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Mike Steel  

Lecture 5: Subtree-based tree reconstruction 

Winthrop lectures, 2014 

“The analysis of large data sets could 
proceed by division into overlapping 
subsets which are classified separately and 
then recombined to provide a single 
classification” 
 
A.D. Gordon, (J. Classif. 1986) 

Outline 

 
!  Part 1:   Subtrees and supertrees 

!  Part 2:   Compatibility  
 
!  Part 3:   Defining sets 

 
"  20x   Head, shoulders, knees and toes 

!  Part 4:   Specialist topic: “decisiveness” 
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[Definition] A phylogenetic X–tree 
T displays a phylogenetic Y–tree, T ′ 
if T | Y either equals T ′ or is a 
resolution of that tree (i.e. all the 
splits of T ′ are contained in T | Y ). 

T

T 0

Counting trees II 
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Quiz:   
 
Suppose T is a binary phylogenetic-tree on leaf  set Y (subset of  X).  
How many binary phylogenetic X-trees display Y? 
 
 
 
 b(n)/b(k) n = |X|, k = |Y |

Rooted trees 



Display via quartet encodings 
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Given T 2 U(X) and T 0 2 U(Y ) (where Y ✓ X)

T displays T 0 () Q(T 0) ✓ Q(T ).

Similarly for rooted trees 
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Compatibility 

!  Example:  P ={12|34, 13|45, 14|26} 
1 

2 
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5 
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A set P of  trees is compatible if  there is a phylogenetic  
X-tree T that displays each tree 

If T is the only tree that displays each tree in P we say that P defines T. 
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Equivalence of character compatibility and 
(quartet) tree compatibility 

 
Lemma: Each character in C is homolasy-free on T if and only if T  

    displays all the quartets in Q(C). 

 
 

x xy|rs y 
z 

s 
r xz|rs 
t u 

xy|rt 

C 7! Q(C)

etc 
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How hard is it to tell if a set of trees is compatible? 

But it’s easy in some special cases….. 

In general it’s (NP)-hard, even for quartet trees 
(so character compatibility is too, by last slide!) 
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Special case 1: Trees have same leaf sets 

P = {T1, . . . , Tk} ✓ U(X)

P is compatible () ⌃ =
k[

i=1

⌃(Ti) is p.c.
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Special case 2: Two trees 

Given T1 and T2 on leaf sets X1, X2, let Y = X1 \X2

{T1, T2} is compatible () {T1|Y, T2|Y } is

More generally k trees, with k fixed (FPT) 
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Special case 3: Q quartets with 

Corollary:  
  

, every subset of Q of size 3 is

If |Q| =
✓
n

4

◆
then Q is compatible

 
 Recall from Part 2: [Colonius and Schultze 1981] 

Q = Q(T ) for some T 2 U(X) i↵ the following hold

ab|cd 2 Q ) ac|bd, ad|bc 62 Q
ab|cd 2 Q ) ab|ce 2 Q or ae|cd 2 Q.

|Q| =
✓
n

4

◆
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Special case 4: Rooted trees 

For a set R of rooted trees, there is a fast algorithm which determines 
whether or not R is compatible (and if so constructs a canonical tree 
AR) that displays each tree in R. 

 Same applies for a set of unrooted trees that each contain a fixed leaf x 



Aho et al tree (AR) [1981] 
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Our example from lecture 2: 

14 These display 12|5, 23|5, 34|1 and 45|1 – but there is no tree that does this! 

Properties of the Aho tree 
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AR is a minimal tree that displays R  
(but there can be exp. many such trees!) 
 
 
AR is a binary tree if  and only if  R defines a (that!) binary tree 
 
 
 
 
 

Proposition [Bryant] 
 

 AR  is the Adams consensus tree of  all the rooted X-trees 
 that display R 
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[Recall definition above] 
A collection of phylogenetic trees T1, . . . , Tk defines a phylogenetic X–tree T if  

 X is the union of the leaf sets of the trees T1, . . . , Tk and  

 there exists one, and only one phylogenetic X–tree that displays these trees,  and 
this tree is T. 

5

4
3

1

2
6 

T 



The nice story: Rooted trees 

!  R defines T if and only if every interior edge of T is 
‘distinguished’ by some rooted triplet ab|c from R 
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PIC 

18 

The unrooted case (more interesting…) 

!  Definition:  For a binary phylogenetic tree T, a quartet tree xy|wz 
distinguishes an interior edge e={u,v} of T if T displays xy|wz and 
and e is  the only edge shared by the the paths from x to w and y to z 

Observation:   If Q defines T then T is binary and  every 
interior edge of T is distinguished by at least one 
quaretfrom Q.  

v u 

x 

y 

w 

z 
T 

So |Q| ≥ n− 3

19 

1 2 

3 

4 

6 

5 

Warning: 
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 Q ={12|45, 56|23, 34|16} distinguishes each interior edge 
 of the tree: 

and also                                         ! 
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Theorem [Magnus Bordewich PhD thesis (2003)] 
 
The set of  rooted phylogenetic trees that display a set of  
rooted trees is connected under (rooted) NNI operations. 
  

This does not hold for 
unrooted trees! 

‘Islands’ in NNI (rooted) tree space 

1 2 

3 

4 

6 

5 

6 1 

2 

3 

5 

4 
 Q ={12|45, 56|23, 34|16}  
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Sufficient condition for Q to define T: 

!  Suppose Q is compatible and distinguishes every interior edge of a 
binary phylogenetic X-tree T.   

 
Proposition:  If there is an element of X that is a leaf of every tree in Q 

then Q defines T.  [why?] 
 
Corollary: 
There are subsets of Q(T) that define T of size n-3 (n =|X|) 
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The Böcker-Dress theorem: 

Recall if  Q defines a tree then 
 
 
Definition:  A set Q of quartet trees is “good” if  
(i) Q defines a phylogenetic tree, and  
(ii) exc(Q) = 0  
 
Theorem  
[Böcker, Dress 1999; Grünewald 2012]   
Any good set of (>2) quartets is the  
disjoint union of precisely two good sets  

L(Q)− 3− |Q|  0

exc(Q)

Observations 

 
!  Determining if Q defines a phylogenetic tree is NP-hard1 

!  Determining if Q is ‘good’ is easy. 

!  Determining if Q contains within it an (unknown) ‘good’ subset is too! 

