Academia.eduAcademia.edu
Pl. Syst. Evol. 256: 35–53 (2006) DOI 10.1007/s00606-005-0302-z Morphological variation in Puya (Bromeliaceae): an allometric study C. Hornung-Leoni and V. Sosa Instituto de Ecologı́a, Xalapa, Veracruz, Mexico Received April 12, 2004; accepted December 14, 2004 Published online: September 26, 2005  Springer-Verlag 2005 Abstract. A group of representative species of the genus Puya was studied to determine if there are allometric relationships between vegetative and floral parts, whether these relationships correlate with their pollination system and if plant size is correlated with elevation and latitude. Fifty-three species representing the morphological variation and distribution of the genus were studied. Total plant height, as well as leaf, inflorescence, petal and sepal length were measured and these data subjected to univariate and multivariate analyses. To test for correlation between plant size and altitudinal and latitudinal distribution, ANOVAs were performed. When the pollination system of a species is known, additional multivariate and univariate analyses were also performed. The results indicate that the characters studied are correlated with a size component, exhibiting positive allometry for sepal and petal length and negative allometry for leaf length. Inflorescence length is an isometric character. There was no significant correlation between plant size and altitudinal or latitudinal distribution. The ANOVAs show that the only character correlated to pollinator type was petal length. Small plants with small flowers are correlated to pollinators such as insects, while medium to large plants with medium to large-sized flowers are correlated with pollinators such as birds and bats. Large plants have small flowers, that are more evident and attract more pollinators. Key words: Allometry, altitudinal and latitudinal distribution, Bromeliaceae, plant size, pollination system, Puya. Data from different groups of angiosperms indicate that in general, the size of branches, leaves, flowers and inflorescences are allometrically related (White 1983, Primack 1987, Bond and Midgley 1988, Midgley and Bond 1989, Maitre and Midgley 1991), as are plant height and seed size (Kang and Primack 1999). Allometric growth is characterized by differential growth in the different parts of a body (Niklas 1994) and by a change of shape with changes in size (Brookstein 1991). Many hypotheses have been proposed to explain both the allometric relationships among plant parts and the differences in the size of angiosperms. The correlation between the size of plants and the size of inflorescences has been attributed to pollinator visits (Donnelly et al. 1998, Elle and Carney 2003), and by way of explanation, it has been suggested that pollinators come into contact with a greater number of flowers in large inflorescences than they do in small ones (Wilson and Price 1977). The correlation between plant size and the number of seeds has also been explained by pollinator visitation (Robertson and Macnair 36 1995). Similarly, petal size is correlated with the number of pollinator visits; visit rate increasing as size increases (Delph 1994). Variation in the size and form of flowers has been attributed to differences in the pollinator or in breeding system (Grant and Grant 1965, Ornduff 1969, Faegri and van der Pijl 1971). The size of the different floral parts can be allometrically correlated with other floral parts and with the type of pollinator (Faegri and van der Pijl 1971). Furthermore, some evidence suggests that there is a correlation between the size of the plants and altitude for some groups of angiosperms in some geographical areas (Hedberg 1970, Mabberley 1972, Monasterio 1980, Miller and Selander 1981). Plant size increases at higher elevations for different taxa in the Andes where, for instance, for Espeletia (Asteraceae) in the Venezuelan Andes, taller growth forms have been observed to replace lower forms as elevation increases (Monasterio 1980). The same phenomenon occurs for Afroalpine flora where taxa such as Lobelia (Lobeliaceae) and Senecio (Asteraceae) have giant individuals at high elevations (Hedberg 1969, Mabberley 1972). We selected representative species of Puya to determine if there are morphological patterns and allometric relationships between vegetative and floral characters. We also selected this group of Puya species to determine if these characters are correlated with pollination system and if plant size is correlated with elevation or ecological unit. Puya is part of an important group of Neotropical plants, the Bromeliaceae, in which allometric relationships have not yet been studied. Puya is a genus of about 195 species almost all of which are restricted to South America (Smith and Downs 1974, Benzing 2000). It has not yet been established if Puya is a monophyletic group. However, preliminary results of a current phylogenetic study of the species of the subgenus Puya suggest that the genus is indeed monophyletic (Hornung-Leoni and Sosa, unpublished data). Among the reasons for choosing Puya is the remarkable variation C. Hornung-Leoni and V. Sosa: Allometry in Puya in the size of the plants, their inflorescences and their flowers. For example, the largest bromeliad in the world P. raimondi, that grows as tall as 10 – 12 meters, is part of this group (Foster 1950, Hornung-Leoni and Sosa 2004). Moreover, Puya species are found along a varied altitudinal range mainly in the Andes, from sea level up to 4000 m asl (Smith and Downs 1974). Pollinator specialization is common among species in Puya and different pollinators, from hummingbirds to perching birds and also diurnal moths, bees and bats have been recorded for this genus (OrtizCrespo 1973, Varadarajan and Brown 1988, Benzing 2000). In order to understand the factors that have influenced taller growth forms in a group of 53 species representative of the genus Puya, the objectives of this study are to determine: 1) if there are morphological patterns and allometric relationships among the structural parts (vegetative and floral) in this group, 2) if morphological patterns are related to the pollination system, and 3) if there is any correlation between the size of the plants and the altitude or the latitude at which they grow. Materials and methods Selection of taxa. Fifty-three of the approximately 195 species of Puya were selected