Academia.eduAcademia.edu
Pak. J. Bot., 43(6): 2769-2785, 2011. FURTHER INSIGHTS AND NEW COMBINATIONS IN AYLOSTERA (CACTACEAE) BASED ON MOLECULAR AND MORPHOLOGICAL DATA STEFANO MOSTI1,3, NADEESHA LEWKE BANDARA2 AND ALESSIO PAPINI1,3* 1 Dipartimento di Biologia Evoluzionistica; Università degli Studi di Firenze Via La Pira, 4-50121 Firenze 2 The John Bingham Laboratory, NIAB. Huntingdon Road, Cambridge CB3 0LE, UK. 3 Centro Studi Erbario Tropicale (CSET) of the University of Florence, Via La Pira, 4-50121 Firenze Pubblicazione del Centro Studi Erbario Tropicale n 119. Abstract The Genus Rebutia K. Schum. is a taxonomically complex genus of Cactaceae subfamily Cactoideae. This genus was subjected to splitting and lumpering treatments through the years. Molecular data revealed that Rebutia sensu lato must be divided in a clade corresponding to former Rebutia section Rebutia (Rebutia sensu stricto), related to the clade formed by Weingartia/Cintia/Sulcorebutia. Only this clade corresponds to genus Rebutia in our results. The other sections of Rebutia s. l. (Aylostera, Digitorebutia, Cylindrorebutia) cluster together to form another clade not directly related to Rebutia s. str. For priority reason this clade is recombined as genus Aylostera Speg. An analytical key is provided, to identify genera Rebutia K. Schum., Aylostera Speg., and Weingartia Werderm. (including Sulcorebutia Backeb. and Cintia Knize & Riha) and in Aylostera, at infrageneric level, the subgenera Aylostera and Mediolobivia. Further investigations are needed to assume taxonomic decisions about the clade Weingartia/Sulcorebutia/Cintia that, as a whole, should be assigned to genus Weingartia Werderm. A list of taxa belonging to genera Rebutia K. Schum. and Aylostera Speg., is provided. In this treatment the necessary combinations following the separation of Aylostera as a genus autonomous from Rebutia are proposed. The ATPB-rbcL IGS fragment revealed to be enough variable to be used for Barcoding of species among Cactaceae. All species here considered are in CITES appendix II, with frequent determination difficulties. Introduction The genus Rebutia K. Schum., was described in 1895. Since the beginning the genus was subjected to various rearrangements. This tendency lead to decisions sometimes extreme, both on a “splitter” and on a “lumper” point of view. An example of a “lumper” treatment was the rearrangements that lead, quite recently, to the fusion of Rebutia with the genera Sulcorebutia Backeb. and Weingartia Werderm (Hunt & Taylor, 1990; Hunt, 1999; 2006). On the contrary an example of a “splitter” point of view was in the previous treatments as that by Backeberg (1966), who subdivided Rebutia in three genera: Rebutia K. Schum. sensu stricto, Aylostera Speg., and Mediolobivia Backeb., with the allied genera Sulcorebutia and Weingartia. An intermediate treatment was carried out by Donald (Donald, 1975a; Donald & Brederoo, 1975), who finally decided to divide the genus Rebutia K. Schum. (excluding Sulcorebutia and Weingartia) into five sections without subgenera: Rebutia K. Schum. (including subsections Rebutia Buining & Donald and Mediorebutia Buining & Donald), Aylostera Speg., Digitorebutia (Frič & Kreunz. ex Buining) Buining & Donald, Cylindrorebutia Buining & Donald and Setirebutia Buining & Donald. This point of view was accepted also by Mosti (1999). Moreover, Donald (1975b) and Donald & Brederoo (1976a; 1976b; 1976c; 1976d; 1977a; 1977b; 1978a; 1978b) revised four of the five sections. The fifth section, Digitorebutia, was revised by Mosti (1999; 2000a; 2000b). Rausch, the most important discoverer of Rebutia sensu lato, since 1986 treated Digitorebutia and the few species belonging to Cylindrorebutia and Setirebutia under the genus Lobivia Britton & Rose (Rausch, 1986). Moreover, this last genus was recently included in Echinopsis Zucc., by Hunt & Taylor (1990). Rausch’s opinion about the inclusion of part of Rebutia in Lobivia and, transitively, in Echinopsis, is not currently accepted (Sida, 1997; Hunt, 1999; Mosti, 1999; Anderson, 2001). A summary about the history of the main taxonomic treatments about Rebutia and allied genera is given in Table 1. Table 1. History of the taxonomic treatment of genera: Rebutia, Aylostera, Weingartia, Sulcorebutia and Cintia. Backeberg (1966) Donald (1975) Rowley (2009) Mosti & Papini (2011) Genus Rebutia K. Schum. Genus Rebutia K. Schum Genus Rebutia K. Schum Genus Rebutia K. Schum. sect. Rebutia subgen. Rebutia Genus Aylostera Speg. Genus Rebutia sect. Aylostera Genus Aylostera Speg. subgen. Genus Aylostera Speg. subgen. Aylostera Aylostera Genus Mediolobivia Backeb. Genus Rebutia sections Genus Aylostera Speg. subgen. Genus Aylostera Speg. subgen. Digitorebutia, Mediolobivia (Backeb.) Mediolobivia (Backeb.) Rowley Cylindrorebutia and Rowley Setirebutia Genus Weingartia Werderm. Genus Weingartia Werderm. Genus Rebutia subg. Genus Weingartia Werderm. Weingartia (Werderm.) including genera Sulcorebutia Backeb. and Cintia Knize & Rowley Riha Genus Sulcorebutia Backeb. Genus Sulcorebutia Backeb. Genus Rebutia subg. Sulcorebutia (Backrb.) Brandt * Corresponding author E-mail: alpapini@unifi.it 2770 Digitorebutia, Cylindrorebutia and Setirebutia, or as a whole the subgenus “Mediolobivia” sensu Pilbeam (1997), as the other rebutias, should be considered separated from the Lobivia/Echinopsis group because of essential morphological differences, including indehiscent fruits and stamens disposed in only one series which are present only in Rebutia s. l. Ritz et al., (2007) proposed, on the basis of molecular data, to separate Rebutia group I, that is, the few analysed by them corresponding to genera Aylostera Speg. (R. deminuta, R. fiebrigii and R. pseudodeminuta) and Mediolobivia Backeb. (R. einsteinii, R. pygmaea and R. steinmannii) after Backeberg (1966), from Rebutia group II (R. minuscula, and R. padcayensis) corresponding to genus Rebutia K. Schum s. str. in Backeberg’s (1966) system. The species belonging to group II resulted closely related to Sulcorebutia/Weingartia (clade E) in Ritz et al., (2007). The proposal to consider Rebutia s. str. separated from Aylostera and Mediolobivia was based both on biomolecular data and enforced by morphological characters: Rebutia sensu Backeberg (1966) (corresponding to Rebutia s. str.) own in fact hairless pericarpels, while on the contrary, Aylostera and Mediolobivia have hairy and bristly pericarpels. This proposal, partially corresponding with Backeberg’s (1966) idea to consider Rebutia s. l. (excluding Sulcorebutia and Weingartia) as splitted in more than one genera, was not followed by a formal taxonomical recombination by Ritz et al., (2007). On the basis of Ritz et al., (2007) findings, Rowley (2009) proposed a classification of Rebutia s.l. separating Rebutia s.str., including Weingartia and Sulcorebutia as subgenera and the genus Aylostera was divided in the two subgenera Aylostera and Mediolobivia. Aylostera Speg., has in fact priority with respect to Mediolobivia Backeb., to Digitorebutia Frič & Kreuz. ex Buining and to Setirebutia Frič and Cylindrorebutia Frič & Kreuz.. These last three names were never described as genera with a Latin diagnosis. The aim of our investigation was to verify and enforce the data obtained by Ritz et al., (2007), that included a too limited number of species of Rebutia, by adding new molecular data on taxa belonging to genus Rebutia s.l., that is sensu Buining & Donald (1963; 1965) (hence excluding gen. Sulcorebutia and Weingartia), and correlating them with morphological characters, in order to clear the complex taxonomical classification of this group. A secondary aim was to test a single molecular marker, the ATPb-rbcL spacer as potential Bar-coding marker for Cactaceae. All species here considered are in CITES appendix II, with frequent determination difficulties: the possibility of using a molecular marker to identify them with certainty might be of interest for conservation purpose. Materials and Methods Plant material: The plants used in the analysis are cultivated by the Botanical Garden of Florence “Giardino dei Semplici” and collection S. Mosti and were obtained via vegetative propagation from the samples collected by older researchers in the wild before the insertion of Cactaceae in Appendix 1 and 2 of CITES rules. The original samples were those used for species description. The indicated field numbers are those used by the STEFANO MOSTI ET AL., collectors in the wild. Our samples are deposited in the Tropical Herbarium of Florence (FT). The taxa used for the molecular analysis are known often for a single or few populations in Aylostera, Mediolobivia and Rebutia. The same can be said in other genera such as Echinopsis. We added the following taxa to Ritz et al., (2007) data set (DNA Genbank accession at the end of each sample): Rebutia wessneriana Bewer. subsp. berilloydes (Buining & Donald) Donald, f. n. (field number) Rausch 819, cult S. Mosti 2011 (FT!), GU084402; R. kariusiana Wessner, s.n., cult. S. Mosti 