!  Examples of ‘good’ sets include the ‘linked quartet systems’ (E. Price 
and J. Rusinko, 2014). 
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Definition:  A set Q of quartet trees is 
“good” if  

(i) Q defines a phylogenetic tree, and  
(ii) exc(Q) = 0  

1Maria Luisa Bonet, Simone Linz, and Katherine St. John (2012),  
24 

Key idea(s) in the proof of the B+D theorem: 
 Slim sets; ‘patchworks’ 

 
!  Grünewald’s proof relies on a strong (and suprising) sufficient 

condition for a set P of phylogenetic trees to be definitive:  

Gruenewald, S. (2012) Slim sets of binary trees Original Research Article 
Journal of Combinatorial Theory, Series A, Volume 119(2): 323-330 

exc(P) = |L(P)| � 3�
X

T2P
|Eint(T )|

Theorem:  
 Every slim set of  binary phylogenetic trees is compatible. 

P is slim if exc(P 0) ≥ 0 for every non-empty subset P 0 ✓ P



Quesiton: If Q defines a phylogenetic tree, T, does it 
always contain an excess-free subset that defines T? 
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A minimum defining set of  quartets has size n-3. 
 
But how big can minimal defining set be? 

Q = {12|35, 24|57, 13|47, 34|56, 15|67}

But how big can minimal defining set be? 
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1
4 (n

2 � 4n+ 3) and n3

Theorem: [Dietrich, M., McCartin, C., and Semple, C. (2012)]  

Conjecture:  Quadratic is the actual order! 

The largest minimal defining set of quartet trees on n leaves has size between:

Supertree methods 

!  Given different (usually incompatible) phylogenetic trees on 
overlapping sets of species we want to combine them into a tree that 
classifies all the species. 

 
!  Several methods. The main one in use is MRP (‘matrix recoding with 

parsimony’). 
 
!  Any supertree method can be used as a consensus method:  

"  Bryant’s result (lecture 3) implies that any MRP tree refines the strict consensus 
tree 
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Quiz time…. 

!  Is there a supertree method for rooted trees with this property: 
"  If every tree displays ab|c then the supertree does too. 

!  Is there a supertree method for unrooted trees with this property:  
"  If every tree displays ab|cd then the supertree does too. 

28 
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!  Special Topic: Decisiveness 
 

Michelle McMahon                          Michael Sanderson Group Taxa Loci % 
Missing 

Citation 

Metazoa 77 150 55 Dunn et al. 2008 

Papilionoid 
legumes 

2228 39 96 McMahon and 
Sanderson 2006 

Asterales 4954 5 91 Smith et al. 2009 

Eukaryotes 73060 13  92 Goloboff et al. 
2009 
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Taxon coverage pattern 

a" x" x"
b" x" x"
c" x" x"
d" x"
e" x"

Two taxon sets: {a,b,c,d} 
and {a,b,c,e}!

Gene1" Gene2"

="{{a,b,c,d},{a,b,c,e}}"

!  Definition: Decisiveness (for T): 
For a collection S = {Y1, . . . , Yk} of subsets of X, with union X,  S is 

decisive for a tree T provided that T | Y1, . . . , T | Yk defines T. 
!

i.e. T is the only tree that displays T|Y1,….,T|Yk!

!  Definition: (Global decisiveness) 
A collection S = {Y1, . . . , Yk} of subsets of X,  is phylogenetically 
decisive if it is decisive for every phylogenetic X-tree.  

Definitions (“decisiveness”) 
a x x 
b x x 
c x x 
d x 
e x 

e 

a b c 

d b 

a c d 

e 

There are 6, like that below, 
where the taxon coverage is 
decisive 

...and 9, like that below, 
where it is not decisive 

Of the 15 possible binary 
unrooted trees for this 
data set... 

Not phylogenetically decisive (for all trees) 



a x x x x 
b x x x 
c x x x 
d x x x 
e x x x 

Phylogenetically decisive  
          (for all trees) 

..but not sufficient! 

Necessary condition:  
Why? 

Example [from Peter Humphries, 2008]  

!  8 taxa:  1,2,3,…,8 
!  All 4-element subsets that contain {1,2},  

 or {3,4}, or {5,6} or {7,8}.  
!  Each column has 50% coverage. 
   

Theorem [S+Sanderson 2010]:     

S is phylogenetically decisive ⇔ S satisfies the 4-way partition 
property* for X. 

*For all partitions of X into four parts: 

a1 

a2 

a4 

a3 

there exists  representative 
a1, a2, a3, a4  from each 
block: 

 with {a1, a2, a3, a4} ⊆ Yi for 
some Yi ∈ S   

X 

Examples 
a�

b�c�
d�e�

a�
b�c�
d�e�

a" x" x"
b" x" x"
c" x" x"
d" x"
e" x"



Complexity of determining decisiveness? 

 
!  [cf. Manuel Bodirsky s `No rainbow colouring problem  

 for 3-partitions] 

 
!  Theorem [June 15, 2012, Mareike Fischer] 

There is an O(n16k) algorithm for determining  
phylogenetic decisiveness! 

!  THE END 38 

Mike Steel  

Lecture 6: Stochastic models I 

from F. Delsuc and N. Lartillot  

Winthrop lectures, 2014 

Outline 

 
!  Part 1:   Why models? 
 

!  Part 2:   Markov processes on trees 
 
!  Part 3:   Statistical methods for inference 

 
"  20x pushups 

!  Part 4:  Specialist topic: Ancestral state reconstruction 
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Why models?   

Genetic characters ‘evolve’ on a (gene) tree under some random process. 

The gene tree is also random (even conditional on the species tree), due to 
‘lineage sorting’ (or LGT). 

Some questions:  

  Will existing methods (parsimony etc) recover the correct tree?  

  If  not, can can approaches do so (e.g. corrections, ML, Bayesian 
methods)? 

  How much data do we need (to find a tree, or branch length, or resolve a 
polytomy or estimate an ancestral states) accurately? 
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Example: The “Felsenstein Zone” (1978) 

Joseph Felsenstein 

A           B    C            D 

42 

Does it happen? 

J. Huelsenbeck 1998: Is the 
Felsenstein Zone a fly trap? 

43 

Example 2 (process changes across a tree) 

18S rRNA 
44 

  
Simplest model:  2-state symmetric model 

↵ �yy
r 

A

B

C

D

p =
1

2
(1� exp(�2rt))

pe =
1

2
(1� exp(�2le))

le = rete

le = �1

2
log(1� 2pe)

p = probability initial and final state are di↵erent
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Simplest model:  2-state symmetric model 

↵ �yy
r 

A

B

C

D
pe =

1

2
(1� exp(�2le))

le = rete

P(f(x) 6= f(y)) =
1

2
(1−

Y

e2P

(1− 2pe))

Path P connecting two vertices of x, y of T :

le = �1

2
log(1� 2pe)
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Remarks 

↵ �yy
r 

A

B

C

D
 
Reversibility 
 
Change events on edges are independent  
 
(more generally, change events on paths are 
independent if  the paths are edge-disjoint). 
 
