Academia.eduAcademia.edu
CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1627 REVIEW Swertia (Gentianaceae): Chemical and Pharmacological Aspects by Goutam Brahmachari*, Sadhan Mondal, Arindam Gangopadhyay, Dilip Gorai, Bodhiswatta Mukhopadhyay, Shamal Saha, and Arun K. Brahmachari Natural Product Laboratory, Department of Chemistry, Visva-Bharati University, Santiniketan ± 731 235, West Bengal, India (e-mail: brahmg2001@yahoo.co.in) A compilation of the constituents isolated from Swertia species covering the literature up to December 2003 is presented. The botanical classification and ethno-pharmacology of Swertia plants, as well as the biological activities and pharmacological applications of both distinct phytochemicals and medicinally acitve plant materials (formulations, extracts, etc.) are discussed in detail. 1. Introduction. ± Among the plants often used in traditional medicine, Swertia species, which belong to the Gentianaceae family, play a vital role. A variety of Swertia plants are used as crude drugs in the Indian pharmacopoeia. Swertia chirata Buch.^ Ham, commonly known as −chirayata×, demands special attention in this regard because of its multidirectional use as a bitter stomachic, febrifuge, anthelmintic, antimalarial, and antidiarrheal [1]. In Chinese traditional medicine, ca. 20 species of this genus are being used for the treatment of hepatic, choleric, and inflammatory diseases [2] [3]. The herb of S. purpurascens is used in Pakistan as a substitute of S. chirata, and, in Japan, S. japonica Maniko is an important bitter stomachic [4] [5]. The plants of the Swertia genus are rich sources of xanthones, flavonoids, irridoid and seco-irridoid glycosides, terpenoids, and alkaloids. In earlier reviews [6 ± 8] on Swertia, the chemical constituents of this genus have been compiled from time to time. However, the present review offers a complete compilation of the chemical constituents of Swertia reported until the end of 2003, along with detailed pharmacological applications and significant biological activities exhibited by different crude extracts of varying plant species and their chemical constituents. All constituents were classified and listed in Tables 1 ± 6, and Table 7 offers a closer look into the biological and pharmacological properties of isolated phytochemicals. 2. Botanical Classification. ± The genus Swertia comprises 170 known species. The botanical classification of this genus reads as follows: family: Gentianaceae, tribe: Gentianeae, subtribe: Swertiinae, genus: Swertia. Most of the species found in India grow at high altitude in the temperate Himalayas from Kashmir to Bhutan, and also in the Khasia and Western Ghats hills [9]. Moreover, 97 Swertia species have been reported to be distributed in main land China [10]. ¹ 2004 Verlag Helvetica Chimica Acta AG, Z¸rich 1628 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 3. Traditional Applications of Swertia Species. ± A fair number of Swertia plants have been used since the remote past for the treatment of various ailments, particularly in the Indian sub-continent. Some highly effective and useful traditional applications of Swertia species in the indigenous system of medicine have been described in [11 ± 13]. One example is Swertia chirata, which, in India, is traditionally being used as a bitter tonic in stimulating appetite and as a febrifuge. The plant is also used against asthma and liver disorders, and, when taken with sandalwood paste, it stops internal hemorrhage of the stomach [13]. The plant is safe, nontoxic, and does not give rise to any side effects [14]. Other medicinally important plants are S. davidi, used as a remedy for acute bacillary dysentery [15], S. alata, traditionally used as an appetite tonic and febrifuge [9], S. minor, used as a substitute for S. chirata in the treatment of malarial and other kinds of fever [13], and the plants S. petvolata and S. thomsonii, which find applications in the Amchies system of medicine in the Laddakh region (India) [16]. Other important species, such as S. angustifolia, S. corymbosa, S. decussta, S. hookeri, S. macrosperma, S. petiolata, S. lawii, S. paniculata, S. punctata, S. calycina, S. purpurascens, S. bimaculata, S. ciliata, S. densifolia, S. japonica, and S. frachetiana also belong to the traditional folklore medicine, and are being used as substitutes for S. chirata in India, China, Pakistan, Japan, and other Asian countries in the treatment of liver disorders, fevers, dysentery, diarrhea, stomach problems, and other ailments. 4. Chemical Constituents. ± The phytochemical investigation of the genus Swertia, as carried out so far, has afforded some 200 compounds with varying structural patterns. Among these constituents, we present xanthonoids, terpenoids, flavonoids, and alkaloids from the major classes, together with other compounds, according to the following classification: * Xanthonoids. Xanthonoids, i.e., 9H-xanthen-9-ones, constitute the most-abundant class of compounds present in Swertia. The xanthene nucleus may be di-, tri-, tetra-, penta-, or polyoxygenated, including glycosidic linkages. More than a hundred such compounds have been reported so far from this genus (see Table 1 and chemical formulae 1 ± 108). * Terpenoids. Nearly 30 terpenoids with basic steroidal frameworks (compounds 109 ± 137) have been isolated from different Swertia species, and are collected in Table 2. * Flavonoids. Some eleven flavonoids (compounds 138 ± 148), all based on the 2,3dihydro-2-phenyl-4H-1-benzopyran-4-one nucleus (−flavone×), are known from Swertia (Table 3). * Alkaloids. Only a few alkaloids (compounds 149 ± 154 and sweetinine) have been reported from different Swertia species (Table 4). * Irridoid and Seco-Irridoid Glycosides. A total of 21 constituents of this category are known, namely compounds 155 ± 171, as well as angustiamarin, angustioside, nervoside, and vegeloside (Table 5). * Miscellaneous. Some lignans, lactones, and other compounds with varying structural patterns have been summarized under this category. They are characterized by the formulae 172 ± 194 (Table 6). CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1629 1630 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1631 1632 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1633 1634 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1635 1636 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) Table 1. Xanthonoids from Swertia. In the names given below, −xanthone× refers to 9H-xanthen-9-one (see chemical formula). No. Compound name 1 2 3 4 5 6 7 8 9 Di- and Trioxygenated Xanthones: 1,8-Dihydroxyxanthone 1-Hydroxy-3,5-dimethoxyxanthone 1,3-Dihydroxy-7-methoxyxanthone 1,7-Dihydroxy-3-methoxyxanthone 1-Hydroxy-3,7-dimethoxyxanthone 1-[(4-Ethenylphenyl)oxy]-3,5-dimethoxyxanthone 1-Hydroxy-4-methoxyxanthone 8-Hydroxy-1,4-dimethoxyxanthone Tetraoxygenated Xanthones: Decussatin (ˆ 8-hydroxy-1,2,6-trimethoxyxanthone) 10 11 1-Hydroxy-2,3,5- trimethoxyxanthone 1-Hydroxy-3,5,8-trimethoxyxanthone 12 13 14 15 16 1,3-Dihydroxy-5,8-dimethoxyxanthone 6,8-Dihydroxy-1,2-dimethoxyxanthone 1,3-Dihydroxy-4,7-dimethoxyxanthone 1,5-Dihydroxy-3,8-dimethoxyxanthone Gentiacaulein (ˆ 2,8-dihydroxy-1,6-dimethoxyxanthone) 17 Methylswertianin or swertiaperennin (ˆ 1,8-dihydroxy-2,6-dimethoxyxanthone) 18 Swerchirin or methylbellidifolin (ˆ 1,8-dihydroxy-3,5-dimethoxyxanthone) 19 20 1,8-Dihydroxy-3,5-dimethoxyxanthone Isogentiakochianin (ˆ 