to represent the morphological variation and geographic distribution of the genus. Puya has been divided in two subgenera: Puya and Puyopsis (Smith and Downs 1974) and we considered species from both subgenera; i.e. those with inflorescences that have a sterile apex (Puya) and those with a fertile apex (Puyopsis). Species of Puya with a stem or stemless, with erect or prostrate stem, and with the different types of inflorescences were included. Variation in altitude and latitude (ecological units) was also taken into account for the selection of species. Measurements were taken from 272 herbarium specimens (listed in the Appendix) from the COL, F, HDCV, MERC, NY, SGO, US, USM and XAL herbaria. Additional information was obtained from the literature and with field observations. Characters. For floral characters, we dissected the flowers, took digital images and then used the C. Hornung-Leoni and V. Sosa: Allometry in Puya program Sigma Scan Pro 5 (SPSS Inc. 1999). Stem was coded in analyses as a qualitative character (present, absent, erect, prostrate) because herbarium collections usually lack stems. For each species, we only used the maximum values of characters, based on two criteria: (1) maximum values for characters were more likely to reflect the genetic potential of the species in good environments (Thompson and Rabinowitz 1989), and (2) for certain characters such as plant height only the maximum values were available. The characters are indicated in Table 1 and in Fig. 1. Data on elevation were obtained from herbarium specimens and from field work, and these were used to estimate the average (minimum and maximum values). The latitudinal categories were based in ecological units of the same latitude where species are found were obtained from specimens and databases. Coastal mountains, the Andes and highlands were the ecological units for this study. Data on pollinators were obtained from field observations as well as from the literature. The type of pollinator was coded as birds (hummingbirds and perching birds), insects, bats, or by two kinds of pollinators. Statistical analyses Allometric relationships. The computer program STATISTICA (StatSoft 2000) was used for all statistical analyses. Variation among characters was explored in a preliminary manner with univariate analysis, by box plots for every character. Correlation among characters was determined by regression analysis. Principal Components Analysis (PCA) was then carried out with the following characters: leaf length, inflorescence length, and petal and sepal length. Among the reasons for using PCA are: (1) it provides an idea of the importance of both the size factor and the shape factor (Jolicoeur and Mosimann 1960, Sundberg 1989, Jackson 1991); (2) it allows the majority of the variation for a set of morphological data to be summarized in only a few dimensions (Klingenberg and Zimmermann 1992, Klingenberg 1996); (3) the coefficients of each variable of the first component describe the relative growth rate of all the components simultaneously (Shea 1985) and, (4) it allows us to compare the relative growth of one part of an organism to that of the whole organism (Jackson 1991). PCA was performed on natural-log-transformed data in order 37 to improve symmetry of distribution across species (Hoaglin et al. 1993) and to guarantee the connection with the methods of shape analysis (Brookstein 1991). We used the correlation matrix for the PCA, in order to give the same weight to variables that differ widely (with the means standardized to zero and variances standardized to 1) (Jackson 1991, Klingenberg 1996). This was also done because variances were not homogeneous and this is a criterion for the selection of the matrix (Harris 1985). To determine how many factors were considered, we follow Kaiser’s criterion (eigen values>1) and the percentage of Variance Explained (Hair et al. 1998, Reyment and Jöreskog 1993). The loading scores of PC1, the size component, were used as a size factor to determine allometry (Strauss 1985). These loadings were rescaled to a mean of 1.0 and interpreted as allometric coefficients on total plant size. Values greater than unity describe positive allometry, while those less than unity indicate negative allometry and values equal to one indicate isometry (Strauss 1985). Based on the PCA plot, six groups were identified. A Discriminant Analysis was then performed to check whether the species belonged to those groups and the position of taxa was based on this analysis. Two-way ANOVAs were performed to determine if there was a significant difference in the characters we tested depending on type of pollinator. Additionally, to map out species according to pollinators on a multivariate plot, a PCA was performed as above, including only those species for which the pollinator is known. Two-way ANOVAs were also performed to determine if the type of stem or ecological unit had a significant effect on the size of the species and to determine if there was a significant relationship between plant size and latitude. To determine whether altitudinal distribution had a significant effect on the size of the species studied, we used a regression analysis of the first component (PC1) with the average elevation as well as a two-way ANOVAs. ANCOVAs were performed to determine if the type of pollination or the type of stem and elevation have an effect on the overall size of the plant. Results Allometric relationships Univariate analysis. There was a clear correlation between leaf length and inflorescence Number of samples Total plant height Leaf Type of stem length Inflorescence length Sepal lengh Petal length Altitudinal Ecological Alloaverage units metric group 1. Puya alpestris Gay 2. P. angulonis L.B.Sm. 3. P. aristeguietae L.B.Sm. 4. P. berteroniana Mez 5. P. bicolor Mez 6. P. boliviensis Baker 7. P. boyacana Cuatrec. 8. P. brachystachya Mez 9. P. cardonae L.B.Sm. 10. P. castellanosii L.B.Sm. 11. P. chilensis Molina 12. P. coerulea Miers 13. P. cryptantha Cuatrec. 