Academia.eduAcademia.edu
B O NO RO WO WE TL A N D S Volume 8, Number 1, June 2018 Pages: 1-12 P-ISSN: 2088-110X E-ISSN: 2088-2475 DOI: 10.13057/bonorowo/w080101 Diversity and distribution of vascular macrophytes in Ansupa Lake, Odisha, India MUKTIPADA PANDA1,2,, RABINDRO NATH SAMAL1, KRUPA SINDHU BHATTA1, SASMITA LENKA1, JAJNASENI ROUT1, HEMANTA KUMAR PATRA2, SUSANTA NANDA1 1 Chilika Development Authority, Department of Forest and Environment, Govt. of Odisha, Plot No. C-11, BJB Nagar, Bhubaneswar 751014, Odisha, India. email: muktipadapanda@gmail.com 2 Post-Graduate Department of Botany, Utkal University. Bhubaneswar 751004, Odisha, India Manuscript received: 14 March 2018. Revision accepted: 17 May 2018. Abstract. Panda M, Samal RN, Bhatta KS, Lenka S, Rout J, Patra HK, Nanda S. 2018. Diversity and distribution of vascular macrophytes in Ansupa Lake, Odisha, India. Bonorowo Wetlands 1: 1-12. Macrophytes are indispensable component of any wetlands. They are the base of the trophic structure and variously affect function of aquatic ecosystem. Large invasion of macrophytes enforced for present studies in Ansupa Lake, the largest freshwater lake of the state Odisha (India) to identify the causative plant species. Regular field inspection, quadratic sampling and specimen collections were carried to identify the present macrophytes of the lake and their quantitative aspects like frequency of occurrences, abundance, values of diversity indices, adaptation and growth forms and species distribution etc. A total of 244 macrophyte species were identified that includes 182 semi-aquatic and 62 obligatory aquatic macrophytes. The latter group had 35% submerged, 15% free floating, 31% rooted floating and 19% marshy plant species. The comparison of growth form showed 66% annuals and remaining 34% perennial plants. The diversity indices resulted, Simpson complement index-0.561, Shannon-Weiner index-1.367, Species richness index 3.079 and Species evenness index-0.156. The study showed that the lake provides suitable habitats for existence of a diverse group of macrophytes but still due to large invasion of few species has threatened the lake which needs to be managed properly to restore the health of this natural resource for the benefit of mankind. Keywords: Ansupa Lake, conservation, macrophyte diversity, species invasion INTRODUCTION Wetlands are the hotspots of biological diversity and invaluable for sustainable living. Plants in water are called macrophytes (Dodds 2002). They act as ‘‘biological engineers’’ in restoring water quality (Byers et al. 2006). It includes both flowering and non-flowering plants that start their life in and around water bodies (Chambers et al. 2008). A total of 2614 aquatic vascular macrophytes occur globally which represent only 1% of the total number of vascular plants (Ansari et al. 2017). Total number of aquatic plant species in Indian freshwaters exceeds 1200 (Gopal 1995). Many species of aquatic plant are invasive species (Oyedeji and Abowei 2012). These plants cause local losses of species diversity and alter ecosystem structure, resulting in a significant negative impact on aquatic biodiversity and water quality (Brundu 2015; Chamier et al. 2012; Wang et al. 2016; Zedler and Kercher 2004). In India, over 140 aquatic plants are reported to have attained the status of aquatic weeds in different situations (Gupta 2012; Naskar 1990; Shah and Reshi 2012; Varshney et al. 2008). Ansupa Lake, the present study sites is the largest fresh water lake of the state Odisha (India) (Mohanty and Das 2008) and a lake of national importance (Das and Mohanty 2008). The lake provides livelihood provisions like fishing i.e., small indigenous fishes, table size fishes and ornamental fishes; agriculture, i.e., rice cultivation; edible aquatic plants and ecotourism due to its unique biodiversity and natural scenery (Sarkar et al. 2015). More than 25,000 fishermen and local residence make their livelihood on the lake water (Das and Mohanty 2008; Mohanty and Das 2008). The average water depth of the lake was 4 meters (Das and Mohanty 2008). The lake receives annual rainfall between 800mm to 1300mm (Das and Mohanty 2008; Panda et al. 2016) and most during months of July and August, each year. It hosts 44 species of phytoplankton, 32 species of zooplanktons and 30 species of fishes (Patra and Patra 2007). Panda et al. (2016) for the first time reported occurrence of Hygroryza aristata (Retz.) Nees. ex Wt. and Arn., a wild