1,3,8-trihydroxy-5-methoxyxanthone) Isobellidifolin or swertianol (ˆ 1,6,8-trihydroxy-2-methoxyxanthone) 21 22 23 1,5,8-Trihydroxy-3-methoxyxanthone Bellidifolin (ˆ 1,5,8-trihydroxy-3-methoxyxanthone) Source S. alata [17] S. mussotii [18], S. patens [19] S. petiolata [20] S. petiolata [20], S. davida [21] S. speciosa [22] S. mussotii [18], S. hookeri [23] S. connata [24] S. milensis [19] S. mussotii [18], S. patens [19], S. hookeri [23], S. petiolata [25], S. perfoliata [25], S. chirata [26], S. purpurascens [27], S. milensis [28], S. paniculata [29], S. punicea [30], S. lawii [31], S. nervosa [32], S. racemosa [32], S. perennis [33], S. decussata [34], S. dialata [32], S. gracilescens [32] S. tetrapetala [35], S. tetraptera [36], S. milensis [37] S. perfoliata [25], S. chirata [26], S. petiolata [20] [38], S. paniculata [29], S. japonica [39], S. hookeri [23], S. lawii [31] S. petiolata [40] S. decussata [34] S. tetraptera [36] S. chirata [41] [42] S. connata [43], S. davida [44], S. petiolata [45], S. punicea [30], S. thomsonii [46], S. speciosa [22], S. perennis [33], S. nervosa [32], S. dilatata [32], S. gracilescens [32], S. racemosa [32] S. alata [17], S. mussotii [18], S. erythrostica [47], S. davida [44], S. japonica [48], S. speciosa [49], S. patens [50], S. chirata [42] [51], S. punctata [52], S. milensis [28], S. paniculata [29], S. punicea [30], S. lawii [31], S. nervosa [32], S. racemosa [32], S. perennis [33] [53], S. dialata [32], S. gracilescens [32], S. iberica [54] S. alata [17], S. mussotii [18], S. patens [19], S. petiolata [20], S. paniculata [29] [55], S. chirayita [56], S. tetrapetala [35], S. japonica [37], S. milensis [28], S. punctata [52], S. nervosa [32], S. gracelescens [32], S. dilatata [32], S. racemosa [32] S. milensis [57] S. iberica [54] [58], S. punctata [52] S. mussotii [18], S. erythrostica [47], S. purpurascens [27], S. paniculata [29], S. hookeri [23], S. punctata [52], S. chirata [51], S. japonica [59] S. japonica [60] S. mussotii [18], S. erythrostica [61], S. chirata [26], S. puniculata [27] [55], S. speciosa [49], S. japonica [37] [48], S. alata [61], S. macrosperma [62], S. purpurascens [27], S. punicea [63], S. punctata [52], S. perfoliata [64] CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1637 Table 1 (cont.) No. Compound name 24 25 1,5,6-Trihydroxy-3-methoxyxanthone Gentiakochianin or swertianin (ˆ 1,2,8-trihydroxy-6-methoxyxanthone) 26 2,4,5-Trihydroxy-1-methoxyxanthone 27 Desmethylbellidifolin (ˆ 1,3,5,8-tetrahydroxyxanthone) 28 Norswertianin (ˆ 1,2,6,8-tetrahydroxyxanthone) 29 30 31 32 33 34 6-Hydroxy-1,2,8-trimethoxyxanthone 8-Hydroxy-1,3,5-trimethoxyxanthone 1,3,5,8-Tetramethoxyxanthone 1,2-Dihydroxy-5,6-dimethoxyxanthone 8-Hydroxy-1,2,6-trimethoxyxanthone 1,3-Dihydroxy-4,5-dimethoxyxanthone 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Pentaoxygenated Xanthones: Swertiaberin (ˆ 1,2,3-trihydroxy-7,8-dimethoxyxanthone) 1-Hydroxy-2,3,4,7-tetramethoxyxanthone 8-Hydroxy-1,2,4,6-tetramethoxyxanthone 1,8-Dihydroxy-2,4,6-trimethoxyxanthone 2,8-Dihydroxy-1,4,6-trimethoxyxanthone 1,4-Dihydroxy-2,3,7-trimethoxyxanthone 2,8-Dihydroxy-1,5,6-trimethoxyxanthone 8-Hydroxy-1,2,5,6-tetramethoxyxanthone Davidatin A (ˆ 1,8-dihydroxy-2,5,6-trimethoxyxanthone) 1-Hydroxy-2,3,4,5-tetramethoxyxanthone 1-Hydroxy-3,4,5,8-tetramethoxyxanthone 1-Hydroxy-2,3,5,7-tetramethoxyxanthone 2,6,8-Trihydroxy-1,5-dimethoxyxanthone 1,3,4,5,8-Pentamethoxyxanthone 1,2,5,6,8-Pentamethoxyxanthone 1,3-Dihydroxy-4,5,8-trimethoxyxanthone 2-Hydroxy-1,3,4,7-tetramethoxyxanthone Source S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. S. chirata [65] alata [17], S. mussotii [18], S. iberica [58], erythrostica [47], S. thomsonii [46], japonica [48], S. paniculata [29], S. perfoliata [25], hookeri [23], S. nervosa [32], S. dilatata [32], gracelescens [32], S. racemosa [32], perennis [33], chirata [51] [66], S. speciosa [67] mussotii [18], S. lawii [31], S. dilatata [34], nervosa [32], S. racemosa [32], S. gracilescens [32], japonica [42], S. iberica [54], S. speciosa [22], erythrostica [68], S. decussata [53], S. calycina [69] erythrostica [47], S. purpurascens [27], punicea [63], S. hookeri [23], S. macrosperma [70], chirata [51], S. lawii [31], S. dilatata [32], nervosa [32], S. gracilescens [32], S. racemosa [32] erythrostica [47], S. purpurascens [27], hookeri [23], S. dilatata [32], S. nervosa [32], gracilescens [32], S. racemosa [32], S. chirata [51], iberica [54], S. lawii [31], S. perennis [33], japonica [38] [48] paniculata [29] mussotii [18], S. bimaculata [71] hookeri [23] decussata [34], S. chirata [72] chirata [26] [51] bimaculata [73] S. iberica [58] S. S. S. S. S. S. S. S. tetrapetala [35] cordata [74], S. punucea [30] punucea [30] cordata [74] bimaculata [71] mussotii [18] purpurascens [27], S. paniculata [29] davida [44] S. S. S. S. S. S. S. S. milensis [36] purpurascens [27] tetrapetala [35], S. mussoti [18] mussoti [75] angustifolia [76] angustifolia [76] bimaculata [71] bimaculata [71] Xanthone Glycosides and Other Derivatives 8-[(b-d-Glucopyranosyl)oxy]-1,2,6-trihydroxyS. iberica [77] xanthone 1,2,6-Trimethoxy-8-[(primverosyl)oxy]xanthone a ) S. iberica [77] Gentiabavaroside (ˆ 2-hydroxy-1,6-dimethoxy-8- S. connata [24] [(primverosyl)oxy]xanthone) a ) 1638 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) Table 1 (cont.) No. Compound name Source 55 56 8-[(b-d-Glucosyl)oxy]-2-hydroxy-1,6-dimethoxyxanthone Isoswertianolin (ˆ 5-[(b-glucopyranosyl)oxy]-1,8dihydroxy-3-methoxyxanthone Swertianolin (ˆ 8-[(b-d-glucopyranosyl)oxy]-1,5dihydroxy-3-methoxyxanthone) S. connata [43] S. hookeri [23], S. angustifolia [78], S. connata [43], S. japonica [79] S. japonica [37] [79], S. punctata [80], S. bimaculata [81], S. punicea [63] [81], S. nervosa [81], S. pubescens [81], S. calycina [81], S. fasciculata [81], S. cincta [81], S. macrosperma [62] [81], S. angustifolia [78], S. chirata [79] S. erythrostica [47], S. randaiensis [48], S. japonica [79] S. speciosa [49] S. erythrostica [47], S. macrosperma [62], S. punicea [63], S. chirata [82] S. japonica [37] S. paniculata Wall. [29] S. paniculata Wall. [29] S. paniculata Wall. [29] S. paniculata Wall. [29] S. hookeri [23] S. speciosaI [49] S. petiolata [45] S. punctata [52] 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 Norswertianolin (ˆ 8-[(b-d-glucopyranosyl)oxy]1,3,5-trihydroxyxanthone) 8-[(Glucosyl)oxy]-1-hydroxy-3,5-dimethoxyxanthone Swertiapuniside (ˆ 8-[(b-d-glucopyranosyl)oxy]1,5-dihydroxy-3-methoxyxanthone) 1,5-Dihydroxy-3-methoxy-8-[(primverosyl)oxy]xanthone a ) 8-[(Glucopyranosyl)oxy]-1,2-dihydroxy-6-methoxyxanthone 8-[(Glucopyranosyl)oxy]-1-hydroxy-2,6-dimethoxyxanthone 8-[(Glucopyranosyl)oxy]-1,2,6-trimethoxyxanthone 1-[(Glucopyranosyl)oxy]-8-hydroxy-3,5-dimethoxyxanthone 8-[(Glucopyranosyl)oxy]-1,3-dihydroxy-5-methoxyxanthone 8-[(Glucopyranosyl)oxy]-1-hydroxy-3,5-dimethoxyxanthone 1-[(Glucopyranosyl)oxy]-2,8-dihydroxy-6-methoxyxanthone Norswertianin 1-b-d-glucopyranoside (ˆ 1-(b-d-glucopyranosyl)oxy]-2,6,8-trihydroxyxanthone) 3,8-Dihydroxy-5-methoxy-1-[(primverosyl)oxy]xanthone a ) 8-[(Gentiobiosyl)oxy]-1-hydroxy-2,6-dimethoxyxanthone b ) Mangiferin (ˆ 2-(b-d-glucopyranosyl)-1,3,6,7tetrahydroxyxanthone) 2-Hydroxy-1,6-dimethoxy-8-[(b-d-xylopyranosyl-(1 ! 