Academia.eduAcademia.edu
Acta Palaeobotanica 47(2): 391–418, 2007 The integrated plant record (IPR) to reconstruct Neogene vegetation: the IPR-vegetation analysis JOHANNA KOVAR-EDER 1 and ZLATKO KVAČEK 2 with contributions by Henriette JECHOREK, Dieter Hans MAI, Valentin PARASHIV, Leon STUCHLIK and Harald WALTHER 1 Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, D-70191 Stuttgart, Germany; e-mail: eder.smns@naturkundemuseum-bw.de 2 Charles University, Faculty of Science, Albertov 6, CZ-12843 Praha 2, Czech Republik; e-mail: kvacek@natur.cuni.cz Received 4 July 2007; accepted for publication 27 September 2007 ABSTRACT. A recently developed semi-quantitative methodology for assessing Neogene zonal vegetation evolution is applied to 19 Miocene/Pliocene plant localities/levels with at least two different organ assemblages. The results obtained from the different organ assemblages at each site are compared in order to test the validity of the applied method. The zonal vegetation formations derived from the foliage and fruit record coincide in all sites analysed. Pollen assemblages tend to point towards more intermediate (warmer and/or more humid) conditions than the leaf and fruit records. Discrepancies underline the necessity of jointly evaluating all available plant records at one site in order to obtain a balanced reconstruction of vegetation formations. On that basis the palaeoclimatic signals derived from the zonal vegetation formations allow the climatic trends and gradients during the Neogene to be followed all over Europe. KEY WORDS: foliage, fruits, pollen, semi-quantitative method, vegetation reconstruction, IPR-vegetation analysis, Neogene INTRODUCTION Today, global terrestrial biomes are defined based on major vegetation features. Applying the actualistic principle, similar interrelations may be expected for terrestrial environments during the Cenozoic. The Western Eurasian Neogene plant record is by far the richest worldwide. Moreover, the stratigraphic resolution in this part of the world has been the subject of intensive research for many decades, and the dating and correlations of the basin fills (including the plant-bearing sediments) are therefore more precise than elsewhere. This situation clearly provides an optimal opportunity to evaluate the fossil plant record in terms of vegetation and its evolution in space and time. Contrary to the traditional methods applied in modern geobotany, the palaeobotanical approach is often limited by widely separated fossil plant sites. This is because plant-bearing sediments are restricted to depositional environments. The working group on vegetation history and climate reconstruction of the EEDEN (Environments and Ecosystem Dynamics of the Eurasian Neogene) programme (2000–2005) of the European Science Foundation put intensive effort into developing a suitable method to jointly evaluate the fruit, leaf, and pollen record in terms of vegetation. The ultimate goal is to map the zonal vegetation, i.e. the vegetation of the hinterland across Europe during particular Neogene time intervals. We focused on zonal 392 Table 1. Localities/levels, numbers assigned to the individual organ assemblages derived from the database PANFLEURAS (Paleogene/Neogene floras of Eurasia), stratigraphic position, type of organ assemblage (F – fruits, L – leaves, P – pollen), and references. Numbers correspond with those in Figure 1 (boldface) and Table 3 No. Locality Country Age/stratigraphy Biozone Organ References Late early Miocene/early middle Miocene 154 Weingraben Austria Mid. Badenian Sandschaler-Zone L 986 Weingraben Austria Mid. Badenian Sandschaler-Zone F 786 Weingraben 342 Randeck Maar 433 Randeck Maar Austria Germany Germany Mid. Badenian late Orleanian late Orleanian Sandschaler-Zone MN 5 MN 5 P F, L F 822 Randeck Maar 535 Teiritzberg near Korneuburg 788 Teiritzberg near Korneuburg 685 Lipnica Mała Germany Austria late Orleanian Karpatian MN 5 MN 5 P F Jechorek & Kovar-Eder 2004b Jechorek & Kovar-Eder 2004b Draxler & Zetter 1991 Rüffle 1963 Gregor 1982; Günther & Gregor 1998 Kottik 2002 Meller 1998 Austria Karpatian MN 5 P Hofmann et al. 2002 Poland F Lesiak 1994 976 Lipnica Mała Poland P Oszast & Stuchlik 1977 793 Děvinska Nová Ves Slovak Rep. Karpatian, Badenian Karpatian, Badenian late Badenian L Berger 1951 977 Děvinska Nová Ves Slovak Rep. late Badenian P 917 Berzdorf, Oberlausitz 948 Berzdorf, Oberlausitz 918 Berzdorf, Oberlausitz Germany Germany Germany early Miocene early Miocene early Miocene F L F Sitar & Kovačová-Slamková 1999 Czaja 2003 Jechorek in prep. Czaja 2003 951 Berzdorf, Oberlausitz Germany early Miocene L Jechorek in prep. L Stuchlik et al. 1990, Lesiak 1998 Worobiec 1998, Lesiak 1998, Worobie & Lesiak 1998 Worobiec 2003 Worobiec 2003 Knobloch 1986 Gregor 1982 Kovar-Eder 1988 Kovar-Eder 1988 Kovar-Eder 1988 Kovar-Eder & Wójcicki 2001 Knobloch 1988 Gregor 1982 Van Stroe 1996, Schäfer et al. 2004 Ashraf & Mosbrugger 1996, Schäfer et al. 2004 Belz & Mosbrugger 1994, Schäfer et al. 2004 Bolivino-Bulimina Foraminifera zone Wiesa floral complex Wiesa floral complex Kleinleipisch floral complex Kleinleipisch floral complex Early late Miocene 108 Bełchatów Poland late Miocene 857 Bełhatów Poland late mid.- early late Miocene F Poland Poland Germany Germany Austria Austria Austria Austira Pannonian Pannonian Miocene Miocene Pannonian Pannonian Pannonian Pannonian L P F, L F L L P L 344 Aubenham 824 Aubenham 803 Hambach Germany Germany Germany Miocene Miocene Tortonian MN 8, MN 9 MN 8, MN 9 Inden Fmt. 7B L F L 971 Hambach, core SNQ1 Germany Tortonian Inden Fmt 7B P 796 Hambach Germany Tortonian Inden Fmt. 7F L 975 Hambach, core SNQ1 Germany Tortonian Inden Fmt 7F P 807 Vilella, La Cerdanya 808 Vilella, La Cerdanya 828 Mataschen near Fehring Spain Spain Austria Vallesian Vallesian Pannonian B L P L 854 856 132 823 2 5 160 801 Bełchatów Bełchatów Achldorf near Vilsbiburg Achldorf near Vilsbiburg Großenreith Lohnsburg Lohnsburg Hinterschlagen above fauna of MN 8/9 MN 8, MN 9 MN 8, MN 9 Ashraf & Mosbrugger 1996, Schäfer et al. 2004 Barron 1999 Barron 1999 Kovar-Eder 2004, KovarEder & Hably 2006 393 Table 1. Continued No. Locality Country Age/stratigraphy Biozone Organ References 931 932 840 841 Mataschen near Fehring Mataschen near Fehring Brjánslaekur Brjánslaekur Austria Austria Iceland Iceland Pannonian Pannonian Miocene Miocene B B 12 m.a. 12 m.a. P F L P Meller & Hofmann 2004 Meller & Hofmann 2004 Denk et al. 2005 Kvaček et al. 2005, Denk et al. 2005 64 844 864 101 Ruszów Ruszów Ruszów Sośnica Poland Poland Poland Poland late late late late Miocene Miocene Miocene Miocene L F P L 107 Sośnica Poland late Miocene F 873 Sośnica Poland late Miocene P Hummel 1983, 1991 Dyjor et al. 1998 Dyjor et al. 1998 Göppert 1855, Walther & Zastawniak 1991, Zastawniak & Walther 1998, Collinson et al. 2001 Göppert 1855; Walther & Zastawniak 1991 Stachurska et al. 1973 Latest Miocene/early Pliocene      108  917              Fig. 1. Location of the plant sites. Numbers correspond with those in bold in Tables 1 and 3 vegetation because it most precisely reflects the macro-climatic conditions of particular regions (Kovar-Eder & Kvaček 2003, Jechorek & Kovar-Eder 2004a, Kovar-Eder et al. 2006, 2008, Kvaček et al. 2006). In this paper, we focus on plant sites/levels yielding at least two different organ assemblages, i.e. foliage and fruit, foliage and pollen, fruit and pollen, or foliage, fruit and pollen assemblages, to test the validity of the recently developed method (Fig. 1, Tab. 1). METHODOLOGY Geobotanical maps of potential modern vegetation (i.e. vegetation maps excluding human impact) arise from a mosaic of vegetation samples, i.e. relevées, between which the vegetation types are developed. Differences in scale, methodology and vegetation nomenclature cause a heterogeneous layout of vegetation maps. Thus, the detailed geobotanical maps based on the syntaxonomic units 394 of the Braun-Blanquet school (e.g. Oberdorfer & Lang 1957, Ellenberg 1978) look quite different from maps based on physiognomic features of forest vegetation by Wolfe (1979), who considered only zonal humid and mesic forest vegetation in East Asia. They also differ from that of the East Himalayas vegetation elaborated by Schweinfurth (1957), who also included xeric extrazonal uplands. Recently, the Plant Functional Type approach has been developed to classify plant communities with respect to the function (or adaptation) of the component species (Smith et al. 1997). In all these cases the vegetation types are very differently characterized and named. None of these methods can be applied directly to the fossil record, but there is a strong demand to map the vegetation of ancient times. Traditional methods fail to use the information potential of the complete fossil plant record (Fauquette et al. 1999). Every fossil plant assemblage is the basis of a single relevée (sensu Braun-Blanquet). In any case, we are dealing with only an incomplete documentation of ancient vegetation biased by different phenomena, e.g. taphonomic factors or different quantities of plant organ production (compare Kovar-Eder et al. 2008). To minimize the effects of different fossilization potentials (e.g. herbs largely lacking in the leaf record; Lauraceae or Acer almost absent in the pollen record), it is essential to include all available organ assemblages. A combined evaluation method for different organ assemblages (foliage, fruits and seeds, pollen and spores) will certainly yield the most complete picture of the ancient vegetation. Following this argumentation, the authors put a strong effort into collecting balanced records of the different organ assemblages. A higher number of fruit floras, however, would better balance the representation of the different organ assemblages. The taxonomic resolution of pollen and spore taxa is usually lower than in the leaf and fruit record, and often does not even reach the generic level. Recent efforts have been made to transfer the traditional sporomorph species from the morphological to the botanical system (Ziembińska-Tworzydło et al. 1994 a, b, Stuchlik et al. 2002). Quantitative analyses of megafossils are often misleading, calling for a greater reliance on the diversity versus the abundance of the elements. Birks (1973) evaluated the spec- tra of fruit and seed mesofossils obtained by sieving of Minnesota Recent and Quaternary sediments of small lakes in three different vegetation settings: prairie, deciduous forest and coniferous forest. The sub-recent spectra he obtained corresponded well with the vegetation from the surroundings, although the abundance or even presence of aquatic, wetland herbs and woody elements was biased by transport and seed production. Spicer and Wolfe (1987) compared the sieved assemblages from high- versus low-energy stream sediments. They arrived at similar results: the floral spectra are well reflected, but the elements are certainly not quantitatively represented. In contrast, quantitative or semi-quantitative spectra are typically used in pollen analysis. A wealth of actuopalynological studies are available. Kvavadze and Stuchlik (1990) followed the representation