relative of edible rice in Ansupa Lake as the only habitat in the state for this species. There is few published work on Ansupa Lake and the macrophytes study is very poorly reported (Das and Mohanty 2008; Mohanty and Das 2008; Varshney et al. 2008; Sarkar et al. 2015; Panda et al. 2016). All previous studies reported the progressive degradation conditions of the lake due to siltation, shrinkage of water spread area and invasions of aquatic plants (Das and Mohanty 2008; Mohanty and Das 2008; Sarkar et al. 2015; Panda et al. 2016). Knowing the importance of Ansupa Lake, present studies were designed to identify the macrophyte diversity, the problematic weeds that need to be managed properly for the long term conservation of indigenous biota and creation of better livelihood opportunity from the lake. 2 B O NO RO WO WE TL A N D S 8 (1): 1-12, June 2018 MATERIALS AND METHODS Study area Ansupa Lake is the largest fresh water lake of Odisha State, India, situated between latitude 20 26 21 to 20 28 52 N and 85 36 25 to 85 36 0 E longitude on the river bank of Mahanadi (Figure 1). The area of the lake is around 375 acres and 385 acres during the dry and rainy seasons, respectively (Mohanty and Das 2008). Field data collection and floristic study The floristic studies were carried during November 2014 and an extensive regular field work from April to November 2017. The recorded macrophytes were identified with the help of available both regional and international scientific literatures (Calvert and Liessmann 2014; Campbell et al. 2010; Crow and Hellquist 2000; Das 2012; Gerber et al. 2004; Ghosh 2005; Gupta 2012; Haines 1921-1925; Naskar 1990). The scientific name and author citation were checked with, The plant list (http://www.theplantlist.org/) and International Plant Names Index (http://www.ipni.org/ipni/plantnamesearchpage.do). Quantitative status and ecological parameters were calculated from 25 fixed random plots, i.e. size, 1m  1m (Figure 1). Data analysis The quadratic parameters like, Frequency and Abundance (Upadhyay et al. 2009), Whitford’s index (A/F) (Whitford 1949), Species richness index (Margalef 1958), Simpson complement index (1-DS) from Simpson Dominance index (Simpson 1949), Shannon-Wiener index (Shannon and Wiener 1963) and Species evenness index (J) (Pielou 1975) were calculated as follows: Where, S is the total number of species in the community and N is the total number of individuals of all species of a community. Figure 1. Location map of Ansupa Lake, Cuttack District, Odisha, India PANDA et al. – Macrophyte diversity of Ansupa Lake, Odisha, India 3 Where, Where, H is the Shannon-Weiner index of the community and S is the total number of species in the community. RESULTS AND DISCUSSION A total of 244 vascular macrophytes were identified to occur in and shoreline areas of the lake. Out of the total record, 238 species were of flowering plants, i.e., Angiosperms (Table 1) and 6 species of non-flowering macrophytes, i.e., Pteridophyte (Table 2). All six pteridophytes were strictly aquatic species; they belong to only two families (i.e., Marsileaceae and Salviniaceae) and except Azolla microphylla Kaulf., which was an annual species others were perennial in their growth form (Table 2). The angiospermic macrophytes belong to a total of sixty families. Among these families, Poaceae and Cyperaceae were recorded as the most diversified families (Figure 2). The classification of all the recorded macrophytes on the basis of habitat preference showed 182 (75%) semi-aquatic species and 62 (25%) aquatic species (Figure 3). Categorization of total angiosperms revealed 137 (58%) dicot species and 101 (42%) monocot species (Figure 4). Among the dicot group, only 26 (19%) species were strictly aquatic and 111 (81%) species were semi-aquatic plants (Figure 5). Similarly, the monocot group had 30 species (30%) and 71 species (70%) as aquatic and semi-aquatic plants, respectively (Figure 6). The comparison of growth form showed 160 species (66%) annual and remaining 84 species (34%) as perennial macrophytes (Figure 7). The classification of total aquatic species displayed 35% submerged, 15% free floating, 31% rooted floating and 19% marshy plant species (Figure 8). The study of nativity resulted 56 species out of 244 species as exotic or non native macrophytes of India (Table 1 and Table 2). Quadratic study revealed quantitative status of twenty eight common macrophytes (Table 3). Maximum species diversity was