4)b-d-xylopyranosyl)oxy]xanthone 3,4,5-Trimethoxy-1-[(stearyl)oxy]xanthone c ) 1,2-Dihydroxy-6-methoxy-8-[(primverosyl)oxy]xanthone a ) 6-Hydroxy-3,5-dimethoxy-1-[(primverosyl)oxy]xanthone a ) 1-[(Glucosyl)oxy]-3-hydroxy-5,8-dimethoxyxanthone 8-O-Primverosyl bellidifolin (ˆ 1,5-dihydroxy-3methoxy-8-[(primverosyl)oxy]xanthone) a ) 6,8-Bis-[(b-d-glucopyranosyl)oxy]-1,2-dihydroxyxanthone 8-[(Glucosyl)oxy]-1,2,6-trimethoxyxanthone 8-[(Glucosyl)oxy]-1,2-dihydroxy-6-methoxyxanthone 8-[(Glucosyl)oxy]-1-hydroxy-2,6-dimethoxyxanthone 1-[(Glucosyl)oxy]-8-hydroxy-3,5-dimethoxyxanthone 8-[(b-Glucosyl)-1,3-dihydroxy-5-methoxyxanthone 2-Hydroxy-1,6-dimethoxy-8-[(glucosyl)oxy]xanthone 1,2,6-Trihydroxy-8-[(b-d-glucosyl)oxy]xanthone 1-Hydroxy-2,6-dimethoxy-8-[(primverosyl)oxy]xanthone a ) 1-[(b-d-Glucopyranosyl)oxy]-3-hydroxy-4,5-dimethoxyxanthone 3-[(b-d-Glucopyranosyl)oxy]-1-hydroxy-4,5-dimethoxyxanthone S. punctata [52] S. punctata [52] S. connata [43], S. mussotii [83], S. macrosperma [61], S. chirata [26] [65], S. punicea [63], S. perfoliata [25], S. cordata [84], S. punctata [52] S. thomsonii [46] S. hookeri [23] S. calycina [69] S. speciosa [85] S. petiolata [20] S. japonica [37] S. perennis [86] S. paniculata [29] S. paniculata [29], S. angustifolia [76] S. paniculata [29] S. paniculata [29] S. hookeri [23] S. connata [87] S. perennis [33] S. perennis [33] S. angustifolia [76], S. bimaculata [73] S. bimaculata [73] CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1639 Table 1 (cont.) No. Compound name Source 90 91 92 93 94 95 96 97 98 99 100 3-[(b-d-Glucopyranosyl)oxy]-1,8-dihydroxy-5-methoxyxanthone 1-[(Glucosyl)oxy]-2,8-dihydroxy-6-methoxyxanthone 8-[(b-d-Glucopyranosyl)oxy]-1,6-dihydroxy-2-methoxyxanthone 4-[(b-d-Glucopyranosyl)oxy]-1,3,6,7-tetrahydroxyxanthone 2-[(b-d-Glucopyranosyl)oxy]-1,3,6,7-tetrahydroxyxanthone 1-[(Glucosyl)oxy]-3,5,8-trimethoxyxanthone 1-[(Glucosyl)oxy]-3,4,5,8-tetramethoxyxanthone 8-[(Glucosyl)oxy]-1,2,5,6-tetramethoxyxanthone 1-[(b-d-Glucopyranosyl)oxy]-3-methoxy-5,8-dihydroxyxanthone 1,2,6-Trihydroxy-8-[(primverosyl)oxy]xanthone a ) 1,8-Dihydroxy-6-methoxy-2-[(a-l-rhamnopyranosyl(1 ! 2)-b-d-xylopyranosyl)oxy]xanthone 1,4,5,8-Tetrahydroswertianolin (ˆ 8-[(b-d-glucopyranosyl)oxy]-1,4,5,8-tetrahydro1,5-dihydroxy-3-methoxyxanthone) Swertipunicoside (ˆ 2-(b-d-glucopyranosyl)1,3,6,7-tetrahydroxy-4-(1,4,8-trihydroxy-6-methoxy9-oxo-9H-xanthen-2-yl)xanthone) d ) Demethylswertipunicoside (ˆ 2-(b-d-glucopyranosyl)1,3,6,7-tetrahydroxy-4-(1,4,6,8-tetrahydroxy-9oxo-9H-xanthen-2-yl)xanthone) a-Mangostin Chiratanin (ˆ 4-[(1,8-dihydroxy-4,6-dimethoxy-9oxo-9H-xanthen-3-yl)oxy]-1,5,8-trihydroxy-3,6dimethoxyxanthone) Swertifrancheside (ˆ 2-[2-(3,4-dihydroxyphenyl)-6(b-d-glucopyranosyl)-5,7-dihydroxy-4-oxo-4H-1benzopyran-8-yl]-1,4,8-trihydroxy-6-methoxyxanthone) Isomangostin Swertia bisxanthone (ˆ 1,1',3,4',5,6',8,8'-octahydroxy9H,9'H-2,2'-bixanthene-9,9'-dione) S. S. S. S. S. S. S. S. S. S. S. 101 102 103 104a 105 106 107 108 mussotii [88] petiolata [89] verticillifolia [90] elongata [91] elongata [91] angustifolia [76] angustifolia [76] angustifolia [76] japonica [92] [93] iberica [77] mussotii [88] S. japonica [94] S. punicea [83] S. punicea [95] S. chirata [96] S. chirata [65] S. franchetiana [97] [98] S. chirata [96] [99] S. macrosperma [70] a ) Primverosyl ˆ (O-{[5-methoxy-2-(methoxycarbonyl) ]phenyl}-b-d-glucopyranosyl)-(6 ! 1)-xylopyranosyl. ) Gentiobiosyl ˆ 6-O-(b-d-glucopyranosyl)-b-d-glucopyranosyl. c ) Stearyl ˆ octadecan-1-yl. d ) Systematic name: (1S )-1,5-anhydro-1-(1,1',3',4,6',7',8-heptahydroxy-6-methoxy-9,9'-dioxo-9H,9'H-2,4'-bixanthen-2'-yl)-dglucitol. b 5. Biological Activity. ± Swertia species are of high pharmacological interest. Different plant extracts have been studied for their therapeutic efficacies, and found to be highly effective. As mentioned earlier, xanthonoids are the major class of compounds among the chemical constituents of this genus, and, since they often exhibit multidirectional biological activities, this spectacular segment of natural products has created a stir among pharmacologists and biologists. Particularly, tetraoxygenated xanthones (Table 1) have been reported to exhibit hypoglycaemic, antihepatotoxic, antimalarial, anti-inflammatory, antioxidant, antimicrobial, and antitumor properties, among others [8] [52] [60]. Selected biological activities, as shown by different active principles derived from various Swertia species, are summarized in Table 7. Significant activities of Swertia plant extracts as well as of isolated phytochemicals are discussed below. 1640 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) Table 2. Terpenoids from Swertia No. Compound name Source 109 Oleanolic acid 110 Ursolic acid 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 Hederagenin b-Amyrin Gammacer-16-en-3-b-ol Lup-13(18)-en-3-b-ol 21-a-H-Hop-22(29)-en-3-b-ol Thysanolactone Swertialactone C Swertialacton D Swertanone Swertenol Episwertenol Swerta-7,9(11)-dien-3-b-ol Pichierenol Chiratenol Chirat-16-en-3-b-24-diol Taraxerol Lupeol 3-b-Hydroxy-lup-12-ene-28-oic acid Erythrodiol Y-Teraxasterol or heterolupeol Kairatenol 1-b-Hydroxy-3-O-(4-hydroxybenzoyl)aleuritolic acid Daucosterol b-Sitosterol 3b-O-{2-O-Acetyl-4-O-[( E )-feruloyl]-b-d-glucosyl}sitosterol Stigmasterol Stigmast-4-en-3-one S. tetraptera [36], S. alata [61], S. japonica [100], S. punicea [94], S. chirata [98] S. cordata [84], S. petiolata [101], S. speciosa [49], S. thomsonii [46] S. paniculata [102] S. paniculata [103] S. chirata [104] S. petiolata [101] S. chirata [104] S. japonica [60] S. petiolata [105] S. japonica [105] S. chirata [104] [106] S. chirata [104] S. chirata [104] S. chirata [107] S. chirata [107] S. chirata [104] S. chirata [82] S. chirata [104] S. chirata [107] [108] S. petiolata [101] S. chirata [107] S. chirata [107] S. chirata [109] S. franchetiana [98] S. punicea [94] S. punicea [94] S. chirata [110] S. chirata [111] S. chirata [82] Table 3. Flavonoids from Swertia No. Compound name Source 138 139 140 141 142 143 144 145 146 147 148 Swertisin Swertiajaponin Luteolin-6-C-b-d-glucopyranoside or homo-orientin Isoswertisin Isovitexin Luteolin-7-O-glucoside Luteolin Isoorientin-6-a-l-arabinoside Isovitexin-6-a-l-arabinoside Isoorientin 3',4',5,7-Tetra-O-methyl-3-O-stearylquercetin S. S. S. S. S. S. S. S. S. S. S. alata [61], S. japonica [100] japonica [100] paniculata [55], S. japonica [100] paniculata [103] perennis [33], S. bimaculata [112] tetrapetala [35] tetrapetala [35] perennis [33] perennis [33] punctata [52] hookerii [23] CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1641 Table 4. Alkaloids from Swertia No. Compound name Source 149 150 151 152 153 154 Gentianine Gentianamine Gentianadine Gentiocrucine Enicoflavine Gentioflavine Sweetinine S. S. S. S. S. S. S. japonica [113], S. chirata [114a], S. purpurascens [115] connata [116], S. marginata [117], S. graciliflora [117] connata [116] chirata [114a], S. purpurascens [115] chirata [114a], S. purpurascens [115] connata [116] elegans [114b] Table 5. Irridoid and Seco-Irridoid Glycosides from Swertia No. Compound name Source 155 Amarogentin S. S. S. S. S. chirata [26], S. milensis [118], japonica [119] chirata [26], S. japonica [119] japonica [120] japonica [121] 156 Amaroswerin 157 Swertiaside 158 Senburiside I (ˆ 7-epi-7-O-(2-[3-(3,5-dihydroxy-4methoxyphenyl)prop-2-enoyl]-3-hydroxybenzoyl)loganic acid) 159 Senbburiside II S. japonica [122] 160 Gentiopicroside or gentiopicrin S. bimaculata [81], S. punicea [81], S. nervosa [81], S. pubescens [81], S. calycina [81], S. fasciculata [81], S. cincta [81], S. macrosperma [81], S. japonica [119], S. vivace [123] 161 