of the NAP and AP (non-arboreal and arboreal pollen) in various modern landscapes in Georgia. They found discrepancies in the representation of arboreal elements due to pollen overproduction, the susceptibility for wind dispersal and fossilisation potential. They documented high NAP values (>40%) in steppe regions and long-distance dispersal of certain arboreal elements, namely Pinaceae, Alnus and Corylus from closed forest or mountain environments. In the fossil record, such highly allochthonous elements are particularly frequent in marine facies. Despite quantitative palynological investigations to reconstruct ancient vegetation, the method we pursue below relies solely on the qualitative evaluation of the floristic spectra in the different organ assemblages. The main argument for the purely qualitative versus quantitative analysis is the necessity of obtaining reasonably comparable pictures among the different organ assemblages. To be included in the evaluation described below, the individual organ assemblages should meet the following requirements: They should include less than 33% problematic taxa and at least ten zonal taxa (Kovar-Eder & Kvaček 2003, Jechorek & Kovar-Eder 2004a). A basically taxonomic/physiognomic grouping, reflecting also essential ecological features, was introduced by Kovar-Eder and Kvaček (2003). As we intended to include foliage, fruit, and pollen to evaluate the fossil record for vegetation reconstruction, this 395 scheme should also enable reasonably objective comparability between the different organ assemblages. The components have been described in detail in Kovar-Eder and Kvaček (2003), Jechorek and Kovar-Eder (2004a), and KovarEder et al. (2008), and are therefore merely listed here: zonal components: CONIFER (zonal and extrazonal conifers), BLD (broadleaved deciduous woody angiosperms), BLE (broad-leaved evergreen woody angiosperms), SCL (sclerophyllous woody angiosperms), LEG (legume-type woody angiosperms), PALM (zonal palms); the ZONAL HERB component is split into herbs characteristic of mesophytic forest undergrowth (MESO HERB component) and of open woodland and grassland (DRY HERB component). Azonal components are: AZONAL WOODY (including all azonal trees and shrubs), AZONAL HERB (wetland herbs, including azonal ferns), and the AQUATIC component. The FERN component (including zonal and extrazonal ferns) is distinguished but not further evaluated here. The taxa of every single assemblage (but not their abundances) are assigned to the established groups. This is followed by a quantitative evaluation of the fossil associations. Proportions relevant to decipher zonal vegetation formations are calculated: The proportion of the BLD, BLE, and SCL+LEG components, of zonal woody angiosperms (i.e. of the BLD+BLE+SCL+LEG+PALM components) and the proportion of the ZONAL HERB component of all zonal taxa (i.e. of the CONIF+B LD+BLE+SCL+LEG+PALM+ZONAL HERB components) are calculated (Kovar-Eder et al. 2008). The assignment to the vegetation units described below is based on the respective proportions. At sites/levels with different organ assemblages treated in this paper, the mean values were calculated for each component from all available organ assemblages. This yielded the final determination of vegetation unit. VEGETATION FORMATIONS A summary of vegetation types for Neogene forests and aquatic communities has been introduced by Mai (1981, 1985, 1995). It is extremely detailed, but hard to apply on a more general scale across Europe. Moreover, it is based on the nearest extant models, but the vegetation types are not clearly defined. N a t u r a l v e g e t a t i o n is in equilibrium with climatic and edaphic factors. It includes zonal (=climax), extrazonal, and azonal (=intrazonal) vegetation formations. Due to human impact, natural vegetation does not exist over large regions today. It is usually reconstructed and then termed potential natural vegetation. Z o n a l v e g e t a t i o n: Large-scale vegetation developing under mesic soil conditions (no extremes). It is more distinctly influenced by climatic than by edaphic factors. E x t r a z o n a l v e g e t a t i o n: Due to more extreme climatic conditions at the geographic limits of their natural distribution area, vegetation formations may change their habitat (e.g. from low to higher elevation). One example: moving further south, temperate broad-leaved deciduous forest are restricted to increasingly higher altitudes in their natural distribution area on the northern hemisphere. There, they constitute the extrazonal vegetation where the zonal vegetation (at lower altitudes) is largely broad-leaved evergreen. A z o n a l v e g e t a t i o n: The development of plant communities is more strongly influenced by edaphic factors than by climate (e.g. wetland, alluvial vegetation, mangroves). Previous models of vegetation units were intuitively coined based on a fossil plant assemblage. Our newly developed system for the European Neogene, however, proposes objective definitions of vegetation units based on diversity percentages of BLD, BLE, SCL+LEG components of zonal woody angiosperm taxa for forest formations; for assessing open landscape it proposes using NAP (non-arboreal pollen) versus AP (arboreal pollen) diversity percentages of all zonal taxa (Kovar-Eder et al. 2008). The current calculations of the zonal woody components exclude the CONIFER component. The argument is that in the pollen record the CONIFER component includes high proportions of extrazonal taxa (high mountain conifers such as Picea, Abies, Tsuga). This hampers the comparison with the CONIFER component in the leaf and fruit records. For humid zonal forest formations the following types have been defined (Tab. 2): – zonal temperate to warm-temperate 396 Table 2. System and characteristics of the zonal vegetation units. Vegetation formation Broad-leaved deciduous forests Mixed mesophytic forests Broad-leaved evergreen forests Sub-humid sclerophyllous forests Open woodlands Percentage of the BLD component of zonal woody angiosperm taxa Percentage of the BLE component of zonal woody angiosperm taxa Percentage of the SCL+LEG components of zonal woody angiosperm taxa Percentage of the ZONAL HERB (DRY + MESO HERB) component of zonal angiosperm taxa ≥ 80% < 80% mostly ≤ 30% < 30% < 20% < 30% ≥30% (SCL+LEG)<BLE < 25% ≥ 20% < 30% mostly < 30% Xeric grasslands / steppe broad-leaved deciduous forest (broad-leaved deciduous forest); – zonal warm-temperate to subtropical mixed mesophytic forest (mixed mesophytic forest); – zonal subtropical broad-leaved evergreen forest (broad-leaved evergreen forest); For subtropical sub-humid to xeric zonal formations we distinguished (Tab. 2): – zonal subtropical subhumid sclerophyllous, microphyllous forest (subhumid sclerophyllous forest); – zonal xeric open woodland (open woodlands); – zonal xeric grassland / steppe (xeric grassland/steppe). Modern vegetation is characterized by transitions (ecotones) between the major vegetation types. Consequently, the limits between the different vegetation units in the fossil record are also less sharp than indicated by our mechanistic splitting. We have introduced the above-described 6 zonal vegetation units for practical reasons. Finally, note that the azonal vegetation units are currently omitted. Azonal vegetation will be in the focus of future studies. AUTECOLOGICAL ASSIGNMENT OF THE FOSSIL PLANT ELEMENTS (APPENDICES 1–7) As stated above, the classification of fossil vegetation formations is based on growth form, physiognomy, and ecological requirements of the individual taxa (Kovar-Eder & Kvaček 2003, Jechorek & Kovar-Eder 2004a, KovarEder et al. 2008). Autecology (i.e. ecological properties of individual taxa) can be inferred ≥20% 30–40%, MESO HERB max. 10% of ZONAL HERB above DRY HERB ≥40% in several ways for Neogene plants. Some characters may be unambiguously derived from nearest living relatives, but other properties or even rough estimates of ecological tolerance for fossil plant taxa (precise temperature regime, seasonality, soil quality, etc.) may be equivocal. To avoid crucial mistakes, various parameters are taken into account in assigning the respective plant taxon to the components (autecological groups) employed in our classification. GROWTH FORM Properties of the nearest living relative are assumed to provide reliable information on growth form: no fossil alder is herbaceous, nor is a fossil Salvinia a xerophyte. In some cases, however, a genus (e.g. Hypericum) or a family (e.g. Scrophulariaceae) may today include representatives with different growth forms, both woody and herbaceous. The same may apply for differentiating zonal versus azonal, or evergreen versus deciduous plants. Our system therefore assigns ambiguous taxa to more than one component by splitting the value 1 for a respective taxon (e.g. 0.5/0.5, or 0.25/0.5/ 0.25). The assigned proportions are attributed according to our experience in the fossil record and to modern botany. HABITAT Palaeobotanical research has revealed examples where living relatives may have changed their autecology compared to their fossil ancestors (Kvaček 2005). All available evidence must be considered in determining the correct autecology of the fossil plant ele- 397 ments. The sedimentary setting may provide information about the preferred environment of fossil plants. For instance, occurrences in lignite facies are typical of swampy environments. Accordingly, the fossil representative of Craigia most probably tolerated or even preferred these environments, because flowers, pollen, fruits, and foliage often co-occur in lignite clays or even in coal (Kvaček 2005). Hence, in the European Neogene, Craigia must have belonged at least partly to azonal plants, although today this relict is a typical upland tree (Kvaček et al. 2006). Cercidiphyllum crenatum most probably changed its autecology during the Miocene because, in early Miocene deposits, it is abundant in swampy/fluviatile environments (leaves, fruits, brachyblasts; e.g. Oberdorf, Kovar-Eder et al. 1998). For late Miocene occurrences of C. crenatum, riparian habitats are more typical, as for C. japonicum today. The autecology of fossil elements lacking a direct living relative can be inferred in a similar manner. An extinct conifer, Quasisequoia couttsiae, which regularly co-occurs with Glyptostrobus in coaly deposits, was therefore certainly also an azonal swamp element (Kunzmann 1999). Early occurrences of Byttneriophyllum tiliifolium are restricted to single specimens at different sites in fluviatile environments (e.g. Turów, Czeczott & Skirgiełło 1967). Starting from the Sarmatian and mainly in the late Miocene, it typically occurred in great numbers, often as a monodominant element in assemblages with low species diversity deriving from clay and lignitic facies in the realm of Lake Pannon (Knobloch & Kvaček 1965, Givulescu 1992, Hably & Kovar-Eder 1996). The assignment of single species to particular components therefore varies in this analysis, depending on different taphonomic parameters and age. Autecology, was often inferred based on the floral element (see Mai 1991), for example the