recorded in the peripheral or shoreline plots. Most frequent and abundant species were Ceratophylum demersum L., Hydrila verticelastar (L.) Pers., Nelumbo nucefera Gaertn., Najas sp., Utricularia sp.,Eichhornia crassipes (Mart.) Solm-Laub. and Salvinia molesta D. S. Mitch from interior of the lake. Other species like, Polygonum barbatum L., Hymenachne amplexicaulis (Rudge) Nees, Cyperus iria L., Alternanthera philoxeroides A. St-Hil., Cyperus rotundus L. were more abundant at the land water interface (i.e., marshy areas). The distribution pattern (i.e. Whitford’s index) showed all species with more or less of contagious type of distribution (A/F  0.05). The diversity indices study showed Simpson complement index-0.561, Shannon-Weiner index-1.367, Species richness index 3.079 and Species evenness index0.156 (Figure 9). Figure 2. Family wise recorded number of angiospermic macrophytes species The study found occurrence of wide habitat variability that helped establishment of different group of aquatic and semi-aquatic vascular macrophytes in the lake. Many macrophytes showed seasonal changes of population status, influenced by water level (Dalu et al. 2012). This affects the value of diversity index of the ecosystem, as calculated by ratio between the number of species and the number of individuals in that community (Ansari et al. 2017). The low value of species evenness index showed the present species were not equally abundant, some species dominated over others. The lake hosts some unique macrophytes that found rarely elsewhere in the state. Hygroryza aristata (Retz.) Nees. Ex Wt. & Arn. and Oryza rufipogon Griff., the wild 4 B O NO RO WO WE TL A N D S 8 (1): 1-12, June 2018 Figure 3. Classification as per habitat requirement: Aquatic and semi-aquatic plants (%) Figure 6. Classification of monocots into habitat groups: Aquatic and semi-aquatic monocots (%) Figure 4. Classification into Angiosperm group: Diversity of dicot and monocot species (%) Figure 7. Classification of macrophytes into growth forms: Growth form of macrophytes (%) Figure 5. Classification of dicots into habitat group: Aquatic and semi-aquatic dicots (%) Figure 8. Classification of aquatic plants into their adaptation group: Adaptation forms of aquatic plants (%) relative of edible rice were a common occurrence in the lake (Plate 1). The aesthetically important and endangerd plant species, Gloriosa superba L. has been recorded from shoreline areas of the lake for the first time (Plate 1). The semi-aquatic plants were diverse and many showed seasonal growth. Many of them were small herbaceous annual plants. Strong infestation of Nelumbo nucifera Gaertn., Eichhornia crassipes (Mart.) Solm-Laub., Salvinia molesta D. S. Mitch, Ceratophyllum demersum L., Hydrilla verticillata (L.f.) Royle, Najas indica (Willd) Cham.; Hymenachne amplexicaulis (Rudge) Nees, other grasses and marshy vegetation were found negatively affecting the lake (Plate 2). Soil erosion from surrounded hills and siltation, decreased water flow due to closing of inlets and outlets with Mahanadi River, intensive fertilizer load are the possible factors for degradation of the lake. Figure 9. Diversity indices from quadrate data 5 PANDA et al. – Macrophyte diversity of Ansupa Lake, Odisha, India Table 1. List of Angiospermic macrophyte recorded from Ansupa Lake, Odisha, India Plant family Si. No. Acanthaceae 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 Aizoaceae Alismataceae Amaranthaceae Amaryllidaceae Apiaceae Aponogetonaceae Araceae Asteraceae Boraginaceae Capparaceae Cariophyaceae Ceratophyllaceae Colchicaceae Commelinaceae Convolvulaceae Plant species Andrographis paniculata (Burm.f.) Wall. ex Nees Hygrophila auriculata (Schum) Heine Hygrophila schulli (Buch.-Ham.) M.R.Almeida & S.M. Almeida Justicia diffusa Willd  Ruellia tuberosa L.  Trianthema portulacastrum L.  Alisma plantago-aquatica L. Limnophyton obtusifolium (L.) Miq. Sagitaria sagittifolia L. Sagittaria guayanensis var. lappula D. Don Sagitaria trifolia L.  Achyranthes aspera L. Aerva lanata (L.) Juss. ex Schult.  Alternanthera paronychioides A. St-Hil.  Alternanthera philoxeroides (Mart.) Griseb.  Alternanthera sessilis (L.) DC.  Amaranthus spinosus L.  Amaranthus viridis L.  Celosia argentea L.  Gomphrena celosioides Mart. Crinum latifolium L. Crinum viviparum (Lam.) R.Ansari & V.J.Nair Centella asiatica (L.) Urb.  Hydrocotyle modesta Cham. & Schltdl. Aponogeton natans (L.) Engl. & Krause Alocasia indica (Roxb.) Schott Colocasia esculenta (L.) Schott  Pistia stratiotes L.  