then Tr(NN) soa o 5 shmen
determines IN. O

v C albwans

Moreover, there is a poly-time algorithm Fig. 5. The mormal etk whih reuts o kg
. Maximal Chald with ir ;.ul the thiee Mos! common gene
. for reconstructing N from Tr(IN). woos ot daof 2

Regular networks are determined by their trees, IEEE/ACM Transactions on

Computational Biology and Bioinformatics 8 (2011) 785-796. 127

Hybridization number of two (binary) trees
./\i . \. /’ . . . / L 4 '// '/.\.
2 3 1 5 2 1

6 5 G 1 3

Given two binary phylogenetic X-trees T, T let:
h(T,T") = min{h(N) : N displays 7,7}
h(T,T')<n-2

Quiz: Is computing h(T,T’)
easy or hard?

h((V,4)) = [A] = [V +1
. N
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Relationship to tree-rearrangement operations

tSPR (rooted subtree prune and regraft)

0 P

b e C
b e C

drSPR(T7 T/) =1 h(T, T/) =1

How does this generalize? 129

Hybridization number of two (binary) trees

TI’ *p
/N /‘\
N -\ \ / //5\.

Maximum acyclic
agreement forest for

s
Tand T
P
d/.\o . . /k
1 2 3 1 5 6
T, T T 7, Lo
Theorem [Baroni, Gruenewald, Moulton, Semple 2005] b _ 4

h(Ta T,) = ma(Ta T/)

despr(T,T') = m(T, T") dvser(T,T") < h(T,T")

+ [Bordewich and Semple, 2004] h (7-, T/) S n — 2
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despr(T,T") < h(T,T")

How much less?

Theorem 1 RERE "
For all # >3, even there exist two f
binary phylogenetic X-trees with:
dispr(T,T') =2, and M(T,T") = n/2 " \\)\\
Theorem 2 “/1/«'&"; nt? B

For all # >3, there exist two binary phylogenetic X-trees
with:

WMT,T') — despr(T,T') =n—[2v/n ]

Moreover, this is sharp

Baroni, M., Grunewald, S., Moulton, V., and Semple, C. (2005). Bounding the number of hybridisation

events for a consistent evolutionary history. Journal of Mathematical Biology, 51, 171-182. 131
[Humphries, P.J. and Semple, C.]

Back to our question:

Quiz:  Is computing h(T,T’) *NP-hard (but there are algorithms
easy or hard?

based on max. agreement acyclic forest)

Grass (Poaceae) Data Set

n=30

h=8
time =19s

*Bordewich, M. and Semple, C. 2007. Computing the minimum number of hybridisation events for a
consistent evolutionary history. Discrete Applied Mathematics, 155:914-928.




Counting networks

Recall (lecture 1!):

rbln) ~ (2> _ gnlog, n+O(n)

Theorem [Mcdiarmid, Semple, Welsh 2014]

The number of tree-child (or normal) binary networks on #
leaves is

921 log, n+0O(n)

Almost all tree child (or normal) networks with 7 leaves have
(1+o(1))# reticulate vertices and (4+o(1))# vertices in total.

McDiarmid, C., Semple, C. and Welsh, D. (2014). Counting phylogenetic networks.
Annals of Combinatorics (in press). 133

Is a network just something you get by adding
edges to a phylogenetic tree?

Yes — for tree child networks

No — for some others — e.g. at right
(not tree-sibling)
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Challenges questions: (phylogenetic networks)

From
Leo van lersel Problem 1 Is the Hybridization Number problem
and Steven Kelk fixed-parameter tractable (FPT)?

Problem 2 Does there exist a polynomial-time 2-
approximation algorithm for MAF on two binary
trees?

Problem 3 Is there an FPT algorithm for finding a
level-k phylogenetic network consistent with a give

SN dense set of rooted triplets, if k is the parameter?
CENTRE

Winthrop lectures, 2014 135

Why networks?

Excplicit networks:

o  Species evolution is sometimes reticulate due to:
Hybrid species
Genetic exchange (eg. Lateral gene transfer) )
Endosymbiosis N

o Usually represented by rooted networks

Implicit networks:

o shows conflicting signals in the data
(even if evolution is tree-like)
SplitsGraphs
Neighbor-Net (very widely used)

Endosymbiosis

o Usually represented by unrooted networks

Metazoan phylogeny: From Huson and Bryant (2006).
- g -

http://phylonetworks.blogspot.co.nz/2012/06/rooted-networks- phylogenetic networks in
for-exploratory-data.html studies, Mol. Biol. Evol.