Arctotertiary, i.e. deciduous, or the Palaeotropical, generally evergreen. This criterion is the least reliable and often derived from the associated assemblage, hence representing circular argumentation. Nonetheless, such estimates relying on the repeated co-occurrences of specific taxa are often the only way (besides taphonomy and the sedimentological context) to verify the judgment on autecology. In Cedrelospermum, an extinct Ulmaceae, mass occurrence in sub-humid assemblages (high percentages of the SCL and LEG components) supports our judgment to classify this element partly in the SCL and BLD components. Its foliage is tiny, with dense venation, but its texture is not coriaceous. The same applies to other sub-humid plants such as Ziziphus ziziphoides, which is assigned to the SCL component. The views vary among palaeobotanists and palynologists as to the role of particular elements in ancient vegetation, with individual experience and attitude playing a role. PHYSIOGNOMY The physiognomic properties of foliage, such as coriaceous texture and thick cuticle, may help to decipher whether the element was evergreen, sclerophyllous or deciduous, even in plants with dubious affinities (Dicotylophyllum spp.). Cuticle thickness, of course, may be misleading. It is very thin in sclerophyllous oaks because the epidermal-hypodermal tissue is festooned by cellulose sclerenchyma with a thin cuticle cover (Kvaček et al. 2002). On the other hand, thick cuticles of Ginkgo or Platanus neptuni do not mean that these plants were evergreen. The opposite is true judging from the living relative of Ginkgo and, in the case of Platanus neptuni, from the buds covered by the base of the petiole (Kvaček & Manchester 2004). The overall size and shape, leaf margin, and venation density of a leaf fossil indicate whether the plant belongs to the LEG or SCL component. One and the same taxon may have been attributed differently. A case in point is Magnolia sp.. In the leaf record it may be evergreen or deciduous depending on the leaf texture; this type of information is not available from the fruit and pollen records, and the value 1 for Magnolia sp. will be split into different components in the percentage calculations. The physiognomy of fruits/seeds and pollen/ spores provides less straightforward information, independent of the systematic position of the mother plant. Compared to the leaf and fruit/seed record, the taxonomic resolution of pollen/spores is lower. Therefore, the whole plant approach should be employed whenever palaeobotanical/palynological evidence is available. Joint research has always yielded positive results. A whole plant of Podocarpium podocarpum and Tricolporopollenites wackersdorfensis presents a good example (Liu et al. 2001). Both the examination of pollen in 398 situ and more detailed SEM studies of various types of dispersed pollen made profound contributions (e.g. Zetter 1998, Zetter & Ferguson 2002). Palynologists are still in the early phase of such efforts, and many sporomorphs are difficult to evaluate with respect to the taxonomic affinity and autecology of their mother plants (Ziembińska-Tworzydło et al. 1994a, b, Stuchlik et al. 2002). AMBIGUOUS TAXA Many poorly understood enigmatic sporomorphs as well as macrofossils cannot be presently classified and have been excluded from our analyses. Unreliably documented taxa have also been excluded and are summarized under “counted but excluded” (Tab. 3). This is essential because we restrict our analyses to floras with less than one third ambiguous taxa. In some cases the number of ambiguous taxa in single floras were reduced by inspection and revision of the original material/palynological slides. The CONIFER and FERN components partly encompass extrazonal plants due to long-distance transport, e.g. high-mountain Pinaceae such as Tsuga, Cedrus etc.. They have often been used to reconstruct the landscape relief (e.g. Kvaček et al. 2006). The CONIFER component has been used only in calculating the ZONAL HERB component (Kovar-Eder et al. 2008). Another problem in evaluating palynospectra involves alloting precise numbers (diversity) and autecology of NAP, such as for the Asteraceae or Chenopodiaceae, i.e. taxa with low taxonomic resolution. This approach usually underestimates the diversity percentages of herbaceous plants. Parallel, routine, quantitative percentage estimates of AP vs. NAP may offer corrections. In this regard, actuopalynological studies determining shifting AP/NAP proportions in various landscape types (forest vs. open vegetation) are very important (Kvavadze & Stuchlik 1990, 1993, Stuchlik & Kvavadze 1987, 1993, 1995). Appendices 1–7 compile lists for foliage, fruit, and pollen taxa documented at the localities analysed in this paper along with the autecological values we have elaborated. This transparency is crucial for scientific rigor: the reproducibility of our results is a premise for broad acceptance by the scientific community. Moreover, our method can easily be applied to any other Cenozoic flora. The complete lists for all sites evaluated in our previous papers (Kovar-Eder et al. 2006, Jechorek & Kovar-Eder 2004a, Kovar-Eder et al. 2008) are already much longer, and the taxon lists will continue to grow as progress is made in evaluating the Neogene and Palaeogene plant record. Future progress in taxonomy and systematic affinities will certainly improve our assignments. These lists do not include taxa of unknown systematic affinity (e.g. Dicotylophyllum). However, such taxa have been included in the evaluation if they could be assigned to a particular component based on their leaf physiognomy. Non-vascular plants such as algae, bryophytes, and semiparasitic taxa (Loranthaceae) are excluded. DATA In Kovar-Eder et al. (2008) we evaluated 198 plant organ assemblages (foliage, fruit, pollen) from 173 Miocene sites/levels. Priority in selecting the sites/levels was given to reasonable dating, preferably by means other than mere palaeobotanical ones. In this paper, we focus exclusively on plant sites that yielded more than one thoroughly investigated organ assemblage, i.e. either leaves and fruits, or leaves and pollen, fruits and pollen, or leaves, fruits, and pollen (Fig. 1, Tabs 1, 3). These sites deserve special attention because they offer an opportunity to validate our method: the better the analyses of the individual organ assemblages of one site match (i.e. coinciding assignment to the vegetation formations), the greater the validity of our approach. Such a comparison may also reveal incomplete, taphonomically biased floristic spectra of one or another organ assemblage if great discrepancies occur in one site. Nineteen sites/levels that meet the abovedescribed requirements were available. Six of them derive from the late early Miocene/early middle Miocene, one from the late Badenian (middle Miocene), ten from the early late Miocene, and two from the latest Miocene/early Pliocene. From five sites/levels, all three types of organ assemblages are available. Fourteen sites/levels yielded two different organ assemblages. In sum, 17 foliage-, 12 fruit-, and 14 pollen assemblages were evaluated and compared (Tabs 1, 3). If a leaf assemblage includes fruit taxa, but their number is below the threshold of 10 zonal 399 taxa, the fruit taxa were generally included in the leaf assemblage to prevent loss of available information. For this study we made one exception: the fruit taxa for Weingraben, Teiritzberg, and Bełchatów below GTPN unconformity (for explanation see Worobiec 2003) – containing only 8 zonal taxa each – were evaluated separately. This better balanced the representation of the fruit record. The numbers of the organ assemblages in Figure 1 and Tables 1, 3 are derived from the database PANFLEURAS – Paleogene/Neogene floras of Eurasia, used in all our vegetation studies. Inden Formation 7 F indicated broad-leaved deciduous forest, but the pollen pointed to broad-leaved evergreen forest. Only at Vilella (Spain) and Brjánslaekur (Iceland) did the pollen record indicate subhumid sclerophyllous forest. In the former case, the leaf record pointed to mixed mesophytic forest. A major discrepancy was evident between the leaf and pollen records in Brjánslaekur: leaves indicated broad-leaved deciduous forest (Denk et al. 2005), pollen subhumid sclerophyllous forest. DISCUSSION RESULTS Of the 19 investigated sites/levels, 9 yielded both fruit and leaf assemblages. All of them (Weingraben, Randeck Maar, Berzdorf-Wiesa, Berzdorf-Kleinleipisch, Bełchatów below GTPN unconformity, Achldorf, Aubenham, Mataschen, Ruszów and Sośnica) provided a consistent assignment to the defined vegetation units (Tab. 3). Leaf and pollen assemblages were evaluated from 11 sites/levels. In only two cases (Hausruck/Kobernaussen and Inden Formation 7B) were the results obtained from the leaf and the pollen identical. Comparing fruit and pollen assemblages, our evaluation arrived at the identical vegetation formation in only one of 6 sites (Teiritzberg). The pollen assemblages clearly tended to point towards more intermediate (warmer and/or more humid) conditions than the leaf and fruit records (mixed mesophytic forest, broad-leaved evergreen forest). For example mixed mesophytic forest is deduced from the pollen record, while broad-leaved deciduous forest are inferred from the fruit or leaf record in Lipnica Mała, Bełchatów/KRAM 217, Sośnica, and Ruszów. Another example is mixed mesophytic forest (indicated by pollen) versus broad-leaved evergreen forest (leaf and fruit record) in Mataschen. In Weingraben, leaves and fruits indicated subhumid sclerophyllous forest, whereas pollen pointed to broad-leaved evergreen forest. The pollen record clearly often includes the far-distance influence. Additionally, low taxonomic resolution (to the family or generic level only) yielded less precise discrimination of the autecology in the pollen record (e.g. Berberidaceae, Ligustrum, Lonicera). The leaf assemblage from the Here, we apply the IPR-vegetation analysis only on selected sites/levels containing different organ assemblages; this study therefore includes only few of the available plant sites from the different time intervals (compare Kovar-Eder et al. 2008). Nonetheless, the results reflect representative fragments of evolution in the Neogene European vegetation. The floral record from Weingraben and Randeck Maar indicates subhumid sclerophyllous forest based on the leaf and the fruit record at both sites, while the pollen indicates broadleaved evergreen forest. The joint evaluation of the three organ assemblages at Weingraben and Randeck Maar ultimately yields subhumid sclerophyllous forest as the most probable zonal vegetation unit. This result is consistent with that derived from other sites in this part of Europe that yield only one organ assemblage, e.g. Parschlug (Austria), Eger-Tihamér (Hungary), Derching, Goldern (Germany) all late early to early middle Miocene in age. (Kovar-Eder et al. 2008). In Teiritzberg, the fruit and pollen records indicate mixed mesophytic forest. The leaf record is too poor to be included, yielding few azonal taxa only (Kovar-Eder 1998). The fruit