14. P. ctenorhyncha L.B.Sm. 15. P. cylindrica Mez 16. P. fastuosa Mez 17. P. ferruginea (Ruiz & Pav.) L.B.Sm. 18. P. floccosa E. Morr. 19. P. glomerifera Mez & Sodiro 20. P. goudotiana Mez 21. P. grubbii L.B.Sm. 22. P. hamata L.B.Sm. 23. P. herrerae Harms 24. P. hofstenii Mez 25. P. humilis Mez 26. P. laccata Mez 27. P. lilloi Castellanos 28. P. lineata Mez 29. P. longisepala Mez 30. P. maculata L.B.Sm. 13 7 6 21 7 13 2 1 1 4 18 22 3 1 2 1 16 1.50 1.00 3.00 5.00 3.00 2.00 1.00 0.40 0.30 3.00 5.00 2.00 0.70 1.20 1.00 2.50 2.50 1 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 2 60 50 100 100 80 100 45 20 30 40 100 60 30 50 50 40 100 100.0 50.0 100.0 100.0 140.0 50.0 10.0 7.0 60.0 200.0 100.0 100.0 20.0 30.0 40.0 100.0 200.0 2.5 2.5 3.0 2.3 2.1 3.2 1.6 1.7 1.5 3.0 3.5 2.4 1.6 2.0 3.0 2.0 4.5 5.0 5.0 6.0 5.0 4.0 5.0 3.5 3.0 3.0 4.0 5.0 5.0 2.8 4.0 4.2 3.7 8.0 1000 3750 3050 1045 2715 685 3350 2850 3200 2900 25 1250 3150 3500 2550 3575 2800 C, A C, A A C A C A A A A C A A A C A A 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 3 4 8 1 10 1 2 5 1 1 2 1 1 2.00 2.00 5.00 1.00 4.00 1.50 1.00 0.25 1.00 1.00 0.80 2.00 0.60 0 2 0 0 0 0 0 0 0 2 0 0 0 100 60 170 30 150 100 50 25 40 100 60 75 40 100.0 35.0 200.0 30.0 200.0 40.0 70.0 8.0 40.0 40.0 14.0 50.0 15.0 3.3 2.5 3.0 2.0 2.3 2.5 2.6 1.3 2.1 1.4 2.1 3.0 2.1 4.0 5.0 6.0 3.5 4.0 5.5 4.0 2.0 3.7 2.0 4.2 5.5 4.0 1635 2675 3020 2050 3625 3625 3450 3500 3400 1400 2935 2100 3345 A, H, C A A A A A A A A A A A A 1 1 1 1 1 1 1 2 1 1 1 1 1 C. Hornung-Leoni and V. Sosa: Allometry in Puya Species 38 Table 1. Species of Puya studied, with measurements for their morphological characters and their altitudinal range. Stem character codes: 0 = absent, 1 = erect, 2 = prostrate. Ecological units: A = Andes, C = coastal mountains, H = highlands Species Number of samples Total plant height Type Leaf of stem length Inflorescence length Sepal lengh Petal length Altitudinal Ecological Alloaverage units metric group 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 2 1 1 1 6 7 3 3 3 10 23 3 1 1 2 6 8 1 6 2 1 2 1 2.00 0.37 1.00 0.10 1.50 2.00 1.00 2.00 0.20 0.30 12 1.00 1.50 1.20 0.80 2.00 2.00 0.60 0.60 2.00 2.50 1.00 4.00 0 2 0 0 0 0 0 1 0 0 2 1 0 2 0 0 0 0 0 0 0 0 0 40.0 20.0 50.0 4.0 30.0 62.0 50.0 100.0 9.0 5.0 430.0 60.0 70.0 50.0 8.0 50.0 30.0 10.0 22.0 150.0 50.0 35.0 50.0 3.7 2.0 0.8 1.1 6.0 3.0 3.2 1.6 1.7 1.8 4.0 3.5 4.2 1.8 2.8 2.0 2.5 1.8 2.2 3.0 2.0 2.5 4.5 7.0 4.0 1.3 1.5 9.5 7.0 4.0 2.5 2.5 3.0 8.0 6.0 6.0 2.8 3.5 3.6 3.2 3.0 3.5 6.0 4.0 4.5 6.0 2200 3375 1700 2500 1670 3100 2200 2325 3150 3375 3225 3450 1350 2500 3500 3450 3750 3900 3060 2765 3075 2350 4000 P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. P. mariae L.B.Sm. medica L.B.Sm. micrantha Mez minima L.B.Sm. mirabilis (Mez) L.B.Sm. nitida Mez oxyantha Mez parviflora L.B.Sm. pratensis L.B.Sm. pygmaea L.B.Sm. raimondii Harms reflexiflora Mez riparia L.B.Sm. roezlii E.Morr. santanderensis Cuatrec. santosii Cuatrec. trianae Baker tristis L.B.Sm. venezuelana L.B.Sm. vestita Ed.Andre westii L.B.Sm. wurdackii L.B.Sm. yakespala Castellanos 100 20 90 12 60 60 120 45 20 17 125 80 50 100 30 37 28 30 34 30 100 30 50 A C A A A A A A A A A A A A A A A A A A A A C 1 1 4 3 5 1 1 1 2 2 6 1 1 1 C. Hornung-Leoni and V. Sosa: Allometry in Puya Table 1. (continued) 1 1 1 1 1 1 1 1 39 40 C. Hornung-Leoni and V. Sosa: Allometry in Puya Fig. 1. Characters measured for the species of Puya studied for the analysis of allometry. A) Leaf length, B) Total height of plants with a stem, C) Total height of stemless plants (considered only for ANOVAs), D) Inflorescence length, E) Petal length, F) Sepal length length, as well as a correlation between the length of the sepals and that of the petals (Fig. 2). Multivariate analysis. The eigenvalues of the PCA (Table 2) show that there is a strong plant size component (PC1). The score of this component represents the overall plant size and is defined as a linear combination of character, which increased in all variables simultaneously (leaf, inflorescence, sepal and petal length) for those which have the same factor (Table 3). For PC1 all the variables are significant (with a = 0.05) (Hair et al. 1998, Reyment and Jöreskog 1993), and they explain 68.71% of the variation (Tables 2, 3). For the second component, leaf and petal length are significant (Table 3). PC2 accounts for 21.44% of the variation. Together, the two principal components explain 90.15% of the variation. The PCA plot (Table 3, Fig. 3) shows that size (PC1) increases from left to right, and in the second component, leaf length increases from bottom to top as petal length decreases. The PCA plot (Fig. 3) shows that inflorescence and petal and sepal sizes increase from left to right. Among characters, only the inflorescence is an isometric character. Leaf length shows negative allometry, while sepal and petal length show positive allometry (Fig. 3, Table 3). Based on the results of the PCA plot (Fig. 3) we can characterize morphological variation for the species studied. The size component PC1 (leaf, inflorescence, petal, C. Hornung-Leoni and V. Sosa: Allometry in Puya 41 Fig. 2. Regression of variables showing a significant correlation. A) Inflorescence length and leaf length. B) Petal length and sepal length Table 2. Eigenvalues for the principal components (PC1 and PC2) in which all taxa were considered PC (factor) Eigenvalues % Total variance Cumulative eigenvalues Cumulative % 1 2 2.748 0.857 68.706 21.440 2.748 3.606 68.706 90.145 42 C. Hornung-Leoni and V. Sosa: Allometry in Puya Table 3. Relative growth dimensions with the factor loadings for the principal components (PC1 and PC2) and rescaled PC1 loadings (this values >1 indicates positive allometry, and values >1 negative allometry) Variables Factor 1 (PC1) Factor 2 (PC2) Rescaled loadings Allometry (loading/average PC1) Log leaf length Log inflorescence length Log sepal length Log petal length Explained variance Proportion total 0.757 0.815 0.862 0.887 2.516 0.629 0.500 0.464 )0.402 )0.549 0.921 0.230 0.92 0.99 1.05 1.07 Negative Isometric Positive Positive Fig. 3. Plot of Principal Components Analysis in which all the species of Puya studied were considered. AG = Allometric group and sepal length) and the shape component PC2 (leaves and petal length) show six groups of individuals (confirmed by the discriminant analysis), with the following morphological patterns: (1) Medium – Medium: Individuals with medium-sized plants and medium-sized leaves and medium-sized petals. (2) Small – Medium: Individuals with small-sized plants with medium-sized leaves and medium-sized petals. (3) Medium – Small: Individuals with C. Hornung-Leoni and V. Sosa: Allometry in Puya medium-sized plants, large leaves and smallsized petals. (4) Dwarf – Medium: Individuals