Swertiapunimarin (ˆ 6'-O-(b-d-glucopyranosyl)sweroside) S. punicea [94] 162 Choleretic sweroside S. japonica [124] 163 Sweroside S. chirata [26], S. bimaculata [81], S. pubescens [81], S. calycina [81], S. fasciculata [81], S. cincta [81], S. macrosperma [81], S. punicea [81] [94], S. nervosa [81] [122], S. angustifolia [80], S. milensis [118], S. japonica [125] 164 Swertiamarin S. milensis [118] 165 2'-O-Acetylswertiamarin S. milensis [118] S. milensis [118] 166 2'-O-Acetyl-4'-O-[( E )-feruloyl]swertiamarin a ) S. milensis [118] 167 2'-O-Acetyl-4'-O-[( Z )-feruloyl]swertiamarin a ) S. milensis [118] 168 2'-O-Acetyl-4'-O-[( E )-4-hydroxycinnamoyl]swertiamarin b ) 169 2'-O-Acetyl-4'-O-[( Z )-4-hydroxycinnamoyl]swertiamarin b ) S. milensis [118] S. milensis [118] 170 4'-O-[( E )-4-hydroxycinnamoyl]swertiamarin b ) 171 2'-O-[(3,3',5-trihydroxy-[1,1'-biphenyl]-2-yl)carbonyl]S. chirata [110] sweroside Angustiamarin S. angustifolia [80] Angustioside S. angustifolia [80] Nervoside S. nervosa [126] Vegeloside S. nervosa [122] a ) Feruloyl ˆ 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl. prop-2-enoyl. b ) 4-Hydroxycinnamoyl ˆ 3-(4-hydroxyphenyl)- 1642 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) Table 6. Miscellaneous Compounds from Swertia No. Compound name Source 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 Syringaresinol Semburin Isosemburin Neosemburin Isoswertiol Swertiol 4-Hydroxy-2,6-dimethoxyphenyl-1-glucopyranoside 1-Sinapoyl glucoside 5-O-[3-(Glucosyloxy)benzoyl]gentisic acid Swertiamacroside Epieustomoside Nonacosanyl hentriacontanoate Dimethyl 2-hydroxyterephthalate 2,3-Dihydroxyterephthalic acid 2-Hydroxyterephthalic acid 2,5-Dihydroxyterephthalic acid Biphenoside A Biphenoside B 2-Methoxy-1,4-naphthoquinone 3-Propylidene-5-pentanolide (ˆ tetrahydro-4-propylidene-2H-pyran-2-one) Erythrocentaurin 2-epi-Isoneoswertiol Neoswertiol S. chirata [26] S. japonica [126 ± 128] S. japonica [126 ± 128] S. japonica [128] [129] S. japonica [128] S. japonica [128] S. japonica [130] S. japonica [130] S. japonica [130] S. macrosperma [62] S. angustifolia [80] S. chirata [111] S. petiolata [39] S. punicea [94] S. chirata [131] S. chirata [131] S. japonica [132] S. japonica [132] S. calycina [69] S. japonica [128] S. lawii [133] S. japonica [128] S. aponica [128] 5.1. Hypoglycaemic Activity. The hexane fraction of the alcoholic extract of S. chirayita is reported to show significant hypoglycaemic activity in albino rats [161]. Single oral administration at a dose of 250 mg/kg body weight induced simultaneously a drop in blood sugar and an increase in plasma immunoreactive insulin (IRI) without influencing liver glycogen concentration. Interestingly, daily administration of the crude fraction at the same dose for 28 days resulted in an appreciable rise in liver glycogen level. The authors suggested that the hexane fraction may not be capable of inhibiting intestinal absorption of glucose and possibly acts through its insulin-releasing effect [150]. The AcOEt (ether-soluble and -insoluble), BuOH, and H2O-soluble fractions of an aqueous ethanolic extract of S. japonica displayed a blood-sugar-lowering effect in streptozotocin (STZ)-induced hyperglycaemic rats [151]. The aqueous ethanolic extract was reported to be more effective in comparison to a mixture of tolbutamide and buformine, and the same is true for the ethanolic extract of S. chirayita in lowering the blood-glucose level under similar experimental conditions. A clinical study with an ayurvedic capsule consisting of a number of medicinal herbs along with S. chirata was carried out with 20 patients (administered with the capsules at a dose of 450 mg/d) of various age groups attending the out-patient department (OPD) suffering from hyperglycaemia. The capsules could be used without any side effects, and significant improvements were noticed [152]. CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1643 Swerchirin (18), isolated from the hexane extract of S. chirayita, was found to have a significant antidiabetic effect in fasted, fed, glucose-loaded, and tolbutamide-pretreated albino-rat models [136]; the effective dose (ED50 value) for lowering blood sugar by 40% in Charles-Foster-strain (CF) male albino rats was determined to be 23.1 mg/kg (oral) [136]. A similar study [153] on the antidiabetic effect of swerchirin (18) in fed CF rats revealed a 60% drop in blood glucose 7 h after single oral drug administration. The researchers concluded that 18 lowers the blood glucose level by stimulating insulin release [153]. Basnet et al. [140] studied the antidiabetic effect of bellidifolin (23), another xanthonoid isolated from the AcOEt fraction of S. japonica, and showed that the drug exhibits a potent and dose-dependent hypoglycaemic activity (26% decrease in bloodglucose level) in normal as well as STZ-induced diabetic rats upon either oral or intraperitoneal administration at a dose of 50 mg/kg [57]. Both bellidifolin (23) and swerchirin (ˆ methylbellidifolin; 18) showed significant activity, but bellidifolin was found to be more potent than swerchirin [140]. The drug also significantly lowers the blood-triglyceride level [57] [140]. The authors assumed that the drug might work directly as a hypoglycaemic agent on peripheral tissues by means of a mechanism similar to that of vanadate, or it may have an activity similar to that of the extrapancreatic action of sulfonylurea [140]. 5.2 Antihepatotoxic Activity. Karan et al. [136] [154] evaluated the MeOH extract of S. chirata (whole plant) for its antihepatotoxic activity against CCl4-induced liver toxicity in experimental rats. The activity was found to be more pronounced for the CHCl3-soluble fraction in comparision to the BuOH-soluble one. The MeOH extract as a whole showed activity at a dose of 100 mg/kg body weight when applied intraparenterally (ip), but the CHCl3-soluble fraction was found to be most active at a dose of 25 mg/kg body weight, with overall protection of 81 and 78% against paracetamol 1) and galactosamine, respectively [154]. In another study, the hexane, CHCl3 , and BuOH fractions of the MeOH extracts of eight Swertia species were screened for their antihepatotoxic activity against CCl4 and paracetamol toxicity in primary monolayer cultures of rat hepatocytes [155]. The MeOH extracts and their hexane fractions of most of the species in general offered relatively good protection. Among these, S. purpurascens, S. paniculata, S. cordata, and S. chirata showed better responses. A polyherbal formulation, LIVP-7, of which one component is S. chirata, provides significant protection against liver damage and improves the hepatic excretory function in rats [156]. It has also been reported that oral administration of −Arogyavardhini vati× (two tablets twice a day with water) and −Phalatrikadi kashaya× (100 ml of decoction from 25 g of crude drug in two divided doses) for one to five weeks cured 18 out of 20 patients suffering from jaundice [157]. These herbal drugs consist of S. chirata along with some other medicinal plants [157]. The effect of treatment on serum bilirubin was very satisfactory. The BuOH extract of S. japonica showed a significant hepatoprotective effect on dgalactosamine/lipopolysaccharide (LPS)-induced liver injury in mice [144]. The activity-guided fractionation of S. japonica led to the isolation of a new tetrahydroxanthone derivative, 1,4,5,8-tetrahydroswertianolin (101), as well as two known 1) Also known as acetaminophen. Systematic name: N-(4-hydroxyphenyl)acetamide. 