record, which we have included, is composed of more than two thirds azonal taxa; only 8 are zonal (Meller 1998). This may explain the discrepancy with the climate interpretation derived from different organism groups (Harzhauser et al. 2002); they correlated the Teiritzberg ecosystem to the middle Miocene climate optimum, for which broad-leaved evergreen forest or subhumid sclerophyllous forest are more reasonable vegetation formations. Although floristically distinguishable (Czaja 2003), the fruit assemblages from two different 400 levels at Berzdorf are both representative of broad-leaved evergreen forest according to our evaluation. They are characteristic Younger Mastixioid floras that thrived in large parts of Europe during the early and early middle Miocene, and are known as far north as Jutland (Friis 1985). The leaf record of Děvinska Nová Ves (late Badenian) has been re-evaluated during this study after reinvestigating the original collection. In contrast to the results presented in Kovar-Eder et al. (2008), where the leaf record pointed to mixed mesophytic forest as the most probable vegetation unit, we now consider broad-leaved evergreen forest to be most probable. Note that the flora is poorly preserved and the number of taxa is rather low. The assignment to broad-leaved evergreen forest based on the leaf record reflects 30% in the BLE component, precisely the decisive threshold for this assignment. Děvinska Nová Ves is the only locality where the leaf record indicates slightly warmer conditions than the pollen record. The joint evaluation of the leaf and pollen assemblages, however, indicates mixed mesophytic forest as the most suitable vegetation formation; this corresponds with the earlier results (Kovar-Eder et al. 2008). The floras of the early late Miocene and the latest Miocene/early Pliocene included here reflect the general Miocene climatic cooling. This is indicated by the IPR-vegetation analysis, which results in the assignment to mixed mesophytic forest (Achldorf, Inden Formation 7F, Vilella, Bełchatów/KRAM 217, Sośnica) and broad-leaved deciduous forest (Bełchatów below GTPN-unconformity, Hausruck/Kobernaussen, Aubenham, Ruszów). The flora of Mataschen deserves special attention: here, broad-leaved evergreen forest is the most likely vegetation formation (broad-leaved evergreen forest indicated by foliage and fruits, MMF by pollen, joint evaluation broad-leaved evergreen forest). The floristic spectrum and sociological aspects indicate a close relationship to the broad-leaved evergreen forest of SE Asia today. Thus, this flora is unique among the rich late Miocene plant record of Central Europe. Mataschen may offer insight into a climatically favourable niche and/or a favourable climatic fluctuation (Kovar-Eder & Hably 2006). The flora from the Lower Rhine embayment is long known and reflects a climatically favourable refuge. This is documented by a longer persistence of broad-leaved evergreen subtropical taxa than in more continental parts of Europe. The floral record from the Inden Formation is extremely rich but only for the levels Inden 7B and 7F it was possible to correlate different organ assemblages (Tab. 3). These levels, however, document this phenomenon quite well (broad-leaved evergreen forest derived from one leaf and two pollen assemblages). When, however, the leaf record is rather poor and includes a high percentage of azonal taxa (at Inden 7F, 10 of 24 taxa, i.e. almost 50%), then the IPR-vegetation analysis may be less reliable. The result is a “cooler” vegetation unit, in this case broad-leaved deciduous forest. For comparison, in the level Inden 7 B, the relation of zonal/azonal leaf taxa is 18.5/7.5 (71% zonal taxa). The pollen record from the Inden Formations A and CE evaluated in Kovar-Eder et al. (2008) all indicate broad-leaved evergreen forest as most probable vegetation formation; there, the proportion of the BLE component varies between 30 and 37%. It is lowest in Inden Formation C (30%) and highest in level D (37%). The interesting discrepancy between vegetation formations derived from the leaf (broad-leaved deciduous forest) and the pollen (subhumid sclerophyllous forest) assemblages from Brjánslaekur is certainly caused by the incompletely documented pollen assemblage (extremely low diversity of zonal pollen – 14 taxa only) and low taxonomic resolution (Akhmetiev et al. 1978). For the late Miocene of Iceland (today´s latitude 65° N, similar in the Miocene) the zonal vegetation unit subhumid sclerophyllous forest is far from being realistic. Discrepancies have also been recognized when comparing this macro-record with pollen data from deep-sea drillings (Denk et al. 2005, Mudie & Helgason 1983). Special attention should be given to the zonal herb component, which is documented in the fruit and pollen records but never in foliage assemblages. Only in Lipnica Mała and Bełchatów below GTPN unconformity (both fruit assemblages) does the ZONAL HERB component of all zonal taxa exceed 30% (32%). Note also that open woodland or xeric grasslands have not been derived for any of the localities investigated here. This corresponds with all the other Central European localities investigated in Kovar-Eder et al. (2008). Records of xeric grasslands are known 401 only from the Russian Plain, beginning from the early late Miocene. In southern parts of Europe, open woodlands are documented more commonly during the latest Miocene/early Pliocene. The proportions of the BLD, BLE, and SCL+LEG components of zonal woody angiosperms and the proportion of the ZONAL HERB component of all zonal taxa constitute essential parameters to classify vegetation formations (Kovar-Eder et al. 2008). The IPRvegetation analysis demonstrates that these components are fairly comparable among the different organ assemblages. It underlines the better agreement between the leaf and fruit record than between the latter two and the pollen record. Clearly, this new semi-quantitative evaluation based on the integration of the different plant organ records more satisfactorily interprets ancient vegetation than strictly quantitative approaches. CONCLUSIONS A team of experienced specialists in several disciplines is needed to obtain reliable data for vegetation maps of the Cenozoic. The methodology introduced here (the integratedplant-record vegetation analysis – IPR-vegetation analysis) requires a well-determined and rich plant record based on all available plant organ assemblages (foliage, fruits, pollen). Older data should not be neglected, but revised and transferred to the state-of-the-art systems if possible. Both high taxonomic resolution and high diversity of zonal taxa improve the results. These criteria are normally met to different degrees in the different organ assemblages, e.g. higher taxonomic resolution in the leaf and fruit record versus lower one in the pollen record, high diversity in the pollen and fruit record versus lower diversity in the leaf record. The test of the IPR-vegetation analysis at sites/levels with at least two different plant organ assemblages corroborates the validity of this approach. The geographical and stratigraphic distribution of recognized vegetation units provides an opportunity to follow climatic trends and gradients over large parts of Europe. Future research will extend this possibility to other parts of Eurasia. ACKNOWLEDGEMENTS These investigations were carried out within the frame of the EEDEN project (Environments and Ecosystem Dynamics of the Eurasian Neogene) of the European Science Foundation (ESF). The second author received financial support from the Grant Agency of the Czech Republic (GAČR) within the project 205/04/0099. For scientific discussion we are grateful to a great number of specialists interested in palaeoecology. In particular we would like to thank Mikael Akhmetiev, Madleine Böhme, Adele Bertini, Angela Bruch, John Damuth, Thomas Denk, Jussi Eronen, Mikael Fortelius, Lilla Hably, Dimiter Ivanov, Magda Konzalová, Edoardo Martinetto, Volker Mosbrugger, Emanuel Palamarev (†), Gertrud Rössner, Jean-Pierre Suc, Torsten Utescher, and Ewa Zastawniak. REFERENCES ASHRAF A.R. & MOSBRUGGER V. 1996. Palynologie und Palynostratigraphie des Neogens der Niederrheinischen Bucht. Teil 2: Pollen. Palaeontographica, B, 241: 1–98. AKHMETIEV M., BRATSEVA G.M., HITERMAN R.E., GOLUBEVA L.V. & MOISEEVA A.I. 1978. Late Cenozoic stratigraphy and flora of Iceland. Trudy GIN AN SSSR (Transactions Geol. Inst. Acad. Nauk SSSR), 316: 1–188. BARRON E. 1999. Estudio paleobotanico del afloramiento vallesiense (Neogeno) del torrente de Vilella (La Cerdana, Lerida, España). Aspectos tafonomicos y paleoecologicos. Bol. Real Soc. Esp. Hist. Nat. Sec. Geológica, 94(3/4): 41–61. BELZ G. & MOSBRUGGER V. 1994. Systematischpaläoökologische und paläoklimatische Analyse von Blattfloren im Mio-/Pliozän der Niederrheinischen Bucht (NW-Deutschland). Palaeontographica, B, 233: 19–156. BERGER W. 1951. Pflanzenreste aus dem tortonischen Tegel von Theben-Neudorf bei Pressburg. Sitzungsber. Österr. Akad. Wiss. Math.-Naturwiss. Klasse, 1(8) : 273–278. BIRKS H.H. 1973. Modern macrofossil assemblages in lake sediments in Minnesota: 173–189. In: Birks H.J.B. & West R.G. (eds) Quaternary Plant Ecology. Blackwell. COLLINSON M., KVAČEK Z. & ZASTAWNIAK E. 2001. The aquatic plants Salvinia (Salviniales) and Limnobiophyllum (Arales) from the late Miocene flora of Sośnica (Poland). Acta Palaeobot., 41(2): 253–282. CZAJA A. 2003. Paläokarpologische Untersuchungen von Taphozönosen des Unter- und Mittelmiozäns aus dem Braunkohletagebau Berzdorf/Oberlausitz (Sachsen). Palaeontographica, B, 265: 1–148. 402 CZECZOTT H. & SKIRGIEŁŁO A. 1967. Flora kopalna Turowa koło Bogatyni 2. (The fossil flora of Turów near Bogatynia 2). Prace Muzeum Ziemi, 10: 97–166. DENK T., GRÍMSSON F. & KVAČEK Z. 2005. The Miocene flora of Iceland and its significance for late Cainozoic North Atlantic biogeography. Bot. Jour. Lin. Soc., 149: 369–417. DRAXLER I. & ZETTER R. 1991. Palynologische Untersuchungen in den mittel-miozänen Hochriegelschichten (Süßwasserschichten) von Weingraben (Gemeinde Kaisersdorf, Burgenland, Österreich): 71–92. In: Jubiläumsschrift 20 Jahre Geologische Zusammenarbeit Österreich-Ungarn. Geologische Bundesanstalt, Wien. DYJOR S., SADOWSKA A., HUMMEL A., BARANOWSKA-ZARZYCKA E. & ZASTAWNIAK E. 1998. Geological position and flora of the younger Neogene deposits in Lower Silesia: 37–39. In: Sadowska A. & Szynkiewicz A. (eds) Guide to Excursion 2, Tertiary-Quaternary (Pleistocene) floras of Bełchatów (Middle Poland) and several localities in south-western Poland. The 5th European Palaeobotanical and Palynological Conference June 26–30, 1998, Cracow, Poland. Władysław Szafer Institute of Botany, Polish Academy of Science, Kraków. ELLENBERG H. 1978. Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Verlag Eugen Ulmer, Stuttgart. FAUQUETTE S., SUC J.-P., GUIOT J., DINIZ F., FEDDI N., ZHENG Z., BESSAIS E. & DRIVALIARI A. 1999. Climate and biomes in the West Mediterranean area during the Pliocene. Palaeogeogr. Palaeoclim. Palaeoecol., 152: 15–36. FRIIS E.M. 1985. Angiosperm Fruits and Seeds from the Middle Miocene of Jutland (Denmark). Biologiske Skrifter, 24(3): 1–165. Advances in Austrian-Hungarian Joint Geological Research. Geologische Bundesanstalt, Wien. HARZHAUSER M., BÖHME M., MANDIC O. & HOFMANN Ch.