2011 (FT!), GU084394; R. fabrisii Rausch var. aureiflora Rausch, f. n. Rausch 687, cult. S. Mosti 2011 (FT!) belonging to sect. Rebutia even if Pilbeam (1997) links R. fabrisii to Aylostera (for this species we chose this yellow flowered variety with a single population, but even a red flowered population is known.); GU084401; Rebutia donaldiana A.B. Lau & G.D. Rowley, f. n. Lau 348, cult. S. Mosti 2011 (FT!), GU084399; R. muscula F. Ritter & Thiele, f. n. Ritter 753, cult. S. Mosti 2011 (FT!) belonging to subgen. Aylostera, GU084400; Rebutia haagei Frič & Schelle, f. n. Rausch 35, cult. S. Mosti 2011 (FT!) (R. haagei is a species characterized by a slight variability in some populations. The variability regards the shape of the petals with a more or less evident mucrone and some slight variation in the color of the flowers), GU084396; R. christinae Rausch, f. n. Rausch 492a, cult. S. Mosti 2011 (FT!), GU084398; R. friedrichiana Rausch, f. n. Rausch 646, cult. S. Mosti 2011 (FT!) belonging to subgen. Mediolobivia (Backeb.) Rowley, GU084397. Moreover we included in the analysis some samples of taxa that, they do not even belong to genus Rebutia s.l., but are noteworthy for an analysis about south american mountain cacti. All these taxa belong to genus Echinopsis s. l.: Lobivia haematantha (Speg.) Britton & Rose var. haematantha (= Echinopsis haematantha (Speg.) D.R. Hunt), s.n., cult. S. Mosti 2011 (FT!), GU084392.; Lobivia (Chamaecereus) silvestrii (Speg.) G.D. Rowley (= Echinopsis chamaecereus H. Friedrich & Glaetzle), s.n., cult. A. Papini 2011 (FT!), GU084395; Acanthocalycium glaucum F. Ritter (= Echinopsis glaucina H. Friedrich & G.D. Rowley), s.n., cult. S. Mosti 2011 (FT!), GU084391 and Echinopsis melanopotamica Speg. (recently included in Echinopsis leucantha (Gillies ex Sal-Dyck) Walp.), s.n., cult. S. Mosti 2011 (FT!), GU084393. E. melanopotamica and L. haematantha are, respectively, an Echinopsis s.str. and a Lobivia s.str. L. silvestrii is a species of interest because of its morphology, resembling to that of Rebutia for its thin and lengthened stem, for its short and fragile spines and the cespitous habit. Acanthocalycium glaucum, finally, is a representative of the only genus of Echinopsis s.l. not included in Ritz et al., (2007) analysis. All new samples introduced in the analysis are endemic of North Argentina/South Bolivia living at high altitude (more than 3000 m above sea level). For the phylogenetic analysis we used the same outgroups used by most recent molecular studies (Nyffeler, 2002; Ritz et al., 2007. The ingroup taxa represent South American cacti of the ‘‘BCT clade’’ as defined by Nyffeler (2002) with an emphasis on the genera Gymnocalycium, Rebutia, Sulcorebutia, and Weingartia. Molecular data: We amplified the DNA fragment ATPB-rbcL spacer, with the same primers used by Ritz et NEW COMBINATIONS IN AYLOSTERA al., (2007). This fragment showed the highest variability among the three used by Ritz et al., (2007), that is more than half of the informative substitutions and half of the informative indels within the ingroup. Genomic DNAs were isolated from flowers in buds (3-4 days before anthesis) of individual plants using a modified CTAB extraction protocol (Doyle & Doyle, 1990; tissue ground in sea-sand, 70% [v/v], isopropanol substituted for the RNAase step). DNA concentrations were estimated by gel electrophoresis on 1% agarose. We used one sample for each accession. ATPB-rbcL fragment sequencing and phylogenetic analyses: Primer sequences for the 50 region of the atpBrbcL IGS were taken from Savolainen et al., (1994): ‘‘2’’ 5'-GAAGTAGTAGGATTGATTCTC-3' and ‘‘10’’ 5'CATCATTATTGTATACTCTTTC-3', as suggested by Ritz et al., (2007). The amplification was performed for 180 s at 958C; followed by 28 cycles of 30 s at 958C, 60 s at 428C, and 120 s at 728C; and a final extension for 180 s at 728C. Single-banded fragments were purified and directly sequenced in both directions by using the amplification primers. Cycle Sequencing and the BigDye Terminator Ready Reaction Kit (Applied Biosystems) were used. Data were collected on ABI Prism 373A automated gel reader in the laboratory CIBIABI of the University of Florence. Resulting sequences were further checked by eye with the software CHROMAS 2.3 (www.technelysium.com.au). A BLAST (Altschul et al., 1997) search was performed to exclude the sequencing of any contaminant organism. The boundaries of the fragments were determined by comparison with previously published sequences. We added our new data on ATP-rbcL IGS to the previous alignment by Ritz et al., (2007), including there data on trnL-trnF and trnK-rps16 IGS sequences. The matrixes were combined with the Python (Python version 2.6.4; Biopython 1.57) program combinex1_0.py, written by one of the authors, A. Papini, released under GPL licence and available at www.unifi.it/caryologia/PapiniPrograms.html. Optimal multiple alignment was obtained with CLUSTALW 1.81 (Thompson et al., 1994) and checked by eye. Parsimony analysis was performed with PAUP* 4.0b1 (Swofford, 1998). We used a successive weighting approach (Farris, 1969) because of the high number of trees obtained by a simple hsearch command. We used the first 20000 trees to reweight characters (command REWEIGHT) for a second hsearch analysis and so on until, since the third run, the characters weight did not change anymore. At this point a heuristic search analysis was run with TBR branch-swapping, multrees option on, addseq = simple, ten randomised replicates., a hsearch analysis was performed with a maximum number of saved trees of 65197 to reduce computational effort (50000 were retained by Ritz et al., 2007). All characters were weighted equally, and character state transitions were treated as unordered. Gaps were treated as "simple indel coding" after Simmons & Ochoterena (2000), coding them with the software Gapcoder (Young & Healy, 2003). This process codes indels as separate characters in a data matrix, which is then considered along with the DNA base characters in phylogenetic analysis. A maximum likelihood (Felsenstein, 1981) search was done as follows: we used Modeltest 3.06 (Posada & 2771 Crandall, 1998) to evaluate the likelihood of 56 different models of sequence evolution on the basis of our data. The likelihood ratio test option was used to compare likelihood scores in a nested design. We used the most likely model of evolution from Modeltest 3.06 as settings in a maximum likelihood (ML) phylogenetic analysis in PAUP. We used the obtained model to calculate the likelihood value of the maximum parsimony trees. Because of computational time problem with PAUP, we performed a maximum likelihood analysis with the GARLI package (Zwickl, 2006) that uses a stochastic genetic algorithm-like approach to simultaneously find the topology, branch lengths and substitution model parameters that maximize the log-likelihood (lnL). The package was used on a server provided by the Cipres portal (Miller et al., 2009 for the site address).The indelsderived characters were excluded for the maximum likelihood analysis. Bootstrap (Felsenstein, 1985) resampling was performed using setting search = faststep (with no TBR branch-swapping because of computational time limits) with ten random taxon entries per replicate and multrees option in effect (with 10000 replicates) under parsimony criterion. MrMODELTEST 2.0 (Nylander, 2004) was used to test the best model of sequence evolution (based on the Akaike Information criterion, Akaike, 1974) to be used with the program for Bayesian Inference MrBayes 3.4b4 (Huelsenbeck, 2001). For the indels-coded characters we used the same evolutionary model used for restriction sites that are coded as binary character states (as implemented in MrBayes). The Bayesian phylogenetic analysis was used for assessing the robustness of tree topology and the support for clades. The posterior probability of the phylogenetic model was estimated using Markov chain Monte Carlo (MCMC) sampling with the Metropolis-Hastings-Green algorithm. Four chains were run, three heated and one cold, for 106 generations and sampled every 100 generations. Following the analysis, the posterior probabilities were checked in the output of Mrbayes to estimate the number of trees that should be discarded as "burn-in”. Stationarity was reached at approximately generation 30,000, so the first 300 trees or “burn-in” period of the chain were discarded. Phylogenetic inferences are therefore based on those trees sampled after generation 30,000. After the "burn-in" trees were removed from the data set, the remaining trees were used to produce a 50% majority-rule consensus tree (with PAUP) in which the percentage support indicated a measure of the Bayesian posterior probabilities. To test the significance of the difference of less parsimonious trees with respect to the most parsimonious solution, the Templeton (Wilcoxon signed-ranks) test (Templeton, 1983) was used as implemented in PAUP. This test was used to evaluate the significance of an alternative position of taxa of Rebutia s. l. A matrix of the genetic distances among the different species of Rebutia was calculated with PAUP and presented in Table 2. The distances were obtained by calculating the total difference (number of total substitutions in the matrix of DNA sequences). The trees were edited for better readability with Dendroscope (Huson et al., 2007). 