1644 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) Table 7. Biological Activities of Compounds Isoalted from Swertia No. Compound name Activity Source 15 17 1,5-Dihydroxy-3,8-dimethoxyxanthone Methylswertianin 18 Swerchirin or methylbellidifolin 23 Bellidifolin 27 28 57 58 Desmethylbellidifolin Norswertianin Swertianolin Norswertianolin Anti-inflammatory Antioxidant Mutagenic Hypoglycaemic Antimalarial Antioxidant Mutagenic Antihematopoietic Hypoglycaemic Antioxidant Mutagenic Cardioprotective Antioxidant Antioxidant Antitubercular Antitubercular S. chirata [41] S. japonica [134] S. herba [135] S. chirayita [136] S. chirayita [137] [138] S. japonica [134] S. herba [135] S. calycina [139] S. japonica [140] S. japonica [134] S. herba [135] S. davidi [141] S. japonica [134] S. japonica [134] S. purpurascens [142] S. purpurascens [142] S. randsaiensis [143] S. chirata [96] [99] S. japonica [144] S. chirata [96] [99] S. chirata [96] [99] S. franchetiana [95] [145] S. chirata [96] [99] S. japonica [113] S. herba [146] S. janonica [147] S. chirata [148] S. herba [146] S. japonica [144] S. japonica [144] S. japonica [149] S. japonica [134] S. japonica [113] S. chirata [26] [134] S. calycina [69] 72 101 104a 104b 106 107 149 155 Mangiferin 1,4,5,8-Tetrahydroswertianolin a-Mangostin a-Mangostin triacetate Swertifrancheside Isomangostin Gentianine Amarogentin 156 160 163 164 Amaroswerin Gentiopicroside Sweroside Swertiamarin 172 190 Syringaresinol 2-Methoxy-1,4-naphthoquinone Anti-inflammatory Antihepatotoxic Anti-inflammatory Anti-inflammatory Anti-HIV Anti-inflammatory Anti-ulcer, antigastritis Mutagenic Anti-ulcer, antigastritis Antileishmanial Mutagenic Antihepatotoxic Antihepatotoxic Antimicrobial Anticholinergic Anti-ulcer, antigastritis Antihepatotoxic Antifungal iridoids, gentiopicroside (160) and sweroside (163). Among these three compounds, 160 and 163 display mild hepatoprotective activities at a dose range of 25 ± 50 mg/kg, whereas 101 exhibits potent activity in a dose-dependent manner. The hepatoprotective effect of 1,4,5,8-tetrahydroswertianolin (101) is stronger than that of glycyrrhizin, which was used as a positive control [144]. The constituents of S. japonica have been assessed for antihepatotoxic activity by means of CCl4- and galactosamine-induced cytotoxity in primary-cultured rat hepatocytes [5]. 5.3. Antimalarial Activity. Swertia species have been reported to contain therapeutically significant antimalarial principles [158]. Swerchirin (18) from S. chirata exhibited antimalarial activity in a rodent test system infected with Plasmodium berghei [137]. Goyal et al. showed that the compound is effective even at 20% of the standard dose of primaquine administered via either oral or subcutaneous routes. The drug was effective via both routes at 1.6 mg/kg and 320 mg/kg, respectively, by reaching nill parasitaemia in CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1645 infected rats [137]. The antimalarial effect of the ayurvedic compound −Ayush-64× containing S. chirata, along with Alstonia scholaris, Caesalpinia bouducella, and Picrorhiza kurroa, was also assessed on a double-blind basis, with chloroquine/ primequine as the controls in 60 cases of malaria [138]. The study showed that the drug is effective in 72.5% of the cases as compared to 100% response in control. 5.4. Anti-Inflammatory Activity. Significant activity against acute, sub-acute, and chronic models of inflammation has been observed for the benzene extract of S. chirata (whole plant ) [96]. Xanthone glucosides and prenylated xanthones, mangiferin (182), mangostin (104a), mangostin triacetate (104b), and isomangostin (107) are known to possess effective anti-inflammatory activities [96] [99]. Banerjee et al. [41] investigated the anti-inflammatory efficacy of 1,5-dihydroxy-3,8-dimethoxyxanthone (15), a chemical constituent of S. chirata in rats: the drug administered orally at a dose of 50 mg/kg inhibited carrageenin-induced and formalin-induced pedal edema by 57 and 58%, respectively. The compound also decreased the exudate volume (35%) in turpentine-oil-induced granuloma formation in comparison to control (diclofenac). 5.5. Antioxidant Activity. Six xanthone derivatives obtained from an Et2O extract of S. japonica, identified as bellidifolin (23), methylbellidifolin (18), swertianin (25), methylswertianin (17), norswertianin (28), and desmethylbellidifolin (27), were shown to possess different antioxidant activities, as judged by means of a chemiluminescent assay [134]. The antioxidative activities of bellidifolin (23), norswertianin (28), and desmethylbellidifolin (27) were reported to be higher than those of butylated hydroxytoluene and w-tocopherol. 5.6. Insecticidal Activity. S. chirata exhibits significant insecticidal activity under laboratory as well as field conditions. Petroleum ether extracts of various plant species (stems) showed appreciable effects against the painted bug A. graminis [159]. 5.7. Antimicrobial Activity. S. purpurascens showed positive activity against selected test microorganisms [160]. S. chirata extracts were found to be effective against Grampositive and Gram-negative bacteria; the activity being more pronounced against the former type of organisms. In another study, the aqueous, MeOH, CHCl3 , and hexane extracts of S. corymbosa were tested in vitro for their antimicrobial properties. Maximum inhibitory activity was observed against Staphyllococcus aureus and Salmonella typhi [161]. Several xanthones and their d-glucosides also showed antimicrobial activities [162], and swertiamarin (164), isolated from S. japonica, exhibited antibacterial activity against Staphyllococcus aureus [149]. 5.8. Mutagenic Activity. The mutagenic activities of bellidifolin (23), methylbellidifolin (18), and methylswertianin (17), isolated from the MeOH extract of S. herba, were studied with respect to Salmonella typhimurium TA100 (S9 mix) [135]. The specific mutagenic activities of methylbellidifolin (18) expressed in terms of the number of the reverent colonies per microgram were 17.8, 6.9 and 30.4, respectively. The mutagenic activity shown by the herb may be considered to be mainly due to bellidifolin (23), because it is the major hydroxyxanthone (91%) in the plant species [135]. Another study with the MeOH extract of S. herba, after treatment with nitrite, revealed its mutagenic efficacy agaist Salmonella typhimurium TA 98 in the absence of S9 mix. The active principles responsible were identified as amarogentin (155) and amaroswerin (156), and their activities were shown to be associated with the 3,3',5trihydroxy[1,1'-biphenyl]-2-carboxylate moiety [146]. 1646 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 5.9. Antifeeding Activity. Mallick et al. [163] investigated different extracts (AcOEt, MeOH, benzene) of S. chirata to assess their antifeeding activities against jute semilooper (Anomis sabulifera Guen.). The AcOEt extract at 10% concentration showed a promising antifeeding effect. 5.10. Anticholinergic Activity. S. japonica is used in Japan as a bitter stomachic. This traditional use led some investigators [134] to evaluate the anticholinergic efficacy of the MeOH extract of the plant by means of rat models, which indicated a fair degree of activity. The authors argued that the seco-irridoid glycoside swertiamarin (164), which makes up 30% of the extract, is responsible for this activity. The EtOH extract of S. chirata was also reported to be anticholinergic [164]. 