Ageratum conyzoides L. Blumea lacera (Burm.f.) DC. Caesulia axillaris Roxb.  Chromolaena odorata (L.) King & H.E. Robins. Cyanthillium cinereum (L.) H. Rob  Eclipta alba (L.) Eclipta prostrata (L.) L. Enydra fluctuans Lour. Emilia sonchifolia (L.) DC  Gnaphalium polycaulon Pers. Grangea maderaspatana L.  Mikania cordata (Burm.f.) Robinson Sphaeranthus indicus L. Spilanthes paniculata Wall. Ex DC.  Synedrella nodiflora (L.) Gaertn.  Xanthium strumarium L. Coldenia procumbens L. Heliotropium indicum L. Cleome monophylla L. Cleome viscosa L.  Polycarpon prostratum (Forssk.) Asc. & Sch. Ceratophyllum demersum L. Gloriosa superba L. Commelina benghalensis L. Commelina erecta L. Commelina longifolia Lam. Cyanotis axillaris (L.) D.Don ex Sweet  Evolvulus nummularius (L.) L. Murdannia nudiflora (Linn.) Brenan. Murdannia spirata (L.) Bruckn.  Ipomoea aquatica Forssk.  Ipomoea carnea Jacq. ssp. Fistulosa (Mart. ex Choisy) Austin Plant group Macrophyte type Life form D D D D D D M M M M M D D D D D D D D D M M D D M M M M D D D D D D D D D D D D D D D D D D D D D D M M M M M M M M D D Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (S) Aquatic (S) Aquatic (S) Aquatic (S) Aquatic (S) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (S) Aquatic (RF) Semi-aquatic Semi-aquatic Aquatic (S) Semi-aquatic Semi-aquatic Aquatic (FF) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (S) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (S) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (RF) Semi-aquatic Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Perennial Perennial Annual Perennial Perennial Perennial Perennial Annual Annual Perennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Perennial Perennial Perennial Perennial Perennial Perennial Perennial Annual Annual Perennial Perennial 6 Costaceae Crassulaceae Cucurbitaceae Cyperaceae Elatinaceae Eriocaulaceae Euphorbiaceae Fabaceae Gentianaceae Hydrocharitaceae Hydrophyllaceae Lamiaceae Lemnaceae B O NO RO WO WE TL A N D S 8 (1): 1-12, June 2018 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126  Ipomoea pes-tigridis L. Merremia tridentata (L.) Hall. f. Costus speciosus (J.Koenig) Sm. Bryophyllum calycinum Salisb. Mukia maderaspatana (L.) M. Roem. Cucumis melo L. Cyperus alopecuroides Rottb.  Cyperus brevifolius (Rottb.) Hassk. Cyperus cephalotes Vahl Cyperus compressus L. Cyperus corymbosus Rottb. Cyperus difformis L. Cyperus haspan L Cyperus imbricatus Retz. Cyperus iria L. Cyperus platystylis R. Br. Cyperus polystachyos Rottb. Cyperus rotundus L.  Cyperus strigosus L. Eleocharis acutangula (Roxb.) schutt. Echinochloa crus-galli (L.) P. Beauv. Eleocharis dulcis (Burm.f.) Trin. ex Henschel Fimbristylis dipsacea (Rottb.) C.B. Clarke Fimbristylis ferruginea (L) Vahl. Fimbristylis littoralis Gaudich. Fimbristylis miliacea (L.) Vahl Fuirena ciliaris (L.) Roxb.  Kyllinga tenuifolia Steud. Lipocarpha chinensis (Osbeck) J.Kern. Cyperous compactus Retz. Pycreus pumilus (L.) Nees Schoenoplectus articulatus (L.) Palla Schoenoplectus grossus (L.f.) Palla Schoenoplectiella supina (L.) Lye  Bergia ammannioides Roxb. ex Roth Bergia capensis L. Eriocaulon quinquangulare L. Acalypha indica L.  Croton bonplandianus (Baill.) Kuntze Euphorbia hirta L.  Euphorbia prostrata Aiton. Jatropha gossypiifolia L.  Phyllanthus tenellus Roxb.  Ricinus communis L. Aeschynomene aspera L. Aeschynomene indica L. Alysicarpus vaginalis (L.) DC.  Cassia tora L.  Crotalaria pallida Aiton Crotalaria quinquefolia L. Zornia diphylla (L.) Pers. Senna obtusifolia (L.) H.S.Irwin. & Barneby  Senna occidentalis (L.) Link Sesbania bispinosa (Jacq.) W.F. Wt. Hoppea dichotoma Willd. Blyxa echinosperma (Clarke) Hook.f. Hydrilla verticillata (L.f.) Royle Nechamandra alternifolia (Roxb. ex Wight) Thw. Ottelia alismoides (L.) Pers. Vallisneria natans (Lour.) H. Hara Hydrolea zeylanica (L.) Vahl. Anisomeles indica (L.) O. Kuntze. Leucas aspera (Willd.) Link Pogostemon quadrifolius (Benth.) F. Muell.  