The 2p version of  the model 

Alternative ways to view the 2-state model 
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pA = P({x : f(x) 6= f(n)} = A)

Discrete fourier analysis for the 2-state model 

48 

xi = 1� 2pi



Application 1: Felsenstein zone 
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Exercise: Solve the general case! 

p1 = p4 = P, p2 = p3 = p5 = Q

!  MP is inconsistent when n=4.  Lengths of edges can be arbitrarily small. 
!  But if the edge lengths are clock-like it is consistent for n=4 
!  For n=5 this inconsistency occurs even at with clock-like branch lengths. 
!  It’s worse when n=6! 
!  For n large enough MP can even be inconsistent when all edges have the 

same length (not clock-like). 

                                     Conjecture: For some l >0, MP is consistent on all 
binary phylogenetic trees provided all edges have equal length of l (or less). 
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Some observations and further results 

Application 2: Phylogenetic invariants 

51 

x1x2x3x4 = (x1x2)(x3x4)

(x1x3x5)(x2x4x5) = (x1x4x5)(x2x3x5)

A Hadamard matrix of rank 2n�1

These correspond to two quadratic equations in the pA values.

Application 3: Homoplasy-rich characters are always 
unlikely… 
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Why? 
 

For any binary character data, the maximum likelihood tree(s) under the 
2-state model, in with edge lengths chosen freely for each character are 
precisely the maximum parsimony tree(s). 
 
 
Similar for the  r-state symmetric  model (but Menger’s argument no longer works!)  

This is best possible 

P(f)  2�ps(f,T )

sup
0<l⇤<1

P(f) = 2−ps(f,T )



Statistically consistent methods for inferring a tree 

!  Corrected distances 

!  ML (maximum likehood) 
"  RAxML, PhyML, etc 
"  Usual version is ‘average ML’ 

!  Bayesian methods  
"  MrBayes,  
"  BEAST 
"  Can compare support for hypotheses by averaging over all 

trees 
53 

Statistically consistent methods 

!  Is ML more accurate on all trees than MP? 

 
 
 
 

       
     
             

!  The dangers of doing simulations…. 
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lim
k!1

lim
L!1

P(ML returns correct tree)  1

2

lim
L!1

lim
k!1

P(ML returns correct tree) = 1
“Farris Tree” 

Problems for reconstructing a tree  
(even when the model is known and nice!) 
 

!  Short interior edges 

!  Long edges 

!  Many taxa (n) 
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A

B

C

D

t

T 

56 

  
Finite state models: short and long edges 
 
 
 

↵ �yy
r 

A

B

C

D

t 

T 

Finite state model 

as t ! 0, k grows at rate 1
t2

k = sequence length needed to accurately 
reconstruct this tree   

as T grows, k grows at rate exp(cT )

but if T = t then as t ! 0, k grows at the rate 1
t

What about is t shrinks? 



Examples of deep and controversial 
phylogenetic resolutions 
 
!  Origin of metazoa 

(~550-600 mya) 

!  Origin of photosynthesis 
(>2.5 bya) 

!  Rooting the ‘tree’ of life 
(~3.5 bya) 
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Fungi

Choanoflagellates

Arthropods

Nematodes

Deuterostomes

Platyhelminthes

Actinopter
MammaliaCnidaria

Monosiga ovata

Cryptococcus
Phanerochaete

Ustilago

Schizosaccharomyces

Saccharomyces

Candida

Paracooccidioides

Gibberella

Magnaporth
Neurospora

Glomus

Neocallimastix

Schistosoma mansoni
Schistosoma japonicum

FasciolaEchinococcus

Dugesia

Strongyloides

Caenorhabditis briggsae
Caenorhabditis elegans

Ancylostoma
Pristionchus

Brugia

Ascaris
Heterodera

Trichinella

Glossina

Drosophila
Anopheles

Monosiga brevicollis

Urochordata

Echinodermata

Ctenophora

Meloidogyne

Tardigrades

Chelicerata

HemipteraHymenoptera

Coleoptera

Siphonaptera
Lepidoptera

Crustacea
Annelida

MolluscaCephalochordata
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Deep divergences 

? 

T4 

ε%

T3 
T2 T1 

time 

Fungi

Choanoflagellates

Arthropods

Nematodes

Deuterostomes

Platyhelminthes

Actinopter
MammaliaCnidaria

Monosiga ovata

Cryptococcus
Phanerochaete

Ustilago

Schizosaccharomyces

Saccharomyces

Candida

Paracooccidioides

Gibberella

Magnaporth
Neurospora

Glomus

Neocallimastix

Schistosoma mansoni
Schistosoma japonicum

FasciolaEchinococcus

Dugesia

Strongyloides

Caenorhabditis briggsae
Caenorhabditis elegans

Ancylostoma
Pristionchus

Brugia

Ascaris
Heterodera

Trichinella

Glossina

Drosophila
Anopheles

Monosiga brevicollis

Urochordata

Echinodermata

Ctenophora

Meloidogyne

Tardigrades

Chelicerata

HemipteraHymenoptera

Coleoptera

Siphonaptera
Lepidoptera

Crustacea
Annelida

MolluscaCephalochordata

T 

Question: How do these two factors 
(short, long) interact? 

k = ⇥

✓
1

✏2

◆

k = ⇥

✓
exp(cT )

n

◆

k = ⇥

✓
exp(cT )⇥ 1

✏2

◆

How does the required sequence length (for tree 
reconstruction) depend on n (=# taxa)? 
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Cat ……..ACCCGTCGTT…. 
Daisy …. CACCATCGTT… 
Rice…….AACCAGCGTT… 
 
 
 

) k ≥ c · log(n)

b(n) = 2⌦(n log(n))

#data-sets of k characters for n species, over an r-letter alphabet

= (rn)k = rnk

Fine, but what about ‘evolved’ data 

Suppose we evolve k characters independently on a tree 
under a 2-state symmetric model with 
 
 

Theorem 1 [Erdos, PL, Szekeley, S, Warnow (1999)] 
 For some (‘stringy’) trees  accurate tree reconstruction is possible with  

 
 But for other (‘bushy’) trees our approach required 

 
 However, for almost all trees it suffices to have: 

 
k = ⇥(log(n)s)

k = ⇥(log(n))

k = ⇥(nt)

Theorem 2 [Daskalakis, Mossel, Roch (2011)]   
 
This conjecture holds (and is tight) 

Conjecture:   Provided that  
accurate tree reconstruction can be achieved for ALL trees with  k = ⇥(log(n))

↵ �yy
p(e) 2 [p, P ] for every edge e

P <
1

2

✓
1− 1p

2

◆



Can adding more taxa help (even if you don’t care about them)? 