5.11. Anti-Ulcer and Antigastritis Activity. The effect of S. chirata was studied on experimentally induced gastric ulcers in rats [164]. The EtOH extract of S. chirata significantly reduced the intensity of gastric mucosal damage induced by indomethacin and necrotizing agents. It produced a significant decrease in gastric secretion in pylorusligated rats. Pretreatment of rats with the extract significantly prevented EtOHinduced gastric-wall mucus depletion and restored the non-protein sulfhydryl (NP-SH) content in the glandular stomachs. These findings are in agreement with S. chirata being used in traditional medicine for the treatment of gastric ulcers [164]. The pharmacological effects of the MeOH extracts of S. japonica and of swertiamarin (164) and gentianine (149) were investigated also in mice and rats [113]. Gentianine (149) was found to exert depression of the central nervous system (CNS) and of the anti-ulcerogenic action, as well as inhibitory action against gastric secretions, whereas the other compounds were found to have no appreciable action [113]. Amarogentin (155), isolated chromatographically from the MeOH extract of S. japonica, strongly prevented gastric-ulcer formation when administered orally to rats at a dose of 5 mg/kg [147]. 5.12. Cardioprotective Activity. The protective effect of desmethylbellidifolin (27), a major chemical component of S. davidi, on induced myocardial ischemia-reperfusion injury was studied in rats [141]. The compound (100 or 300 mg/l) significantly improved the recovery of cardiac function during reperfusion of isolated rat hearts, as shown by enhancement of coronary flow, left-ventricular pressure and its first derivatives. Furthermore, it decreased the release of creatine kinase in coronary effluent, and the level of malondialdehyde in myocardial tissues. An in vitro study revealed that the drug at a dose of 0.5 or 1.0 mg/kg markedly decreased infarct size and the release of creatine kinase. The investigators suggested that these effects might be related to inhibition of lipid peroxidation [141]. 5.13. Antihematopoietic Activity. Swerchirin (18), a xanthone isolated from the whole herb of S. calycina Franch, was investigated for its protective effect on hematopoiesis in mice [139]. A significant increase of colony formation in the spleen (CFU-S ) of mice irradiated with 550 rad of 60Co g-rays, and an enhancement of the proliferative response of bone-marrow cells (BMC) to rmGM-CSF 2 ) treated with swerchirin (18; 10 mg/kg , 3 times per week, i.p.), were observed. After introduction of swerchirin (single dose of 10 mg/kg, i.p.), a significant increase in the number of 2) rmGM-CSF ˆ Recombinant-murine-granulocyte-macrophage colony-stimulating factor. CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) 1647 peripheral blood leukocytes and a rise in the serum of CSF were confirmed. The stimulating factors were of the M-CSF type, together with other hematopoietic growth factors, as confirmed by means of McAb of IL-3, and GM-CSF and PcAb of M-CSF. These beneficial effects of swerchirin (18) on hematopoiesis may be related to its activity inducing CSF-S and other hematopoietic growth factors, and demands further evaluation [139]. 5.14 Antifungal Activity. Both the MeOH and CH2Cl2 extracts of S. calycina exhibited a strong antifungal activity against Cladosporium cucurmerinum and Candida albicans. The compound responsible for this activity was identified as 2methoxy-1,4-naphthoquinone (190) [69]. 5.15. Antitubercular Activity. Swertianolin (57) and norswertianolin (58) isolated from S. purpurascens were reported to show a weak antitubercular activity [142]. Norswertianolin (58) from S. randsaiensis also exhibited tuberculostatic activity [143]. It is interesting to note that the aglycone of norswertianolin appeared to be more active than the parent compound, indicating the importance of the free OH group at C(1) for activity [142]. 5.16. Antileprotic Activity. An extract of S. chirata, tested against nine selected pathogens having characteristics common to Mycobacterium laprae, was found to be effective [165]. 5.17. Anti-HIV Activity. Swertifrancheside (106), a new flavone-xanthone glucoside isolated from S. franchetiana, was found to be a potent inhibitor of the DNApolymerase activity of human-immunodeficiency-virus-1 reverse transcriptase (HIV-1 RT), with an IC50 (−inhibitory concentration fifty×) value of 43 mm [95] [145], without being cytotoxic toward cultured mammalian cells. The drug binds to DNA and was shown to be a competitive inhibitor with respect to template primer [95]. 5.18. Antileishmanial Acitivity. S. chirata was evaluated for antileishmanial activity against Leishmania donovani infected golden hamsters, and was found to be active [36]. The MeOH extract of the plant also inhibited the catalytic activity of topoisomerase I of Leishmania donovani [148]. Phytochemical analysis of this MeOH extract yielded three seco-irridoids glycosides identified as amarogentin (155), amaroswerin (156), and sweroside (163), of which the first one is a potent inhibitor of type-I DNA topoisomerase from Leishmania; it exerts its effect by interaction with the enzyme, preventing binary-complex formation. 5.19. Other Activities. The H2O-soluble alcoholic extract of S. chirata was reported to modulate initial lung fibrosis [166]. Another plant species, S. davidi, showed a significant efficacy on acute bacillary dysentery, as confirmed in a clinical study [15]. Extracts of S. japonica were reported to contain testosterone-5-a-reductase inhibitors, which are useful in preventing hair-loss and are being used in cosmetic industries [167]. Essential oils of S. japonica were also reported to show insect-repellent, nematicidal, and insect-attractant activities [168]. The indigenous drug −B-Liv×, containing S. chirata as one of its major components, was found to be effective in stimulating appetite in cases of malnutrition [94]. A relative efficacy of the herbal preparations −Ayush-64× and −Saptaparnaghana vati×, containing S. chirata plant extracts, on microfileria patients has also been reported [169]. Composite herbal drugs containing S. chirata were found to be very effective 1648 CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) when administered orally as decoctions and applied as a paste in 50 cases of scabies [170]. 6. Conclusions. ± The present resume describes the usefulness of Swertia plants, which have a great impact with regard to multidirectional pharmacological applications in indigenous systems of medicine. Pharmacological and clinical studies of different chemical constituents of Swertia plants are found to be very promising, which calls for more-systematic research of these plant materials and their active principles. Moreover, Swertia plants are rich sources of a variety of organic compounds of varying structural patterns, and, due to their natural distribution, are, thus, highly relevant not only for medicinal but also for chemotaxonomic studies. The authors are thankful to the UGC, New Delhi, for financial support. REFERENCES [1] K. R. Kirtikar, B. D. Basu, −Indian Medicinal Plants×, Ed. L. M. Basu, Allahabad, 1933, Vol. 3, p. 1663. [2] −Dictionary of Chinese Traditional Medicine×, Jiyangsu College of New Medicine, Shanghai People×s Press, Shanghai, 1977, p. 2565. [3] W. Z. Songh, Zhong Yao Tong Bao. 1986, 11, 643. [4] G. A. Miana, Phytochemistry 1973, 12, 728. [5] H. Hikino, Y. Kiso, M. Kubota, M. Hattori, T. Namba, Shoyakugaku Zasshi 1984, 38, 359 (Chem. Abstr. 