-Ch. 2002. The Karpatian (Late Burdigalian) of the Korneuburg Basin – A Palaeoecological an the Biostratigraphical Synthesis. In: Sovis W. & Schmid B. (eds) Das Karpat des Korneuburger Beckens. Teil 2. Beitr. Paläont., 27: 441–456. HOFMANN Ch.-Ch., ZETTER R. & DRAXLER I. 2002. Pollen- und Sporenvergesellschaftungen aus dem Karpatium des Korneuburger Beckens (Niederösterreich). In: Sovis W. & Schmid B. (eds) Das Karpat des Korneuburger Beckens, Teil 2. Beitr. Paläont., 27: 17–43. HUMMEL A. 1983. The Pliocene Leaf Flora from Ruszów near Żary in Lower Silesia, SW Poland. Praze Muzeum Ziemi, 36: 9–104. HUMMEL A. 1991. The Pliocene leaf flora from Ruszów near Żary in Lower Silesia, South-West Poland. Part 2 (Betulaceae). Acta Palaeobot., 31: 73–151. JECHOREK H., in prep. Die Blattflora von Berzdorf (Oberlausitz, Unter- und Mittelmiozän) und ihre Stellung innerhalb der Neogenfloren Mitteleuropas. JECHOREK H. & KOVAR-EDER J. 2004a. Vegetational characteristics in Europe around the late Early to early Middle Miocene based on the plant macro record. In: Steininger F.F., Kovar-Eder J. & Fortelius M. (eds) The Middle Miocene Environments and Ecosystem Dynamics of the Eurasian Neogene (EEDEN). Courier Forschungsinstitut Senckenberg, 249: 53–62. JECHOREK H. & KOVAR-EDER J. 2004b. Neue Taxa aus der Flora von Weingraben (Burgenland, Miozän, Badenium). Ann. Naturhist. Mus. Wien, 106 A: 327–343. GIVULESCU R. 1992. Les forêts marécageuses du Miocène supérieur de Roumanie: un paléobiotope d’exception et sa végétation dans le Miocène supérieur de l’ouest de la Roumanie: 147–151. In: Kovar-Eder J. (ed.) Palaeovegetational development in Europe and regions relevant to its palaeofloristic evolution. Naturhistorisches Museum, Wien. KNOBLOCH E. 1986. Die Flora aus der Oberen Süßwassermolasse von Achldorf (Vilsbiburg, Niederbayern). Documenta Naturae, 30: 14–48. GÖPPERT H.R. 1855. Die tertiäre Flora von Schossnitz in Schlesien. Heyn’sche Buchhandlung (E. Remer), Görlitz. KNOBLOCH E. & KVAČEK Z. 1965. Byttneriophyllum tiliaefolium (Al. Braun) Knobloch et Kvaček in den tertiären Floren der Nordhalbkugel. Sbor. Geol. Věd, Paleontologie, 5: 123–166. GREGOR H.-J. 1982. Die jungtertiären Floren Süddeutschlands – Paläokarpologie, Phytostratigraphie, Paläoökologie, Paläoklimatologie. Ferdinand Enke Verlag, Stuttgart. GÜNTHER T. & GREGOR H.-J. 1998. Computeranalyse neogener Frucht- und Samenfloren Europas. 6. Temporale, regionale und ökofazielle Bewertung von Arten. Documenta Naturae, 50. HABLY L. & KOVAR-EDER J. 1996. A representative leaf assemblage of the Pannonian Lake from Dozmat near Szombathely (Western Hungary), Upper Pannonian, Upper Miocene: 69–80. In: KNOBLOCH E. 1988. Neue Ergebnisse zur Flora aus der Oberen Süßwassermolasse von Aubenham bei Ampfing (Krs. Mühldorf a. Inn). Documenta Naturae, 42: 2–27. KOTTIK S. 2002. Die Palynologie des Randecker Maars. Diplomarbeit Universität Wien. KOVAR-EDER J. 1988. Obermiozäne (Pannone) Floren aus der Molassezone Österreichs. Beitr. Paläont. Österr., 14: 19–121. KOVAR-EDER J. 1998. Fossile Blattreste aus dem Karpat des Korneuburger Beckens. In: Sovis W. (ed.) Das Karpat des Korneuburger Beckens. Beitr. Paläont., 23: 79–83. KOVAR-EDER J. 2004. Die obermiozäne Flora von Mataschen bei Fehring, Steiermark – Blattver- 403 gesellschaftungen. Joannea Geol. Paläont., 5: 163–175. 2002. Late Miocene Flora of Vegora Macedonia N Greece. University of Athens. KOVAR-EDER J. & HABLY L. 2006. The flora of Mataschen – a unique plant assemblage from the Late Miocene of Eastern Styria (Austria). Acta Palaeobot., 46(2): 157–233. KVAČEK Z., KOVÁC M., KOVAR-EDER J., DOLÁKOVÁ N., JECHOREK H., PARASHIV V., KOVÁČOVÁ M. & SLIVA L. 2006. Miocene evolution of landscape and vegetation in the Central Paratethys. Geol. Carpath., 57: 295–310. KOVAR-EDER J. & KVAČEK Z. 2003. Towards Vegetation Mapping Based on the Fossil Plant Record. Acta Univ. Carol., Geologica, 46(4): 7–13. KOVAR-EDER J. & WÓJCICKI J., 2001. A Late Miocene (Pannonian) Flora from Hinterschlagen, Hausruck Lignite Area, Upper Austria, Austria. Acta Palaeobot., 41(2): 223–252. KOVAR-EDER J., MELLER B. & ZETTER R. 1998. Cercidiphyllum crenatum (Unger) R.W.Brown in der kohleführenden Abfolge von Oberdorf N Voitsberg, Steiermark. Mitteilungen des Referats für Geologie und Paläontologie des Landesmuseums Joanneum, Sonderheft 2: 239–264. KOVAR-EDER J., JECHOREK H., KVAČEK Z. & PARASHIV V. 2008. The integrated plant record: the ultimate an essential tool for reconstructing Neogene zonal vegetation in Europe. Palaios, 23: 97–111. KOVAR-EDER J., KVAČEK Z., MARTINETTO E. & ROIRON P. 2006. Late Miocene to Early Pliocene vegetation of southern Europe (7–4 MA) as reflected in the megafossil plant record. Palaeogeogr. Palaeoclim. Palaeoecol., 238: 321–339. KUNZMANN L. 1999. Koniferen der Oberkreide und ihre Relikte im Tertiär Europas. Ein Beitrag zur Kenntnis ausgestorbener Taxodiaceae und Geinitziaceae fam. nov. Abh. Staat. Mus. Mineral. Geol. Dresden, 45: 1–191. KVAČEK Z. 2005. Early Miocene records of Craigia (Malvaceae s.l.) in the Most Basin, North Bohemia – whole plant approach. Jour. Czech Geol. Soc., 49(2004): 161–171. KVAČEK Z. 2007. Do extant nearest relatives of thermophile European Tertiary elements reliably reflect climatic signal? In: Bruch A.A., Uhl D. & Mosbrugger V. (eds) Miocene Climate in Europe – Patterns and Evolution. Palaeogeogr. Palaeoclim. Palaeoecol., 253: 32–40. KVAČEK Z. & MANCHESTER S.R. 2004. Vegetative and reproductive structure of the extinct Platanus neptuni from the Tertiary of Europe and relationships within the Platanaceae. Plant Syst. Evol., 244: 1–29. KVAČEK Z., MANCHESTER S.R. & AKHMETIEV M.A. 2005. Review of the fossil history of Craigia (Malvaceae s.l.) in the Northern Hemisphere based on fruits and co-occurring foliage: 114–140. In: Akhmetiev M.A. & Herman A.B. (eds) Modern problems of palaeofloristics, palaeophytogeography and phytostratigraphy. Transaction of the International Palaeobotanical Conference Moscow, May 17–18, 2005. GEOS, Moscow. KVAČEK Z., VELITZELOS D. & VELITZELOS E. KVAVADZE E. & STUCHLIK L. 1990. Subrecent spore-pollen spectra and their relation to recent vegetation belts in Abkhazia (North-Western Georgia, USSR). Acta Palaeobot., 30: 227–257. KVAVADZE E. & STUCHLIK L. 1993. Subfossil pollen spectra of the steppe regions of East Georgia. Acta Palaeobot., 33: 365–376. LESIAK M.A. 1994. Plant macrofossils from the Middle Miocene of Lipnica Mała (Orawa-Nowy Targ Basin, Poland). Acta Palaeobot., 34(1): 27–81. LESIAK M.A. 1998. Fruit-seed flora: 14–15. In: Sadowska A. & Szynkiewicz A. (eds) Guide to Excursion 2, Tertiary-Quaternary (Pleistocene) floras of Bełchatów (Middle Poland) and several localities in south-western Poland. The 5th European Palaeobotanical and Palynological Conference June 26–30, 1998, Cracow, Poland. Władysław Szafer Institute of Botany, Polish Academy of Science, Kraków. LIU YU-SH., ZETTER R., MOHR B.A.R. & FERGUSON D.K. 2001. The flowers of an extinct legume from the Miocene of Southern Germany. Palaeontographica, B, 256: 159–174. MAI D.H. 1981. Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora, 171: 525–582. MAI D.H. 1985. Entwicklung der Wasser- und Sumpfpflanzen-Gesellschaften Europas von der Kreide bis ins Tertiär. Flora, 176: 449–511. MAI D.H. 1991. Palaeofloristic changes in Europe and the confirmation of the Arctotertiary-Palaeotropical geofloral concept. Rev. Palaeobot. Palynol., 68: 29–36. MAI D.H. 1995. Tertiäre Vegetationsgeschichte Europas. Gustav Fischer, Jena. MELLER B. 1998. Karpo-Taphocoenosen aus dem Karpat des Korneuburger Beckens (Unter-Miozän; Niederösterreich) – ein Beitrag zur Vegetationsrekonstruktion. In: Sovis W. (ed.) Das Karpat des Korneuburger Beckens Teil 1. Beitr. Paläont., 23: 85–121. MELLER B. & HOFMANN Ch.-Ch. 2004. Paleoecology of diaspore- and palynomorph assemblages from Late Miocene lake sediments (Mataschen near Fehring, East Styria, Austria). Joannea Geol. Paläont., 5: 177–217. MUDIE P.J. & HELGASON J. 1983. Palynological evidence for Miocene climate cooling in eastern Iceland about 9.8 myr ago. Nature, 303: 689–692. OBERDORFER E. & LANG G. 1957. Vegetationskundliche Karte des Schwarzwaldes bei Freiburg. Beilage zu den Berichten der Naturforschenden Gesellschaft Freiburg im Breisgau, 47. 404 OSZAST J. & STUCHLIK L. 1977. Roślinność Podhala w neogenie (summary: The Neogene vegetation of the – Podhale West Carpathians, Poland). Acta Palaeobot., 18(1): 45–86. WAŹYŃSKA H. & SADOWSKA A. 2002. Atlas of Pollen and Spores of the Polish Neogene. Vol. 2. W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków. RÜFFLE L. 1963. Die obermiozäne (sarmatische) Flora vom Randecker Maar. Paläont. Abh., 1: 139–298. WALTHER H. & ZASTAWNIAK E. 1991. Fagaceae from Sośnica and Malczyce (near Wrocław, Poland). A revision of original materials by Goeppert 1852 and 1855 and a study of new collections. Acta Palaeobot., 31(1/2): 153–199. SCHÄFER A., UTESCHER T. & MÖRS T. 2004. Stratigraphy of the Cenozoic Lower Rhine Basin, northwestern Germany. Newsletter of Stratigraphy, 40(1/2): 73–110. SCHWEINFURTH U. 1957. Die horizontale und vertikale Verbreitung der Vegetation im Himalaya. Bonn. Geogr. Abh., 20: 1–372. SITAR V. & KOVAČOVÁ-SLAMKOVÁ M. 1999. Palaeobotanical and palynological study of the Upper Badenian sediments from the NE part of the Vienna Basin (locality Děvinska Nová Ves): 373–389. In: Stuchlik L. (ed.) Proceedings of the 5th Palaeobotanical and Palynological Conference, June 26–30, 1998, Kraków. Acta Palaeobot. Suppl., 2. SMITH T.M., SHUGART H.H. & WOODWARD F.I. 1997. Plant functional types – their relevance to ecosystem properties and global change. University Press, Cambridge. SPICER R. A. & WOLFE J.A. 1987. Plant taphonomy of late Holocene deposits in Trinity (Cair Engle) Lake, northern California. Paleobiology 13: 227–245. STACHURSKA A., SADOWSKA A. & DYJOR S. 1973. The Neogene Flora at Sośnica near Wrocław in the light of geological and palynological investigations. Acta Palaeobot., 14(3): 147–176. van STROE M. 1996. The flora of the Miocene 7b1 layer of Hambach, Germany. Documenta Naturae, 104: 1–18. STUCHLIK L. & KVAVADZE E. 1987. Subrecent spore-pollen spectra and their relation to recent forest vegetation of Colchis (Western Georgia, USSR). Palaeontographica, B, 207: 133–151. STUCHLIK L. & KVAVADZE E. 1993. Spore-pollen spectra of surface samples from Zelkova forests in the Babaneuri Reservation (East Georgia). Acta Palaeobot., 33: 357–364. STUCHLIK L. & KVAVADZE E. 1995. On the problem of actuopalynology in the Carpathians and Caucasus. Acta Palaeobot., 35: 73–83. STUCHLIK L., SZYNKIEWICZ A., ŁAŃCUCKA-ŚRODONIOWA M. & ZASTAWNIAK E. 1990. Wyniki dotychczasowych badań paleobotanicznych trzeciorzędowych węgli brunatnych złoża “Bełchatów” (summary: Results of the hitherto palaeobotanical investigations of the Tertiary brown coal bed Bełchatów, Central Poland. Acta Palaeobot., 30: 259–305. STUCHLIK L., ZIEMBIŃSKA-TWORZYDŁO M., KOHLMAN-ADAMSKA A., GRABOWSKA I., WOLFE J. A. 1979. Temperature Parameters