with dwarf-sized plants, medium-sized leaves and medium-sized petals. (5) Medium – Large: Individuals with medium to large-sized plants, small leaves and very large-sized petals. (6) Giant – Medium: Giant individuals with medium-sized leaves and reduced petals. Morphological patterns and pollination systems The PCA plot (Fig. 4) that includes only species for which the pollinator is known shows that the length of petal and sepal are correlated with the type of pollinator. PC1 represented 50.41% of the variation and includes all of the variables: leaf, inflorescence, sepal and petal length (0.83, 0.70, 0.68, and 43 0.81 respectively). PC2 includes variables such as inflorescence, sepal and petal length (0.65, )0.66 and )0.50 respectively). The PCA plot (Fig. 4) shows that the size component increases from left to right (on the axis) and that inflorescence (shape component) increases from the bottom to the top, while petal and sepal length decrease, indicating that when the inflorescence is larger the flowers are reduced. The PCA plot (Fig. 4) shows that species with medium to large plants with medium to large sepals and petals are correlated with pollinators such as bats and birds, while small plants with medium petals and sepals (like P. trianae) are visited by insects. The results of the ANOVAs indicate that there were no significant difference in the size of species (PC1), leaf length, inflorescence Fig. 4. Plot of Principal Components Analysis which included only the species for which their pollinators are known. Symbols: insects; bats; birds (including perching birds); hummingbirds; moths; autogamous 44 C. Hornung-Leoni and V. Sosa: Allometry in Puya length and sepal length with respect to the type of pollinator or between ecological units and the size of plants (Table 4). Petal length was the only significant character related to pollinator type. Correlation between plant size and elevation None of the characters (leaf, inflorescence and petal length and PC1) showed any significant difference (p>0.01) in the size of the species (PC1) with respect to elevation (Fig. 5). The ANCOVAs also indicate that there were no significant differences in the type of pollinator, size of plants and elevation, or in the type of stem, size of plants and elevation; nor was there any interaction of pollinators, plant size and elevation (Table 4). Discussion We found characters exhibiting positive and others with negative allometry. This means that the characters that exhibit positive allometry (sepal and petal length) with respect to the first component (size) are relatively larger (with respect to plant height) in large individuals, while those with negative allometry (leaf length) are relatively smaller in large individuals. When a character is allometric, a change in size produces a change in form (Brookstein 1991). For example, as seen in Puya, petal length shows positive allometry while leaf length shows negative allometry. Puya mirabilis has a different form compared to Puya hamata. In the first species the plants have short leaves but the flowers have very large petals, while in the second species, the plants have a similar plant length but both leaf and petal length are medium-sized, and plant form is very different. Most of Puya species studied show the same morphological pattern of medium-sized plants and medium-sized leaves and mediumsized flowers (AG1). Morphological patterns are not related to infrageneric classification because species of Puya from both subgenera display different allometric patterns. These subgenera were established based on the presence of an sterile apex in inflorescences (Smith and Downs 1974). An interesting issue worthy of further investigation is whether these patterns are dependent on phylogenetic relationships. Our results indicate that there is a relationship between sepal and petal length, as well as the length of the inflorescence and pollinator type. The size of these characters is related to the type of pollinator, as has been widely reported (e. g. Grant and Grant 1965, Faegri and van der Pijl 1971). For example, the majority of the species with medium to large inflorescences and medium to small flowers are mainly pollinated by birds (perching birds and hummingbirds). Plants with small inflorescences with large flowers have bats as pollinators and Table 4. Fisher and P values in ANOVAs and ANCOVAs Variables Fisher test P-level Significance Pollinator · Log plant height Pollinator · Log leaf length Pollinator · Log inflorescence length Pollinator · Log sepal length Pollinator · Log petal length Pollinator · PC1 Stem · PC1 Ecological units · PC1 Pollinator · PC1 · elevation Stem · PC1 · elevation F F F F F F F F F F p>0.01 (0.525) p>0.01 (0.058) p>0.01 (0.308) p> 0.01 (p = 0.411) p> 0.01 (p = 0.049) p> 0.01 (p = 1.112) P< 0.01 (0.259) P< 0.01 (0.551) p> 0.01 (0.057) p> 0.01 (0.493) NS NS NS NS S NS NS NS NS NS = = = = = = = = = = 0.813 4.058 1.447 1.100 4.369 2.889 1.388 0.710 4.445 0.717 C. Hornung-Leoni and V. Sosa: Allometry in Puya 45 Fig. 5. Regression of variables and elevation. (A) Leaf length and average elevation, (B) Inflorescence length and elevation, (C) Petal length and elevation, (D) Size component (PC1) and average elevation medium flowers in small plants and are commonly visited by insects. Yet, for a number of the Puya species we studied there are records of several pollinators, mainly for those species with medium-sized flowers. It has been pointed out that the match between pollinator and floral characteristics is often loose and not so specific as to exclude other animal taxa from visiting and pollinating the flowers (Waser 1983, Herrera 1996, Hingston and McQuillan 2000), and our study confirmed this finding. Our results also indicate that neither elevation nor ecological units found at a certain latitude are correlated with plant size for the species we studied. Puya raimondii, the largest Bromeliad is found in altitudes between 24004080 m asl. However, other tall species such as Puya chilensis are found at sea level. Therefore in the group of these Bromeliaceae, giant growth forms are not exclusive to high elevations as found for Espeletia in the Andes (Monasterio 1980) or Lobelia and Senecio in the Afroalpine flora (Hedberg 1969, 1970; Mabberly 1972). Alternative hypotheses have been suggested to explain taller growth forms in Bromeliaceae based on other environmental 