1985, 103, 154067j). [6] Y. Wang, J. Yang, Tianran Chanwu Yanjiu Yu Kaifa 1992, 4, 99 (Chem. Abstr. 1992, 116, 211106r). [7] I. Rahman, N. Arfan, J. Chem. Soc. Pak. 1997, 19, 240. [8] N. Pant, D. C. Jain, R. S. Bhakuni, Indian J. Chem., Sect. B 2000, 39, 565. [9] R. N. Chopra, S. L. Nayar, I. C. Chopra, −Glossary of Indian Medicinal Plants×, CSIR, New Delhi, 1956, p. 237. [10] −Flora of China×, Republica Popularis Sinicae, Science Press, Beijing, 1988, p. 344. [11] B. Dutt, L. J. Srivastava, J. M. Singh, Ancient Sci. Life 1996, 15(3), 226. [12] K. Maninder, K. Vasisht, S. S. Handa, J. Med. Aromat. Plant Sci. 1997, 19(5), 955. [13] −The Useful Plants of India×, Ed. S. P. Ambasta, PID, CSIR, New Delhi, 1986, p. 608. [14] A. K. Gargye, Ram. Med. Surg. 1983, 23(8), 41. [15] H. Tian, X. Zhang, Chin. J. Integrated Traditional Western Med. 1986, 6(1), 34. [16] N. N. Pathak, C. R. Karnick, Nagarjun 1981, 25(1), 46. [17] S. Khetwal, S. Pande, V. Tiwari, Indian J. Pharm. Sci. 1997, 59(4), 190. [18] S. Hongfa, D. Jing-Ye, Zhiwu xuebao [Acta Botanica Sinica] 1981, 23, 464 (Chem. Abstr. 1981, 96, 119014e). [19] R. He, S. Feng, R. Nei, Yun-Na Zhi wu Yan Jiu. 1984, 6, 341 (Chem. Abstr. 1984, 101, 226853w). [20] K. S. Khetwal, B. Joshi, R. S. Bisht, Phytochemistry 1990, 29, 1265. [21] G. Xin-Fang, C. Pian, Chung Ts×ao Yao 1980, 11, 200 (Chem. Abstr. 1981, 94, 71293). [22] M. Massias, J. Carbonnier, D. Molho, Bull. Mus. Natl. Hist. Nat. Sci. Phy-Chim. 1977, 13, 55 (Chem. Abstr. 1978, 89, 143342m). [23] S. Ghosal, K. Biswas, D. K. Jaiswal, Phytochemistry 1980, 19, 123. [24] E. V. Salovena, V. I. Glyzin, A. V. Patudin, Khim. Prir. Soedin. 1980, 4, 570 (Chem. Abstr. 1980, 93, 164393b). [25] M. H. Haqqani, Fitoterapia 1981, 52, 5. [26] S. R. Dalal, R. C. Shah, Chem. Ind. 1956, 664; A. K. Chakraborty, S. Mukhopadhyay, S. K. Moitra, B. Das, Indian J. Chem., Sect. B 1994, 33, 405. [27] S. Ghosal, P. V. Sharma, R. K. Chowdhury, S. K. Bhattacharya, J. Pharm. Sci. 1975, 64(1), 80. [28] R. He, S. Feng, R. Nei, Yun-Na Zhi wu Yan Jiu. 1982, 21(68), 76. [29] P. Anand, P. C. Basumarty, S. Ghosal, S. S. Handa, Planta Med. 1982, 45, 61. [30] N. Fukamiya, M. Okano, K. Kando, K. Tagahera, J. Nat. Prod. 1990, 53, 1543. CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] 1649 S. Ghosal, P. V. Sharma, R. K. Chowdhury, Phytochemistry 1975, 14, 1393. T. Tomimori, M. Yoshizaki, T. Namba, Yakugaku zasshi 1974, 94, 647 (Chem. Abstr. 1974, 81, 68429z). K. Hostettmann, G. A. Jacot, Helv. Chim. Acta. 1976, 59, 1584. R. C. Shah, S. R. Dalal, S. Sethna, J. Indian Chem. Soc. 1953, 7, 457. I. Agato, H. Sekizaki, A. Sakhshima, S. Nishibe, K. Hisaba, K. Kimura, Yakugaku zasshi 1981, 101(11), 1067 (Chem. Abstr. 1981, 96, 48986k). B. Niu, J. Guo, J. Chen, J. Ma, Chung-kuo Chung Yao Tsa Chih [China Journal of Chinese Materia Medica] 1991, 16(9), 549. J. Liu, M. Hung, Zhongguo Yao 1982, 13, 433 (Chem. Abstr. 1982, 98, 140530w). K. Ishimaru, H. Sudo, S. Satake, Y. Matsunaga, Y. Hasengawa, S. Takemoto, K. Shimomura, Phytochemistry 1990, 29, 1563. H. Kanamori, I. Sakamoto, M. Mizuta, K. Hashimoto, O. Tanaka, Chem. Pharm. Bull. 1984, 32, 2290. P. Kulanthaivel, S. W. Pelletier, K. S. Khetwal, D. L. Verma, J. Nat. Prod. 1988, 51, 379. S. Banerjee, T. K. Sur, S. Mondal, P. C. Das, S. Sikdar, Indian J. Pharmacol. 2000, 32, 21. R. K. Asthana, N. K. Sharma, D. K. Kulshrishtha, S. K. Chattarjee, Phytochemistry 1991, 30, 1037. E. V. Salovena, O. A. Denisova, V. I. Glyzin, A. V. Patudin, Khim. Prir. Soedin. 1980, 6, 840. G. Tan, K. Xu, P. Xu, G. Hu, Y. Li, Acta Pharm. Sin. 2002, 37(8), 630. B. Satesh, A. K. Kalla, Res. J. Fac. Sci. Kashmir Univ. 1982, 1, 10. V. U. Amhad, I. U. Rahman, M. A. Khan, M. Arfan, M. T. Siddiqui, Z. Naturforsch. B 2002, 57, 122. B. L. Hu, H. F. Sun, S. F. Fan, J. A. Jing-Ye, Acta Bot. Sin. 1992, 34(11), 886. S. Ashida, S. F. Noguchi, T. Suzuki, J. Am. Oil Chemist×s Soc. 1994, 71(10), 1093. K. S. Khetwal, R. S. Bisht, Phytochemistry 1988, 27, 1910. W. G. Deohivera, A. A. M. Lins, R. A. Delma, R. A. Gottlieb, E. H. Gottlieb, Phytochemistry 1984, 23, 239. S. Ghosal, P. V. Sharma, R. K. Chaudhuri, S. K. Bhattacharya, J. Pharm. Sci. 1973, 62, 926. N. Menkovic, K. S. Fodulovic, V. Bulatovic, I. Aljancic, N. Juranic, S. Macura, V. Vajs, S. Milosavljevic, Phytochemistry 2002, 61, 415. P. Rivaille, J. Massicot, M. Guyot, V. Plouvier, M. Massias, Phytochemistry 1969, 8, 1533. O. A. Denisova, V. L. Glyzin, A. V. Patudin, D. A. Fesenko, Chem. Nat. Compd. 1980, 2, 145. D. L. Verma, K. S. Khetwal, Sci. Cult. 1985, 51(9), 305. M. B. Bajpai, R. K. Agthana, N. K. Sharma, S. K. Chatterjee, S. K. Mukherjee, Planta Med. 1991, 57, 102. R. He, F. Shuji, R. Nie, Yun-Na Zhi wu Yan Jiu. 1982, 4, 68. O. A. Denisova, V. I. Glyzin, A. V. Patudin, D. A. Fesenko, Khim. Prir. Soedin. 1980, 16(2), 190. Y. Asahina, J. Asano, Y. Uyeno, J. Pharm. Soc. Jpn. 1942, 62, 22. P. Basnet, S. Kadota, M. Shimizu, T. Namba, Planta Med. 1994, 60, 507. T. A. Khan, M. H. Haqqani, N. M. Nisar, Planta Med. 1979, 37, 180. H. M. Zhou, Y. L. Liu, Acta Pharm. Sin. 1990, 25(2), 123. P. Tan, Y. L. Liu, C. Y. Hou, Yao Hsueh Hsueh Pao [Acta Pharmaceutica Sinica] 1992, 27(6), 476. R. K. Baslas, P. Kumar, Acta Clenc. Indica Ser. Gem. 1981, 7, 31. S. Mondal, A. Chatterjeee, Tetrahedron Lett. 1987, 28, 1309. M. C. R. Iglesias, A. Marston, K. Hostettmann, Phytochemistry 1992, 31, 1387. D. L. Dreyer, J. H. Bourell, Phytochemistry 1981, 20, 493. B. Hu, S. Hongfa, F. Shufen, D. Jingye, Zhiwu Xuebao [Acta Botanica Sinica] 1992, 34, 886. S. Rodriguez, J. L Wolfender, E. Hakizamungu, K. Hostettmann, Planta Med. 1995, 61, 362. H. M. Zhou, Y. N. Liu, G. Balsko, G. A. Cordell, A. Geoffrey, Phytochemistry 1989, 28, 3569. S. Ghosal, P. V. Sharma, R. K. Chaudhury, Phytochemistry 1975, 14, 2671. K. K. Purushothaman, A. Sarada, V. Narayanaswami, Leather Sci. 1973, 20, 132 (Chem. Abstr. 1973, 79, 113128b). H. Inouye, S. Ueda, M. Inada, M. Tsujii, Yakugaku Zasshi 1971, 91, 1022 (Chem. Abstr. 1972, 76, 1756g). A-U. Rahman, A. Pervin, M. Feroz, M. I. Choudhary, M. M. Qureshi, S. Perveen, I. Mir, M. I. Khan, J. Nat. Prod. 1994, 57, 134. E. R. Silneria, M. C. Talcoao, A. J. Menezes, D. G. I. Kingston, T. E. Glass, Phytochemistry 1995, 39, 1433. S. Ghosal, P. V. Sharma, D. K. Jaiswal, J. Pharm. Sci. 1978, 67, 55. O. A. Denisova, V. I. Glizin, A. V. Patudin, Khim. Prir. Soedin. 1980, 4, 569. S. P. Dhoubhadel, P. P. Wagley, S. D. Pradhan, Indian J. Chem., Sect. B 1980, 19, 929 (Chem. Abstr. 1980, 94, 44070t). I. Sakamoto, T. Tanaka, O. Tanaka, T. Tomimori, Chem. Pharm. Bull. 1982, 30, 4088. 1650 [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) Y. H. Luo, R. L. Nie, Acta Pharm. Sin. 1992, 27(2), 125. G. Y. Gao, M. Li, Y. X. Feng, P. Tan, Acta Pharm. Sin. 1994, 29(12), 910. A. K. Chakraborty, T. Sarkar, B. Das, K. Masnda, K. Shiojima, Indian J. Chem. 2001, 40, 228. P. Tan, C. Y. Hou, Y. L. Liu, L. J. Lin, G. A. Cordel, J. Org. Chem. 1991, 56(25), 7130. M. I. Khan, M. H. Haqqani, Fitoterapia 1981, 52, 165. M. S. M. Rawat, V. S. Rana, J. N. Pant, IUPAC International Conference on Biodiversity and Natural Products Chemistry and Medicinal Applications, New Delhi, January 2004, p. P-285. K. Hostettmann, I. Miura, Helv. Chim. Acta. 1977, 60, 262 (Chem. Abstr. 