 
 Add taxa         build tree         ignore the added taxa 
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Sequence length required to find the correct tree (on the 
subset of  species) can be reduced logarithmically this way  

62 

Specialist topic: a model that generates homoplasy-
free data 

3 1 2 4 5 6 7 

time 

1   2   3   4   5    6    7 

Kimura and Crow’s “infinite alleles” model.  
The probability of any partition can be computed via Mobius inversion (Evans et al. 2004) 

e 7! p(e)

63 

  
How many such ‘evolved’ characters are needed? 
 
 
 

 
!  Proof relies on combinatorial arguments, and 

 basic property of branching processes. 
!  P > ½, k changes to poly(n). 
  
 

Theorem [Mossel +S, 2004] 

P = max{p(e)}, p = min{p(e) : e is interior}

For P < 1
2 , the number of characters k needed to corrected reconstruct T

(w.p. > 1� ✏) is: k = c · log(n)
p

Does finding a tree need more data than to ‘test’ if a given 
one is correct? 

!  Reconstructing:  
"  Given k characters generated by (unknown) tree T: 

!  We need  log(n) sites for finite-state and infinite state models to reconstruct T. 

!  Testing:   
"  Given data, and candidate tree, Tc , is T = Tc? 
 
  

"  For finite-state data we still need log(n) sites to test  

"  But for infinite-state data a constant(!) number of sites suffices 

 

Theorem 

  Teasing: 
Given data, and that ‘T =T1 or T2’, which is tree is it? 

THE END 
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Mike Steel  

Lecture 7-8: Stochastic models II 

from F. Delsuc and N. Lartillot  

Winthrop lectures, 2014 

Outline 

 
!  Part 1:   Speciation/extinction models 
 

!  Part 2:   Shapes of trees 
 
!  Part 3:   Predicting future PD 

"  20 x deep breaths 

!  Part 4:  Specialist topic: Predicting the past 
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Yule model 

From ‘Branching processes in biology’ Kimmel and Axelrod 

67 

P(N = n) ⇡ n�1�g/�

68 

Where do evolutionary  
trees comes from? 
 
 
 

 

time 
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Another viewpoint 
 
 

 

 

time 

Simplest speciation model:  
pure birth (constant rate) 

70 

Yule  (pure birth) model 
 
Each lineage gives birth independently at 
some constant rate λ%
%
Grow for time t, or till it has n leaves, or 
condition on both n and t.!

Kingman coalescent trees 

Birth-death models: simplest case (constant 
birth-death rates) 

71 

present

time

a b cde
a b e d c

“Reconstructed tree” 

� = constant, µ = constant

Sean Nee 

The ‘reconstructed’ tree can be 
conditioned on  
  n, or  t or 
  n and t 
  t and the event that n>0 

The ‘pull of the present’ and 
‘push of the past’ 

E(Nt) = e(��µ)t

“Pull of the present/push of the past” 

72 

present

time

a b cde
a b e d c

“Reconstructed tree” 

� = constant, µ = constant

Sean Nee 

E(Nt) = e(��µ)t



A nice (but also annoying) property of  
constant b-d models 

73 

present

time

a b cde
a b e d c

“Reconstructed tree” 

� ≥ µ ≥ �(1− f)

�̂ = f� µ̂ = µ� �(1� f)

f = fraction sampled at present

Conditioning on n (or n and t) the reconstructed tree has the same 
distribution as complete sampling with adjusted birth-death rates 

Two extensions where it’s just so lovely…. 

74 

� = �(t), µ = µ(t, a)

Amaury 
Lambert 

Tanja 
Stadler 

� = �(t,N), µ = µ(t,N, a)

time 

75 

Proposition:  [Aldous; Lambert and Stadler]  
 
All such models (as well as Kingman’s coalescent model!) lead to same 
distribution on the reconstructed tree (ignoring branch lengths) – namely the 
Yule-Harding distribution (lecture 1) 

Less is more… 

present

time

a b cde
a b e d c

Evolutionary tree        Reconstructed tree   

� = �(t,N), µ = µ(t,N, a)

76 

Real trees 

 

From: Aldous, D. (2001). Stochastic Models and Descriptive Statistics for Phylogenetic Trees, from Yule to Today.  Statistical Science 16:  
23-34 

� = �(t,N), µ = µ(t,N, a)



Life gets even better if we are slightly less general 

77 

� = �(t), µ = µ(t, a)

� = �(t,N), µ = µ(t,N, a)

time 

Models where the reconstructed tree can be 
described by a ‘coalescent point process’ 

 
Example:  A pure-birth process 

� = �(t), µ = µ(t, a)

H1, H2, . . . , i.i.d. random variables with some distribution F

1� F (t) = P(H > t) = e��t

Allows  
conditioning on n, t or 
n and t 
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How long are the branches? 

L ? 

Speciation rate = 1/million years%
 
so the expected value of L equals 
1 million years   

80 

The bus ‘paradox’ 
 

You turn up at a bus stop, with no idea when the next bus will 
arrive. 

 
 
If buses arrive regularly every 20 mins what is your expected 

waiting time? 
 
If buses arrive randomly every 20 mins what is your expected 

waiting time? 
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Length of a randomly selected branch 

L ? 

Expected value of L is 1 million years   

82 

Quiz 
 
  

A pure-birth tree evolves with each lineage randomly 
generating a new lineage on average once every 1 
million years (no extinction). 

   
Look at the tree when it has 100 species 
 
What is the expected length of a randomly selected 

extant branch?  
Answer 1:   1 million years?%%
 
Answer 2:    500,000 years?%%
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The tree puzzle (I): 
 
 
 
 
 
 

tree reaches n+1 = 5 tips

What about ancestral lineages? 84 

Solution 1: Conditioning on n:  

Grow tree till it has n+1 leaves  (then go back 1 second!) 
 

 pn = average length of the n pendant edges 
 

 in = average length of the n-1 internal edges 
 

Theorem: 
 

 

same for both! 

E[pn] = E[in] =
1

2�



85 

The tree puzzle (II): 
 
 
 
A tree evolves with each lineage randomly generating a new lineage on 

average once every 1 million years (no extinction). 
   