of Humid to Mesic Forests of Eastern Asia and Relation to Forests of Other Regions of the Northern Hemisphere and Australasia. Prof. Paper Geol. Surv., 1106: 1–37. WOROBIEC G. 1998. Macrofloras in the central part of the outcrop, North of Kleszczów, leaf flora: 11–15. In: Sadowska A. & Szynkiewicz A. (eds) Guide to Excursion 2. Tertiary-Quaternary (Pleistocene) floras of Bełchatów (Middle Poland) and several localities in south-western Poland. The 5th European Palaeobotanical and Palynological Conference June 26–30, 1998, Cracow, Poland. Władysław Szafer Institute of Botany, Polish Academy of Science, Kraków. WOROBIEC G. 2003. New fossil floras from Neogene deposits in the Bełchatów Lignite Mine. Acta Palaeobot., Suppl., 3: 1–133. WOROBIEC G. & LESIAK M.A. 1998. Plant megafossils from the Neogene deposits of Stawek 1A (Bełchatów, Middle Poland). Rev. Palaeobot. Palynol., 101: 179–208. ZASTAWNIAK E. & WALTHER H. 1998 Betulaceae from Sośnica near Wrocław (Poland) – a revision of Goeppert’s original materials and a study of more recent collections. Acta Palaeobot., 38(1): 87–145. ZETTER R. 1998. Palynological Investigations from the Early Miocene Lignite Opencast Mine Oberdorf (N Voitsberg, Styria, Austria). In: Steininger F.F. (ed.) The Early Miocene Lignite Deposit of Oberdorf N Voitsberg (Styria, Austria). Jahrbuch Geol. Bundesanst., 140: 461–468. ZETTER R. & FERGUSON D.K. 2002. Trapaceae pollen in the Cenozoic. Acta Palaeobot., 41(2): 321–339. ZIEMBIŃSKA-TWORZYDŁO M., GRABOWSKA I., KOHLMAN-ADAMSKA A., SADOWSKA A., SŁODKOWSKA B., STUCHLIK L. & WAŻYŃSKA H. 1994a. Checklist of selected genera and species of spores and pollen grains ordered in morphological system: 31–56. In: Stuchlik L. (ed.) Neogene pollen flora of Central Europe. Acta Palaeobot. Suppl., 1: 31–56. ZIEMBIŃSKA-TWORZYDŁO M., GRABOWSKA I., KOHLMAN-ADAMSKA A., SKAWIŃSKA K., SŁODKOWSKA B., STUCHLIK L., SADOWSKA A. & WAŻYŃSKA H. 1994b. Taxonomical revision of selected pollen and spore taxa from Neogene deposits: 5–30. In: Stuchlik L. (ed.) Neogene pollen flora of Central Europe. Acta Palaeobot. Suppl., 1: 5–30. 405 APPENDICES Assignment of the individual taxa to the different components (restricted to taxa documented in the here-investigated plant assemblages). Every taxon has the value 1. It may be assigned to one or more components. In the latter case the value 1 is split. Appendix 1. Leaf taxa of pteridophytes, gymnosperms, and monocotyledons Pteridophytes Adiantum sp. Filices Polypodiaceae Pronephrium stiriacum Pteridium oeningense Monocotyledons Bambusa lugdunensis Limnobiophyllum expansum Monocotyledoneae Phragmites sp. Poaceae indet. Rhizocaulon zingiberoides Smilax hastata, S. protolancaefolia, S. sagittifera, S. weberi, Smilax sp. Typha latissima AZONAL WOODY component 1.00 1.00 1.00 1.00 1.00 1.00 Salvinia mildeana Gymnosperms Abies steenstrupiana, Abies sp. Abietoideae Amentotaxus gladifolia Cephalotaxus pliocenica Cryptomeria anglica, C. rhenana Ginkgo adiantoides Glyptostrobus europaeus Juniperus sp. Picea sp. Pinus hepios, P. taedaeformis Pinus sp. Sequoia abietina Taiwania paracryptomerioides Taxodium dubium Tetraclinis salicornioides Tsuga moenana, Tsuga sp. AQUATIC component AZONAL HERB component FERN component MESO HERB component DRY HERB component Azonal PALM component LEG component SCL component BLE component BLD component Leaf taxa pteridohytes, gymnosperms, monocotyledons CONIFER component Zonal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.33 0.33 1.00 1.00 0.33 1.00 1.00 1.00 406 Appendix 2. Leaf taxa of dicotyledons 1.00 0.50 AQUATIC component AZONAL WOODY component 6 1.00 AZONAL HERB component 5 FERN component 4 MESO HERB component LEG component 3 DRY HERB component SCL component 2 Azonal PALM component BLE component 1 Acacia parschlugiana Acer aegopodifolium, A. crenatifolium, A. integerrimum, A. integrilobum, A. palaeosaccharinum, A. subcampestre (incl. A. jurenakyi p.p.), A. vindobonense (=A. sanctae-crucis) Acer sp. Acer tricuspidatum (incl. A. pyrenaicum and A. ilnicense) Aesculus hippocastanoides Ailanthus pythii Alnus adscendens (incl. A. rotundata), A. ducalis, A. menzelii, A. occidentalis Alnus alnoidea, A. cecropiifolia, A. gaudinii, A. julianiformis (incl. „Fagus attenuata” p.p.), A. pseudoglutinosa, A. rotundata, Alnus sp. Alnus vel Betula sp. Ampelopsis sp. Berchemia parvifolia Betula insignis, B. subpubescens Betula plioplatyptera, Betula sp. Betula vel Fagus sp. Betulaceae Buxus pliocenica Byttneriophyllum tiliifolium Caesalpinites salteri Camellia vel Ternstroemites sp. Carpinus grandis Carpinus sp. Carya minor, C. serrifolia Carya sp. Castanea atavia, C. sativa foss. Cedrela sarmatica Cedrela sp. Cedrelospermum ulmifolium Celtis begonioides, Celtis sp. Cercidiphyllum crenatum p.p. Cercidiphyllum crenatum p.p. Comptonia hesperia Cornus graeffii Corylopsis sp. Corylus avellana var. fossilis, Corylus. sp. Crataegus neckerae, C. oxyacanthoides Cyrilla thomsonii Daphnogene bilinica, D. polymorpha Dicotylophyllum dieteri Dicotylophyllum uhudler Diospyros anceps, D. brachysepala BLD component Leaf taxa dicotyledons CONIFER component Zonal 7 8 9 10 11 12 13 0.50 0.25 1.00 1.00 0.75 1.00 0.50 0.50 0.50 0.50 0.50 1.00 0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.50 0.50 0.50 0.50 1.00 0.50 0.50 1.00 1.00 1.00 1.00 1.00 407 Appendix 2. Continued 1 Distylium heinickei Distylium sp. Dombeyopsis lobata (= Craigia) Engelhardia orsbergensis Eucommia sp. Fagus attenuata Fagus gussonii, F. haidingeri, F. menzelii, F. pristina, F. silesiaca (incl. F. attenuata p.p.), Fagus sp. Fagus vel Sloanea sp. Ficus truncata (=Reevesia) Fraxinus angusta Fraxinus numana, Fraxinus sp. Gleditsia suevica Gordonia emanuelii, G. pannonica, G. styriaca Hamamelidaceae Juglandaceae Juglans acuminata Juglans sp. Kalmia saxonica Lauraceae Laurophyllum markvarticense, L. princeps, L. pseudoprinceps, L. pseudovillense, L. rugatum, Laurophyllum sp. Laurus abchasica Leguminosites sp. Liquidambar europaea Liriodendron procacinii, Liriodendron sp. Magnolia attenuata Magnolia liblarensis Magnolia sp. p.p. Magnolia sp. p.p. Morus sp. Myrica lignitum Myrica sp. Nymphaeaceae Nyssa haidingeri Oleinites liguricus Ostrya carpinifolia var. fossilis Ostrya sp. Paliurus ovoideus, P. tiliifolius Parrotia pristina Persea princeps Platanus leucophylla Podocarpium podocarpum Populus balsamoides, P. populina, P. tremulaefolia, Populus sp. Pterocarya paradisiaca Quercus drymeja, Q. hispanica, Q. kubinyii Quercus gigas (incl. Q. pontica-miocenica), Q. pseudocastanea Quercus mediterranea Quercus rhenanasimilis Quercus sp. „Rhus” pyrrhae Rhus pteleaefolia Robinia regelii Rosaceae Rosa sp. 2 3 4 5 6 7 8 9 10 11 12 13 1.00 1.00 0.50 0.50 0.50 1.00 1.00 0.50 1.00 0.50 0.50 1.00 1.00 0.50 0.50 1.00 1.00 1.00 0.50 0.50 1.00 0.50 0.50 0.50 1.00 0.50 1.00 1.00 1.00 0.50 1.00 0.50 0.50 0.33 0.33 1.00 1.00 1.00 0.50 0.33 1.00 0.33 0.33 0.33 1.00 1.00 0.50 0.50 1.00 1.00 0.50 0.50 1.00 1.00 0.50 0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.33 0.33 0.33 1.00 1.00 1.00 0.50 1.00 0.50 408 Appendix 2. Continued 1 Salix angusta, S. hausruckensis, S. integra, S. lavateri, S. linearifolia, S. macrophylla, S. varians, Salix sp. Salvinia mildeana, S. reussii Sapindus falcifolius Sassafras ferretianum Schima mataschensis Sideroxylon salicites Symplocos rara Theaceae Tilia sp. Tremophyllum tenerrimum (=Cedrelospermum ulmifolium) Trigonobalanopsis rhamnoides Ulmus carpinoides p.p. Ulmus carpinoides p.p. (=U. pyramidalis) Ulmus minuta Ulmus plurinervia Ulmus ruszovensis Ulmus sp. p.p. Ulmus sp. p.p. Vitis stricta Zelkova zelkovifolia Zizyphus ovata Zizyphus zizyphoides 2 3 4 5 6 7 8 9 10 11 12 13 1.00 1.00 0.50 0.50 1.00 1.00 0.50 0.50 1.00 1.00 1.00 0.50 0.50 1.00 1.00 0.25 0.75 1.00 0.50 0.50 1.00 0.50 0.33 0.50 0.33 0.50 0.50 0.33 0.50 0.33 0.33 0.33 0.50 1.00 Appendix 3. Macrospores of pteridophytes and seed taxa of gymnosperms AZONAL WOODY component AQUATIC component AZONAL HERB component FERN component MESO HERB component DRY HERB component Azonal PALM component LEG component SCL component BLE component BLD component Macrospores of pteridophytes and seeds of gymnosperms CONIFER component Zonal Pteridophytes Azolla nikitinii, A. sp., A. tomentosa, Azolla sp. 1.00 Marsilea reticulata Salvinia aspera, S. cerebrata, S. crispa, S. intermedia, Salvinia sp. 1.00 1.00 Selaginella lusatica, S. pliocenica, Selaginella sp. Gymnosperms Cephalotaxus miocenica Cunninghamia sp. Cupressospermum chamaecyparioides Glyptostrobus brevisiliquatus, G. europaeus Juniperus sp. Pinus hampeana Pinus sp. Quasisequoia couttsiae Sequoia abietina Taxodium dubium, T. hantkei 1.00 1.00 0.50 1.00 0.50 1.00 1.00 0.50 0.50 1.00 0.50 1.00 0.50 1.00 409 Appendix 4. Fruit and seed taxa of monocotyledons Acorellus distachyoformis Alisma crassicarpum Alismataceae Aracispermum canaliculatum Butomus umbellatus, Butomus sp. Calamus daemonorops Caldesia proventita, Caldesia sp. Carex acutiformis, C. conescentoidea, C. elongatoides, C. flagellata, C. globosaeformis, C. gracilis, C. hartauensis, C. lasiocarpa, C. limosioides, C. loliacea, C. mariisrodoniowiae, C. plicata, C. pilulifera, C. pseudocyperoides, C. szaferi, C. ungeri, Carex sp. Caricoidea jugata Cladiocarya europaea, C. lusatica, C. trebovensis Cladium oligovasculare, C. palaeomariscus, C. trilobatum, Cladium sp. Cyperaceae Cyperus borealis, C. glomeratus, C. leptodermis Damasonium sp. Dichostylis minor, Dichostylis. sp. Dulichium arundinaceum, D. marginatum, D. spathaceum, D. vespiforme Eichhornia tertiaria Epipremnites ornatus, E. reniculus, Epipremnites sp. Hydrocharis neogenica Juncus sp. Lemna sp. Lemnospermum pistiforme Limnocarpus eseri Monochoria striatella Monocotyledonae Najas flexilis Pistia sibirica Potamogeton dravertii, P. dubnanensis, P. pseudonatans, P. nochtensis, P. piestanensis, P. wiesaensis, Potamogeton sp. Ruppia maritima miocenica, R. palaeomaritima Scirpus lusaticus, S. ragozinii, S. sylvaticus, Scirpus sp. Sparganium bessarabicum, S. camenzianum, S. crassum, S. haentzschelii, S. minimum, S. nanum, S. neglectum, S. noduliferum, S. pulchellum, S. pusilloides, S. ramosum, S. tanaiticum, Sparganium sp. Spirellea germanica Spirematospermum wetzleri Stratiotes kaltennordheimensis, Stratiotes sp. Typha pliocenica, Typha sp. Urospathites cristatus, U. dalgasii, Urospathites sp. Xyris lusatica AZONAL WOODY component AQUATIC component AZONAL HERB component FERN component MESO HERB component DRY HERB component Azonal PALM component LEG component SCL component BLE component BLD component Fruit and seed taxa monocotyledons CONIFER component Zonal 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.5 0.25 0.25 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 410 Appendix 5. Fruit and seed taxa of dicotyledons SCL component LEG component PALM component DRY HERB component MESO HERB component FERN component AZONAL HERB component AQUATIC component AZONAL WOODY component Problematic record/counted but excluded 2 BLE component 1 Acanthopanax solutus Acer “giganteum”, A. palmatum, A. pseudodiabolicum, Acer sp. sect. Palmatae Acer tricuspidatum, Acer sp. Actinidia argutaeformis, A. faveolata, Actinidia sp. Ailanthus confucii Ajuga sp. Aldrovanda