46 C. Hornung-Leoni and V. Sosa: Allometry in Puya Table 5. Pollinators for the species considered in the second PCA analysis Species Pollinators Reference Puya alpestris Puya aristeguietae Puya berteroniana Perching birds and hummingbirds Bats Perching birds, diurnal moths and hummingbirds Perching birds, diurnal moth and hummingbirds Birds Bats Birds Bats (also recorded as autogamous) Bats Hummingbirds and perching birds Our observations Benzing, 2000 Benzing, 2000; Our observations Puya chilensis Puya Puya Puya Puya Puya Puya coerulea ferruginea f loccosa mirabilis nitida raimondii Puya trianae Insects factors. According to Benzing (2000) lack of humidity is a determinant of the increase in plant size for this family. Givnish et al. (1997) indicate that in other giant bromeliad taxa, such as Brocchinia micrantha and B. paniculata factors such as a cool, extremely wet climate and exceedingly nutrient-poor soils can be responsible of the increase in plant size. The available information suggests that Puya raimondii is found in conditions of cold, dry climate and nutrient-poor soils (Foster 1950, Benzing 2000, Kessler 2002). However, more is required to determine if these environmental factors influence the overall size in Puya. In other monocotyledons such as palms, the largest taxa are basal to other more recently evolved groups (Henderson 2002). Therefore, it would be interesting to know if taller growth forms in Puya are the result of a phylogenetic constraint. It has been suggested that in hapaxanthic plants (i.e. those that only produce inflorescences and fruit once in their life, after which they die), an increase in size increases fitness (Metcalf et al. 2003). It would also be interesting to know if the size of the hapaxanthic Puya (among them, P. raimondii and P. hamata) has increased. The variability among the species of Puya in plant size, number of inflorescences and Scogin, 1988; Benzing, 2000; Our observations Scogin, 1988 Benzing, 2000; Kessler, 2002 Scogin, 1988 Benzing, 2000 Benzing, 2000 Foster, 1950; Rivera, 1985; Benzing, 2000; Our observations Chaparro, 2002 number of flowers, as well as the wide variety of habitats it occupies – from mesic to xeric, its broad altitudinal distribution and its morphological distribution is notable. Given this, Puya is an interesting group for phylogenetic study to determine the evolution of gigantism, to understand the evolution of pollination systems and the role of other environmental factors affecting the size of plants. The first author extends grateful thanks to the ‘‘Red Latinoamericana de Botánica’’ (RLB) for awarding her a doctoral scholarship and providing special funds to carry out the research for this thesis project (RLB D1-02). She also thanks the International Association for Plant Taxonomists (IAPT) for financial support to carry out revision in the Chilean herbaria. She thanks Dr. Gloria Montenegro and her staff for their help with fieldwork in Chile. We thank Mery Suny and Giovana Vadillo for their help in fieldwork in Peru. We thank Dr. Mario M. Ojeda for his sound advice on statistical analysis and Jorge López Portillo, J. Antonio Guerrero, Ivón Ramı́rez and two anonymous reviewers for their suggestions on the manuscript. We are grateful to the curators of the COL, F, HDCV, MERC, NY, SGO, US, USM and XAL herbaria for their help with regard to collections. Edmundo Saavedra kindly provide the line drawings. We thank Bianca Delfosse for editing the English version of this manuscript. C. Hornung-Leoni and V. Sosa: Allometry in Puya 47 Appendix. Herbarium specimens used for this study. The number in parenthesis corresponds to the number of specimens analyzed for every species Puya alpestris Gay CHILE: J. West 4981, US; N. Floy Bracelin 2802, F; N. Floy Bracelin 2766, F; La Hermida, cerca de Santiago, G. Looser 2104, F; F (739482); V/1884, US (Photo type Puya whytei ); Prov. Concepción. Hills north to Concepción, J. West 4981, US; F (1670523); Cerro San Cristóbal, Germain s.n., 1854, SGO; Coquimbo, Muñoz M. 909, SGO; Coquimbo, Muñoz C. & A. Coronel 1552, SGO; Coquimbo, Muñoz C. & A. Coronel 1302, SGO; Cerro de Fray Jorge, Philippi s.n., SGO; Fray Jorge, Ovalle, Philippi F. s.n., I/1883, SGO; Cordillera de La Dehesa, Philippi s.n., XI/1861, SGO. Puya angulonis PERU: Camino a Caro, M.I. La Torre 1908, USM; Prov. Cajamarca. Depto. CaL.B.Sm. jamarca, P.C. Hutchinson 7035, USM; Dpto. Ayacucho, A. Cano 12079, USM; Dpto. Cuzco, Prov. Calca, R. Ferreyra 9882, USM; Dpto. Cajamarca, Al Gentry 1988, USM; Prov. Cajamarca, D .N. Smith & R. Vásquez 3459, F; Prov. Cajamarca, P.C. Hutchinson & J. Wright 7035, F. Puya aristeguietae VENEZUELA: Edo. Mérida, Hornung, C., Tirado, C. & Quevedo, J. 208, MERC; L.B.Sm. Edo. Mérida, Hornung, C., Garbiso, C. & Quevedo, J. 161, MERC; Edo. Mérida, Hornung, C., Gaviria, J.C & Tirado, C. 246, MERC; Edo.Trujillo, L. Aristeguieta 3539, US, NY; Edo. Trujillo, Dorr L.J. & L.C. Bernett 5000, NY. Puya berteroniana BOLIVIA (?) : Near La Paz (probably the label is an error), Rusby 2850, US. CHILE: Mez IIX Región, Prov. Santiago, G. Montero O. 768, F; Prov. Curicó. Hacienda Monte Grande, E. Wedermann 563, F; Bertero 115, F (779464); F (1026657); Viña del Mar, F (678758); Limache, Belen s.n., F (633929); Cuesta de La Dorminda, Luis Gonzalez s.n., 26/V/1983, HDCV; Hutchison P. 22, SGO; Los Molles, Landbeck L. s.n., XI/ 1861, SGO; Altos de Tiltil, Reiche K. s.n., 01/XI/1897, SGO; Santiago: Laguna de Aculeo, Navas E. s.n., 17/XII/1971, SGO; Las Tacas, Flores A. s.n., 15/VIII/1986, SGO; Coquimbo, Muñoz M. 908, SGO; Maipu, Schlegel F. 1664, SGO; Reserva Nacional Rio Clarillo, Yanez J. s.n., 03/VIII/1983, SGO; Rancagua, Bertero 115,US (photo); Valparaiso, Weber 3252, US; Concón, Miers 347, US. Puya bicolor Mez COLOMBIA: Dpto. Boyacá, Cordillera Oriental, J. A. Ewen 15642, COL; J. Cuatrecasas 9641, COL, F; Dpto. de Boyacá, Mpio de Aquitania, O. Rangel & J. Aguirre 238, COL; Dpto. Boyacá, Pauna, H. Garcı́a B. 13218, COL; Dpto.Cundinamarca, Suesca, M.B. Foster & R. Foster 1803, COL; Dpto. Cundinamarca, Huertas & Camargo 104, F. Puya boliviensis BOLIVIA (CHILE now): Cobija. Gaudichaud s.n., F (741178); Gaudichaud s.n., US Baker (21449992); Cobija, Gaudichau, Julliet s.n., 1836–1837, F; Gaudichau, F (1435081). CHILE: Quebrada Paposo, ca. 5–7 km E of Caleta, M.O. Dillon & J.T.S. Teillier 5242, F; Antofagasta región II, Prov. Antofagasta. M.O. Dillon 5377, F; Constitución, Reiche K s.n., X/1893, SGO; Illapel, Philippi s.n., XII/1862, SGO; Santiago, Philippi s.n., SGO (66008); Valparaiso, Hutchison P. 22, SGO; Reserva Nacional Rio Clarillo, Yanez J s.n., 03/VIII/1983, SGO; Coquimbo, Muñoz M. 908, SGO; Hacienda Rinconada, Maipu, Schlegel F. 1664, SGO. Puya boyacana COLOMBIA: Dpto. Boyacá, Cordillera Oriental, J. Cuatrecasas & H. Garcı́a B. Cuatrec. 