Look at the tree after 500 million years 
 
What is the expected length of a randomly selected (extant or ancestral) 

lineage?  
 
Answer 1:   1 million years?%%
 
Answer 2:    500,000 years?%%
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Solution 2: Conditioning on t:  
 
 
In a binary Yule tree, grown for time t, let 
 
p(t) = expected length of the average pendant edge 
i(t) = expected length of the average interior edge 
 

Theorem: 

E[p(t)] =
1

2�
+O(e�t)

E[i(t)] =
1

2�
+O(e�t)

dL

dt
= E[Nt] = 2e�t

dI

dt
= �P

L = I + P
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What about a ‘specific’ edge  
(e.g. a ‘root edge’)? 
 
 
 

 
A tree evolves with each lineage randomly generating 

a new lineage on average once every 1 million 
years (no extinction). 

   
Look at the tree when it first has 100 species 
 
What is the expected length of a randomly selected 

root lineage?  
Answer 1:   1 million years?%%
 
Answer 2:    500,000 years?%%
 
Answer 3:   990,000 years %%
 
 

E[L | n]= 1
λ
1− 1

n
"

#
$

%

&
'
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The tree puzzle (III): 
 
 
 
Now suppose extinction occurs at the same rate as speciation (one per 

one million years).  Suppose we observe a tree today that has 100 
species. 

   
 
 
 
What is the expected length of a randomly selected extant lineage? 
Answer 1:   1 million years? 
 
Answer 2:    500,000 years?%%
 
 
 

present

time

a b cde
a b e d c
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What do ‘real’ trees look like? 

"  Current plant and animal diversity preserves at most 1-2% of 
the species that have existed over the past 600 my . [Erwim, 
PNAS 2008 ]. 

 

"  Set extinction rate = speciation rate? 

"  Problem:  If extinction rate =speciation rate the tree is 
guaranteed to eventually die out eventually!   

"  Solution?:  Condition on the tree not dying out (or having n 
species today) 
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Less ‘realistic models’ can fit the data better: 

 
"   Real reconstructed trees generally look more like Yule trees with 

zero extinction  rate than birth-death trees with extinction rate = 
speciation rate (conditioned on n species today) 

!  [McPeek (2008) Amer. Natur. 172: E270-284: 
  Analysed 245 chordate, arthropod, mollusk, and magnoliophyte 

trees] 
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Predicting future phylogenetic diversity loss 

	

 	

Question:  	


	

 	

If a random 10% of species from some clade 

 were to disappear in the next 100 years due to 
 current high rates of extinction, how much 
 evolutionary heritage would be lost?  

 
 

Prediction is very difficult, especially about the 
future. Niels Bohr, Danish physicist  (1885-1962) 

 
	


	


 
 

 

 

T

(a) (b) (c)

+ + +

PD (again) 

 
Predict the proportion of  diversity that remains if  each leaf  survives with 
independently with probability  p. 
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…80 percent of the underlying tree can 
survive even when approximately 95 
percent of species are lost.  Nee and 
May, Science, 1997 
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For Yule model, let               be the expected phylogenetic diversity in a Yule 
tree, grown for time t, under a ‘field of bullets’ model with taxon survival 
probability p. 

  [note 2 random processes] 

π t (p)

π t (p) =
2p

(1− p)λ
eλt − log(p+ (1− p)e−λt"# $%

π (p) := lim t→∞

π t (p)
π t (1)

π (p) = −p log(p)
1− p

Theorem: 

µ(p) = Expected future diversity
Expected present diversity

95 

 

 

µ(p) =
−plog(p)
1− p …80 percent of the underlying tree can 

survive even when approximately 95 
percent of species are lost.            Nee 
and May, Science, 1997 

…84 percent of the underlying tree is 
lost when approximately 95 percent of 
species are lost.  

A more recent result (2013): 
 

  Instead of  ratio of  expected values, what 
about expected value of  ‘biodiversity ratio’? 

 
 
 
  What about actual distribution of  the 

biodiversity ratio? And at finite times? 
 
 
 
  What about more general speciation-

extinction models? 

µ(p) = Expected future diversity
Expected present diversity

E future diversity
present diversity
!

"
#

$

%
&

future diversity
present diversity



Theorem  [birth rate = λ(t), extinction rate = µ(t,a)] 

np future diversity
present diversity

−πT (p)
"

#
$

%

&
' D( →( N(0,σ 2 )

As the number n of  species in a random tree of  height T grows, 
the biodiversity ratio converges converges almost surely to a 
constant πT(p). 

⇡T (p) = p

R T

0
1�FT (t)

1�(1�p)Ft(t)
dt

R T

0
(1� FT (t))dt
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Minimum evolution (‘parsimony’): 

Majority Rule 
 
 
 

Maximum likelihood 
 
 
 

? 

Need tree topology but not 
branch lengths or model 

Don’t even need tree 

Need tree, branch lengths and model 

Definition: 
 
For a method M that estimates the ancestral 
state at a node v of a tree from leaf data, and a 
model of character state change, the Accuracy 
of M at v is: 
 

 Pr(M(leaf data)= state of v] 
 

Specialist topic:  Ancestral state reconstruction 

Which is more accurate for root state prediction from an 
‘evolved’ character: parsimony or majority? 
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n2 n

}✏ }✏
⇢⇢

n

T0 T1 T2

v

L

Q2.  Is it easier to estimate the ancestral state at the root of the tree, 
or an interior node?  
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Root state can be estimated with high precision but 
no other node can be 

Root state can be estimated with low precision but 
all other interior nodes can be 

time

t/2

v1 v2 vn

5321 6 2n� 1 2n

......

t/2

4

⇢
}✏

(a) (b)

}✏

⇢
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What happens on a ‘typical’ tree? 

Grow a Yule (pure-birth) tree at 
speciation rate λ for time t 
 
Evolve a binary state from the root to 
the tips binary character (mutation rate m)   

 
Estimate the root state from the tip states using maximum parsimony. 
  
Let Pt!= probability our estimate is correct   
 
Question: what happens to Pt!as t becomes large? 

Pt = St +
1
2
Et

+1 +1 +1 +1�1 �1 �1

X

t
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Dynamical system  

 

dEt

dt
= −λEt + λ(Et

2 + 2SDDt );
 

dSt
dt

= −(λ + m)St + mDt + λ(St
2 + 2StEt );

 

dDt

dt
= −(λ + m)Dt + mSt + λ(Dt

2 + 2DtEt );

m
λ 

Pt = St +
1
2
Et
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If                        < 6, then we lose all information about the  
                                 ancestral state as t grows (min evolution). 
 