2772 STEFANO MOSTI ET AL., Table 2. Matrix of distances obtained by total difference (number of total substitutions in the matrix of DNA sequences). First row: abbreviations of species reported in the first column. sulc pse fie de pyg ste ein pad min fab kar wes haa fri chr don mus Sulcorebutia steinbachii 0 4 30 31 39 20 34 39 24 15 18 18 26 26 27 30 28 Rebutia pseudodeminuta 0 0 0 12 11 12 10 12 0 0 0 0 0 0 0 0 Rebutia fiebrigii 0 13 32 31 28 26 33 17 19 19 21 21 22 16 15 Rebutia deminuta 0 25 19 31 30 31 16 17 17 12 12 13 6 4 Rebutia pygmaea CA08 0 4 28 37 38 27 28 28 14 14 15 27 26 Rebutia steinmannii 0 16 16 21 9 11 11 1 1 1 10 9 Rebutia einsteinii 0 30 32 16 18 18 19 19 20 19 19 Rebutia padcayensis 0 32 23 24 24 34 34 35 36 35 Rebutia minuscule 0 7 4 4 19 19 20 24 24 Rebutia fabrisii 0 4 4 15 15 14 17 17 Rebutia kariusiana 0 0 17 17 18 21 21 Rebutia wessnerana ssp. 0 17 17 18 21 21 beryllioides Rebutia haagei 0 0 1 14 14 Rebutia friedrichiana 0 1 14 14 Rebutia christinae 0 13 13 Rebutia donaldiana 0 3 Rebutia muscula 0 Results The total alignment consisted of 2866 characters, of which 2335 resulting from nucleotides sequence alignment of ATPb-rbcL, trnL-trnF and trnK-rps16 IGS sequences, while other 531 characters were added as a result of indels coding. Echinopsis atacamensis subsp. pasacana and Lobivia haematantha showed a big insertion in 384-492 position of the ATPb-rbcL alignment. The successive weighting and maximum parsimony analysis yielded 65197 trees (restriction of retained trees with MAXTREE=65197) with L=1089.233 (some weights are between 0 and than 1); CI=0.872; RI=0.880. The strict consensus tree (Fig. 1, Bootstrap support above branches) had L = 1094.249; CI = 0.868; RI = 0.875. The maximum likelihood analysis obtained with GARLIC is shown in Fig. 2 (Bayesian support above branches). GARLIC identified the following nucleotide substitution rates: AC = 0.779, AG = 0.637, AT = 0.269, CG = 0.782, CT = 0.327, GT = 1.000. This rates were quite different from those obtained with MODELTEST particularly for the A-C and A-T substitution rates. Our analysis largely agreed with Ritz et al., (2007) and for this reason same clade labels were used. The clade E (Weingartia, Sulcorebutia, Cintia, Rebutia II, Browningia) was confirmed in our analysis both with the strict consensus tree (parsimony) and the maximum likelihood tree but with Bayesian and Bootstrap support lower than 50%. We added to Rebutia II R. kariusiana, R. wessneriana and R. fabrisii. All these Rebutia clustered together with 99% Bayesian Support (BS), Decay Index (DI) = 4 and 90% Bootstrap support (BO). This clade corresponds to Rebutia sect. Rebutia sensu Donald (1975a). Within Clade E the two species of Browningia resulted as Outgroup to the rest of the clade. The two Browningia did not cluster together. Keeping the two representatives of Browningia together resulted in trees L=1113.60343 (1094.24857 the strict consensus of the maximum parsimony trees) with CI=0.853 and RI=0.858. The difference resulted statistically significant after the Templeton test (p=0.0068). Keeping together the whole clade E but Browningia collapsing the node dividing Rebutia sect. Rebutia from Weingartia, Cintia and Sulcorebutia, resulted in trees L=1096.75376, CI = 0.866 and RI=0.873 and the difference resulted statistically significant after the Wilcoxon test (but with p=0.0273, while statistical significance is considered to be for p<0.05 in PAUP. The clade D, corresponding to Rebutia I (Aylostera, Mediolobivia) by Ritz et al., (2007), was monophyletic with 94% Bayesian support BS and DI = 1 (Bootstrap support lower than 50%). Representatives of subgen. Mediolobivia (labelled with A on Figs. 1 and 2) formed a clade with 94% BS and DI=3 excluding R. einsteinii that clustered as outgroup to the rest of Mediolobivia in the maximum parsimony analysis (Fig. 1) and as outgroup to both Mediolobivia and Aylostera in the maximum likelihood analysis (Fig. 2). Moving Aylostera clade to the Rebutia s. str. clade (that is keeping together the whole genus Rebutia s.l., both those from clade E and those from clade D) resulted in trees L=1097.95757, CI=0.865, RI=0.872 and the difference resulted statistically significant after the Wilcoxon test (p=0.0225). Moving Rebutia s. str. to the Aylostera clade resulted in trees of L=1096.79986, CI=0.866, RI=0.873 with significant difference after the Templeton test (p=0.0146). Noteworthy P values resulting by keeping Rebutia s. str. together with Aylostera were not far from the 0.05 of significance value. NEW COMBINATIONS IN AYLOSTERA 2773 Fig. 1. Strict consensus tree of 65197 maximum parsimony trees (both ATPb-rbcL IGS sequence and derived indels data. Bootstrap support (1000 replicates no TBR branch swapping on) above branches. Clade E = Weingartia, Sulcorebutia, Cintia, Rebutia II, Browningia as in Ritz et al., (2007). A = Aylostera subgen. Aylostera; C = Aylostera subgen. Mediolobivia. The whole genus Aylostera corresponds to letter D and Rebutia I after Ritz et al., (2007). STEFANO MOSTI ET AL., 2774 Fig. 2. Maximum likelihood tree obtained with GARLIC package. Bayesian support (indels treated with restriction site model) and Decay indexes above branches. Labels as in Fig. 1. The matrix of the genetic distances (total number of substitution) among the different species of Rebutia calculated with PAUP (Table 2) showed that the sequences used in this analysis were useful to verify the relationships among different species. Discussion In clade E Rebutia K. Schum. sect. Rebutia (Buining & Donald, 1963, 1965; Donald & Brederoo, 1975) clustered together with one representative of Browningia, while the other Browningia resulted either as outgroup to NEW COMBINATIONS IN AYLOSTERA the rest of lade E or in uncertain position. In Ritz et al., (2007) Browningia candelaris resulted outgroup to Rebutia s.str., with B. hertlingiana in uncertain position. The position of Browningia prevented us to consider Rebutia sect. Rebutia and the clade composed by Weingartia+Sulcorebutia+Cintia as belonging to the same genus as proposed by Rowley (2009), who did not consider the position of Browningia. The consequence is that the species belonging to Rebutia sect. Rebutia remain the only representatives of genus Rebutia K. Schum. This genus corresponds to Rebutia s.str., which is those species inserted in Rebutia K. Schum. by Backeberg (1966) or to sect. Rebutia of genus Rebutia K. Schum. in the sense of Buining & Donald (1963, 1965), but without Sulcorebutia/Weingartia/Cintia. These three genera are probably to be considered as congeneric, Weingartia (for priority reasons) as was indicated also by Hentzschel & Augustin (2008), but to be considered separated by Rebutia (Rebutia group II after Ritz et al., 2007), also because of fundamental morphological characters (Augustin et al., 2000 and our further studies): the areoles are in eccentrical position and sunken on the higher (adaxial) part of the tubercle in Weingartia/Sulcorebutia, while they are more superficial and on the central (distal) part of the tubercle in Rebutia. The scales of the flower tube are broad and imbricated in Weingartia/Sulcorebutia; they are more narrow and not imbricated in Rebutia. Finally the spines are quite fragile and subtle in Rebutia, and more robust and thick in Weingartia/Sulcorebutia. Clade D resulted separated from clade E Rebutias. This result confirmed Ritz et al., (2007) results also with our larger species sampling. The Wilcoxon test confirmed that our data prevent keeping all Rebutia together. The consequence is that clade D should be considered a separate genus by using the priority name Aylostera Speg. This genus corresponds to subgen. Aylostera and the subgen. Mediolobivia (Backeb.) Rowley (corresponding to the sections Digitorebutia (Frič & Kreuz. ex Buining) Buining & Donald, Cylindrorebutia Buining & Donald and Setirebutia Buining & Donald of Rebutia K. Schum). R. einsteinii resulted included in subgen. Mediolobivia in the maximum parsimony analysis, while it was outgroup to all the other accessions of the new genus Aylostera in the maximum likelihood analysis. R. einsteinii is the only representative of sect. Cylindrorebutia inserted in the analysis, and its position in the maximum likelihood analysis would be compatible with a treatment of the genus as subdivided in sections. The sect. Setirebutia (not inserted in the analysis since it is synonymized in our treatment with Mediolobivia) is considered belonging to genus Aylostera because of its hairy pericarpels. Only a few chromosome counts are available for Rebutia s.l. in our knowledge. Anyway Ross (1981) observed that R. minuscula and R. violaciflora, both belonging to Rebutia s. str., have n=11 chromosomes as Sulcorebutia steinbachii (Rebutia steinbachii in Ross, 1981). These three species all belong to clade E. On the contrary R. kupperiana and R. spegazziniana, both to be assigned to clade D (Aylostera) had n=22. Hence these few chromosome counts would confirm our molecular results. 