praevesiculosa Alnus kefersteinii, A. lactebracteosa, A. lusatica, Alnus sp. Ampelopsis ludwigii, A. malvaeformis, A. rotundata, A. rotundatoides Anagallis sp. Andromeda carpatica Apiaceae Apium prograveolens Aralia lucidoides, A. rugosa Araliaceae Arctostaphylos sp. Batrachium sp. Betula longisquamosa, Betula sp. Boehmeria raria, B. sibirica Brasenia sp. Broussonetia sp. Callitriche sp. Carpinus betulus foss., C. caucasica, C. grandis, C. kisseri, C. miocenica, Carpinus sp. Carya angulata, C. hauffei, C. lusatica, C. turovensis Carya ventricosa, Carya sp. Cedrelospermum aquense Celtis lacunosa, Celtis sp. Cephalanthus kireevskianus, C. pusillus, Cephalanthus sp. Cerastium sp. Ceratophyllum demersum, C. dubium=Ceratophyllum protanaiticum=Ceratophyllum sp., C. lusaticum, C. pannonicum, C. submersum foss. Chionanthus taschei Cicuta virosa Cinnamomum lusaticum Cirsium sp. Cleome sp. Cornus brachysepala=Diospyros brachysepala Corylopsis urselensis Corylus sp. Corylus avellana foss. Azonal BLD component Fruit and seed taxa dicotyledons CONIFER component Zonal 3 1.00 4 5 6 7 8 9 10 11 12 13 14 1.00 0.50 0.50 1.00 0.50 0.50 1.00 1.00 0.50 0.50 0.50 0.50 1.00 1.00 0.33 0.33 0.33 0.33 0.33 0.33 1.00 0.33 0.33 0.33 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.50 0.50 1.00 1.00 1.00 1.00 1.00 0.75 0.25 1.00 1.00 0.50 1.00 0.50 411 Appendix 5. Continued 1 Cotoneaster sp. Craigia bronnii Cyclocarya cyclocarpa Cynanchum heerii Cypselites sp. Decodon gibbosus, D. globosus, D. vectensis, Decodon sp. Diospyros brachysepala Disanthus bavaricus Distylium uralense Drosera intermedia Engelhardia macroptera Embothrites borealis=Cedrelospermum Eoeuryale brasenioides, Eoeuryale sp. Eomastixia saxonica Ericaceae Euphorbia sp. Euphorbiaceae Eurya stigmosa Fagus ferruginea, F. decurrens, F. deucalionis, Fagus sp. Ficus chandleri, F. potentilloides Fleurya staakowensis ~ Laportea Frangula alnus Fraxinus stenoptera, Fraxinus sp. Gironniera carinata, G. neglecta Gleditsia knorrii=Podocarpium podocarpum Halesia crassa Hamamelidaceae Hemiptelea sp. Hemitrapa heissigii Hypericum coriaceum, H. holyi, H. miocenicum, H. septestum, H. tertiarum, Hypericum sp. Ilex aquifolium, I. saxonica, I. wiesaensis Ilex jonkeri Ilex maii Ilex paralusatica Itea europaea Juglans tietzii Koelreuteria macroptera Laportea europaea, L. nemejcii Lauraceae Laurocarpum sp. Leguminocarpon bousquetii Leitneria venosa Leucothoe zenobia Limosella spuria Liquidambar europaea, Liquidambar sp. Liriodendron geminata, Liriodendron sp. Ludwigia palustris foss. Lycopus antiquus Lysimachia angulata Magnolia burseracea Magnolia cor Magnolia ludwigii=M. lignitum, Magnolia sp. Magnolia lusatica Mastixia amygdalaeformis Mastixicarpum limnophilum ~ Diplopanax 2 3 0.33 0.50 1.00 4 5 0.33 6 7 8 9 0.33 0.33 10 11 12 13 0.33 0.50 14 0.33 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 0.25 0.25 0.25 0.10 0.20 0.20 1.00 0.30 0.20 0.20 0.30 0.50 0.50 0.25 0.30 0.10 1.00 1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.75 0.25 1.00 1.00 0.33 0.33 0.33 1.00 0.25 0.25 0.25 0.33 0.33 1.00 0.33 0.33 1.00 1.00 0.25 0.33 0.33 0.50 0.50 1.00 1.00 1.00 0.25 0.25 0.50 0.50 0.50 1.00 0.50 1.00 0.50 0.50 0.50 0.50 1.00 0.50 1.00 1.00 0.33 0.33 0.20 0.80 1.00 1.00 0.33 412 Appendix 5. Continued 1 Meliosma wetteraviensis Menyanthes trifoliata Microdiptera elongata, M. lusatica, M. menzelii, M. parva, Microdiptera sp. Mneme menzelii=Microdiptera menzelii Moehringia tuberculata Moraceae Myrica boveyana Myrica ceriferiformis, M. ceriferiformoides Myrica minima, Myrica sp. Myrica stoppii Myrica suppanii (morphospecies lacking exocarp) Nuphar sp. Nymphaea szaferi, Nymphaea sp. Nyssa disseminata Nyssa ornithobroma Ocotea rhenana Olea moldavica Ostrya scholzii, O. szaferi, Ostrya sp. Paliurus ramosissimus Paliurus favonii, P. sibirica, P. thurmannii Pallioporia symplocoides Parabaena europaea Parrotia reidiana Patrinia palaeosibirica Paulownia cantalensis Papilionaceae Phellodendron elegans, P. lusaticum Phyllanthus compassica Physalis alkekengii foss., P. pliocaenica Platanus orientalis Podocarpium podocarpum Poliothyrsis eurorimosa Polygonaceae Polygonum bramborense, P. leporimontanum, Polygonum sp. Populus sp. Porana membranosa (flower)=Chaneya Potentilla pliocenica Potentilla supina foss. Primula riosiae Proserpinaca pedunculata, P. reticulata, Proserpinaca sp. Prunus langsdorfii Prunus leporimontana Pteleaecarpum europaeum=Craigia bronnii Pterocarya limburgensis, P. miolusatica, P. pterocarpa, Pterocarya. sp. Pyracantha acuticarpa Pyracantha angusticarpa Quercus sp. Quercus sp. Quercus sect. Cerris, Q. cerrisaecarpa, Q. microcerrisaecarpa, Q. sapperi, Q. variabiliformis Ranunculus marginalis Retinomastixia oertelii Rhamnus deperditus Rubus fruticosus Rubus idaeus 2 3 4 0.20 0.80 5 6 7 8 9 10 11 12 13 14 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 0.33 0.50 0.33 0.33 0.50 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.50 0.50 1.00 0.30 0.70 1.00 0.33 0.33 0.33 1.00 0.50 0.50 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.33 0.33 0.50 0.33 1.00 0.50 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.33 0.66 0.50 0.50 0.25 0.25 0.25 0.66 0.25 0.33 1.00 0.50 0.50 1.00 0.50 0.50 1.00 0.50 0.50 413 Appendix 5. Continued 1 Rubus laticostatus, R. semirotundatus Rubus microspermus Rubus sp. Rumex miolusaticus Rumex sp. Sabia europaea Salix sp. Sambucus sp. Sambucus ebulus, S. pulchella Sambucus lucida Sapium germanicum Saportaspermum sp. Sassafras lusaticum Saururus bilobatus Schisandra moravica Scrophularia sp. Sinomenium cantalense Solanaceae Solanum sp. Sorbus herzogenrathensis Sphenotheca incurva Spirellea germanica Staphylea sp. Stellaria praepalustris Stellaria sp. Styrax maximus Swida gorbunovii, Swida sp. Symplocos casparyi =S.germanica=S.granulosa= S. lignitarum=S.salzhausensis, S. pseudogregaria, S. schereri= S. wiesaensis, Symplocos sp. Tectocarya elliptica Ternstroemia reniformis, T. sequoioides Tetrastigma chandleri Teucrium sibiricum, T. tatjanae Tilia sp. Toddalia latisiliquata, T. maerkeri, T. maii, T. turovensis Toona seemannii Trapa silesiaca, T. spectabilis, T. srodoniana, T. ungeri, Trapa sp. Trema lusatica Trigonobalanopsis exacantha Tubela sp. Turpinia ettingshausenii Ulmus sp. Umbelliferopsis molassicus Urtica tertiaria Vaccinium sp. Veronica sp. Viola neogenica, Viola sp. Vitaceae Vitis globosa, V. lusatica, V. palaeomuscadinia, V. parasylvestris, V. sylvestris foss., V. teutonica Vitis sp. Weigela kryshtofovichiana Zanthoxylum giganteum, Z. kristinae, Z. tiffneyi, Zanthoxylum sp. Zelkova ungeri, Zelkova sp. Ziziphus striatus 2 3 4 0.50 0.50 0.50 0.33 0.33 5 6 7 8 9 10 11 12 13 0.50 14 0.33 0.50 0.50 0.50 0.50 0.50 0.50 1.00 0.50 0.50 0.50 1.00 0.50 1.00 0.33 0.33 0.33 1.00 1.00 1.00 0.75 0.25 1.00 0.25 0.25 0.50 0.25 0.50 0.25 1.00 1.00 1.00 1.00 1.00 0.50 0.50 0.60 0.20 0.20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 0.33 0.33 0.33 0.33 0.25 0.25 0.50 0.50 0.50 0.33 0.33 0.50 0.33 0.50 0.33 0.33 0.50 0.25 0.25 0.50 1.00 0.50 0.33 0.33 0.33 0.33 0.33 1.00 0.33 414 Appendix 6. Pollen and spore taxa of pteridophytes, gymnosperms, and monocotyledons BLE component SCL component LEG component PALM component DRY HERB component MESO HERB component FERN component AZONAL HERB component AQUATIC component AZONAL WOODY component Problematic record/ counted but excluded 1 BLD component Pollen and spore taxa of pteridophytes, gymnosperms, and monocotyledons 2 3 4 5 6 7 8 9 10 11 12 13 14 Pteridophytes Alsophila Cryptogramma type Cyatheaceae Cystopteris sp. Filicinae Gleicheniaceae Laevigatosporites sp. Lycopodium sp. Lygodium sp. Microlepis sp. Osmunda sp. Osmundaceae Polypodiaceae Polypodium sp. Pteridaceae Pteridophyta Schizaeaceae Selaginella sp. Gymnosperms Abies sp. Abies sp., Keteleeria sp. Cathaya sp. Cedrus sp. Cryptomeria sp. Cupressus sp. Cycadaceae Ephedra distachya type Ephedra fragilis type Ephedra sp. Ginkgo sp. Glyptostrobus sp. Inaperturopollenites hiatus Keteleeria sp. Larix sp. Picea sp. Pinaceae Pinus haploxylon type Pinus sylvestris type Pinus diploxylon type Podocarpus sp. Pseudotsuga sp. Pseudolarix sp. Sciadopitys sp. Sequoia sp. Taxodiaceae Taxodiaceae-Cupressaceae Azonal CONIFER component Zonal 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.50 1.00 0.50 0.50 1.00 1.00 1.00 0.50 0.50 0.50 0.70 0.50 0.50 0.50 0.50 0.50 0.50 0.30 415 Appendix 6. Continued 1 Taxodium sp. Tsuga sp. Tsuga canadensis type Tsuga diversifolia type 2 3 4 5 6 7 8 9 10 11 12 13 1.00 14 1.00 1.00 1.00 Monocotyledons Araceae Butomus sp. Calamus sp. Cladium sp. Liliaceae Monocotyledonae Palmae Poaceae Potamogeton sp. Sparganium sp. Sparganiaceae 0.50 0.50 1.00 0.50 0.50 0.33 0.33 0.25 0.25 1.00 0.33 0.50 0.33 0.33 0.33 0.10 1.00 0.90 1.00 1.00 Appendix 7. Pollen taxa of dicotyledons MESO HERB component FERN component AZONAL HERB component AQUATIC component 6 7 8 9 10 11 12 0.50 1.00 0.30 1.00 0.50 0.20 0.33 0.33 0.33 0.50 0.30 0.50 0.30 0.50 0.20 0.20 0.50 1.00 0.33 0.33 0.33 1.00 0.30 0.50 0.50 0.10 0.20 0.40 0.50 0.50 0.50 0.50 0.40 0.40 1.00 0.50 0.25 1.00 1.00 0.50 13 0.25 0.20 0.25 0.50 Problematic record/ counted but excluded DRY HERB component 5 AZONAL WOODY component PALM component BLE component 3 4 0.75 0.50 0.50 0.50 LEG component 2 Azonal SCL component 1 Acer sp. Alangiopollis barghoornianum Alnus sp. Alnus glutinosa – incana Anacardiaceae Andromeda sp. Apiaceae Araliaceae Araliaceae – Cornaceae Araliaceoipollenites edmundi – Araliaceae Artemisia sp. Asteraceae Avicennia sp. Berberidaceae Betula sp. Bignoniaceae Buxus sp. Calystegia sp. Campanulaceae Caprifoliaceae Carpinus caroliniana Carpinus sp. Carya cordiformis BLD component Pollen taxa dicotyledons CONIFER component Zonal 14 416 Appendix 7. Continued 1 Carya sp. Caryophyllaceae Castanea sp. Castanea vel Castanopsis sp. Castanopsis sp. Celtis sp. Cercidiphyllum sp. Chenopodiaceae Cissus sp. Cistaceae Clethraceae Compositae Convolvulus sp. Cornaceae Cornarceae – Araliaceae Cornus sp. Corylopsis sp. Corylus sp. Craigia – Intratripolenites insculptus Cruciferae Cyrillaceae Decodon sp. Diervillea sp. Diospyros sp. Dipelta sp. Distylium sp. Elaeagnus sp. Empetraceae Engelhardia sp. Erica sp. Ericaceae Eucommia sp. Fagaceae Fagus sp. Fraxinus sp. Geranium sp. Hedera sp. Helianthemum sp. Hemiptelea sp. Ilex sp. Ilexpollenites clavopolatus Ilexpollenites iliacus Ilexpollenites margaritatus Intratriporopollenites instructus – Tiliaceae Itea sp. Juglandaceae Juglans sp. Labiatae Lamiaceae Lauraceae Leguminosae Ligustrum sp. Liquidambar sp. Liriodendron sp. Lithocarpus sp. Lonicera sp. Lythraceae 2 3 4 5 6 7 8 9 10 11 0.50 12 13 0.50 0.60 0.20 0.20 0.50 0.25 0.25 1.00 0.50 0.50 1.00 0.50 0.50 0.50 0.50 0.33 0.33 0.33 0.70 0.30 0.33 0.33 0.33 0.33 0.33 0.50 0.33 0.50 0.50 0.50 0.50 0.50 1.00 1.00 0.50 0.50 0.50 0.50 1.00 0.33 0.33 0.33 1.00 0.50 0.50 0.50 1.00 1.00 0.33 0.33 0.33 0.50 1.00 0.50 0.50 0.33 0.33 0.25 0.25 0.25 1.00 0.40 0.40 0.10 1.00 0.50 0.33 0.25 0.10 0.50 0.50 0.50 0.50 0.50 1.00 1.00 0.25 0.25 0.25 0.50 1.00 0.50 0.50 1.00 0.25 0.25 0.25 0.25 0.50 0.25 0.25 0.25 0.50 0.50 0.50 0.33 0.33 0.33 0.33 0.33 0.33 1.00 0.75 0.25 0.25 0.25 0.50 1.00 1.00 0.25 0.25 0.25 0.10 0.25 0.25 0.50 0.20 0.60 