Academia.eduAcademia.edu
DARWINIANA 50(2): 218-251. 2012 Versión inal, efectivamente publicada el 28 de diciembre de 2012 ISSN 1850-1699 (electrónica) ISSN 0011-6793 (impresa) AREAS OF ENDEMISM IN THE SOUTHERN CENTRAL ANDES Lone Aagesen1, Maria J. Bena1, Soledad Nomdedeu1, Adela Panizza1, Ramiro P. López2, 3 & Fernando O. Zuloaga1 1 Instituto de Botánica Darwinion (ANCEFN-CONICET), Labardén 200, Casilla de Correo 22, B1642HYD San Isidro, Buenos Aires, Argentina; laagesen@darwin.edu.ar (author for correspondence). 2 Herbario Nacional de Bolivia, Campus Universitario, Cotacota, calle 27 s/n, Casilla 3-35121 La Paz, Boliva. 3 Laboratorio de Ecoisiología-IEB, Departamento de Biología, Universidad de La Serena, Casilla de correo 599, La Serena, Chile. Abstract. Aagesen, L.; M. J. Bena, S. Nomdedeu, A. Panizza, R. P. López & F. O. Zuloaga. 2012. Areas of endemism in the southern central Andes. Darwiniana 50(2): 218-251. This paper analyzes the distribution of vascular plants species endemic to the southern central Andes (south-western Bolivia and north-western Argentina). All 540 species endemic to the study regions (approx. 720600 km2) have been included in the analysis. The main part of the endemic species is found in semiarid habitats between 1500-3500 m asl pointing to the topographically complex plateau, slope, and valley system of the southern central Andes as the main locations for its endemic flora. The distribution of the endemic species within arid sites is in contrast with that of vascular plant diversity in general, as the most diverse habitat of the region is the moist subtropical Tucumano-Bolivian Yungas forest of the eastern Andes slope. A total of 17 well defined and partly overlapping distribution patterns were indentified. The broadest distribution pattern defines a general area of endemism for the southern central Andes. This area extends through nearly the entire region and is defined by species that are widespread within the region in desert to sub-humid environments of the high Andes, slopes, or valleys. Nearly all other areas of endemism are nested within this broad distribution pattern as successively north-south overlapping areas along the slopes and valleys of the Andes and the Pampeanas Range. Despite the distributional bias of endemism towards the arid sites almost half of the endemic species are restricted to a few high endemic areas that lie in juxtaposition to the main rainfall zones. These areas contain the widest habitat ranges in terms of altitude and rainfall within the region with the endemic species being equally variable in altitude and moisture requirements. Previous defined phytogeographic units were not recognized among the distribution patterns. However, the northern part of the Prepuna can be defined as two partly overlapping distribution patterns. Keywords. Areas of endemism; Argentina; biogeography; Bolivia; endemic vascular plants; southern central Andes. Resumen. Aagesen, L.; M. J. Bena, S. Nomdedeu, A. Panizza, R. P. López & F. O. Zuloaga. 2012. Áreas de endemismo en el sur de los Andes Centrales. Darwiniana 50(2): 218-251. Este trabajo analiza la distribución de especies de plantas vasculares endémicas de la porción sur de los Andes centrales (sudoeste de Bolivia y noroeste de Argentina). En el análisis se incluyeron 540 especies endémicas de la región estudiada (aproximadamente 720.600 km2). La mayoría de las especies endémicas se halla en ambientes semiáridos, entre 1500-3500 m s.m., encontrándose principalmente en valles, laderas y mesetas del topográficamente complejo sur de los Andes centrales. Las áreas de endemismos aquí halladas se presentan consecuentemente en ambientes áridos y no en ambientes húmedos subtropicales de las Yungas tucumano-bolivianas, a pesar de que en esta última región la diversidad de plantas vasculares es mayor. Se identificaron un total de 