 

 ‘six is (just) enough’: 

speciation rate   ___________     mutation rate 

If                         > 6, then we don’t speciation rate   ___________     mutation rate 

x = mutation rate/speciation rate 

f(x) =
1

2

⇣
1 +

p
(1� 6x)(1� 2x)

⌘

Pt � lim
t!1

Pt = f(x) where
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Comparisons (simulations) 

x 

cf. Hanson-Smith, V., Kolaczkowski, B. and Thornton, J.W. (2010). Robustness of  ancestral 
sequence reconstruction to phylogenetic uncertainty. Mol. Biol. Evol.  27: 1988–99. 
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If                        < 4, then any method loses all information about the  
                                 ancestral state as t grows (we’ll see why in 10 mins!). 
 
 

What about majority rule? 

speciation rate   ___________     mutation rate 

Theorem [Mossel +S, 2014] 

Pr(MR correct) >
1

2
+

1

2

✓
1� 4m

�

◆

Specialist topic:  Ancestral state reconstruction 

THE END 

Specialist topic 2:  Modelling lateral gene transfer (LGT) 

!  In prokaryotes, if nearly all genes have been 
transferred between lineages many times is it 
meaningless to talk about a species ‘tree’?  
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Question:  
 
Suppose we have some ‘species tree’  (e.g. the tree of bacterial cell 
divisions). Under a model of independent random LGT events when can 
we recover this tree from the associated gene trees. 
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Possibilities for the LGT rates in the model: 
 
 
Rate of transfer from x to y is constant 
 
Rate of transfer from x to y depends on the branches 
 
Rate of transfer from x to y depends on d(x,y) and/or time 
 
 
 

 In all cases, the number of LGT events in the tree  
 has a Poisson distribution 

 
 
 

Can we reconstruct a tree under rampant LGT? 
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Triplet-based (R*) tree reconstruction is a statistically consistent estimator of 
the  species tree under the random LGT model if the expected number G of 
LGTs per gene is ‘not too high’. 
 
Example:   for Yule trees with n leaves the following suffices: 

Theorem [c.f. also Roch and Snir 2013] 

Particular case:  [S,Linz, Huson, Sanderson] 
 
Take n=200 (Yule-shape tree), and suppose each gene is transferred on 
average 10 times.  Then the species tree is identifiable from sufficiently 
many gene trees.   
 
 

G  n− 2

3 ln(n/2)



Can we reconstruct a tree under rampant LGT? 
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Under the bounded rates (e.g. Yule model), it is possible to reconstruct 
the topology of  a phylogenetic  tree for n taxa  w.h.p. from N = 
Ω(log(n)) gene tree topologies if  the expected number of  LGT 
transfers is no more than a constant times n/log(n).  

Theorem 1 [Roch and Snir, 2013]  

Theorem 2   

Under the Yule model, it is not possible to reconstruct the 
topology of  a phylogenetic  tree w.h.p. from N gene trees if  
the expected number of  LGT events is more than Ω(n log(N))  
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MYBOV1
MYTUB1
MYLEP1
MYULC1
MYAVI1
MYCOB1
MYCOB3
MYCOB2
MYVAN1
MYSME1
NOFAR1
RHODO1
COEFF1
COGLU1
CODIP1
COJEI1
STAVE1
STCOE1
THFUS1
TRWHI1
LEXYL1
FRALN1
FRANK1
NOCAR1
PRACN1
ARAUR1
ARTHR1
ACCEL1
KINEO
BILON1
RUXYL1

THE END 
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Mike Steel  

Lectures 9-10: Phylogenetic Networks I 

from F. Delsuc and N. Lartillot  

Winthrop lectures, 2014 

David Morrison 

Why networks? 

!  Explicit networks:  
"  Species evolution is sometimes reticulate due to: 

!  Hybrid species 
!  Genetic exchange (eg. Lateral gene transfer) 
!  Endosymbiosis 

"  Usually represented by rooted networks 

!  Implicit networks: 
"   shows conflicting signals in the data  

 (even if evolution is tree-like) 
!  SplitsGraphs 
!  Neighbor-Net (very widely used) 
!  Endosymbiosis 

"  Usually represented by unrooted networks 

   

Fungi

Choanoflagellates

Arthropods

Nematodes

Deuterostomes

Platyhelminthes

Actinopter
MammaliaCnidaria

Monosiga ovata

Cryptococcus
Phanerochaete

Ustilago

Schizosaccharomyces

Saccharomyces

Candida

Paracooccidioides

Gibberella

Magnaporth
Neurospora

Glomus

Neocallimastix

Schistosoma mansoni
Schistosoma japonicum

FasciolaEchinococcus

Dugesia

Strongyloides

Caenorhabditis briggsae
Caenorhabditis elegans

Ancylostoma
Pristionchus

Brugia

Ascaris
Heterodera

Trichinella

Glossina

Drosophila
Anopheles

Monosiga brevicollis

Urochordata

Echinodermata

Ctenophora

Meloidogyne

Tardigrades

Chelicerata

HemipteraHymenoptera

Coleoptera

Siphonaptera
Lepidoptera

Crustacea
Annelida

MolluscaCephalochordata

Metazoan phylogeny:  From Huson and Bryant (2006). 
Applications of phylogenetic networks in evolutionary 
studies, Mol. Biol. Evol.  

http://phylonetworks.blogspot.co.nz/2012/06/rooted-networks-
for-exploratory-data.html 



Trees"vs"networks"

Reticulate evolution 

1)  Hybrid speciation 
2)  Lateral gene transfer 
3)  Recombination 

However, sometimes inheritance is from multiple ancestors, because of reticulate 
events, e.g:    

Trees or networks? 

 

 
“molecular phylogeneticists will have failed to find  
the ‘true tree’ not because their methods are 
 inadequate or because they have chosen the  
wrong genes, but because the history of  
life cannot properly be represented as a tree.” 

 W. F. Doolittle, 1999 
 
 

Directed graphs:  Basics 
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In any directed graph D = (V, A)   
sum of  out-degrees =  
sum of  in-degrees = |A|.  
 
 
Definition:  D = (V,A) is acyclic if  it has no directed cycles (“D.A.G”) 
 
 
 

Phylogenetic network: 
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!  A phylogenetic network on X is an acyclic network 
with a single (root) vertex of in-degree 0, X  = set of 
vertices of out-degree 0, and no vertices with 

   in-degree= out-degree=1. 
!  Unlike phylogenetic trees there are an infinite number of 

phylogenetic networks on X. 
 