2775 Taxonomic treatment The taxonomical consequences of our analysis lead to a modified classification with respect to the recent reappraisal by Rowley (2009) as reported underneath. The new classification is preceded by an analytical key that permits to identify genera Rebutia K. Schum., Aylostera Speg., and Weingartia Werderm. (including Sulcorebutia Backeb. and Cintia Knize & Riha) and in Aylostera, at infrageneric level, the subgenera Aylostera and Mediolobivia. About the clade Weingartia/Sulcorebutia/Cintia we did not take either taxonomic decisions or new recombinations since the knowledge about this group require further investigation, also about taxa delimitation. The monotypic genus Cintia Knize & Riha, despite its phylogenetic position closely related to Weingartia and Sulcorebutia, as observed in the molecular analysis (Ritz et al., 2007 and our data), shows peculiar morphological characters (autoapomorphies) such as lack of spines and very short (or even absent) floral tube. The flower appears sunken in the areole. We report also a description of genera Rebutia and Aylostera and of the subgenera within this last genus: Aylostera and Mediolobivia. Finally we report the list of taxa in our opinion belonging to genera Rebutia K. Schum., and Aylostera Speg. About Rebutia K. Schum., we did not cite the infraspecific taxa since further systematic investigations are still necessary. We only cited R. wessneriana subsp. berilloydes since our sample was identified as such and we preferred to maintain this name for the molecular analysis. The same can be said about R. einsteinii (Aylostera subgen. Mediolobivia in our treatment). In any case we preferred not to accept the combination Rebutia einsteinii Frič subsp. aureiflora (Boed.) Hjertson (Hunt 2006), since it was not supported by any morphological or biomolecular data. For this reason the two taxa (R. einsteinii e R. aureiflora) should be kept separated at the species level (until further data is available). In this treatment we propose necessary combinations following the separation of Aylostera as a genus independent from Rebutia. It is to remark that those species belonging to subgen. Mediolobivia described as representatives of genus Lobivia Britton & Rose by Rausch (1986), were recombined as Rebutia by Sida (1997) and Mosti (1999; 2000a; 200b). With respect to the revision of Rebutia sect. Digitorebutia (Mosti 1999; 2000a; 2000b), here inserted in subgen. Mediolobivia, we added seven taxa: Rebutia froehlichiana Rausch, R. iridescens F. Ritter, R. tropaeolipicta F. Ritter, and the recently described R. marieae La. Fisch & Halda, R. odehnalii Halda, Seda & Sorma, R. raffaellii Mosti & Papini, R. rovidana Mosti & Papini. In the same subgenus we added also the Cylindrorebutia and Setirebutia: R. einsteinii Frič ex Kreuz. & Buining, R. gonjianii Kiesling, R. aureiflora Backeb., R. brighignae Mosti & Papini and R. fischeriana Slaba. All these names are treated exhaustively underneath and, where necessary, recombined. In Hunt's (2006) checklist, only three species (R. fabrisii, R. minuscula and R. padcayensis) of Rebutia K. Schum. and only a few taxa (10) of Aylostera Speg., were considered valid at the species level (all under Rebutia). STEFANO MOSTI ET AL., 2776 Among the ten species of Aylostera, six (with five subspecies) were assigned to subgen. Aylostera, four (with three subspecies) to subgen. Mediolobivia. A high number of other taxa were synonymized with these taxa. Moreover our studies in the field showed that considering the species of the group Aylostera/Rebutia (particularly those belonging to subgen. Mediolobivia) as few species with wide geographical distribution range would be distant from the real situation. We observed in the field that these taxa are often composed by micropopulations often living in rock fissures and separated from other populations by long distances and geographical barriers. However, the list of taxa belonging to genus Aylostera reported as follows should not be considered always as an assertion of the systematic validity of the taxa, but in some cases only from a nomenclature point of view. As a matter of fact, the number of “good species” of subgen. Aylostera is probably lower than the total number of names here reported, as stated, for instance in Hunt's (2006) checklist. We assume that some of these taxa should be probably synonymized in a revision of Aylostera subgen. Aylostera. We recombined all the available taxa under Aylostera, since an updated revision of this subgenus is still lacking and attempts to synonymize taxa without more exhaustive data may be misleading. For instance, our analysis of genetic distances (total number of substitutions, see table 2) indicated that some of the taxa considered synonyms by Hunt (2006) showed a genetic distance comparable to that between taxa considered different species by the same author. For instance R. donaldiana is considered synonym of R. fiebrigii by Hunt (2006), while the genetic distance between these two species is 16, the same as the distance between R. steinmannii and R. einsteinii, that are considered “good” species in Hunt (2006) treatment. For the above mentioned reason, in our opinion the definitive number of species belonging to Genus Aylostera cannot be yet established, even because of different opinions about this aspect (Mosti, 1999; 2000a; 2000b and Hunt, 2006) and without a complete systematic investigations. Analytical key 1a. Axils of the floral scales with hairs, hairs and bristles or woolly ........................................................... 2 Aylostera 1b. Axils of the floral scales naked (occasionally with slight tomentum) ………………………….…………………..3 2a. Style and filaments coalescent with the internal side of the receptacular wall for its whole length; axils of the floral scales with both hairs and bristles …………………………………................. Aylostera subgen. Aylostera 2b. Style and filaments free from the receptacular wall or coalescent with the internal side of receptacular wall only for its lower part; axils of the floral scales with hairs or woolly but never bristly ……………………………….... …………………………………………………………………………………… Aylostera subgen. Mediolobivia 3a. Areoles inserted, more superficially, on the central (distal) part of the tubercle; scales of the floral tube narrow and not imbricated. Spines quite fragile and subtle ...................................................................................... Rebutia 3b. Areoles on the tubercle in eccentric position, sunken in its higher (adaxial) part; floral tube scales broad and imbricated. Spines more robust and thick. (Spines and floral tube lacked in Cintia) ................................................. ……………………………………………………………………….. Weingartia (with Sulcorebutia and Cintia) Rebutia K. Schum., Monatsschr. Kakteek. 5: 102. 1985. Wessner). Habitat: environments mostly shady. Small cactus (2-5 cm tall and 2-8 cm wide), flattenedglobular to globular or exceptionally sub-cylindrical. Fusiform or rapiform root system. Spiralled or vertically directed ribs scarcely developed, and resolved in low isodiametrical, hexagonal tubercles spiralled or vertical. Areoles small, round or oval or narrow elongated in the centre of the tubercles , felted and initially without spines. Spines often subtle and fragile, short to relatively short (0.1-3 cm), bristly to acicular, adpressed or porrect, never hooked, laterals and centrals often indistinguishable (15 to 35 in number), weak. Flowers (1-6.5 cm long and 1-5.5 cm wide), funnelform, arising only from a base or sides of plant, never from the young areoles in the crown; anthesis-time usually 2 days; stile and filaments not coalescent to partially coalescent with the receptacle wall; receptacular scales usually narrow, exceptionally broad; scale axils of receptacle naked (occasionally with slight tomentum). Fruit a small berry with persistent floral remains, globose, naked, becoming papery at maturity. Seeds black, conical cap shaped, with cuticula separated from the testa and with verrucose testa and prominent white hilum. Plants mostly self-fertile, but also sometime self-sterile (Rebutia calliantha Bewer., R. kariusiana Type: Rebutia minuscula K. Schum. Checklist of species and infraspecific taxa 1. Rebutia calliantha Bewer., Sukkulentenkunde 2: 25. 1948. [= Rebutia minuscula subsp. wessneriana in Muruaga et al., (2008)] 2. Rebutia fabrisii Rausch, Kakt., and. Sukk. 28(3): 52. 1977. Rebutia kariusiana Wessner, Kakt. And. Sukk. XIV. 149. 1963. 4. Rebutia krainziana Kesselr., Succulentenkunde 2: 23. 1948. 5. Rebutia margarethae Rausch, Kakt. And. Sukk. 23(1): 4. 1972. 6. Rebutia marsoneri Werderm., Kakteenkunde 1937: 2. 