17 patrones de distribución bien definidos, y parcialmente solapados. El patrón de distribución más amplio define un área general de endemismos para los Andes centrales. Esta área se extiende a lo largo de casi toda la región y está delimitada por especies que se distribuyen en ambientes desérticos a sub-húmedos en laderas, valles o regiones altoandinas. Casi todas las restantes áreas de endemismo se encuentran anidadas dentro del patrón de distribución amplio antes citado, superponiéndose en el sentido norte-sur a lo largo de pendientes y valles de los Andes y de las Sierras Pampeanas. A pesar del sesgo observado en la distribución hacia ambientes Original recibido el 4 de abril de 2012, aceptado el 30 de octubre de 2012 218 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes áridos, aproximadamente la mitad de las especies endémicas están restringidas a unas pocas áreas de alto endemismo, las que se encuentran en yuxtaposición con las zonas más lluviosas de la región. Estas áreas de alto endemismo incluyen los rangos de hábitat más amplios de la región en términos de altitud y precipitación, siendo las especies endémicas igualmente variables en sus requerimientos de humedad y elevación. Las unidades fitogeográficas previamente definidas por diversos autores no fueron encontradas entre los patrones de distribución hallados; no obstante, la parte norte de la provincia Prepuneña puede ser definida con dos patrones de distribución parcialmente superpuestos. Palabras clave. Áreas de endemismo; Argentina; biogeografía; Bolivia; plantas vasculares endémicas; sur de los Andes centrales. INTRODUCTION Located in the centre of the South American dry diagonal, the southern central Andes have received relatively little attention in terms of quantitative phytogeographic studies. At a continental scale, hotspots and areas of endemism have mainly been defined and explored in more humid portions of the Andes, such as the northern Andes or northern central Andes (e.g. Kier et al., 2005; Orme et al., 2005; Sklenář et al., 2011) and in the southern Andes (Arroyo et al., 1999, 2004; Rodríguez-Cabral et al., 2008). Within the southern cone of South America the endemic vascular flora is concentrated in the well documented Chilean hotspot (Arroyo et al., 1999, 2004; Bannister et al., 2012 and references therein). However, the arid southern central Andes appear to be the second most important area of endemism, as checklists and catalogues show that north-western Argentina contains far more endemic species than the remaining of the region including Uruguay, southern Brazil, and southern Paraguay (Zuloaga et al., 1999, 2008). During the Tertiary, the central Andes became relatively dryer than the northern and southern part (Simpson & Todzia, 1990). Comparative floristic studies along the Andes have identified the flora of the southern central Andes as a separate unit among other arid plant formations (López et al., 2006) and found more similarities at generic and family level between the high Andean flora of the humid northern and southern Andes than between these and the high Andean flora of the dry central Andes (Simpson & Todzia, 1990). Summer rainfall is sufficiently high on the eastern slopes to support humid subtropical Yungas forest that is one of the most diverse habitats within the southern cone (Brown, 1995). However, no quantitative studies have examined whether endemism in the southern central Andes is related to the Yungas forest or found within the more arid vegetation on the inner slopes and valleys. In their biogeographic analysis of South America, Cabrera & Willink (1973) and Cabrera (1976) emphasised the distinctiveness of the slope vegetation in the southern central Andes by differentiating the vegetation between 2400-3500 m asl as the Prepuna phytogeographic province. The Prepuna was originally restricted to