9756, COL, US. Puya brachystachya COLOMBIA: Dpto. Magdalena, San Sebastián, Foster & Smith 1458, US. Mez Puya cardonae VENEZUELA: Edo. Táchira, Páramo de Tamá, Cardona 335 VEN. L.B.Sm. Puya castellanosii ARGENTINA: Salta, Laguna del Brealito, Castellanos 45819, US; Prov. Salta, L.B.Sm. Catellanos s.n. 1897, US; Dpto. Molinos, Prov. Salta. Brealito, T. Meyer 9164, US; Cachi, Prov. Salta, G.S. Varadarajan, U. Varadarajan & L. Novara 1476, US. 48 C. Hornung-Leoni and V. Sosa: Allometry in Puya Appendix. (continued) Puya chilensis Molina Puya coerulea Miers Puya cryptantha Cuatrec. Puya ctenorhyncha L.B.Sm. Puya cylindrica Mez Puya fastuosa Mez Puya ferruginea (Ruiz & Pav.) L.B.Sm. Puya floccosa E. Morr. Puya glomerifera Mez & Sodiro BOLIVIA (CHILE now): Gaudichaud, s.n. F (1370754). CHILE: Limache, Frisco, F (633928); 1837, F (1435147); Viña del Mar, 7/IX/1922, F; Viña del Mar, 7/IX/1922, F; Prov. Elqui.T.G. Lammers, C.M. Baeza P. & P. Peñalillo B. 7653, F; Angol, Philippi s.n., I/1877, SGO; Constitución, Reiche K s.n., XII/1891, SGO; Fundo Fray Jorge, Carrizo C., s.n., 10/III/1947, SGO; Cordillera de Colchagua, Landbeck L. s.n., XII/ 1860, SGO; Cordillera de Colchagua, Philippi s.n., SGO (6425); Cerro, Sur Baños Flacos, Espinosa M. s.n., XII/1937, SGO; Zapallar, Philippi s.n., IX/1875, SGO; Aconcagua: Zapallar, Philippi s.n., IX/1865, SGO; Paposo, Reiche K. s.n., IX/1909, SGO; Cordillera de Cauquenes, Reiche K. s.n., X/1907, SGO; Angol, Philippi s.n., 1877, SGO; Constitución, Reiche K. s.n., XII/1891, SGO; Chillan, Philippi s.n., XII/ 1869, SGO; Llico, Philippi s.n., XII/1861, SGO. CHILE: Angostura de Praine, G. Looser s.n., 4/XII/1932, F; F (1668607); Angostura de Praine. G. Looser 2553, F; Angostura de Praine, Looser 2550, F; Angostura de Praine, G. Looser 2549, F; Angostura de Praine. G. Looser 2551, F; Prov. Santiago, P.C. Hutchinson 202, F; Phillipii s.n. F (741265); Prov. Curicó: Hacienda Monte Grande, E. Wedermann 539, F; F (835815); Rı́o Clarillo, HDCV (949); Baños de Cauquenes, Philippi s.n., III/1875, SGO; Llico, Philippi s.n., XII/1861, SGO; Inter Poblacion Et Cueva, Philippi s.n., SGO (46407); Chillan, Philippi s.n., XII/1869, SGO; Cordillera de Popeta, Philippi s.n., I/1884, SGO (46413); Angol, Philippi s.n., I/ 1877, SGO; Complejo Turistico La Leonera, Muñoz M. & S. Moreira 2393, SGO; Complejo Turistico La Leonera, Muñoz M. & S. Moreira 2394, SGO; Las Tacas, Flores A. s.n., 15/VIII/1986, SGO; Taltal, Hoffmann A. & Flores A. s.n., 03/XII/ 1988, SGO; Quebrada Camino a Cifuncho, Hoffmann A. & Flores A. s.n., 01/XII/ 1988, SGO. COLOMBIA: Dpto. Cundinamarca, Cordillera Oriental. J. Cuatrecasas 9568, COL; Dpto. Cundinamarca, La Calera. E. Forero 216, COL; Dpto. Cundinamarca, N. Tryon & A. Tryon 6019, COL. BOLIVIA: Anilaya-Lareca, La Paz, Cárdenas 4867, US. PERU: J. Solomon 3065, USM, F. PERU: Dpto. Cajamarca, near Hualgayoc, Weberbauer 4069, F. PERU: Lima, Prov. Huarochiri. Rı́o Blanco, P.C. Hutchinson 573, F; Prov. Yanachaga, Gentry & D. Smith 35919, F; Cusco, Prov. Paucartambo, R. Foster & T. Watcher 7482, F.; Prov. Huaura, Lomas de Lachay, A. Cano 7081, USM; Dpto. Ancash; Prov. Huaylas, A. Cano 8882, USM; Dpto. Lima, Prov. Huarochirı́, E. Cerrate 1775, USM; Pasco. Cordillera Yanachaga, A. Gentry 35919, USM; Prov. Huaura, Lomas de Lachay, A. Cano 7081, USM; Prov. Chancay, A. Cano 7081, USM; Dpto. Cuzco, Prov. Urubamba, E.W. Davis 1774, USM; Dpto. Cuzco, Prov. Urubamba, W. Davis 1488, USM; Cuzco, Prov. Urubamba, Tupayachi, A. 931, NY. BOLIVIA: Dpto. La Paz. Prov. Murillo, Solomon, J.C. 6093, NY; Dpto. La Paz. Prov. Murillo, Nee, M. 34161, NY; Dpto. La Paz. Prov. Murillo, Buchtien, O. s.n., NY; Nequejahuira, Tate, G.H. 634, NY. COLOMBIA: Dpto. Cundinamarca, Cordillera Oriental, J. Betancur, P. Franco, S. Madriñan & M. Salazar 3975, COL. VENEZUELA: Edo. Mérida, Hornung, C., Tirado, C. & Quevedo, J., 206, MERC; Edo. Mérida Hornung, C., Garbiso, C. & Quevedo, J., 81 MERC. ECUADOR: Prov. El Chimborazo, M. Acosta Solı́s 7171, F ; Prov. Tungurahua, M. Acosta Solı́s 9202, F; Prov. Pichincha, E. Asplund 17564, F; Prov. Pichincha, A. Firmin s.n. 12-I-1928, F. C. Hornung-Leoni and V. Sosa: Allometry in Puya 49 Appendix. (continued) Puya goudotiana Mez Puya grubbii L.B.Sm. Puya hamata L.B.Sm. COLOMBIA: Dpto. Cundinamarca, Mpio. La Calera, C. Garcı́a R. 85, COL; Dpto. Cundinamarca, Páramo de Chocontá, J. Cuatrecasas 9660, COL, F; Dpto. Amazonas, Páramo de Guasca, A. Fernández P. & R. Jaramillo H. 5760, COL; Dpto. Cundinamarca, Páramo de Guasca, J. Cuatrecasas 13547, F; Dpto. Norte de Santander, Presidente, J. Cuatrecasas & H.Garcı́a 10039, F; Dpto. Cundinamarca, J. Cuatrecasas 7969, F; Dpto. Cundinamarca, Macizo de Bogotá, J. Cuatrecasas 5162, F. COLOMBIA: Boyacá, Sierra Nevada de Cocuy, Grubb, Curry & Fernández 711, US. COLOMBIA: Cordillera Central, Mpio. Totoro-Inza, J.Betancur & S. Churchill 2459, COL; Dpto. del Valle, J. Cuatrecasas 20578, COL, F; Cauca, Páramo de Puracé, E.P. Killip & F.C. Lehmann 38587, COL; PERU: F (1641580); Cajamarca, Prov. Chota, A. Sagástegui, D. Skillman, J. Mostacero & L. Ramirez 12881, F; Prov. Cajamarca, Dpto. Cajamarca, P.C. Hutchinson 7036, USM; Putumayo, Mpio. Santiago, Betancur, J. & J.L. Lutyen 7467, NY. ECUADOR: Prov. Cachi, Asplund, E. 16997, NY; Prov. Cachi, Dorr L.J. & L.C. Barnett 6030, NY. PERU: Valle de Apurimac, Herrera 1965, F. Puya herrerae Harms Puya hofstenii Mez ARGENTINA: Yavi, Jujuy, Hoften 1710, F; Jujuy, Salinas Grande, Huathal 135, F. Puya humilis Mez BOLIVIA: Wedermann 2006, F; Sucre, Near Guerraloma. M. Cárdenas 4128, US; S. Voguel 468, US; 12/VI/1957, US; Prov. Tarata, M. Cárdenas, H. Cutler & H. Gandarillas 7639, F. Puya laccata Mez PERU: near Monzon, Weberbauer 3376, F. Puya lilloi ARGENTINA: Tucumán, La Hoyada, Schreiter 588, F. Castellanos Puya lineata Mez COLOMBIA: Dpto. Cundinamarca, C. Saravia 02498A, COL; Apolinar, M. 527, F. Puya longisepala PERU: Puno, Weberbauer 550, F. Mez Puya maculata ECUADOR: Prov. Azuay, Luther, Kress, Brown & Roesel 2703, F. L.B.Sm. Puya