Implicit networks

= Two splits A, | B, and A, | B, of X are compatible,

if one of the following intersections is empty:

Al mAQ,Al ﬂBQ,Bl ﬁAQ,Bl ﬂBQ

Two incompatible splits

X4 Al Bl Xs

AZ
X
b, 6
X
X3
X, X

X7

137

Split Network

S1=1{a,b,cll{d,e, f)
Sy = {a,e, f}|{b,c,d}
Sz = {a, f)|{b,c,d,e}
Ss= la,b, flllc,d,e) ~

a c

b
(a) Split network N (b) Non-trivial splits (c) Split Sy = —b_L:".,::rl:
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Weakly compatible splits

The 3 splits are weakly compatible if at least one of the
white regions and at least one of the grey regions is empty
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Weakly compatible: Example and properties

= If 3 is weakly compatible then X has size O(#?).

m 2 is weakly compatible iff Q(2) has at most two
of the three possible resolutions of each quartet

» Connection to ‘weak hierarchies’

ANBNCe{ANnB,ANC,BNC}VA,B,C € W
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Split Decomposition [Bandelt and Dress]

Notice that a tree metric 4 can be written as

d= Z wydy

oceX(T)

d,(x,y) = 1 iff o separates x and y
else 0

Moreover, if | X|= 4 then for any d

d = Z Cody
ceW
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Split Decomposition [Bandelt and Dress]

Theorem: [Bandelt and Dress ~late 1980s]

Every distance function on a set X has a unique
representation of the form:

d= ) cody+6
ceW
where W is a weakly compatible set of X-splits
ce > 0 for all 0 € W and ¢ is ‘split prime’
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Example

Split network for primate lentiviruses from whole-
genome-based distances using split decomposition:

PLVlhoest

PLVvagm

PLVsmm PLVecol

PLVcpz
(Salemi et al, 2003)  prvsyk

Issues — large n, non-planarity
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Circular split system

Definition:
2 is circular if there is a circular

ordering of X so that each split in X is
of the form {xp, xpt1,..., 2 HX — {@p, Tpt1,. .., 24}

How hard is it to determine if X is circular?
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Circular split system implies weakly compatible

(but not conversely!)

= Example:

a d
T, T, € U(X). .

b e

S = S(T1) US(Ty) c
a d
o 2 is always weakly compatible
0 But not necessarily cyclic! e b
C
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“Outer-labeled planar” networks

{a:b;d)erh}l {Crf)g}

= Example {a,c,d,e,g, h}| b, [}
{a,C;E,gH {b,d,f;h}
{a,c,g}| {b,d,e, f,h}
{a,c,e, f,g}| {b,d,h} e
{a,e,h}| {b,c,d, [, g}
a 8.C
b a
{a,b}| {c,d,e, f,g h}
c f {a,b,c,d,e, f}| {g,h}
g {a.b.cpf,gphﬂ{d:E}
h {a,e,f,h}| {b,c,d, g}
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Cyclic split systems correspond to outer-labelled planar
networks

= Theorem A set of splits on X is cyclic if and only if it
can be represented by an outer-labeled planar network

“NeighborNet”

- Ceriodaphaia . ANOMOPODA
Simocephalus Daphnia

H
H
H
:
TH RANCHIOPODA
z

Leptestheria
CHELICERATA

ithobius  MYRIAPOD.
Lithobiu YRIAPODA e 1. kol

(Waegele and Meyer, 2007). 18S rRNA .

Split Networks from Trees

u Consensus splits (Holland et al, 2004)
a Input: Trees on identical taxon sets

0 Determine splits in more than X% of trees

a For >50%, result is compatible

= Consensus super splits
(Huson et al, 2004, Whitfield et al 2008)

a Input: Trees on overlapping taxon sets

0 Use Z-closure to complete partial splits
0 Use “distortion filter” to implement consensus methods
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Split Networks from Trees

" Splittnetwork for consensus splits on 106 gene trees for
yeast:

S. bayanus
S. castelli
C. albicans S- paradoxus

S. kudriavzevii S. bayanus

S. paradoxus

S. kudriavzevii

S. castelli

All C. albicans >5 %

S. cerevisiae S. cerevisiae

S. mikatae S. kluyveri S. mikatae S. kluyveri
S. kudriavzevii §. bayanus . ..
S. paradoxus S. castelli S pa;"S;i éc;,fgxavzevu S. bayanus

S. castelli

>30% S. cerevisiae C. albicans>50%
S. mikatae

S. mikatae S. kluyveri S. kluyveri

C. albicans —
S. cerevisiae

149 [Rokas et al, 2003, Holland et al, 2004]

Split Networks from Trees

Example:

= Super split network
obtained from 5 genes on .=
a total of 71 plant taxa

[Koch et al, MBE 2007]
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trnL insertion

trnF pseudogenes

e
o, —rssumiors HIOAND1 ]
oaisuop O8N0

Useful online resources

Online resources:

The Genealogical World of Phylogenetic Networks
phyloseminar.org

phylobabble
PhyloWiki

Animals

ALLAN
Winthrop lectures, 2014 WILSON
@ ceNTRE