north-western Argentina (Cabrera, 1976), but later expanded to include the dry inter-Andean valleys of southern Bolivia (López, 2000, 2003). Since the phytogeographic units in the traditional scheme of Cabrera are based on the presence of endemic taxa (Cabrera, 1951, 1953; Ribichich, 2002) it is reasonable to expect that at least part of the endemic species are distributed along the Prepuna, therefore defining the limits of this phytogeographic unit. Here we explore the distribution pattern of the vascular plant species endemic to the southern central Andes including the Prepuna province in its entire extension. Defining areas of endemism is considered fundamental for historical and ecological biogeography (Crisp et al., 2001), but also for conservation studies especially if endemism is found out of the high diverse vegetation types as protected area systems focus on diversity hotspots (Orme et al., 2005). Our main aims are to explore how the endemic species are distributed within the southern central Andes, identify areas of endemism, and examine to which extent these main areas of endemism correspond to pre-established phytogeographic units such as the Prepuna slope vegetation, or found within the high diverse Yungas forest. We used the optimality criterion developed by Szumik et al. (2002) and Szumik & Goloboff (2004) and implemented in the program NDM/VNDM (Goloboff, 2005) to analyze the distribution of the species endemic to the north-western Argentina and south-western Bolivia. 219 DARWINIANA 50(2): 218-251. 2012 MATERIALS AND METHODS Study Region The study region comprises all west Argentinean provinces between the Bolivian border and ~32º S as well as the adjacent southern Bolivia departments of Tarija, Chuquisaca, and Potosí (see maps in Fig. 1-2). The Chaco basin towards the east (Fig. 1) and the hyper arid northern Chile to the west make natural borders of the study region while the southern limit follows the northern limit of the Patagonian biogeographic province (Cabrera, 1979; Cabrera & Willink, 1973; Morrone, 2001). The northern limit follows López (2000) and López & Beck (2002), authors who analyzed the floristic composition of the Bolivian Prepuna and stressed the floristic relationship between the southern Bolivia and the north-western Argentina (see also Ibisch et al., 2003). The study region comprises approx. 720.600 km2. Rainfall mainly occurs during the southern hemisphere summer where the South American Monsoon System (SAMS) brings moist air to the region (Zhou & Lau, 1998). The influence of the SAMS decreases by an east-west and north-south gradient (Fig. 2A). In the southernmost part of the study region rainfall due to the SAMS is low while winter rain is higher due to the influence of the Pacific westerlies that brings winter rain to central Chile (Montecinos & Aceituno, 2003). Traditionally the study region has been divid- Fig. 1. Study region, classic phytogeographic scheme based on Cabrera and Willink (1973). Scale bar = 400 km. Table 1. General results for all analyses under different grid sizes, consensus criterion (%), and consensus rules (ae and aa). For more information on consensus rules and criterion see Materials and Methods. 0.2º x 0.2º Sub-sets (number of deining species) ae 50% ae 33% ae 10% ae 5% aa 50% aa 33% aa 10% aa 5% 220 0.5º x 0.5º 0.5º x 1.0º 25%-50% 50%-75% 10%-20% 25%-50% 10-20%-5-10% 25%-50% 72 (144) 125 (192) 783 (365) 695 (425) 958 (425) 826 (505) 48 39 29 28 40 25 15 14 64 52 40 37 48 26 17 17 305 211 104 87 80 29 9 9 264 184 106 82 65 22 7 7 355 248 123 92 81 7 2 2 286 203 92 70 64 8 2 2 Table 2a. List of endemic species. Each species is assigned to the area of endemism in which it obtained the best score. Altitudinal ranges were obtained from the georeferenced locations and therefore are suggestive - not observed ield data. For area names see Table 2b. Cell