0.25 0.10 14 417 Appendix 7. Continued 1 2 3 4 5 6 Lythrum sp. Magnolia sp. 0.33 0.33 Mastixiaceae 1.00 Meliaceae 0.50 0.30 Menispermaceae 0.10 0.80 Menyanthes sp. Moraceae 0.33 0.33 Myrica sp. 0.33 0.33 Myriophyllum sp. Myrtaceae 0.50 0.50 Nuphar sp. Nymphaeaceae Nyssa sp. 0.50 Oenotheraceae Olea sp. 0.33 0.33 Oleaceae 0.25 0.25 0.25 Onagraceae Oreomunnea sp. 1.00 Ostrya sp. 1.00 Papaveraceae Papilionaceae 0.50 Parrotia sp. 1.00 Parthenocissus sp. 0.80 0.20 Pistacia sp. 1.00 Plantaginaceae Plantago sp. Platanus sp. 0.50 Platycarya sp. 1.00 Podocarpium podocarpum – Tricolporopoll. wackersdorfensis 1.00 Polygonum persicaria Polygonum sp. Ptelea sp. 1.00 Pterocarya sp. 0.50 Punica sp. 0.50 0.50 Quercoidites henrici 0.33 0.33 Quercoidites microhenrici = Fagaceae 1.00 Quercus sp. (deciduous) 0.75 Quercus sp. 0.25 0.25 0.25 Ranunculaceae Reevesia sp. 1.00 Rehderodendron sp. 1.00 Rhamnaceae 0.25 0.25 0.25 Rhododendron sp. 0.33 0.33 Rhoipites pseudocingulum (= Tricolporopoll. pseudocingulum) Rhus sp. 0.50 0.50 Rosaceae 0.50 Rubiaceae 0.25 0.25 Rumex sp. Rutaceae 0.25 0.25 0.25 Salix sp. Sambucus sp. 0.50 Sapotaceae 0.75 0.25 Scabiosa sp. Schefflera sp. 1.00 Sideroxylon sp. 0.50 0.50 7 8 9 0.20 10 11 12 13 14 0.80 0.33 0.20 0.10 1.00 0.33 0.33 1.00 1.00 1.00 0.50 1.00 0.33 0.25 0.50 0.50 1.00 0.50 0.50 0.25 0.50 0.50 0.25 0.50 0.50 0.50 0.50 0.50 0.50 0.33 0.25 0.25 0.75 0.25 0.25 0.33 1.00 0.25 0.20 0.50 0.25 0.50 0.30 0.25 1.00 0.50 0.50 0.50 418 Appendix 7. Continued 1 Solanaceae Staphylea sp. Styracaceae Symplocos sp. Tamarix sp. Theligonum sp. Thymelaeaceae Tilia sp. Trapa sp. Tricolpopollenites microhenricii Tricolporopollenites fallax – Leguminosae Tricolporopollenites pseudocingulum Tricolporopollenites liblarensis Trigonobalanopsis sp. Ulmaceae Ulmus sp. Ulmus vel Zelkova Umbelliferae Urticaceae Vaccinium sp. Valerianaceae Viburnum sp. Vitaceae Vitis sp. Zanthoxylum sp. Zelkova sp. 2 3 4 5 6 0.25 1.00 0.50 0.50 0.20 0.60 0.33 0.33 0.33 7 8 9 0.25 10 11 12 0.25 13 0.25 0.20 0.50 0.50 0.30 0.30 1.00 0.40 1.00 1.00 0.30 0.50 0.30 0.40 0.50 1.00 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.50 0.30 0.33 0.20 0.90 0.10 0.33 0.33 0.33 0.60 0.40 0.50 0.25 0.50 0.33 0.33 0.33 0.33 0.33 0.25 0.50 0.33 14 P_MESO HERB of zonal taxa Zonal woody angiosperms=BLD+ BLE+LEG+ SCL+PALM P_BLD of zonal woody angiosperms P_BLE of zonal woody angiosperms P_(SCL+LEG) of zonal woody angiosperms Vegetation formation 0 0 9 4 25 8 23 56 33 51 59 46 26 23 30 27 41 25 12 27 SMF SMF BEF SMF 75 63 69 69 0 1 7 3 0 1 5 2 29 21 24 74 40 58 45 47 31 18 36 29 22 24 19 21 SMF SMF BEF SMF 6 7 7 6 4 4 0 4 3 8 50 24 20 MMF 31 56 28 15 MMF 39 54 27 16 MMF 0.00 1.00 1.00 0.76 3.56 1.00 21.66 1.00 8.00 2.00 47 28 65 13 32 3.42 6.77 10.00 5.27 5.00 12.47 6.00 95 59 24 56 18 4.18 10.33 11.00 26.93 6.00 20.47 8.00 142 49 38 70 21 6 6 6 27 9 89 11 0 BDF 12 36 63 25 10 MMF 15 45 68 22 8 MMF 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 2.00 4.33 2.00 11.00 0.00 41 53 42 22 3 2.11 9.89 1.00 30.56 13.00 18.66 5.00 151 55 41 83 15 2.44 10.22 3.00 34.89 15.00 29.16 5.00 192 55 41 105 12 2 3 2 2 20 59 37 12 67 42 52 10 88 45 48 0.00 5.75 7.75 2.50 1.00 21.33 20.16 2.16 14.98 51.10 1.00 27.08 27.91 4.66 0.00 0.00 0.00 0.00 0.50 0.50 0.00 2.42 2.42 0.00 9.52 9.52 2.00 1.00 0.00 10.00 1.00 30 53 37 16 0 1.00 24.02 17.00 15.83 4.00 119 48 48 57 21 3.00 25.02 17.00 25.83 5.00 149 49 46 73 16 0 4 3 0 16 36 48 16 BEF 17 44 48 46 5 BEF 13 60 45 46 8 BEF 793 977 793+977 1.50 8.33 4.50 0.83 14.50 14.47 5.73 2.24 17.00 48.11 16.00 22.80 10.23 3.07 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.83 0.83 0.00 0.58 0.58 0.00 3.00 3.00 1.00 0.58 1.58 0.00 3.33 4.50 0.00 9.97 1.00 0.00 13.30 5.50 25 53 78 65 17 16 72 20 38 70 19 55 0 2 2 0 2 1 L F L+F 108 857 108+857 0.00 16.08 0.50 0.00 4.75 0.75 19.33 51.38 0.00 20.83 1.25 0.33 0.25 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.08 1.08 0.00 1.58 1.58 0.00 0.00 0.00 0.00 8.33 8.33 1.00 12.08 0.00 8.00 3.25 0.00 9.00 15.33 0.00 30 28 58 56 44 17 0 0 0 17 95 3 30 70 8 32 13 19 6 83 13 44 56 25 11 4 6 23 92 6 2 4 3 Bełchatów / KRAM 217 L P L+P 854 856 854+856 2.50 8.50 3.50 9.00 18.72 5.84 19.33 51.38 11.50 27.22 9.34 0.00 1.33 1.33 0.00 0.30 0.30 0.00 1.00 1.00 0.00 0.66 0.66 0.00 1.61 1.61 0.00 3.00 3.00 1.00 1.76 2.76 0.00 7.50 0.00 2.00 11.72 1.00 2.00 19.22 1.00 23 58 81 63 37 15 66 27 38 65 30 53 0 6 4 0 2 1 0 4 3 12 71 29 27 69 21 39 69 24 0 BDF 6 MMF 4 MMF Achldorf L F L+F 132 823 132+823 2.00 14.50 2.00 0.50 14.66 3.50 12.37 48.43 2.50 29.16 5.50 1.50 2.41 3.91 2.00 0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 3.00 3.00 0.00 7.00 0.00 5.00 9.91 0.00 5.00 16.91 0.00 29 40 69 76 24 22 55 45 22 64 36 44 0 5 2 0 0 0 0 5 2 20 73 10 18 MMF 21 71 17 12 MMF 41 72 14 15 MMF Hausruck / Kobernaussen L P L+P 2+5+801 3.00 21.83 0.83 160 3.50 12.41 1.50 2+5+160+801 13.40 48.15 6.50 34.24 2.33 1.00 1.66 2.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 1.33 1.33 0.00 0.00 0.00 0.00 2.33 2.33 3.00 13.33 0.00 1.00 4.91 0.00 4.00 18.24 0.00 43 29 72 62 38 27 72 28 21 66 34 47 0 8 4 0 2 1 0 6 3 24 92 4 4 BDF 16 80 10 11 BDF 39 87 6 7 BDF Aubenham L F L+F 344 824 344+824 0.00 16.08 0.33 0.00 9.58 0.25 12.38 48.30 0.00 25.66 0.58 0.50 0.58 1.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 10.08 1.00 2.00 3.58 0.00 2.00 13.66 1.00 28 16 44 60 36 17 65 35 10 62 36 27 0 0 0 0 0 0 0 0 0 17 95 10 92 27 94 2 2 2 3 6 4 BDF BDF BDF Hambach, Inden Formation 7B L P L+P 803 971 803+971 1.50 10.50 6.00 0.50 12.50 16.87 9.41 2.02 6.45 50.90 14.00 27.37 15.41 2.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.83 1.83 0.00 1.53 1.53 0.00 0.00 0.00 1.00 1.43 2.43 0.00 6.50 0.00 0.00 14.30 9.00 0.00 20.80 9.00 26 69 95 71 29 19 64 23 44 66 24 63 0 8 5 0 4 3 0 3 2 17 62 35 28 60 33 45 60 34 3 7 6 BEF BEF BEF Hambach, Inden Formation 7F L P L+P 796 975 796+975 1.00 11.50 2.50 0.00 11.00 16.37 9.91 3.10 6.10 50.50 12.00 27.87 12.41 3.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.33 0.00 1.03 1.03 1.00 0.00 1.00 1.00 1.43 2.43 1.00 6.00 0.00 0.00 14.72 7.00 1.00 20.72 7.00 24 65 89 63 33 15 64 25 42 64 27 57 0 3 2 0 1 1 0 2 2 14 82 18 0 BDF 29 56 34 11 BEF 43 64 29 7 MMF Vilella, La Cerdanya L P L+P 807 808 807+808 6.00 12.50 4.50 2.50 11.00 4.63 0.62 41.62 8.50 23.50 9.13 2.00 3.93 5.93 0.00 1.00 1.00 0.00 0.00 0.00 0.00 3.06 3.06 0.00 3.11 3.11 0.00 4.00 4.00 1.00 2.11 3.11 0.00 5.00 0.00 1.00 6.63 2.00 1.00 11.63 2.00 31 45 76 81 19 25 0 0 0 19 66 24 11 MMF 65 22 29 21 10 11 21 54 23 24 SMF 71 21 54 11 6 6 40 59 23 18 MMF Mataschen L F P L+F+P 828 932 931 828+931+932 15.95 46.94 0.00 8.33 15.33 0.00 13.45 7.25 8.00 21.78 9.91 8.00 43.56 32.49 1.50 1.18 4.99 7.67 1.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.70 4.85 5.55 0.00 0.00 1.00 4.25 1.00 10.75 4.67 14.50 5.27 8.92 15.50 17.02 0.00 14.00 2.00 16.00 Brjánslaekur L P L+P 840 841 840+841 4.00 10.75 2.00 2.50 4.66 0.83 -23.20 65.52 6.50 15.41 2.83 0.00 1.58 1.58 0.00 0.33 0.33 0.00 0.00 0.00 0.00 0.83 0.83 0.00 3.08 3.08 0.00 5.25 0.00 1.00 7.16 0.00 1.00 12.41 0.00 Ruszów L F P L+F+P 64 844 864 64+844+864 0.00 1.00 11.00 15.18 51.40 12.00 Sośnica L F P L+F+P 101 107 873 101+107+873 16.67 50.58 LEG component PALM component DRY HERB component MESO HERB component FERN component AZONAL HERB component 0.00 0.00 2.83 2.83 0.00 1.83 0.00 3.66 1.00 8.35 1.00 13.84 342 433 822 342+433+822 0.00 1.50 2.50 9.29 48.36 4.00 11.33 12.35 11.07 34.75 9.00 3.79 8.80 21.59 2.33 2.99 3.57 8.89 4.00 2.00 1.00 7.00 2.00 0.00 0.00 2.00 0.00 0.25 2.16 2.41 0.00 0.25 1.41 1.66 4.00 0.00 1.00 5.00 0.00 1.50 1.41 2.91 0.00 5.33 0.00 38 4.00 6.32 2.00 37 0.00 11.02 0.00 44 4.00 22.67 2.00 119 F P F+P 535 788 535+788 0.00 3.83 1.83 0.50 4.00 17.33 8.69 3.65 16.33 48.35 4.00 21.16 10.52 4.15 1.00 1.00 2.00 0.50 0.50 1.00 0.50 1.33 1.83 0.00 1.41 1.41 0.00 9.20 10.00 3.63 0.00 7.00 4.83 0.00 13.18 0.00 7.00 14.03 10.00 16.81 0.00 Lipnica Mała F P F+P 685 976 685+976 0.00 8.00 1.00 9.50 22.92 8.99 19.63 49.53 9.50 30.92 9.99 0.00 2.83 2.83 0.00 0.75 0.75 BerzdorfWiesa L F L+F 948 917 917+948 1.00 11.83 7.33 0.83 3.50 27.93 35.03 4.23 14.98 51.10 4.50 39.76 41.86 6.06 BerzdorfKleinleipisch L F L+F 951 918 918+951 Děvinska Nová Ves L P L+P Bełchatów / below GTPNunconformity Weingraben Randeck Maar L F P L+F+P Teiritzberg 3.50 0.00 8.70 12.20 0.00 1.00 1.00 1.00 1.00 2.00 7.83 7.37 15.93 31.13 Percent of zonal taxa SCL component 0.00 0.00 3.00 3.00 Total number of taxa BLE component 0.00 0.00 3.33 3.33 Counted but excluded BLD component 0.00 0.00 2.83 2.83 154 986 786 154+986+786 16.22 47.31 AQUATIC component CONIFER component 0.00 0.00 0.00 0.00 Latitude 3.50 1.00 0.00 4.50 Longitude 6.83 0.99 2.74 10.56 Locality No. 6.50 1.83 6.84 15.17 Organ 8.33 3.99 13.52 25.84 Locality 3.00 0.50 9.50 13.00 L F P L+F+P Percent of azonal taxa Zonal taxa=CONIF+BLD+ BLE+SCL+LEG+ PALM+ZONAL HERB P_ZONAL HERB of zonal taxa 0 0 7 4 AZONAL WOODY component P_DRY HERB of zonal taxa Latest Mio-/early Pliocene early Late Miocene Late early/early middle Miocene Age / stratigraphy Table 3. Sites/levels with different organ assemblages. The separate evaluation of every organ assemblage is followed by the combined evaluation. The locality numbers in bold face correspond to the numbers given in Fig. 1; L – leaf assemblage, F – fruit assemblage, P – pollen assemblage; abbreviations for vegetation formation (last column to the right): BDF – broad-leaved deciduous forest, MMF – mixed mesophytic forest, BEF – broad-leaved evergreen forest, SMF – subhumid sclerophyllous forest. (In this study, the assignment of certain taxa to different components has been improved, leading to reevaluation of some assemblages, e.g. Randeck Maar, Děvinska Nová Ves, Bełchatów below GTPN unconformity, Achldorf, Inden 7 F. In Weingraben we have separated the fruit from the leaf record. The final results, however, remain the same and correspond with those presented in Kovar-Eder et al. 2008) 0.00 0.00 2.00 2.00 30 12 56 98 94 6 28 0 69 31 8 0 69 22 39 16 77 18 75 8 31 63 94 0.00 35 2.00 62 0.00 92 2.00 189 23 24 47 14 32 28 25 29 0 23 2 31 12 82 5 26 74 8 60 29 38 49 43 46 75 43 59 57 25 52 25 34 26 27 54 107 0 4 3 4 6 7 BEF BEF BEF 15 57 31 12 BEF 22 64 26 10 MMF 37 61 28 11 MMF 26 22 37 85 32 61 59 51 BDF BDF BDF 0 18 18 13 0 3 9 5 0 16 9 8 59 10 BEF 33 5 BEF 27 14 MMF 38 10 BEF 73 27 17 0 58 38 14 28 65 33 31 13 0 6 3 0 13 84 16 0 BDF 22 7 63 11 26 SMF 10 20 76 14 9 MMF 16.00 23.11 17.69 56.80 0.25 1.63 4.68 6.56 0.75 1.82 2.83 5.40 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 8.00 3.91 4.41 0.00 21.66 20.50 8.91 3.76 10.64 3.00 4.41 1.00 11.44 7.67 15.05 3.00 27.07 22.50 28.35 0.00 27 0.00 87 0.00 71 0.00 185 63 41 72 56 37 59 24 42 17 36 51 104 0 0 0 17 23 11 12 27 28 7 21 26 22 7 14 69 94 1 4 BDF 87 6 7 BDF 69 18 13 MMF 82 9 9 BDF 18.66 15.15 28.35 62.16 0.33 2.41 10.12 12.86 3.33 1.74 3.16 8.23 0.00 0.60 0.75 1.35 0.00 0.00 0.00 0.00 0.00 0.00 0.66 4.31 3.67 7.37 4.33 11.68 1.00 39 1.00 59 1.00 85 3.00 183 66 42 73 62 31 54 22 34 26 25 62 113 0 20 18 14 84 1 15 76 12 12 67 24 9 73 15 11 0.00 0.00 1.00 11.16 1.00 11.91 7.00 13.15 3.50 4.22 0.00 14.57 4.50 16.13 8.00 38.88 0 3 6 4 0 17 12 10 22 20 42 85 BDF BDF MMF MMF