1937. 7. Rebutia minuscula K. Schum., Monatsschr. Kakteenk. NEW COMBINATIONS IN AYLOSTERA 5: 102. 1895. [Rebutia minuscula subsp. minuscula in Muruaga et al., (2008) ]. 8. Rebutia padcayensis Rausch, Kakt. & Sukkulent. XXI. 65. 1970. 2777 and filaments usually coalescent with the internal side of the receptacular wall for the whole length of receptacle; scale axils with both hairs and bristles. Fruits bristly. Plants mostly self-fertile. Type: Echinopsis pseudominuscula Speg. 9. Rebutia senilis Backeb., Kakteenfreund 1: 124. 1932. [= R. minuscula subsp. minuscula in Muruaga et al., (2008)]. 10. Rebutia violaciflora Backeb., Blatt. Kakteenf. 1935, Pt 8. 1935. [Rebutia minuscula subsp. minuscula in Muruaga et al., (2008)]. 11. Rebutia wessneriana Bewer., Sukkulentenkunde 2: 24. 1948. [= Rebutia minuscula subsp. wessneriana in Muruaga et al., (2008)]. 11a. Rebutia wessneriana Bewer. subsp. berylloides (Buining & Donald) Donald, Ashingtonia 2 (4): 71. 1976. [= Rebutia minuscula in Hunt (2006)]. 12. Rebutia xanthocarpa Backeb., Kakteenfreund 1: 131. 1932. [= R. minuscula subsp. minuscula in Muruaga et al., (2008)] Aylostera Speg., Anal. Soc. Cient. Argent. 96: 75. 1923. Small cactus (2-8 tall and 1-5 cm wide) flattenedglobular to cylindrical with rapiform or fusiform rootsystem. Ribs poorly to well developed forming spiralled or vertical rows of more or less small, isodiametrical, circular or hexagonal tubercles, sometime prominent. Areoles small, round or oval or narrow elongated in centre of the tubercles, felted and initially without spines. Spines relatively short: (0.1-) 0.2-2 (-4) cm long, relatively weak to always straight, bristly to acicular, pectinate or porrect, never hooked, laterals and centrals often distinguishable for a total amount of (4-) 7 to 40 (-50) ca. in number. Flowers (0.8-5.5 cm long and 1.2-6 cm wide) funnelform to campanulate with an almost cylindrical to cylindrical receptacle, arising only from basal or lateral areoles, never from the young areoles in the crown; anthesis-time usually 2 days; tube scales usually narrow, exceptionally broad; scale axils of receptacle with hairs, hairs and bristles or woolly; style and filaments free from the internal side of the receptacle wall or coalescent with the receptacle wall for it whole length or only with the lower part. Fruit a small berry with persistent floral remains, flattened to roundish, naked, hairy or bristly, becoming papery at maturity. Seeds brown to black, sometimes with separated cuticula and with verrucose testa. Plants either self-sterile or self-fertile. Habitat: environments mostly exposed to open sun. Type: Echinopsis pseudominuscula Speg. Aylostera Speg. subgen. Aylostera Plants flattened-globular, globular, sub-cylindrical, or cylindrical; sometime with bronzed epidermis. Ribs poorly developed from circular or hexagonal tubercles. Spines up to 4.0 cm long and about 50 in number. Flowers funnelform with, usually, a narrow cylindrical tube; style Checklist of species and infraspecific taxa, including taxonomic novelties 1. Aylostera albiareolata (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia albiareolata F. Ritter, Kakt. And. Sukk. 28(4): 78. 1977. Type: Bolivia. Tarija, Arce, "Padcaya", -/1/1963, Ritter 761 (holotype, U; isotype, ZSS-SR14416 (Eggli et al., 1995)). 2. Aylostera albiflora (F. Ritter & Buining) Backeb., Descr. Cact. Nov. 3: 5. 1963. 3. Aylostera albipilosa (F. Ritter) Backeb., Descr. Cact. Nov. 3: 5. 1963. 4. Aylostera albopectinata (Raush) Mosti & Papini, comb. nov. Basionym: Rebutia albopectinata Rausch, Kakt., and. Sukk. 23 (9): 236. 1972. Type: Bolivia. Sud Cinti, near Culpina, 3400 m, s.d., Rausch 312 (holotype, ZSS). 5. Aylostera azurduyensis J. de Vries, Succulenta 85(2): 54, 56, 59. 2006. 6. Aylostera brunescens (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia brunescens Rausch, Kakt. And Sukk. 23(9): 235. 1972. Type: Bolivia. Chuquisaca, near Tarabuco, 3550 m, s.d., Rausch 480a (holotype, W; isotype ZSS). 7. Aylostera buiningiana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia buiningiana Rausch, Kakt. And. Sukk. 23(4): 98. 1972. Type: Argentina. Jujuy, near Iruya, 2700 m, s.d., Rausch 511 (holotype, W; isotype, ZSS). 8. Aylostera cajasensis (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia cajasensis F. Ritter, Succulenta 56(3): 64. 1977. Type: Bolivia. Tarija, Mendez, near Cajas, 1963, Ritter 1141 (holotype, U; isotype, SGO-124626). 9. Aylostera cintiensis (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia cintiensis F. Ritter, Ashingtonia 2(10): 206. 1977: 2778 Type: Bolivia. Chuquisaca, Nor Cinti to the north of Camargo, s.d., Ritter 938 (holotype, U; isotype, SGO124605). 10. Aylostera deminuta Britton & Rose, Cactaceae (Britton & Rose) 4: 285. 1923. 11. Aylostera donaldiana (A.B.Lau & G.D.Rowley) Mosti & Papini, comb. nov. Basionym: Rebutia donaldiana A.B. Lau & G.D. Rowley, Ashingtonia 1(7): 76. 1974. Type: Bolivia. Santa Cruz, Valle Grande, Pucara, 2400 m, "growing in crevices in steep granite rocks facing north", s.d., Lau 348 (holotype, HEID). 12. Aylostera fiebrigii (Gurke) Backeb., Kaktus-ABC: 274. 1936. 13. Aylostera flavistyla (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia flavistyla F. Ritter, Ashingtonia 3(1) 12. 1978. Type: Bolivia. Tarija, Méndez, below Cajas, 1958, Ritter 756 (holotype, U; isotypes, SGO-124584, ZSSR14408). 14. Aylostera fulviseta (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia fulviseta Rausch, Kakt. & Sukkulent. XXI. 29. 1970. Type: Bolivia. Arque, near Padcaya, 2200 m, s.d., Rausch 319 (holotype, W; isotype ZSS). 15. Aylostera fusca (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia fusca F. Ritter, Kakt. And. Sukk. 28(4): 78 1977. Type: Bolivia. Tarija, "westlich Tarija", 1959, Ritter 940 (holotype, U). 16. Aylostera heliosa (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia heliosa Rausch, Kakt. And. Sukk. XXI. 30. 1970. Type: Bolivia. Tarija, near Tarija on the road to Narvaez, 2400-2500 m, s.d., Rausch 314 (holotype, W; isotype, ZSS). 16a. Aylostera heliosa (Rausch) Mosti & Papini subsp. cajasensis (Donald) Mosti & Papini, comb. nov. & stat. nov. Basionym: Rebutia heliosa Rausch var. cajasensis Donald, Aschingtonia 3(5-6): 144-145. 1979. Type: Bolivia. Tarija: Abra Cajas, 2400 m, s. d., Lau 405 (holotype, K). 16b. Aylostera heliosa (Rausch) Mosti & Papini subsp. condorensis (Donald) Mosti & Papini, comb. nov. & stat. nov. STEFANO MOSTI ET AL., Basionym: Rebutia heliosa Rausch var. condorensis Donald, Aschingtonia 3(5-6): 143-144. 1979. Type: Bolivia. Tarija: Abra Condor, 2500 m, s. d., Lau 401 (holotype, K). 17. Aylostera hoffmannii (Diers & Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia hoffmannii Diers & Rausch, Kakt. And. Sukk. 28(5): 105. 1977. Type: Argentina. Salta, near Santa Victoria, s.d., Rausch 521a (holotype, ZSS). 18. Aylostera jujuyana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia jujuyana Rausch, Kakt. And. Sukk. 24(7): 147-148. 1973. Type: Argentina. Jujuy, Quebrada de Humahuaca, s.d., Rausch 220 (holotype, ZSS). . 19. Aylostera kieslingii (Rausch) Mosti & Papini, comb. nov. Basioym: Rebutia kieslingii Rausch, Kakt. And. Sukk. 28(8): 177-178. 1977. Type: Argentina. Salta, near Caspala, 3200 m, s.d. Rausch 694 (holotype, ZSS). 20. Aylostera kupperiana (Boed.) Backeb. in Backeb. & F.M. Knuth, Kaktus-ABC 275. 1936. 21. Aylostera mamillosa (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia mamillosa Rausch, Succulenta 51(4): 69. 1972. Type: Bolivia. Chuquisaca, Sud Cinti, west of Camargo, 3300 m, s. d., Rausch 302 (holotype, ZSS). 22. Aylostera mandingaensis R. Wahl & Jucker, Kakteen Sukk. 59(4): 101-105. 2008. 23. Aylostera muscula (F. Ritter & Thiele) Backeb., Descr. Cact. Nov.: 3. 5. 1963. 24. Aylostera narvacense Cárdenas, Cact. Succ. J. 43(6): 245. 1971. 25. Aylostera nitida (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia nitida F. Ritter, Ashingtonia 3(1): 14. 1978. Type: Bolivia. Tarija, Mendez, Cajas, 2000 m, 1958, Ritter 769 (holotype, U [not found]; isotypes, ZSSS10437 [seeds only], SGO-124596). 26. Aylostera nogalensis (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia nogalensis F. Ritter, Kakt. And. Sukk. 28(4): 78. 1977. NEW COMBINATIONS IN AYLOSTERA Type: Bolivia. Chuquisaca, Azurduy, "Tarvita, rocky slopes", 1958, Ritter 768 (holotype, U; isotype, SGO124595). 27. Aylostera patericalyx (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia patericalyx F. Ritter, Kakt. And. Sukk. 28(4): 78. 1977. Type: Bolivia. Chuquisaca, Sud Cinti, "La Cueva", 1963, Ritter 757 (holotype, U; isotypes, SGO-124585, ZSSSR14409). 28. Aylostera perplexa (Donald) Mosti & Papini, comb. nov. Basionym: Rebutia perplexa Donald, Ashingtonia 3(5-6): 150. 1980. Type: Bolivia.Tarija/Chuquisaca, prope Rio Pilaya, s.d., Lau 329a (holotype, K; isotype, ZSS). 29. Aylostera pseudodeminuta (Backeb.) Backeb., Backeb. & F.M. Knuth, Kaktus-ABC: 275. 1936. 30. Aylostera pseudominuscula (Speg.) Speg., Anal. Soc. Ci. Argent. 96: 75. 1923. 