1977, 86, 155890q). E. V. Salovena, V. I. Glyzin, A. V. Patudin, Khim. Prir. Soedin. 1980, 840 (Chem. Abstr. 1980, 94, 171051n). H. Sun, B. Hu, J. Ding, S. Fan, Zhiwu Xuebao [Acta Botanica Sinica] 1991, 33, 31 (Chem. Abstr. 1991, 115, 203302r). S. Bhan, A. K. Kalla, Res. J. Fac. Sci. Kashmir Univ. 1981, 1, 10 (Chem. Abstr. 1981, 100, 65973k). Z. Liao, B. Hu, Zhiwu Xuebao [Acta Botanica Sinica] 1991, 33, 968 (Chem. Abstr. 1991, 117, 44588m). D. Kong, Y. Jiang, Y. Yao, S. Luo, H. Li, Zhongguo Yao 1995, 26, 7 (Chem. Abstr. 1995, 122, 222586x). T. Tomimori, M. Komatsu, Yakugaku Zasshi 1969, 89, 410 (Chem. Abstr. 1969, 71, 27900w). S. Yashukiko, Bull. Chem. Soc. Jpn. 1942, 17, 104. P. Tan, Y. L. Liu, C. Y. Hou, Acta Pharm. Sin. 1993, 28(7), 522. P. Tan, C. Y. Hou, Y. L. Liu, L. J. Lin, G. A. Cordel, Phytochemistry 1992, 31, 4313. S. Mandal, P. C. Das, P. C. Joshi, A. Chatterjee, C. N. Islam, M. K. Dutta, B. B. Patra, S. Sikdar, Fitoterapia 1992, 53, 122. J. N. Wang, C. Y. Hou, Y. L. Liu, L. Z. Lin, R. R. Gil, G. A. Cordell, J. Nat. Prod. 1994, 57(2), 211. T. Pengsuparp, L. Cai, H. Constant, H. H. S. Fong, L. Z. Lin, A. D. Kinghorn, J. M. Pezzuto, G. A. Cordell, K. Ingolfsdottir, H. Wagner, S. H. Hughes, J. Nat. Prod. 1995, 58, 1024. S. Mandal, P. C. Das, S. Sidkar, C. N. Islam, M. K. Dutta, Fitoterapia 1992, 63, 80. M. Kubofa, M. Hattori, T. Namba, Shoyakugaku Zasshi 1983, 37(3), 229. S. Bhan, R. Kumar, A. K. Kalla, K. L. Dhar, Phytochemistry 1988, 27, 539. Y. Akada, S. Kawamo, Y. Tanase, Yakugaku Zasshi 1980, 100(7), 770. K. S. Khetwal, D. L. Verma, Indian J. Pharm. Sci. 1984, 46, 25. A. K. Chakravarty, S. Mukhopadhyay, B. Das, Phytochemistry 1991, 30, 4087. S. Bhan, R. Kumar, A. K. Kalla, K. L. Dhar, Phytochemistry 1987, 26, 3363. A. K. Chakravarty, B. Das, S. C. Pakrashi, D. Mcphail, A. T. Mcphail, J. Chem. Soc., Chem. Commun. 1989, 348. A. K. Chakravarty, S. Mukhopadhyay, K. Masuda, H. Ageta, Indian J. Chem., Sect. B 1992, 31, 70. L. Bennaroche, A. M. Vernei, G. Defaye, A. M. Debelmas, CR Hebd. Seances Acad. Sci. Sen. D. 1975, 280, 2493 (Chem. Abstr. 1975, 83, 111152j). A. K. Chakravarty, S. Mukhopadhyay, K. Masuda, H. Ageta, Tetrahedron Lett. 1992, 33, 125. P. K. Chaudhuri, W. M. Daniewski, Polish J. Chem. 1995, 69(11), 1514. N. Pant, D. C. Jain, R. S. Bhakumi, Indian J. Chem., Sect. B 2002, 41, 1980. M. Komotsu, T. Tomimori, Y. Makignthi, K. Asano, Yakugaku Zasshi 1968, 88, 832 (Chem. Abstr. 1968, 79, 93674k). J. Yamahara, T. Konoshima, T. Sawada, H. Fujimura, Yakugaku Zasshi 1978, 98(11), 1446. a) P. V. Sharma, Indian J. Pharm. Sci. 1982, 44(2), 36; b) M. F. Balandrin, A. D. Kinghorn, J. Nat. Prod. 1979, 42, 697. P. V. Sharma, Indian Drugs 1984, 21(9), 395. T. U. Rakhamatulaev, Khim. Prir. Soedin. 1971, 7, 128 (Chem. Abstr. 1971, 74, 136454m). T. U. Rakhamatulaev, S. T. Akramon, S. Y. Yunusor, Khim. Prir. Soedin. 1969, 5, 64 (Chem. Abstr. 1969, 70, 112376d). H. Kikuzaki, Y. Kawasaki, S. Kitamura, N. Nakatani, Planta Med. 1996, 62, 35. Y. Takino, M. Kashioka, M. Kawaguchi, M. Higashino, T. Miyahara, H. Tanizuwa, Y. Ishii, M. Higashino, T. Hayashi, Planta Med. 1980, 38, 351. Y. Ikeshiro, Y. Tomita, Planta Med. 1984, 50, 485. Y. Ikeshiro, Y. Tomita, Planta Med. 1985, 51, 390. Y. Ikeshiro, Y. Tomita, Planta Med. 1987, 53, 158. M. Bridel, J. Pharm. Chim. 1913, 6, 481 (Chem. Abstr. 1913, 7, 679). J. Tusnura, Kokai Tokkyo Koho, Jap. Pat. 61,92,212, 1981 (Chem. Abstr. 1981, 95, 192375g). A. L. El-Sedawy, M. Hattori, K. Kobashi, T. Namba, Shoyakugaku Zasshi 1990, 44(2), 122. CHEMISTRY & BIODIVERSITY ± Vol. 1 (2004) [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [137] [138] [139] [140] [141] [142] [143] [144] [145] [146] [147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166] [167] [168] [169] [170] 1651 Suntory Ltd., Japan Kokai Tokkyo Koho, Jap. Pat. 59, 05,117 (Cl. C07.D 309/22), 1984, p. 2. T. Sakai, H. Naoki, K. Takaki, H. Kameoka, Chem. Lett. 1981, 8, 1257. T. Sakai, Y. Nakagawa, T. Iwashita, H. Naoki, T. Sakan, Bull. Chem. Soc. Jpn. 1983, 56, 3477. Suntory Ltd. , Japan Kokai Tokkyo Koho, Jap. Pat. 59, 25,394 (Cl. C07.D 493/08), 1984, p. 2. K. Ishimaru, H. Sudo, M. Satake, K. Shimomura, Phytochemistry 1990, 29, 3823. M. Hatjimanoli, J. F. Bonvin, M. Koauadji, A. M. Mariotte, J. Nat. Prod. 1988, 51, 977. Y. Ikeshiro, Y. Tomita, Planta Med. 1983, 47, 26. S. Ghosal, P. V. Sharma, R. K. Chaudhuri, J. Pharm. Sci. 1974, 63, 944. J. Yamahara, M. Kobayashi, H. Matsuda, S. Aoki, J. Ethnoprarmacol. 1991, 33(1 ± 2), 31. T. Nozaka, I. Morimoto, F. Watanabe, T. Okitsu, Shoyakugaku Zasshi 1984, 38(1), 96. M. Karan, K. Vasisht, S. S. Handa, Phytother. Res. 1999, 13(1), 24. H. Goyal, S. Sukumar, K. K. Purushottaman, J. Res. Ay. Sid. 1981, 2(3), 286. M. V. Chari, S. Venkataraghavan, C. Seshadri, B. R. Shetty, N. Gowri, J. Res. Ay. Sid. 1985, 6(1,3,4), 105. B. Q. Ya, L. C. Nian, C. Li, X. P. Gen, Phytomed. 1999, 6(2), 85. P. Basnet, S. Kadota, M. Shimizu, Y. Takata, M. Kobayashi, T. Namba, Planta Med. 1995, 61, 402. D. J. Jian, G. S. Tan, Z. H. Zhou, K. P. Xu, F. Ye, Y. J. Li, Planta Med. 2002, 68, 710. S. Ghosal, K. Biswas, R. K. Chaudhuri, J. Pharm. Sci. 1978, 67, 721. M. Komatsu, T. Tomimori, Jap. Pat. 72, 16, 676, 1972 (Chem. Abstr. 1972, 77, 85878e). K. Hase, J. Li, P. Basnet, Q. Xiong, S. Takamura, T. Namba, S. Kadota, Chem. Pharm. Bull. 1997, 45, 1823. J. N. Wang, C. Y. Hou, Y. L. Liu, L. Z. Lin, R. R. Gil, G. A. Cordell, J. Nat. Prod. 1994, 57, 211. H. Kanamari, I. Sakamoto, M. Mizuta, O. Tanaka, Chem. Pharm. Bull. 1986, 34, 1663. S. Yajiro, N. Kajiro, I. Hiroc, Y. Ritsu, I. Hiroshi, Japan Kokai Tokkyo Koho, Jap. Pat. 63, 190, 827 (Cl. A61 K31/70), 1988. S. Ray, H. K. Majumder, A. K. Chakraborty, S. Mukhopadhyay, J. Nat. Prod. 1996, 59, 27. A. E. Sedawy, Y. Z. Shu, M. Hattori, K. Kobashi, T. Namba, Planta Med. 1989, 55, 147. B. Chandrasekhar, M. B.. Bajpai, S. K. Mukherjee, Indian J. Exp. Biol. 1980, 28(7), 616. P. Basnet, S. Kadota, T. Namba, M. Shimizu, Phytother. Res. 1994, 8, 55. C. R. Karnick, Aryvaidyan 1991, 5, 36. A. M. Saxena, M. B. Bajpai, P. S. R. Murthy, S. K. Mukherjee, Indian J. Exp. Biol. 1993, 31(2), 178. M. Karan, K. Vasisht, S. S. Handa, Phytother. Res. 1999, 13(2), 95. R. K. Reen, M. Karan, K. Singh, V. Karan, R. K. Johri, J. Singh, J. Ethnopharmacol. 2001, 75, 239. S. Chatterjee, S. N. Das, Indian Drugs 1999, 36(2), 140. M. L. Dwivedi, S. V. Tripathi, H. S. Durivedi, Sachitra Ayurved 1984, 37(2), 89. T. Mukherjee, Fitoterapia 1991, 62, 197. U. K. Pandey, G. S. Verma, M. Pandey, Indian J. Entomol. 1980, 42(4), 775. M. Ikram, I. Haq, Fitoterapia 1980, 5, 231. N. Ramesh, M. B. Viswanathan, A. Saraswathy, K. Balakrishna, P. Brindha, P. Akshmanaperumalsamy, Fitoterapia 2002, 73, 160. E. R. Leslie, J. I. Chungath, Indian Drugs 1987, 25, 143. R. N. Mallick, P. C. Das, S. M. Chatterjee, Curr. Sci. 1985, 54(21), 1110. S. Rafatullah, M. Tariq, J. S. Mossa, M. A. al-Yahaya, M. S. al-Said, A. M. Ageel, Drugs Exp. Clin. Res. 1993, 19(2), 69. J. G. Asthana, S. Jain, S. Mishra, M. S. Vijaykanth, Indian Drugs 2001, 38(2), 82. B. Paul, P. Anand, A. K. Yadav, A. K. Saxena, A. P. Sahu, U. Mani, K. K. Dutta, J. Med. Aromat. Plant Sci. 2000 ± 2001, 22(4A) and 23(1A), 53. T. Makota, A. Yutaka, M. Keuji, Jap. Kokai Tokkyo Koho, Jap. Pat. 62, 116, 520, 1993. R. Ahmad, U. Sheikh, A. Ahmad, M. Ahmad, Hamdard Medicus 1993, 36(2), 99. P. N. Pandey, P. Kishore, J. Res. Ay. Sid. 1991, 12(3 ± 4), 145. S. M. Ali, Conf. Pharm. Symp. Herbal Drugs (New Delhi) 1991, 15 March, 3. Received June 25, 2004