!  Example: Cluster networks 



Three types of network: 

117 

Tree child:  each non-leaf  vertex has at least one non-reticulate child 
(        Tree path property) 
 
Regular:      isomorphic to the Hasse diagram of  its clusters 
 
Normal:       tree child, no vertices of  out-degree 1, no redundant arcs 
 
 

  
Theorem 1:  Every normal network is regular. 
 
Theorem 2:  If N = (V, A) is a normal network, then: 
 
(i) the number r of reticulate vertices is at most n – 1 
 
(ii) 

Willson, S.J. 2010. Properties of normal phylogenetic networks, Bulletin of 
Mathematical Biology 72:  340-358.  

A network that is not tree-child 

Tree child 

Regular 
Normal 

|V |  (n2 − n+ 1)/2

)

c.f. regular 

Binary phylogenetic networks 
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|A| = 3r + 2n� 2

r + 2t+ 2 = |A| = 2r + t+ n

|V | = 2t+ 3

Why? 
|A| � |V |+ 1 = r

t = n+ r � 2

n = |X|, r = # reticulate vertices, t = # tree vertices

|V | = n+ t+ r + 1

  Root has out-degree 2 
  A vertex with out-degree 2 has in-degree 1 

     (and the set of  vertices of  out-degree 0 is X) 
  All other vertices either have in-degree 1 and out-degree 2 or 

in-degree 2 and out-degree 1 (reticulate vertices) 
 

OUT IN 

Binary phylogenetic networks 
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Recall (Willson): 

 If N = (V, A) is a normal network, then: 
 (i) the number r of reticulate vertices is at most n – 1 
 (ii)  |V |  (n2 − n+ 1)/2

Theorem:   
 

 If  N = (V, A) is a tree-child binary network, then: 
 (i)  the number r of  reticulate vertices is at most n – 1  
 (ii) |V |  4n− 3

McDiarmid, Semple, Welsh (2014). Phylogenetic networks 
that display a tree twice. Bull. Math. Biol. (in press). 

Special classes of [binary] phylogenetic networks 
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A  reticulation network is a  binary phylogenetic 
network whose arc set A is the disjoint union of  a set AR 
of  reticulation arcs, and a  
set AT of  tree arcs, and such that: 
 
  Each reticulation arc ends at a reticulation vertex; 
  Each reticulation vertex has at least one incoming 

reticulation arc; 
  Every interior vertex has at least one outgoing tree 

arc. 
  



Additional bells and whistles 
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!  A reticulation network is time-consistent if there is a ‘time-stamp’ function 

!  “Level k”  (if N is binary it is level k if k is the maximum number of 
reticulations in any biconnected component of N) 

 

t(u) = t(v) if (u, v) is a reticulation arc and t(u) < t(v) otherwise

t : V (N ) ! R�0 such that for each arc (u, v)

Mathematical questions about phylogenetic networks 

!  How many trees do they contain (display)? 
!  Do these trees allow us to reconstruct the network?  
!  Given two trees what is the simplest network that 

contains them? 
!  What about parsimony? 
!  How many networks are there?  

122 

Tree ‘displayed’ by a network 
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Theorem: [van Iersel et al. 2010] 
 

 It is NP-hard, even for regular networks. 
 

 There is is a poly-time algorithm for tree-child binary networks and 
 normal networks (also level-k networks).   

 
 

Quiz:  Is it easy or hard to determine if a given tree  
 is displayed by a given network? 

The set of all trees displayed by a network:  Tr(N) 
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Observations  
 
If  N has r reticulation vertices, then N displays at most 2r trees 
 
 
N can have much fewer than 2r displayed trees (so one tree is 
displayed several times).  For example, this  
network displays Ft trees (F = Fibonacci number). 
 
 
 

Linz, S., St John, K., and Semple, C. (2013). Counting trees in a phylogenetic 
network is #P-complete SIAM Journal on Computing, 42, 1768-1776. 



The set of all trees displayed by a network:  Tr(N) 
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**Phylogenetic networks that display a tree twice 
Paul Cordue  Simone Linz  Charles Semple (submitted) 

Theorem 1*   
 

 If  N is normal and binary then N displays exactly 2r trees. 
 
 
Theorem 2** 
 

 Let N be a binary tree-child phylogenetic network on  X. 
 There is an O(n2) algorithm (n =|X|) to decide whether or not N 
 displays a rooted phylogenetic tree with leaf  set X twice. 

*Special case of Corollary 3.4 of Tree-average distances on certain phylogenetic networks 
have their weights uniquely determined. Algorithms for Molecular Biology (2012) 7:13 

Does  Tr(N) determine N? 
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Not in general?  Some networks display the same set of  trees 
 
Example: 
 
 
 
 
 
 
 
 

a

d

c

N1

b

T1

a

d

c

N2

b

T2 T3

a b c

d

a b

d

c a b c

d

When does Tr(N)=Tr(M) imply N=M? 

127 
Regular networks are determined by their trees, IEEE/ACM Transactions on 
Computational Biology and Bioinformatics 8 (2011) 785-796.   

Theorem [Willson, 2011]   
 

 If  N is regular (or normal) then Tr(N) 
 determines N.  

 
 Moreover, there is a poly-time algorithm 
 for reconstructing N from Tr(N).  

Hybridization number of two (binary) trees 
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h(T , T 0)  n− 2

Given two binary phylogenetic X-trees             let: 

Quiz:  Is computing h(T,T’) 
easy or hard? 

T , T 0

h(T , T 0) = min{h(N ) : N displays T , T 0}

h((V,A)) = |A| � |V |+ 1
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Relationship to tree-rearrangement operations 

!  rSPR ( rooted subtree prune and regraft) 

a 
b c 

d 

e 

a 
b c 

d 
e 

drSPR(T , T 0) = 1 , h(T , T 0) = 1

How does this generalize? 

⇢ ⇢

Hybridization number of two (binary) trees 
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Theorem [Baroni, Gruenewald, Moulton, Semple 2005] 
 
 
 

h(T , T 0) = ma(T , T 0)

Maximum acyclic 
agreement forest for 
T and T’ 

drSPR(T , T 0) = m(T , T 0) drSPR(T , T 0)  h(T , T 0)

h = 4 

+ [Bordewich and Semple, 2004] h(T , T 0)  n− 2

How much less? 
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Theorem 2 
 

 For all n >3, there exist two binary phylogenetic X-trees 
 with: 

 
 

 Moreover, this is sharp  
Baroni, M., Grunewald, S., Moulton, V., and Semple, C. (2005). Bounding the number of hybridisation 
events for a consistent evolutionary history. Journal of Mathematical Biology, 51, 171-182. 
[Humphries, P.J. and Semple, C.]  

drSPR(T , T 0)  h(T , T 0)

Theorem 1 

For all n >3, even  there exist two  
binary phylogenetic X-trees  with: 

drSPR(T , T 0) = 2, and h(T , T 0) = n/2

h(T , T 0)− drSPR(T , T 0) = n− d2
p
n e

Back to our question: 

132 
*Bordewich, M. and Semple, C. 2007. Computing the minimum number of hybridisation events for a 
consistent evolutionary history.  Discrete Applied Mathematics, 155:914–928. 

h=8 
time =19s 

n=30 

Quiz:  Is computing h(T,T’) 
easy or hard? 