31. Aylostera pulchella (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia pulchella Rausch, Kakt. And. Sukk. 23(12): 340. 1972. Type: Bolivia. Chuquisaca, to the north of Padilla, 2200 m, s.d., Rausch 320 (holotype, W; isotype, ZSS). 32. Aylostera pulvinosa (F. Ritter & Buining) Backeb., Descr. Cact. Nov. 3: 5. 1963. 33. Aylostera robustispina (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia robustispina F. Ritter, Succulenta 56(3): 64. 1977. Type: Bolivia. Tarija, mountains N of Tarija, 1966, Ritter 763 (holotype, U; isotypes, ZSS-SR14421, ZSSSR14422). 34. Aylostera rubiginosa (F. Ritter) Backeb., Descr. Cact. Nov. 3: 5. 1963. 35. Aylostera schatzliana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia schatzliana Rausch, Kakt. And. Sukk. 26(11): 224-225. 1975. Type: Bolivia. Chuquisaca, Nor Cinti, near Pucara, 3200 m, s.d., Rausch 640 (holotype, ZSS). 36. Aylostera simoniana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia simoniana Rausch, Kakt. And. Sukk. 35(9): 205. 1984. Type: Bolivia. Chuquisaca, Sud Cinti, south of and above La Cueva, 3500 m, s.d., Rausch 739 (holotype, ZSS). 2779 37. Aylostera spegazziniana (Backeb.) Backeb., Backeb. & F.M Knuth, Kaktus-ABC 276. 1936. 38. Aylostera spinosissima (Backeb.) Backeb., Backeb. & F.M Knuth, Kaktus-ABC 275. 1936. 39. Aylostera sumayana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia sumayana Rausch, Succulenta 65(4): 74. 1986. Type: Bolivia. Chuquisaca, Sud Cinti, near Sumaya, 3200 m, s.d., Rausch 738 (holotype, ZSS). 40. Aylostera supthutiana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia supthutiana Rausch, Kakt. And. Sukk. 27(6): 121-122. 1976. Type: Bolivia. Tarija, O'Connor, at Tambo, s.d., Rausch 629 (holotype, ZSS). 41. Aylostera tamboensis (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia tamboensis F. Ritter, Ashingtonia 2(10): 207. 1977. Type: Bolivia. Tarija, O'Connor, east of Tarija, "at the upper end of the Tambo gorge", 2500 m, 1962, Ritter 1142 (holotype, U; isotype, SGO-124627). i 42. Aylostera tarijensis (Rausch) Mosti & Papini, comb. nov. Basionyn: Rebutia tarijensis Rausch, Kakt. and. Sukk. 26(9): 195-196. 1975. Type: Bolivia. Tarija, east of Tarija, 2600 m, s.d., Rausch 87 (holotype, ZSS). 43. Aylostera tarvitaensis (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia tarvitaensis F. Ritter, Kakt. and. Sukk. 28(4): 78. 1977. Type: Bolivia. Chuquisaca, Azurduy, at Tarvita, 1958, Ritter 773 (holotype, U; isotypes, SGO-124599, ZSSSR14432). 44. Aylostera tuberosa (F. Ritter) Backeb., Descr. Cact. Nov. 3, 5. 1963. 45. Aylostera vallegrandensis (Cárdenas) Mosti & Papini, comb. nov. Basionym: Rebutia vallegrandensis Cárdenas, Cact. Succ. J. (Los Angeles) 42: 35. 1970. Type: Bolivia. Santa Cruz, Valle Grande, near Candelaria on the way to Rio Piraymiri, 2000 m, s.d., Card. 6307 (holotype, LIL (Cárdenas Herbarium)). 46. Aylostera vulpina (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia vulpina F. Ritter, Succulenta 56(3): 66. 1977. STEFANO MOSTI ET AL., 2780 Type: Bolivia. Tarija, Méndez, west of Tarija, 1959, Ritter 939 (holotype, U; isotype, SGO-124606). . 47. Aylostera wahliana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia wahaliana Rausch, Succulenta 64(12): 257. 1985. Type: Bolivia. Tarija, at Cuesta de Sama, s.d., Rausch 645 (holotype, ZSS). 48. Aylostera walteri (Diers) Mosti & Papini, comb. nov. Basionym: Rebutia walteri Diers, Kakt. And. Sukk. 40(8): 189-190. 1989. Type: Argentina, Salta, Santa Victoria, 2500-2700 m, s.d., Hoffmann 1960a (holotype, KOELN). 49. Aylostera waltheriana (Backeb.) Y. Ito, Explan. Diagr. Austroechinocactinae: 129. 1957. Aylostera Speg. subgen. Mediolobivia Rowley, Cactus World 27(2): 88-90. 2009 (Backeb.) Plants flattened-globular, globular, sub-cylindrical or cylindrical; often with bronzed epidermis. Ribs well or sometimes poorly developed forming spiralled or vertical rows of rounded tubercles. Spines often with thick bulbous bases up to 1-20 (-60 mm in Aylostera aureiflora) mm long and 4-20 in number. Flowers funnelform or campanulate; style and filaments usually coalescent with the internal side of the receptacular wall for the lower part of the receptacle, or free from the receptacular wall; scale axils pilose (to very woolly) but never bristly. Fruits usually naked or only weakly pilose. Plants either selfsterile or self-fertile. 53. Aylostera aureiflora (Backeb.) Mosti & Papini, comb. nov. Basionym: Rebutia aureiflora Backeb., Kakteenfreund 1: 124. 1932. Type: Argentina. Salta: Quebrada del Toro, s. d., s. coll. (lectotype (Hjertson, 2003), photograph in KakteenFreund 1: 24. 1932). 54. Aylostera brachyantha (Wessner) Mosti & Papini, comb. nov. Basionym: Lobivia brachyantha Wessner, Kakt. And. Sukk. 1937 (9): 129, 207. 1937. Type: Bolivia. Potosi, near Potosi, s.d., s.n. (lectotype (Hunt & Taylor, 2006), illustration in Kakt. And. Sukk. 1937 (9): 131-132.). 55. Aylostera brunneoradicata (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia brunneoradicata F. Ritter, Kakt. And. Sukk. 28(4): 77-78. 1977. Type: Bolivia. Tarija, Mendez, "San Antonio", 1962, Ritter 1109 (holotype, U). 56. Aylostera brighignae (Mosti & Papini) Mosti & Papini, comb. nov. Basionym: Rebutia brighignae Mosti & Papini, Cactus & Co. 9(1): 60-61. 2005. Type: Argentina. Jujuy, Abra de Pives, s.d., Rausch 751, cult. S. Mosti (holotype, FT!). Type: Rebutia haagei Frič & Shelle. 57. Aylostera camargoensis (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia camargoensis Rausch, Succulenta 55(3): 42. 1976. Checklist of species and infraspecific taxa, including taxonomic novelties Type: Bolivia. Chuquisaca, Nor Cinti, west of Camargo, 3200 m, s.d., Rausch 311 (holotype, ZSS).. 50. Aylostera amblypetala (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia rosalbiflora F. Ritter var. amblypetala F. Ritter, Kakt. And. Sukk. 28(4): 76. 1977. 58. Aylostera canacruzensis (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia canacruzensis Rausch, Kakt. And. Sukk. 27(3): 49-50. 1976. Type: Bolivia. Potosi, Sud Chichas, Impora above Tarata, s.d., Ritter 1119 (holotype, U [not found]). i Type: Bolivia. Chuquisaca, Nor Cinti, near Cana Cruz (Caña Cruz?), 3700 m, s.d., Rausch 642 (holotype, ZSS). 51. Aylostera applanata (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia steinmannii (Solms-Laub.) Backebg. var. applanata Rausch, Lobivia 85: 145, 129. 1986. 59. Aylostera carmeniana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia carmeniana Rausch, Kakt. And. Sukk. 29(5): 105. 1978. Type: Bolivia. Chuquisaca, north of Camargo, Rio Hondo, 3600 m, s.d., Rausch 486 (holotype, ZSS). Type: Argentina. Salta, "in ravines near Caspala", 3100 m, s.d., Rausch 690 (holotype, ZSS). 52. Aylostera atrovirens (Backeb.) Mosti & Papini, comb. nov. Basionym: Lobivia atrovirens Backeb. in Backeb. & F.M. Knuth, Kaktus-ABC, 242, 414. 1936. Locality at the protologue: Argentina. Salta to Jujuy, from high mountains (to be typified). 60. Aylostera christinae (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia christinae Rausch, Kakt. And. Sukk. 26(7): 145. 1975. NEW COMBINATIONS IN AYLOSTERA Type: Argentina. Salta, between Nazareno and Rodeo, 3500 m, s.d., Rausch 492a (holotype, W). 61. Aylostera cincinnata (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia cincinnata Rausch, Kakt. And. Sukk. 27(1): 4. 1976. Type: Bolivia. Potosi, near Cuchu Ingenio, 3600 m, s.d., Rausch 300 (holotype, ZSS). 62. Aylostera colorea (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia colorea F. Ritter, Kakt. And. Sukk. 28(4): 78. 1977. Type: Bolivia. Tarija, Mendez, "San Antonio", 1962, Ritter 1106 (holotype, U). 63. Aylostera crassa (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia haagei (Fric & Shelle) Wessner var. crassa Rausch, Lobivia 85: 140, 56. 1986. Type: Bolivia. Tarija, "in regionibus altis apud Sama", at Iscayachi, s.d., Rausch 501 (holotype, ZSS). 64. Aylostera diersiana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia diersiana Rausch, Kakt. And. Sukk. 26(2): 25-26. 1975. Type: Bolivia. Chuquisaca, Sud Cinti, Yuquina near Culpina, 3200 m, s.d., Rausch 631 (holotype, ZSS). 64a. Aylostera diersiana (Rausch) Mosti & Papini subsp. atrovirens (Rausch) Mosti & Papini, comb. nov. & stat. nov. Basionym: Rebutia diersiana Rausch var. atrovirens Rausch, Kakt. And. Sukk. 26(2): 26. Type: Bolivia. Chuquisaca: Sud Cinti, above Salitre near Culpina, 3200 m, s. d., Rausch 633 (holotype, ZSS). 65. Aylostera einsteinii (Frič ex Kreuz. & Buining) Mosti & Papini, comb. nov. Basionym: Rebutia einsteinii Friè ex Kreuz. & Buining, Succulenta 1949: 65. 1949. Type: Argentina. Jujuy, Quebrada del Toro, s.d., Lau 477? (lectotype (Hjertson, 2003), photogr. in Kaktusar 3: 16. 1932) 2781 Type: Argentina. Jujuy, s.d., L. Fischer 54 (holotype, PR). 68. Aylostera friedrichiana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia friedrichiana Rausch, Succulenta 55(6): 103. 1976. Type: Bolivia. Chuquisaca, Sud Cinti, near La Cueva, 3500 m, s.d., Rausch 646 (holotype, ZSS). 