mariae PERU: Amazonas, Wurdack 602, F; Amazonas, Chachapoyas, J. Wurdack 602, NY. L.B.Sm. Puya medica PERU: Shorey, Prov. Santiago de Chuco, Sagástegui, Aldave, Fernandez & FuL.B.Sm. kushima 6175; XAL. Puya micrantha ARGENTINA: Prov. Salta, Dpto. Anta, Parque Nacional El Rey, Brown & MalMez mierco 1645, F. Puya minima BOLIVIA: Tarija, Cuesta de Sama, West, J. 8345, NY. L.B.Sm. Puya mirabilis ARGENTINA: Jujuy, Venturi 1950, US; Tucumán, Venturi 5430, US; Venturi, 7621, (Mez) L.B.Sm. US. BOLIVIA: Fiebe 2420a, F; Cochabamba, Quillacollo, Cárdenas 3578, US; Cochabamba, Adolfo 177, US. Puya nitida Mez COLOMBIA: Dpto. Cundinamarca, J.Betancur, L.Montenegro & C. Rodrı́guez 2713, COL; Dpto. Cundinamarca, J. Cuatrecasas 9529, F; Macizo de Bogotá, Cerro de Guadalupe, J. Cuatrecasas 7958, F; Macizo de Bogotá, J. Cuatrecasas 5629, F; Dpto. Cundinamarca, Páramo de Guasca, J. Cuatrecasas 13539, F; Dpto. Boyacá, A. M. Cleef 9740, COL; Dpto. Cundinamarca, G. Gutierrez 366, F. Puya oxyantha Mez PERU: Prov. Sandia, Dpto. Puno, cerca de Sandia, R. Ferreyra & A. Vera 16654, USM, US; Puno, Weberbauer 1058, F. Puya parviflora ECUADOR: El Oro, Espinosa E-2052, US; Loja to Loma, Harling 5724, US; Loja to L.B.Sm. Zamorana, Gilmartin 1134, US. 50 C. Hornung-Leoni and V. Sosa: Allometry in Puya Appendix. (continued) Puya pratensis L.B.Sm. Puya pygmaea L.B.Sm. Puya raimondii Harms Puya reflexiflora Mez Puya riparia L.B.Sm. Puya roezlii E.Morr. Puya santanderensis Cuatrec. Puya santosii Cuatrec. PERU: Cajamarca, Cumbre Gavilán, Ferreyra 8580, USM; La Libertad, Huamachuco, López & Sagástegui 2862, US; USM. BOLIVIA: Lchmamb 589, F. ECUADOR: Azuay, Páramo de Tinajillas, W.H Camp 2236, F, US; Prov. Morona - Santiago, G.S. Varadarajan, U. Varadarajan & V. Zak 1433, US; Prov. Azuay. Páramo de Tinajillas. S.E. Clemants, J.D. Boeke, N.H. Holmgren & S. Crisafully 2199, US; PERU: Dpto. Cusco, Prov. Paucartambo. A. Cano 4563, F; Prov. Paucartambo; Depto. Cusco, Tres Cruces P.N.M., A. Cano 3455, USM; Dpto. Cusco; Prov. Paucartambo, Altura de Teleban P.N.M., A. Cano 3782, USM; Dpto. Cusco; Prov. Paucartambo, A. Cano 4563, USM; Dpto. Cusco, Prov. Paucartambo, Acjanaco. PN Manu, A. Cano 3393, USM. BOLIVIA: Huacanqui, M. Cárdenas 4380, US; Comanche. M.B. Foster 2566, US; Cochabamba, M.B. Foster 2546, US; Dpto. Cochabamba, Prov. Arani, G. Schmitt & D. Schmitt 84, US; La Paz, Prov. Pacajes. Comanche, J.N. Rose & Mrs. Rose 18875, US; La Paz, Pacajes: Comanche, J. Luteyn, L. Dorr, D. Smith & M.Buddensick 13840, US; Dpto. La Paz, Prov. Pacajes, Comanche, St.G. Beck 2353, US. PERU: La Libertad, Prov. Otuzco. A. Sagástegui, S. Leiva & C. Tellez 14510, F; Weberbauer 2955, F; La Libertad, Prov. Otuzco. S. Leiva, P. Leiva & E. Zavaleta 292, F; Estation 30 miles of Huaraz. Pomopampa, Macbride & Featherstone s.n, 4/XII/1922, F; Dpto. Puno, Prov. Melgar, H. Ilties & Don Ugent 1288, US; Prov. Bolognesi. Huishcashpampa, Emma Cerrate 2072, USM; Prov. Huaylas, Dpto. Ancash, A. Cano 6405, USM; 1/2 km SE of Hacienda Santa Rosa de Achaco, USM (159980); Dpto. Huancavelica, carretera Castrovirreyna- Ayacucho, USM (159979); Dpto. Ancash, P.N. Huascarán, Hornung, C. 1118, USM; Dpto. Ancash, Canchayllo, Hornung, C. 1120, USM; Dpto. Ancash, P.N. Huascarán, Hornung, C. 1121, USM; Dpto. Ancash, P.N. Huascarán, Hornung, C. 1122, USM; Dpto. Ancash, P.N. Huascarán, Pumapashimin, Hornung, C. 1123, USM; Dpto. Ancash, Cordillera Negra, Hornung, C. 1124, USM; Dpto. Ancash, Hornung, C. 1126, USM. PERU: P. Hutchison & M. Ricardi 4998, F; Weberbauer 3148, F; Dpto. Ancash; Prov. Yungay, Llanganuco, R. Ferreyra 16500 A, USM. BOLIVIA: La Paz, road to Hacienda Chaco, Foster 2578, US. PERU: Dpto. Apurimac, C. Vargas 9789, F. COLOMBIA: Dpto. Norte de Santander, páramo de Tamá, L.E.Mora 4641, COL; Dpto. Norte de Santander, J. Cuatrecasas & N. Garcı́a - Barriga 10035, COL. COLOMBIA: Dpto. Cundinamarca, Páramo de Cruz Verde, Cuatrecasas 9518, F; Dpto. Cundinamarca, J. Cuatrecasas 9441, COL; Meta: Páramo de Sumapáz, A. Cleef 1503, COL; Dpto. Cundinamarca, Páramo de Cruz Verde, J. Cuatrecasas 10468, COL; G. Gutierrez 386, F; Dpto. Cundinamarca, J. Cuatrecasas & R. Jaramillo 12042, F. Puya trianae Baker COLOMBIA: Dpto. Cundinamarca, Páramo de Chisacá, J. Cuatrecasas & R. Jaramillo M. 25924, COL, F; Dpto. Cundinamarca, Andes de Bogotá, s.n, COL (03042); Dpto. Cundinamarca, Páramo de Chisacá, T.R. Soderstrom 1286, Dpto. Boyacá, A.M. Cleef 7430, COL, F.; Dpto. Cundinamarca, J. Cuatrecasas 10474, F; Antioquia, Betancur, J. Et al 1166, F; Dpto. Cundinamarca, Chisacá, J. Hidrovo, H. Arias & M. del Llano 6525, F. Puya tristis BOLIVIA: Cochabamba, between Cochabamba and Chapare, Cárdenas 6067, US. L.B.Sm. C. Hornung-Leoni and V. Sosa: Allometry in Puya 51 Appendix. (continued) Puya venezuelana L.B.Sm. Puya vestita Ed.Andre Puya westii L.B.Sm. Puya wurdackii L.B.Sm. Puya yakespala Castellanos COLOMBIA: Dpto. del Arauca, A.M. Cleef 10.124, COL; Lı́nea divisoria entre Dpto. Santander del Norte y Cesar, H. Garcı́a-Barriga & R. Jaramillo M. 19737, COL. VENEZUELA: Edo. Mérida, Páramo de Pozo Negro, J. Steyermark 56285, F; Edo. Mérida, Hornung, C., Tirado, C. & Quevedo, J., 205, MERC; Edo. Mérida, Hornung, C., Tirado, C. & Quevedo, J., 204, MERC; Edo. Trujillo, L. Aristeguieta 3538, US. COLOMBIA: Nariño-Putumayo, Páramo del Bordoncillo, A. Muñoz, N. Bernardo, L. Peñafiel & Javier C. 34, COL; Comisarı́a del Putumayo: alta cuenca del rı́o Putumayo, J. Cuatrecasas 11737, F. PERU: Dpto. La Libertad, P. Hutchinson, J. K. Wright & R. Straw 6146, F. PERU: Jalca, between Yanayacu and Pomacocha, Wudarck 1066, US; USM. ARGENTINA: Salta, Santa Victoria, Reynaga s.n. VII/1940, US. References Benzing D. H. (2000) Bromeliaceae profile of an adaptive radiation. Cambridge University Press, Cambridge. Bond W. J., Midgley J. J. (1988) Allometry and sexual differences in leaf size. Amer. Naturalist 131: 901–910. Brookstein F. L. (1991) Morphometric tools for landmark data. Cambridge University Press, New York, USA. Chaparro H. A. (2002) Efecto de la predación de inflorescencias de Puya trianae por moscas (Phoridae) sobre la producción de frutos en el parque nacional natural Chingaza (Cundinamarca, Colombia). Resumen. VII Congreso Latinoamericano de Botánica. Cartagena de Indias, Colombia. Delph L. F. (1994) Flower size dimorphism in plants with unisexual flowers. In: Lloyd D. G., Barrett S. C. H. (eds.) Floral biology: Studies on floral evolution in animal-pollinated plants. Chapman and Hall, New York, USA, pp. 217–237. Donnelly S. E., Lortie C. J., Aarssen L. W. (1998) Pollination in Verbascum thapsus (Scrophulariaceae): The advantage of being tall. Amer. J. Bot. 85: 1618–1625. Elle E., Carney R. (2003) Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae). Amer. J. Bot. 90: 888–896. Faegri K., van der Pijl L. (1971) The principles of pollination ecology. Pergamon Press, Oxford, UK. Foster M. B. (1950) Puya, the pineapple’s Andean ancestor. Natl. Geogr. Mag. 48: 463–480. Givnish T. J., Sytsma K. L., Smith J. F., Hahn W. J., Benzing D. H., Burkhardt E. M. (1997) Molecular evolution and adaptive radiation in Brocchinia (Bromeliaceae: Pitcairnioideae) atop tepuis of the Guayana shield. In: Givnish T. J., Systma K. J. (eds.) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, pp. 259–311. Grant V., Grant K. A. (1965) Flower pollination in the Phlox family. Columbia University Press, New York, USA. Hair J. F., Anderson R. E., Tatham R. L., Black W. C. (1998) Multivariate data analysis. Upper Saddle River, NJ: Prentice Hall, USA. Harris P. (1985) Testing for variance homogeneity of correlated variables. Biometrika 72: 103–107. Hedberg O. (1969) Evolution and speciation in a tropical high mountain flora. Biol. J. Linn. Soc. 1: 135–148. Hedberg O. (1970) Evolution of the afroalpine flora. Biotropica 2: 16–23. Henderson A. J. (2002) Phenetic and phylogenetic analyses Reinhardtia (Palmae). Amer. J. Bot. 89: 1491–1503. Herrera C. (1996) Floral traits and plant adaptations to insect pollinators: a devil’s advocate approach. In: Lloyd D. G., Barrett S. C. H. (eds.) Floral biology: studies of floral evolution in animal-pollinated plants. Chapman and Hall, New York, pp. 65–87. 52 Hingston A. B., McQuillan P. B. (2000) Are pollination syndromes useful predictors of floral visitors in Tasmania? Austral. Ecology 25: 600 – 609. Hoaglin D. C., Mosteller F., Tukey J. W. (1993) Understanding robust and exploratory data analysis. John Wiley & Sons, New York, USA. Hornung-Leoni C., Sosa V. (2004) Uses of the giant bromeliad, Puya raimondii. Journal Bromeliad Society 54: 3–8. Jackson J. E. (1991) A user’s guide to principal components. Wiley-Interscience, New York, USA. Jolicoeur P., Mosimann J. E. (1960) Size and shape variation in the painted turtle, a principal component analysis. Growth 24: 339–354. Kang H., Primack R. B. (1999) Evolutionary change in seed size among some legume species: the effects of phylogeny. Pl. Syst. Evol. 219: 151– 164. Kessler M. (2002) Environmental patterns and ecological correlates of range size among bromeliad communities of Andean forests in Bolivia. Bot. Rev. 68: 100–127. Klinbenberg C. P. (1996) Multivariate allometry. In: Marcus L. F., Corti M., Loy A., Naylor G. J. P., Slice D. E. (eds.) Advances in morphometrics. Plenum Press, New York, USA. Klingenberg C. P., Zimmermann M. (1992) Static, ontogenetic, and evolutionary allometry: A multivariate comparison in nine species of water striders. Amer. Naturalist 140: 601–620. Mabberley D. J. (1972) Evolution in the giant groundsels. Kew Bull. 28: 61–69. Maitre D. C., Midgley J. J. (1991) Allometric relationship between leaf and inflorescence mass in the genus Protea (Proteceaea): An analysis of the exceptions to the rule. Funct. Ecol. 5: 476–484. Metcalf J. C., Rose K. E., Rees M. (2003) Evolutionary demography of monocarpic perennials. Trends Ecol. Evol. 18: 480. Midgley J., Bond W. (1989) Leaf size and inflorescence size may be allometrically related traits. Oecologia 78: 427–429. Miller G. A., Selander J. A. (1991) Control of the distribution of giant rosette species of Puya (Bromeliaceae) in the ecuadorian páramos. Biotropica 23: 124–133. Monasterio M. (1980) Las formaciones vegetales de los páramos de Venezuela. In: Monasterio M. (ed.) Estudios ecológicos en los páramos andinos. C. Hornung-Leoni and V. Sosa: Allometry in Puya Editorial Universidad de Los Andes, Mérida, Venezuela. Niklas K. J. (1994) Plant allometry: The scaling of forms and process. University of Chicago Press, USA. Ornduff R. (1969) Reproductive biology in relation to systematics. Taxon 18: 121–123. Ortiz-Crespo F. I. (1973) Field studies in pollination of plants of the genus Puya. J. Brom. Soc. 23: 3–7, 54–58. Primack R. B. (1987) Relationships among flowers, fruits, and seeds. Annual Rev. Ecol. Syst. 18: 409–430. Reyment R., Jöreskog K. C. (1993) Applied factor analysis in the natural sciences. Cambridge University Press, New York, USA. Rivera C. A. (1985) Puya raimondii Harms. Boletı́n Lima 7: 85–91. Robertson A. W., Macnair M. R. (1995) The effects of floral display size on pollinator service to individual flowers of Myosotis and Mimulus. Oikos 72: 106–114. Scogin R. (1988) Floral anthocyanidins of birdvisited flowers. Bot. Gaz. 149: 437–442. Shea B. T. (1985) Bivariate and multivariate growth allometry: statistical and biological considerations. J. Zool. 206: 367–390. Smith L. B., Downs R. W. (1974) Pitcairnioideae (Bromeliaceae) Fl. Neotrop. Monogr. 14: 1–658. USA. SPSS Inc. (1999) SigmaScan Pro. V. 5. 0. USA. Statsoft Inc. (2000) STATISTICA. Tulsa, Oklahoma, USA. Strauss R. D. (1985) Evolutionary allometry and variation in body form in the South American catfish genus Corydoras (Callichthyidae). Syst. Zool. 34: 381–396. Sundberg P. (1989) Shape and size-constrained principal component analysis. Syst. Zool. 38: 166–168. Thompson K., Rabinowitz D. (1989) Do big plants have big seeds. Amer. Naturalist 133: 722–728. Varadarajan G. S., Brown G. K. (1988) Morphological variation of some floral features of the subfamily Pitcairnioideae (Bromeliaceae) and their significance in pollination biology. Bot. Gaz. 149: 82–91. Waser M. L. (1983) The adaptive nature of floral traits: ideas and evidence. In: Real L. (ed.) Pollination biology. Academic Press, Orlando, USA, pp. 245–285. C. Hornung-Leoni and V. Sosa: Allometry in Puya White P. S. (1983) Corner’s rules in eastern deciduous trees: allometry and its implications for the adaptive architecture of trees. Bull. Torrey Bot. Club 110: 203–212. Wilson M. F., Price P. W. (1977) The evolution on inflorescence size in Asclepias (Ascelapiadaceae). Evolution 31: 495–511. 53 Address of the author’s: C. Hornung-Leoni (e-mail: hornung@ecologia.edu.mx), V. Sosa (e-mail: victoria@ecologia.edu.mx), Instituto de Ecologı́a, A.C., Apartado Postal 63, 91000 Xalapa, Veracruz, Mexico.