Spirodela polyrrhiza (L.) Schleid. Lemna gibba L. D D M D D D M M M M M M M M M M M M M M M M M M M M M M M M M M M M D D M D D D D D D D D D D D D D D D D D D M M M M M D D D D M M Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (RE) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (S) Aquatic (S) Aquatic (S) Aquatic (S) Aquatic (S) Aquatic (RE) Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (FF) Aquatic (FF) Perennial Perennial Perennial Perennial Annual Annual Annual Perennial Perennial Annual Perennial Annual Annual Perennial Annual Perennial Perennial Perennial Perennial Perennial Annual Perennial Annual Perennial Annual Annual Annual Annual Annual Annual Annual Annual Perennial Annual Annual Perennial Perennial Annual Annual Annual Annual Perennial Perennial Perennial Annual Annual Annual Annual Perennial Perennial Annual Annual Annual Annual Annual Annual Perennial Perennial Perennial Annual Annual Perennial Annual Annual Perennial Annual 7 PANDA et al. – Macrophyte diversity of Ansupa Lake, Odisha, India Lentibulariaceae Linderniaceae Lythraceae Malvaceae Martyniaceae Menyanthaceae Mimosaceae Molluginaceae Haloragaceae Najadaceae Nelumbonaceae Nyctaginaceae Nymphaeaceae Onagraceae Oxalidaceae Plantaginaceae Poaceae 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 Lemna aequinoctialis Welw Wolffia globosa (Roxb.) Hartog & Vander Plas Utricularia aurea Lour. Utricularia inflexa Forssk. Utricularia bifida L. Lindernia crustacea (L.) F.Muell. Ammannia baccifera L. Ammannia multiflora Roxb. Ammannia octandra L.f. Rotala densiflora (Roth. ex Roem. & Schult.) Koehne Rotala indica (Willd.) Koehne Abutilon indicum (L.) Sweet Corchorus aestuans L. Sida cordifolia L. Urena lobata L.  Martynia annua L. Nymphoides hydrophylla (Lour.) Kuntze Nymphoides indica (L.) Kuntze  Mimosa pudica L. Neptunia oleracea Lour. Neptunia plena (L.) Benth. Glinus oppositifolius (L.) Aug. DC Mollugo pentaphylla L. Myriophyllum tetrandrum Roxb.  Myriophyllum aquaticum (Vell.) Verdc. Myriophyllum verticillatum L. Najas faveolata A. Br. ex Magam. Najas indica (Willd) Cham. Najas marina L. Nelumbo nucifera Gaertn. Boerhavia diffusa L. Boerhavia repens L. Euryale ferox Salisb. Nymphaea nouchali Burm.f. Nymphaea pubescens Willd. Nymphaea rubra Roxb. ex Andrews Ludwigia prostrata Roxb. Ludwigia adscendens (L.) H. Hara Ludwigia octovalvis (Jacq.) P.H. Raven Ludwigia perennis L. Oxalis corniculata L.  Scoparia dulcis L. Apluda mutica L. Arundinella pumila (Hochst. ex A.Rich) Steud Axonopus compressus (Sw.) P.Beauv. Brachiaria deflexa (Schumach.) C.E.Hubb. ex Robyns Brachiaria mutica (Forssk.) Stapf. Brachiaria ramosa (L.) Stapf Brachiaria reptans (L.) C.A.Gardner & C.E.Hubb  Chloris barbata Sw. Cyrtococcum longipes (Hook.f.) A.Camus Cynodon dactylon (L.) Pers.  Dactyloctenium aegyptium (L.) Willd. Dichanthelium sp. Echinochloa colona (L.) Link Echinochloa crus-galli (L.) P.Beauv. Echinochloa stagnina (Retz.) Beauv. Eleusine indica (L.) Gaertn Elytrophorus spicatus (Willd.) A. Camus Eragrostis ciliaris (L.) R.Br. Eragrostis gangetica (Roxb.) Steudel Eragrostis japonica (Thunb.) Trin. Eragrostis pilosa (L.) P.Beauv. Eragrostis tenella (L.) P.Beauv.ex Roem.& Schult. Hygroryza aristata (Retz.) Nees ex Wight & Arn  Hymenachne amplexicaulis (Rudge) Nees Leersia hexandra Sw. M M D D D D D D D D D D D D D D D D D D D D D D D D M M M D D D D D D D D D D D D D M M M M M M M M M M M M M M M M M M M M M M M M M Aquatic (FF) Aquatic (FF) Aquatic (S) Aquatic (S) Aquatic (S) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (RF) Aquatic (RF) Semi-aquatic Aquatic (RF) Aquatic (RF) Semi-aquatic Semi-aquatic Aquatic (RE) Aquatic (RE) Aquatic (RE) Aquatic (S) Aquatic (S) Aquatic (S) Aquatic (RF) Semi-aquatic Semi-aquatic Aquatic (RF) Aquatic (RF) Aquatic (RF) Aquatic (RF) Semi-aquatic Aquatic (RF) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (RF) Aquatic (RF) Semi-aquatic Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Perennial Perennial Perennial Annual Annual Annual Perennial Annual Perennial Perennial Perennial Perennial Annual Annual Perennial Perennial Perennial Perennial Annual Perennial Annual Annual Annual Annual Annual Annual Perennial Annual Perennial Annual Annual Annual Perennial Perennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Perennial Annual Annual Perennial Perennial Perennial 8 Papilionaceae Polygonaceae Pontederiaceae Portulacaceae Potamogetonaceae Rubiaceae Scrophulariaceae Solanaceae Sphenocleaceae Sterculiaceae Trapaceae Typhaceae Verbenaceae Violaceae B O NO RO WO WE TL A N D S 8 (1): 1-12, June 2018 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 Oryza rufipogon Griff. Panicum sumatrense Roth  Paspalum dilatatum Poir Paspalum distichum L. Paspalum vaginatum Sw. Setaria pumila (Poir.) Roem. & Schult. Saccharum spontaneum L Setaria glauca (L.) Beauv. Sporobolus coromandelianus (Retzi.) Kunth Sesbania bispinosa (Jacq.) W.Wight.  