69. Aylostera froehlichiana (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia froehlichiana Rausch, Succulenta 54(12): 226. 1975. Type: Bolivia. Chuquisaca, Sud Cinti, near Yuquina, 3200 m, s.d., Rausch 649 (holotype, ZSS). 70. Aylostera gavazzii (Mosti) Mosti & Papini, comb. nov. Basionym: Rebutia gavazzii Mosti, Cactus & Co. 3(4): 207-209. 1999. Type: Bolivia, Tarija, s.d., Rausch 493, cult. S. Mosti (holotype, FI!). 71. Aylostera gonjianii (Kiesling) Mosti & Papini, comb. nov. Basionym: Rebutia gonjianii Kiesling, Bol. Soc. Arg. Bot. 15: 132. 1973. Type: Argentina. Jijuy, Tilcara, "a cuatro horas a mulas oeste de Huacalera", Jan. 1973, B. Gonjian 2 (holotype, LP). 72. Aylostera haagei (Frič & Shelle) Mosti & Papini, comb. nov. Basionym: Rebutia haagei Frič & Shelle, Kaktusar 1: 88. 1930. Type: Argentina, Jujuy, s.d., s.n. (lectotype (Hjertson, 1994), photograph in Frič & Schelle. 1930). 72a. Aylostera haagei (Frič & Shelle) Mosti & Papini subsp. elegantula (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia haagei Frič & Shelle var. elegantula Rausch, Lobivia 85: 140, 57. 1986. Type: Argentina. Jujuy, Río San Juan de Oro, s.d., Rausch 502 (holotype, ZSS). 66. Aylostera eos (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia eos Rausch, Succulenta 51(1):2. 1972. 72b. Aylostera haagei (Fric & Schelle) Mosti & Papini subsp. mudanensis (Rausch) Mosti & Papini, comb. nov. & stat. nov. Basionym: Rebutia mudanensis Rausch, Kakt. And. Sukk. 27(8): 169. 1976. Type: Argentina. Jujuy, near Tafna, 3600 m, s.d., Rausch 333 (holotype, W). Type: Argentina. Salta: east of Mudana near Santa Ana, 3500-4300 m, s. d., Rausch 689 (holotype, ZSS). 67. Aylostera fischeriana (Slaba) Mosti & Papini, comb. nov. Basionym: Rebutia fischeriana Slaba in Kaktusy (Brno) 38(3): 69. 2002. 73. Aylostera haefneriana (Cullmann) Mosti & Papini, comb. nov. Basionym: Mediolobivia haefneriana Cullmann, Kakt. And. Sukk. 6(2): 119. 1955. Locality at the protologue: Bolivia. Potosi, s.d., s.n. (to be typified). 2782 74. Aylostera huasiensis (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia huasiensis Rausch, Kakt. And. Sukk. 28(2): 25. 1977. Type: Bolivia. Chuquisaca, Inca Huasi, near Culpina, 3300 m, s.d., Rausch 313 (holotype, ZSS). 75. Aylostera iridescens (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia iridescens F. Ritter, Kakt. And. Sukk. 28(4): 76. 1977. Type: Bolivia. Potosi: Sud Chicas, W of Mal Paso, /-//1962, Ritter 1434 (holotype, U). 76. Aylostera iscayachensis (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia ischayachensis Rausch, Succulenta 56(1): 3. 1977. Type: Bolivia. Tarija, Mendez, above Cana Cruz, near Iscayachi, 3500 m, s.d., Rausch 335b (holotype, ZSS). 77. Aylostera knizei (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia pygmaea (R. E. Fr.) Backeb. var. knizei Rausch, Lobivia 85: 144, 116. 1986. Type: Bolivia. Oruro, prope Challapata, 3800 m, s.d., Rausch 676a (holotype, ZSS). 78. Aylostera leucacantha (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia steinmannii (Solms-Laub.) Backebg. var. leucacantha Rausch, Lobivia 85: 145, 129. 1986. STEFANO MOSTI ET AL., Basionym: Lobivia steinmannii (Solms-Laub.) Backebg. var. melanocentra Rausch, Lobivia 85: 146, 129. 1986). Type: Bolivia. Tarija, ab Iscayachi, "ab occidentem versus", 3600 m, s.d., Rausch 744 (holotype, ZSS). 83. Aylostera minor (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia diersiana Rausch var. minor Rausch, Succulenta 58(11): 258. 1979. Type: Bolivia. Sud Cinti at Yuquina, near Culpina, 3600 m, s.d., Rausch 630 (holotype, ZSS). 84. Aylostera mixticolor (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia mixticolor F. Ritter, Kakt. And. Sukk. 28(4): 77. 1977. Type: Bolivia. Tarija, Méndez, "San Antonio", 1966, Ritter 1108 (holotype, U). 85. Aylostera nazarenoensis (Rausch) Mosti & Papini, comb. nov. Basionyon: Digitorebutia nazarenoensis Rausch, Succulenta: 58(8): 186. 1979. Type: Argentina. Salta, near Nazareno, 3350 m, s.d., Rausch 484 (holotype, ZSS). 86. Aylostera nigricans (Wessner) Mosti & Papini, comb. nov. Basionym: Lobivia nigricans Wessner, Beitr. Sukkulentenk. Sukkulentenpflege 3: 51. 1940. Type: Bolivia. Chuquisaca, Cinti australis, supra La Cueva, 3700 m, s.d., Rausch 644 (holotype, ZSS). Type: Argentina. Salta, s.d., s.n. (lectotype (Hjertson, 2005), photograph of flowering plant showing flower from the side in Beitr. Sukkulentenk. Sukkulentenpflege 3: 51. 1940). 79. Aylostera leucanthema (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia leucanthema Rausch, Kakt. And. Sukk. 26(6): 125. 1977. 86a. Aylostera nigricans (Wessner) Mosti & Papini subsp. albispina (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia nigricans Wessner var. albispina Rausch, Lobivia 85: 142, 98, 100. 1986. Type: Bolivia. Chuquisaca, Nor Cinti, Cana Cruz, 3600 m, s.d., Rausch 305 (holotype, ZSS). Type: Argentina. Salta, Escoipe (Cuesta de Obispo), 2700 m, s.d. Rausch 771 (holotype, ZSS). 80. Aylostera major (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia steinmannii (Solms-Laub.) Backebg. var. major Rausch, Lobivia 85: 146, 129. 1986. 87. Aylostera oculata (Werderm.) Mosti & Papini, comb. nov. Basionym: Rebutia oculata Werderm., Kakt., and. Sukk. 25, tab 99. 1935. Type: Argentina. Jujuy, apud Tafna, 3600 m, s.d., Rausch 334 (holotype, ZSS). 81. Aylostera marieae (Lad.Fisch. & Halda) Mosti & Papini, comb. nov. Basionym: Rebutia marieae Lad.Fisch. & Halda, Acta Mus. Richnov., Sect. Nat. 9(1): 71-72. 2002. Type: Argentina. Jujuy, 2001-1-15, L. Fischer s.n. (holotype, PR). 82. Aylostera melanocentra (Rausch) Mosti & Papini, comb. nov. Type: Argentina, Jujuy, s.d., s.n. (lectotype, icon in Kakt. And. Sukk. 25: t. 99. 1935). Syn.: Lobivia euanthema Backeb., Backeb. & F. M. Knuth, Kaktus-ABC, 240, 414. 1936. 87a. Aylostera oculata (Werderm.) Mosti & Papini subsp. tilcarensis (Rausch) Mosti & Papini, comb. nov. & stat. nov. Basionym: Lobivia euanthema Backeb. var. tilcarensis Rausch, Lobivia 85: 138, 36. 1986. NEW COMBINATIONS IN AYLOSTERA Type: Argentina. Jujuy: "in summis montibus apud Tilcara", s. d., Rausch 700 (holotype, ZSS). 88. Aylostera odehnalii (Halda, Seda & Sorma) Mosti & Papini, comb. nov. Basionym: Rebutia odehnalii Halda, Seda & Sorma, Acta Mus. Richnov., Sect. Nat. 9(1): 72-73. 2002. Type: Bolivia. s.d., J.J. Halda, J. Odehnal & V. Seda, s.n. (holotype, PR). 89. Aylostera orurensis (Backeb.) Mosti & Papini, comb. nov. Basionym: Lobivia orurensis Backeb., Backeb. & F.M. Knuth, Kaktus-ABC: 243, 415. 1936. Locality at the protologue: Bolivia. Oruro, Poopo, near Oruro, 3800 m. (to be typified). 90. Aylostera pallida (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia pallida Rausch, Succulenta 56(10): 234. 1977. Type: Bolivia. Chuquisaca, Sud Cinti, around La Cueva, 3500 m, s.d., Rausch 645 (holotype, ZSS). 91. Aylostera parvula (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia steinmannii (Solms-Laub.) Backebg. var. parvula Rausch, Lobivia 85: 146, 129. 1986. Type: Bolivia. Potosi, Cucho Ingenio, 3800 m, s.d., Rausch 296 (holotype, ZSS). 92. Aylostera pauciareolata (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia pauciareolata F. Ritter, Kakt. And. Sukk. 28(4): 77. 1977. Type: Bolivia. Tarija, Mendez, "San Antonio", 1962, Ritter 1121 (holotype, U; isotype, SGO-124623). 93. Aylostera pelzliana (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia haagei (Frič & Schelle) Wessner var. pelzliana Rausch, Lobivia 85: 140, 57. 1986. Type: Argentina. Jujuy, apud Tafna, 3600 m, s.d., Rausch 333a (holotype, ZSS). 94. Aylostera polypetala (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia pygmaea (R.E. Fr.) Backeb. var. polypetala Rausch, Lobivia 85: 144, 116. 1986. Type: Bolivia. Potosi, Cucho Ingenio, 3700 m, s.d., Rausch 301 (holotype, ZSS). 95. Aylostera pseudoritteri (Raush) Mosti & Papini, comb. nov. Basionym: Lobivia atrovirens Backeb. var. pseudoritteri Rausch, Lobivia 85: 137, 13. 1986. Type: Bolivia. Tarija, Abra de Sama, s.d., Rausch 506 (holotype, ZSS). 2783 96. Aylostera pygmaea (R.E. Fr.) Mosti & Papini, comb. nov. Basionym: Echinopsis pygmaea R.E. Fr., Nova Acta Regiae Soc. Upsal. ser. 4, 1(1): 120. 1905). Type: Argentina. Prov. Jujuy, Yavi, c. 3400 m, s.d., R.E Fries 999 (lectotype (Hjertson, 1994), S). 97. Aylostera raffaellii (Mosti & Papini) Mosti & Papini, comb. nov. Basionym: Rebutia raffaellii Mosti & Papini, Cactus & Co. 9(1): 56-57. 2005. Type: Argentina. Jujuy, presso Tafna, s.d., Rausch 333c, cult. S. Mosti (holotype, FT!). 98. Aylostera raulii (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia raulii Rausch, Kakt. And. Sukk. 31(6): 171. 1980. Type: Bolivia. Chuquisaca, north of Camargo, at the Rio Honda, s.d., Rausch 485 (holotype, ZSS). 99. Aylostera ritteri (Wessner) Mosti & Papini, comb. nov. Basionym: Lobivia ritteri Wessner, Beitr. Sukkulentenk. Sukkulentenpflege 1: 3. 1938. Type: Bolivia. Tarija: Iscayachi Ritter 03/-/1931 s. n. (lectotype (Hjertson, 2005), illus. in Beitr. z. Sukk. u.pfl.1:3. 1938). 