*NP-hard (but there are algorithms 
based on max. agreement acyclic forest) 



Counting networks  
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McDiarmid, C., Semple, C. and Welsh, D. (2014). Counting phylogenetic networks. 
Annals of Combinatorics (in press). 

Theorem  [Mcdiarmid, Semple, Welsh 2014] 

The number of  tree-child (or normal) binary networks on n 
leaves is  

22n log2 n+O(n)

rb(n) ⇠ 1p
2

✓
2

e

◆n

nn�1 = 2n log2 n+O(n)

Recall (lecture 1!):  

Almost all tree child (or normal) networks with n leaves have 
(1+o(1))n reticulate vertices and (4+o(1))n vertices in total.  

Is a network just something you get by adding 
edges to a phylogenetic tree? 
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Yes – for tree child networks 
 
 
No  – for some others – e.g. at right  
(not tree-sibling) 
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From  
Leo van Iersel  
and Steven Kelk 

Challenges questions: (phylogenetic networks) 

Winthrop lectures, 2014 

 
Problem 1 Is the Hybridization Number problem 
fixed-parameter tractable (FPT)? 
 
Problem 2 Does there exist a polynomial-time 2-
approximation algorithm for MAF on two binary 
trees?  
 
Problem 3 Is there an FPT algorithm for finding a 
level-k phylogenetic network consistent with a given 
dense set of rooted triplets, if k is the parameter?  

Why networks? 

!  Explicit networks:  
"  Species evolution is sometimes reticulate due to: 

!  Hybrid species 
!  Genetic exchange (eg. Lateral gene transfer) 
!  Endosymbiosis 

"  Usually represented by rooted networks 

!  Implicit networks: 
"   shows conflicting signals in the data  

 (even if evolution is tree-like) 
!  SplitsGraphs 
!  Neighbor-Net (very widely used) 
!  Endosymbiosis 

"  Usually represented by unrooted networks 
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Nematodes
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Metazoan phylogeny:  From Huson and Bryant (2006). 
Applications of phylogenetic networks in evolutionary 
studies, Mol. Biol. Evol.  

http://phylonetworks.blogspot.co.nz/2012/06/rooted-networks-
for-exploratory-data.html 



Implicit networks 
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!  Two splits A1|B1 and A2|B2 of X are compatible,  
if one of the following intersections is empty: 

Two incompatible splits: 

A1 \ A2, A1 \ B2, B1 \ A2, B1 \ B2

X 

A1  B1 
A2  
B2 

x1 

x2 

x3 

x4 x5 

x6 

x7 

Split Network 
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Weakly compatible splits 
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The 3 splits are weakly compatible if  at least one of  the 
white regions and at least one of  the grey regions is empty 

Weakly compatible: Example and properties 

!  If Σ is weakly compatible then Σ has size O(n2). 
!  Σ is weakly compatible iff Q(Σ) has at most two 

of the three possible resolutions of each quartet 
!  Connection to ‘weak hierarchies’: 
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A \B \ C 2 {A \B,A \ C,B \ C}8A,B,C 2 W



Split Decomposition [Bandelt and Dress] 

!  Notice that a tree metric d can be written as 

!  Moreover, if |X|= 4 then for any d!
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d =
X

�2⌃(T )

w�d�

d�(x, y) = 1 i↵ � separates x and y
else 0

d =
X

�2W

c�d�

Split Decomposition [Bandelt and Dress] 

!  Theorem: [Bandelt and Dress ~late 1980s]   
Every distance function on a set X has a unique 
representation of the form:  

 
where 
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d =
X

�2W

c�d� + �

W is a weakly compatible set of X-splits

c� > 0 for all � 2 W and � is ‘split prime’

Example 

!  Split network for primate lentiviruses from whole-
genome-based distances using split decomposition: 

 

(Salemi et al, 2003) 
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PLVvagm

PLVlhoest

PLVcol

PLVcpz

PLVsyk

PLVsmm

Issues – large n, non-planarity 

Circular split system 
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Definition: 
 
Σ is circular if  there is a circular 
ordering of  X so that each split in Σ is 
of  the form  {xp, xp+1, . . . , xq}|X � {xp, xp+1, . . . , xq}

How hard is it to determine if  ΣΣ is circular? 
 



Circular split system implies weakly compatible  
(but not conversely!) 

!  Example: 

%

"  Σ is always weakly compatible 

"  But  not necessarily cyclic! 
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a 

b 
c 

d 

e 

a 

e c 

d 

b 

⌃ = ⌃(T1) [ ⌃(T2)

T1, T2 2 U(X).

“Outer-labeled planar” networks 

!  Example 
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Cyclic split systems correspond to outer-labelled planar 
networks 

!  Theorem  A set of splits on X is cyclic if and only if it 
can be represented by an outer-labeled planar network  

147 
(Waegele and Meyer, 2007). 18S rRNA  

“NeighborNet” 

Split Networks from Trees 

!  Consensus splits (Holland et al, 2004) 

"  Input: Trees on identical taxon sets 
"  Determine splits in more than X% of trees 
"  For >50%, result is compatible 

!  Consensus super splits 
   (Huson et al, 2004, Whitfield et al 2008) 

"  Input: Trees on overlapping taxon sets 
"  Use Z-closure to complete partial splits 
"  Use “distortion filter” to implement consensus methods 

148 



Split Networks from Trees 

!  Split network for consensus splits on 106 gene trees for 
yeast: 

 
 
 
 

    [Rokas et al, 2003, Holland et al, 2004] 149 
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All >5% 

>30% >50% 

Split Networks from Trees 

Example: 
!  Super split network 

obtained from 5 genes on 
a total of 71 plant taxa 

 
[Koch et al, MBE 2007] 
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Useful online resources 

Winthrop lectures, 2014 

Online resources: 
The Genealogical World of  Phylogenetic Networks  
phyloseminar.org  
phylobabble 
PhyloWiki 