Persicaria glabrum (Willd.) M.Gomez  Polygonum barbatum L. Polygonum plebeium R. Br.  Rumex maritimus L. Eichhornia crassipes (Mart.) Solm-Laub. Monochoria hastata (L.) Solm. Monochoria vaginalis (Burm f.) Presl. Portulaca oleracea L.  Potamogeton nodosus Poir. Stuckenia pectinata (L.) Börner Dentella repens (L.) Forst. et Forst. Oldenlandia diffusa (Willd.) Roxb. Mitracarpus hirtus (L.) DC. Oldenlandia corymbosa L. Bacopa monnieri (L.) Pennell. Dopatrium junceum (Roxb.) Buch-Ham. ex Benth. Limnophila aquatica (Roxb.) Alston Limnophila heterophylla (Roxb.) Benth. Limnophila indica (L.) Druce Limnophila sessiliflora (Vahl) Blume Lindernia anagallis (Burm.f.) Pennel Lindernia antipoda (L.) Alston Lindernia parviflora (Roxb.) Haines Mecardonia procumbens (Mills.) Small Scoparia dulcis L.  Verbascum chinense (L.) Santapau Physalis minima L. Sphenoclea zeylanica Gaertn. Melochia corchorifolia L. Trapa natans L. var. bispinosa (Roxb.) Makino  Typha angustata Bory & Chaub.  Lantana camara L.  Lippia javanica (Burm.f.) Spreng. Phyla nodiflora (L.) Greene Hybanthus enneaspermus (L.) F.Muell. M M M M M M M M M D D D D D M M M D M M D D D D D D D D D D D D D D D D D D D D M D D D D Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (RF) Aquatic (RF) Aquatic (RE) Semi-aquatic Aquatic (S) Aquatic (S) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (RE) Aquatic (RE) Aquatic (RE) Aquatic (RE) Aquatic (RE) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Aquatic (RF) Aquatic (RE) Semi-aquatic Semi-aquatic Semi-aquatic Semi-aquatic Perennial Perennial Annual Perennial Annual Annual Perennial Annual Annual Annual Perennial Perennial Annual Annual Perennial Perennial Perennial Annual Annual Perennial Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Annual Perennial Perennial Perennial Perennial Annual Annual Note: D= Dicot, M= Monocot, S= Submerged, FF= Free floating, RF= Rooted floating, RE= Rooted erect, =Exotic or non native species (Un-marked species are native or indigenous to India) Table 2. List of Non-flowering (Pteridophyte) macrophytes of Ansupa Lake (Odisha), India Family S. No. Plant species Habitat group Life form Marsileaceae 1 2 Marsilea minuta L. Marsilea quadrifolia L. Aquatic (RF) Aquatic (RF) Perennial Perennial Salviniaceae 3 4 5 6  Aquatic (FF) Aquatic (FF) Aquatic (FF) Aquatic (FF) Annual Perennial Perennial Perennial Azolla microphylla Kaulf. Azolla pinnata R.Br.  Salvinia minima Baker  Salvinia molesta D.S. Mitch Note: RF=Rooted floating, FF=Free floating, = Exotic or non native species (Un-marked species are native or indigenous to India) 9 PANDA et al. – Macrophyte diversity of Ansupa Lake, Odisha, India Table 3. Quantitave status of important macrophytes of Ansupa Lake, Odisha, India Macrophyte species Eichhornia crassipes (Mart.) Solm-Laub. Ipomoea aquatica Forssk. Cyperus strigosus L. Cyperus iria L. Cyperus rotundus L. Ludwigia adscendens (L.) H. Hara Ludwigia perennis L. Alternanthera philoxeroides (Mart.) Griseb. Salvinia molesta D.S. Mitch Salvinia minima Baker Cyperus compressus L. Kyllinga tenuifolia Steud. Hydrilla verticillata (L.f.) Royle Ceratophyllum demersum L. Najas faveolata A. Br. ex Magam. Nymphaea pubescens Willd. Trapa natans L. var. bispinosa (Roxb.) Makino Nelumbo nucifera Gaertn. Pistia stratiotes L. Spirodela polyrrhiza (L.) Schleid. Utricularia sp. Lemna gibba L. Azolla pinnata R Br. Polygonum barbatum L. Marsilea quadrifolia L. Aponogeton natans (L.) Engl. & Krause Hygroryza aristata (Retz.) Nees ex Wight & Arn Lindernia parviflora (Roxb.) Haines Total count Total plots where recorded Frequency Abundance Abundance/ frequency (A/F) 31 17 14 60 20 13 20 25 37 6 62 2 1240 4060 335 6 8 57 11 54 171 78 29 38 20 5 7 10 4 3 2 1 1 2 3 1 3 1 2 1 12 21 9 4 1 16 3 4 4 7 5 1 3 1 2 2 16 12 8 4 4 8 12 4 12 4 8 4 48 84 36 16 4 64 12 16 16 28 20 4 12 4 8 8 7.75 5.67 7.0 60.0 20.0 6.5 6.67 25.0 12.33 6.0 31.0 2.0 103.33 193.33 37.22 1.5 8.0 3.56 3.67 13.5 42.75 11.14 5.8 38.0 6.67 5.0 3.5 5.0 0.484 0.472 0.875 15.00 5.00 0.813 0.556 6.250 1.028 1.500 3.875 0.500 2.153 2.302 1.034 0.094 2.00 0.056 0.306 0.844 2.672 0.398 0.290 9.500 0.556 1.250 0.438 0.625 A B C D Plate 1. Some taxonomically important taxa from Ansupa Lake, Odisha, India. Note: A. Oryza rufipogon, B. Hygroryza aristata, C. Ottelia alismoides, D. Gloriosa superba 10 B O NO RO WO WE TL A N D S 8 (1): 1-12, June 2018 A B C D E F G H Plate 2. Invasive weed species of Ansupa Lake, Odisha, India. Note: A-B. Eichhornia crassipes, C-D. Nelumbo nucifera, E. Salvinia