100. Aylostera rovidana (Mosti & Papini) Mosti & Papini, comb. nov. Basionym: Rebutia rovidana Mosti & Papini, Cactus & Co. 9(1): 58-59. 2005. Type: Argentina. Jujuy, presso Tafna, s.d., Rausch 333b, cult. S. Mosti (holotype, FT!). 101. Aylostera steinmannii (Solms) Backeb., Cactaceae (Backeberg) 3: 1528. 1959. Basionym: Echinocactus steinmannii Solms, Bot. Zeit. 65(1): 133. 1907. Type: Bolivia. s. d., s. coll. (lectotype (Hjertson, 2005), fig. 4 in Bot. Zeit. 65(1): plate 2. 1907). 102. Aylostera tafnaensis (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia pygmaea (R. E. Fr.) Backeb. var tafnaensis Rausch, Lobivia 85: 144, 116. 1986. Type: Argentina. Jujuy, apud Tafna, 4000 m, s.d., Rausch 508a (holotype, ZSS). 103. Aylostera torquata (F. Ritter & Buining) Mosti & Papini, comb. nov. Basioym: Rebutia torquata F. Ritter & Buining, Succulenta 56(3): 63. 1977. Type: Bolivia, Potosi, Sud Chichas, "Mal Paso", /11/1962, Ritter 1117 (holotype, U). 2784 104. Aylostera tropaeolipicta (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia tropaeolipicta F. Ritter, Kakt. And. Sukk. 28(4): 78. 1977. Type: Bolivia. Potosi, Sud Chichas, "Mal Paso", 1962, Ritter 1114 (holotype, U; isotype, ZSS). 105. Aylostera tuberculata (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia steinmannii (Solms-Laub.) Backebg. var. tuberculata Rausch, Lobivia 85: 145, 129. 1986. Type: Bolivia, Cinti meridionalis, in pago La Cueva, s.d., Rausch 743 (holotype, ZSS). 106. Aylostera violaceostaminata (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia pygmaea R.E. Fr. var. violaceostaminata Rausch, Lobivia 85: 144, 116. 1986. Type: Bolivia. Chuquisaca, Cinti australis, apud La Cueva, 3300 m, s.d., Rausch 742 (holotype, ZSS). 107. Aylostera violascens (F. Ritter) Mosti & Papini, comb. nov. Basionym: Rebutia violascens F. Ritter, Kakt. And. Sukk. 28(4): 76. 1977. Type: Bolivia. Chuquisaca, Nor Cinti, north of Camargo, 1958, Ritter 352 (holotype, U). 108. Aylostera yuncharasensis (Rausch) Mosti & Papini, comb. nov. Basionym: Lobivia atrovirens Backeb. var. yuncharasensis Rausch, Lobivia 85: 137, 13. 1986. Type: Bolivia. Tarija, Yunchara, s.d., Rausch 91 (holotype, ZSS). 109. Aylostera yuquinensis (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia yuquinensis Rausch, Kakt. And. Sukk. 31(10): 307. 1980. Type: Bolivia. Chuquisaca, Sud Cinti, Yuquina, 3200 m (9800 ft), s.d., Rausch 632 (holotype, ZSS). 110. Aylostera zecheri (Rausch) Mosti & Papini, comb. nov. Basionym: Rebutia zecheri Rausch, Succulenta 56(2): 30. 1977. Type: Bolivia. Tarija, Iscayachi, near Pueblo Viejo, 3000 m (9850 ft), s.d., Rausch 650 (holotype, ZSS). References Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions Automatic Controls, 19: 716-723. Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res., 25: 3389-3402. STEFANO MOSTI ET AL., Anderson, E.F. 2001. The Cactus Family. Timber Press Portland, Oregon. Augustin, K., W. Gertel and G. Hentzschel. 2000. Sulcorebutia, kakteenzwerge der bolivianischen Anden. Eugen Ulmer Verlag. Germany. Backeberg, C. 1966. Das Kakteenlexicon, 1th ed. Gustav Fischer Verlag. Jena, Germany. Buining, A.F.H. and J.D. Donald. 1963. Die Gattung Rebutia K. Schumann. Sukkulentenkunde, 7/8: 96-107. Buining, A.F.H. and J.D. Donald. 1965. The revision of the genus Rebutia K. Schum. Cactus and Succulent Journal of Great Britain, 27: 36-41. Donald, J.D. 1975a. The Classification of the Rebutias. Ashingtonia, 2(1): 6-7, 10-11. Donald, J.D. 1975b. The Rebutias Part 3: Systematics of Rebutia K. Sch. Section Rebutia Buin. & Don. Ashingtonia, 2(3): 42-43, 50-54, 57, 59-60. Donald, J.D. and A.J. Brederoo. 1975. The Rebutias Part 2 Systematics. Ashingtonia, 2(2): 30-31, 34-35. Donald, J.D. and A.J. Brederoo. 1976a. The Rebutias Part 4: Systematics Rebutia K. Sch. Section Rebutia Buin. & Don. Ashingtonia, 2(4): 66-72, 74, 77-79. Donald, J.D. and A.J. Brederoo. 1976b. The Rebutias Part 5: Systematics Rebutia K. Sch. Section Setirebutia Buin. & Don. Ashingtonia, 2(5): 82-91. Donald, J.D. and A.J. Brederoo. 1976c. Rebutia Part 6: Systematics - Section Cylindrorebutia Buin. & Don. Ashingtonia, 2(6): 107-112. Donald, J.D. and A.J. Brederoo. 1976d. The Rebutias Part 7: Systematics: Rebutia K. Sch. Section Aylostera Speg. & Digitorebutia (Buin.) Buin. & Don. Ashingtonia, 2(7): 138147. Donald, J.D. and A.J. Brederoo. 1977a. Systematics of Rebutia Part 7 continued Section Aylostera continued 'The Fiebrigii group'. Ashingtonia, 2(9): 181-190. Donald, J.D. and A.J. Brederoo. 1977b. Systematics of Rebutia Part 7 continued Section Aylostera continued 'The Spegazziniana group'. Ashingtonia, 2(10): 203-206. Donald, J.D. and A.J. Brederoo. 1978a. The Systematics of Rebutia Part 7 continued Section Aylostera - The Spegazziniana Group continued. Ashingtonia, 3(2): 26-31. Donald, J.D. and A.J. Brederoo. 1978b. Systematics of Rebutia K. Sch. Part 7 continued Section Aylostera - The Spegazziniana Group continued. Ashingtonia, 3(3/4): 7883. Eggli, U., M.M. Schick and B.E. Leuenberger. 1995. Cactaceae of South America: The Ritter Collections. Englera, 16. Farris, J.S. 1969. A successive approximations approach to character weighting. Systematic Zoology, 18: 374-385. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol., 17: 368-376. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39: 783-791. Hentzschel, G. and K. Augustin. 2008. Die Gattung Weingartia Werdermann. Gymnocalycium, 21(2): 767-782. Hjertson, M. 1994. The Identity of Echinopsis pygmaea R.E. Fr. (Cactaceae). Taxon, 43: 455-457. Hjertson, M. 2003. Notulae Systematicae Lexicon Cactacearum Spectantes III: Rebutia. Cactaceae Consensus Initiatives, 14: 9-10. Hjertson, M. 2005. Furter notes on Rebutia. Cactaceae Syst. Initiatives, 19: 18-23. Huelsenbeck, J.P. and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754755. Hunt, D.R. 1999. Cites Cactaceae checklist. Royal Botanic Garden Kew, Richmond, UK. Hunt, D.R. and N. Taylor. 1990. The genera of Cactaceae: progress towards consus. Bradleya, 8: 85-107. Hunt, D.R. and N. Taylor. 2006. Cactaceae Syst. Initiatives, 21: 10. NEW COMBINATIONS IN AYLOSTERA 2785 Kishino, H., T. Miyata and M. Hasegawa. 1990. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol., 30: 151-160. Miller, M.A., M.T. Holder, R. Vos, P.E. Midford, T. Liebowitz, L. Chan, P. Hoover and T. Warnow. 2009. The CIPRES Portals. CIPRES. 2009-08-04. URL: http://www.phylo.org/ sub_sections/portal" Mosti, S. 1999. Digitorebutia Buining & Donald an interestig section of the vast genus Rebutia. Cactus & Co., 3(4): 187209. Mosti, S. 2000a. Digitorebutia Buining & Donald an interestig section of the vast genus Rebutia. Cactus & Co., 4(1): 3650. Mosti, S. 2000b. Digitorebutia Buining & Donald an interesting section of the vast genus Rebutia. Cactus & Co., 4(2): 87102. Muruaga, N.B, M.F. Figueroa Romero and R. Kiesling. 2008. Circunscription de Rebutia minuscula (Cactaceae, Cactoideae). Darwiniana, 46(2): 318-327. Nyffeler, R. 2002. Phylogenetic relationships in the cactus family (Cactaceae) based on evidence from trnK/matK and trnL-trnF sequences. Amer. J. Bot., 89: 312-326. Nylander J.A.A., F. Ronquist, J.P. Huelsenbeck and J.L. NievesAldre. 2004. Bayesian Phylogenetic Analysis of Combined Data. Syst. Biology, 53(1): 47-67. Nylander, J.A.A. 2004a. Mr Modeltest, version 1.0b. Department of Systematic Zoology, EBC, Uppsala University, Uppsala, Sweden. Pilbeam, J. 1997. Rebutia. The Cactus File Handbook 2. Cirio Publishing Services Ltd, UK. Posada, D. and A. Crandall. 1988. Modeltest: testing the model of DNA substitution. Bioinformatics, 14: 817-818. Rausch, W. 1986. Lobivia 85. Rudolf Herzig Verlag. Wien. Ritz, C.M., L. Martins, R. Mecklenburg, V. Goremykin and F.H. Hellwig. 2007. The Molecular Phylogeny of Rebutia (Cactaceae) and its allies demonstrates the influence of paleogeography on the evolution of South American mountain cacti. Amer. J. Bot., 94(8): 1321-1332. Ross, R. 1981. Chromosome counts, cytology and reproduction in Cactaceae. Amer. J. Bot., 68(4): 463-470. Rowley, G. 2009. Rebutia reappraised. Cactus World, 27(2): 8890. Savolainen, V., J.F. Manen, E. Douzery and R. Spichiger. 1994. Molecular phylogeny of families related to Celastrales based on rbcL 5’ flanking sequences. Molecular Phylogenetics and Evolution, 3: 27-37. Shimodaira, H. and M. Hasegawa. 1999. Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution, 16: 11141116. Sida, O. 1997. Rod Rebutia. Brno. Simmons, M. P. and H. Ochoterena. 2000. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol., 49: 369381. Swofford, D.L. 1998. PAUP* 4.1. Phylogenetic Analysis Using Parsimony. Test version. Sinauer Associates. Sunderland, MA. Templeton, A.R. 1983. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution, 37: 221-244. Thompson, J.D., D.G. Higgins and T.J. Gibson. 1994. ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res., 22: 4673-4680. Young, N.D. and J. Healy. 2003. GapCoder automates the use of indel characters in phylogenetic analysis. BMC Bioinformatics, 4: 6. Zwickl, D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin. (Received for publication 20 April 2011)