molesta, F. Ceratophyllum demersum, G. Najas indica, H. Hymenachne amplexicaulis PANDA et al. – Macrophyte diversity of Ansupa Lake, Odisha, India Besides being having these troublesome weeds, the lake also hosts many macrophytes that are used as food, fodder or medicine by the local households. Control of invasion and their management is a tedious and need multiple strategies. Management of this invasive grass must include a combination of strategies such as winter burning, herbicide application and hydroperiod control. The floating rotted macrophyte Euryale ferox Salisb., once occurred in the lake (recorded in October 2014) is now extinct from the lake. Implementation of physical (mechanical) methods and dredging to required depth will reduce current infested weeds and further regular monitoring, participation of both Governments agency and local community thought to restore a long term functioning of the lake. General comments Aquatic macrophytes are indispensable constituent of any wetland. They provide habitat to various aquatic fauna, act as primary producers, oxygenate water, maintain water quality, do nutrient cycling, stabilize shoreline of lakes, provide substrate for growth of algae, provide shelter to benthic fauna and breeding ground for fishes, check inflow of silt, reduce nutrient load by self utilizing and minimize development of algal blooms (Naskar 1990; Bornette and Puijalon 2009; Ansari et al. 2017). But, sometimes environments enforce and help for invasion of exotic weeds in aquatic ecosystems which negatively affect the entire ecosystem. These plants compete with native species and many times facilitate for loss or extinction of less aggressive and indigenous species (Stallings et al. 2015).In many instances they affect negatively to human activities (e.g. fishing, swimming, navigation and irrigation) and degrade the physical, chemical or biological aspects (Basak et al. 2015). In India, about 140 aquatic plants have been reported as attained the status of aquatic weeds (Naskar 1990, Gupta 2012) and many of them found in Ansupa Lake. The wetlands in India are also gradually shrinking and under severe anthropogenic pressure (Pattanaik et al. 2008; Udayakumar and Ajithadoss 2010). Regular physical visits, application of geospatial remote sensing techniques, monitoring of change in floristic composition, maintaining required depth, reducing fertilizer use in agriculture in nearby cultivation lands, creation of green coverage in surrounding barren lands can save native biota from alien species to invade many aquatic ecosystems. ACKNOWLEDGEMENTS Authors are thank full to Ministry of Environment, Forest and Climate Change for providing financial assistance for Conservation and Management of Ansupa Lake, Odisha, India for the year 2016-2017 under the National Plan for Conservation of Aquatic Eco-systems (NPCA). 11 REFERENCES Ansari AA, Saggu S, Al-Ghanim SM, Abbas ZK, Gill SS, Khan FA, Dar MI, Naikoo MI, Khan AA. 2017. Aquatic plant biodiversity: A biological Indicator for the Monitoring and Assessment of Water Quality. In: Ansari AA, Gill SS, Abbas ZK, Naeem M (eds). Plant Biodiversity: Monitoring, Assessment and Conservation. CAB International, Wallingford. Basak SK, Ali MM, Islam MS, Shaha PR. 2015. Aquatic weeds of Haor area in Kishoregonj district, Bangladesh: Availability, Threats and Management Approaches. Intl J Fish Aquat Stud 2 (6): 151-156. Bornette G, Puijalon S. 2009. Macrophytes: Ecology of Aquatic Plants. In Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd., Chichester, UK. Brundu G. 2015. Plant invaders in European and Mediterranean inland waters: profiles, distribution, and threats. Hydrobiologia 746: 61-79. Byers EJ, Cuddington K, Jones CG, Talley TS, Hastings A, Lambrinos JG, Crooks JA, Wilson WG. 2006. Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 21: 493-500. Calvert G, Liessmann L. 2014. Wetland Plants of the TownsvilleBurdekin Flood Plain. Lower Burdekin Landcare Association Inc., Ayr. Campbell S, Higman P, Slaughter B, Schools E. 2010. A field Guide to Invasive Plants of Aquatic and Wetland Habitats for Michigan. Michigan State University Extension, East Lansing, MI, USA. Chambers PA, Lacoul P, Murphy KJ, Thomaz SM. 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9-26. Chamier J, Schachtschneider K, Maitre DC, Ashton PJ, Wilgen BW. 2012. Impacts of invasive alien plants on water quality, with particular emphasis on South Africa. Water SA 38 (2): 345-356. Crow GE, Hellquist CB. 2000. Aquatic and Wetland Plants of Northeastern North America. The University of Wisconsin Press, Madison, WI. Dalu T, Clegg B, Nhiwatiwa T. 2012. Aquatic macrophytes in a tropical African reservoir: diversity, communities and the impact of reservoirlevel fluctuations. Trans R Soc S A 67 (3): 117-125. Das CR, Mohanty S. 2008. Integrate Sustainable Environmental Conservation of Ansupa Lake: A famous water resource of Orissa, India. Special Issue on Dev. in Water Resources & Power Sectors in Orissa. Water Energ Intl 65 (4): 62-66. Das NR. 2012. Introduction to Aquatic and Semi-aquatic Plants of India. Kalyani Publishers, Punjab, India. Dodds WK. 2002. Freshwater Ecology: Concepts and Environmental Applications. Academic Press, New York. Gerber A, Cilliers CJ, Ginkel C. van, Glen R. 2004. Easy identification of Aquatic plants: A guide for the identification of water plants in and around South African impoundments. South Africa Department of Water Affairs, Pretoria. Ghosh SK. 2005. Illustrated aquatic and wetland plants in harmony with mankind. Standard Literature, 76, Acharya Jagadish Chandra Bose Road, Kolkata, India. Gopal B. 1995. Biodiversity in Freshwater Ecosystems Including Wetlands, Biodiversity and Conservation in India, A Status Report. Zoological Survey of India, Calcutta. Gupta OP. 2012. Weedy aquatic plants: Their utility, menace and management. Agrobios, India. Haines HH. 1921-1925. The Botany of Bihar and Orisha, 6 parts. London, Botanical Survey of India, Culcutta. Margalef DR. 1958. Information theory in ecology. Year Book of the Society for General Systems Research 3: 36-71. Mohanty S, Das CR. 2008. Community Mobilization and Participation in Implementing Integrated Sustainable Conservation of Ansupa Lake, a Famous Wetland of Orissa. In: Sengupta M, Dalwani R (eds). Proceedings of Taal 2007: The 12th World Lake Conference 12401246. Naskar KR. 1990. Aquatic & Semi-aquatic plants of the lower Ganga delta. Daya Publishing House, Delhi. Oyedeji AA, Abowei JFN. 2012. The Classification, Distribution, Control and Economic Importance of Aquatic Plants. Intl J Fish Aquat Sci 1 (2): 118-128. Panda SP, Sahoo HK, Subudhi HN, Sahu AK, Mishra P. 2016. Ecofloristic diversity of Ansupa Lake, Odisha (India) with special reference to aquatic macrophytes. J Biodiv Photon 116: 537-552. Patra S, Patra AK. 2007. Environment impact assessment of a fresh water ecosystem operating in Ansupa Lake: An urgent need for 12 B O NO RO WO WE TL A N D S 8 (1): 1-12, June 2018 development of fishery resources. In: Proc. Nat. Sem. on Environment pollution and its protection issues in Orissa. Organised by Department of Zoology G.S.College. Athagarh.1-2 Sept. 95-98. Pattanaik C, Prasad SN, Reddy CS. 2008. Warning bells in Ansupa Lake, Orissa. Curr Sci 64 (5): 560. Pielou EC. 1975. Ecological Diversity. John Wiley and Sons, New York. Sarkar SD, Ekka A, Sahoo AK, Rashith CM, Lianthuamluaia, Roychowdhury A. 2015. Role of floodplain wetlands in supporting livelihood: A case study of Ansupa Lake in Odisha. J Environ Sci Comput Sci Eng Technol 4 (3): 819-826. Shah MA, Reshi ZA. 2012. Invasion by alien macrophytes in freshwater ecosystems of India. In: Bhatt et al. (eds). Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent. CAB International, Wallingford, UK. Shannon CE, Wiener W. 1963. The Mathematical Theory of Communication. University of Illinois Press, Urbana, USA. Simpson EH. 1949. Measurement of diversity. Nature 163: 688. Stallings KD, Seth-Carley D, Richardson RJ. 2015. Management of Aquatic Vegetation in the Southeastern United states. J Integrat Pest Manag 6 (1): 1-5. Udayakumar M, Ajithadoss K. 2010. Angiosperms, Hydrophytes of five ephemeral lakes of Thiruvallur District, Tamil Nadu, India. Chicklist 6 (2): 270-274. Upadhyay VP, Malviya HS, Behura S, Rout DK. 2009. Ecological methods for biodiversity assessment in EIA. Indian J Environ Ecoplan 16 (1): 157-168. Varshney JG, Sushilkumar, Mishra JS. 2008. Current Status of Aquatic Weeds and Their Management in India. In: Sengupta M, Dalwani R (eds). Proceedings of Taal 2007: The 12th World Lake Conference. Jaipur, India, 28 October– 2 November 2007. Wang H, Wang Q, Bowler PA, Xiong W. 2016. Invasive aquatic plants in China. Aquat Invas 11 (1): 1-9. Whitford PB. 1949. Distribution of woodland plants in relation to succession and clonal growth. Ecology 30: 199-208. Zedler JB, Kercher S. 2004. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23: 431-452.