Size Species (number of georeferenced records) Alstroemeriaceae Amaryllidaceae Apocynaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Bromeliaceae Cactaceae Cactaceae Cactaceae Calyceraceae Convolvulaceae Dioscoreaceae Fabaceae Fabaceae Iridaceae Poaceae Poaceae Poaceae Poaceae Solanaceae Solanaceae Verbenaceae Violaceae Asteraceae Asteraceae Asteraceae Boraginaceae Brassicaceae Fabaceae Fabaceae Fabaceae Fabaceae Juncaceae Malvaceae Poaceae Solanaceae Valerianaceae Violaceae Asteraceae Alstroemeria bakeri Pax (5) Habranthus pictus Ravenna (1) Philibertia coalita (Lillo) Goyder (3) Hieracium lorentzianum Zahn (8) Hieracium sordidum Griseb. (8) Hieracium vervoorstii Sleumer (1) Luciliocline catamarcense (Cabrera) Anderb. & S.E. Freire (1) Senecio ambatensis Cabrera (1) Puya harmsii (A. Cast.) A. Cast. (5) Acanthocalycium glaucum F. Ritter (3) Gymnocalycium hybopleurum (K. Schum.) Backeb. (7) Lobivia crassicaulis Backeb. ex R. Kiesling (1) Boopis castillonii (Hicken) Pontiroli (1) Cuscuta argentinana Yunck. (6) Dioscorea trifurcata Hauman (1) Lupinus burkartianus C.P. Sm. (2) Senna pachyrrhiza (L. Bravo) H.S. Irwin & Barneby (1) Sisyrinchium bilorum Griseb. (2) Agrostis ambatoensis Asteg. (1) Digitaria catamarcensis Rúgolo (2) Nassella catamarcensis Torres (1) Nassella ragonesei Torres (4) Solanum crebrum C.V. Morton ex L.B. Sm. (1) Solanum mortonii Hunz. (4) Verbena andalgalensis Moldenke (1) Viola joergensenii W. Becker (1) Aphyllocladus ephedroides Cabrera (6) Huarpea andina Cabrera (3) Senecio cremnophilus I.M. Johnst. (3) Cryptantha lateissa R.L. Pérez-Mor. (1) Sarcodraba andina O.E. Schulz (2) Adesmia sanjuanensis Burkart (2) Astragalus boelckei Gómez-Sosa (4) Astragalus nelidae Gómez-Sosa (6) Astragalus pulviniformis I.M. Johnst. (1) Oxychloë castellanosii Barros (7) Nototriche copon Krapov. (4) Nassella famatinensis Torres (4) Solanum glaberrimum C.V. Morton (4) Valeriana corynodes Borsini (3) Viola los-evae Hieron. (2) Aphyllocladus spartioides Wedd. (22) 0.2x0.2 0.5x0.5 1x0.5 0.85 0.92 0.90 0.77 0.21 0.77 0.82 0.83 0.85 1.00 0.75 0.88 0.82 0.86 0.87 0.71 0.88 0.70 0.40 0.78 0.92 0.48 0.77 0.83 0.67 0.83 0.83 0.88 1.00 0.79 0.61 0.83 1.00 0.83 0.81 0.32 0.76 0.74 0.70 0.69 0.72 0.50 0.81 0.67 0.75 0.70 0.72 0.82 0.70 0.69 0.75 0.71 0.77 0.63 0.66 0.75 0.55 0.77 0.69 0.77 0.70 0.83 0.54 Altitude range (mas) 1580 - 3000 1420 1420 - 3040 2700 - 3720 2700 - 3460 2825 3270 3460 1690 - 3410 1500 - 1900 1045 - 1910 2170 3460 1160 - 2930 1420 2960 - 3615 2240 2700 - 3460 3460 480 - 520 1675 1670 - 1960 1710 730 -1120 2650 3750 1000 - 2150 3245 - 3945 3520 - 4150 2405 2900 - 4250 2375 - 3245 3570 - 4530 3320 - 4810 3530 3550 - 4440 4095 - 4305 3195 - 4070 1650 - 2590 2910 - 4090 3430 - 4070 2030 - 3480 Aridity range Área 5.6 - 15.6 15.7 12.1 - 15.7 7.3 - 18.1 6.3 - 18.1 15.9 11.4 18.1 7.3 - 12.2 5.6 - 9.0 5.9 - 17.5 14.3 18.1 5.9 - 15.6 15.7 6.3 - 14.1 6.6 13.3 - 18.1 18.1 12.8 - 12.9 18.1 8.8 - 18.1 14.1 12.6 - 13.9 9.0 12.5 3.8 - 5.3 7.3 - 8.2 7.3 - 10.6 5.0 6.5 - 8.1 7.8 - 9.7 7.4 - 24.1 8.7 - 27.2 7.5 4.4 - 24.1 7.6 - 17.9 8.9 - 14.8 4.4 - 5.7 9.9 - 19.9 12.8 - 14.8 6.6 - 21.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 221 Familiy 222 Table 2a. Continued. Flourensia iebrigii S.F. Blake (15) Deuterocohnia strobilifera Mez (5) Cercidium andicola Griseb. (20) Prosopis ferox Griseb.(30) Oxalis cotagaitensis Griseb. (6) Chlidanthus marginatus (R.E. Fr.) Ravenna (2) Philibertia micrantha (Malme) Goyder (2) Chuquiraga acanthophylla Wedd. (8) Dasyphyllum hystrix (Wedd.) Cabrera (2) Gochnatia cardenasii S.F. Blake (15) Senecio jujuyensis Cabrera (7) Tillandsia camargoensis L. Hrom. (2) Cleistocactus tupizensis (Vaupel) Backeb. & F.M. Knuth (3) Opuntia ferocior (Backeb.) G.D. Rowley (3) Oreocereus celsianus (Lem. ex Salm-Dyck) Riccob. (7) Oreocereus trollii (Kupper) Backeb. (9) Parodia maassii (Heese) A. Berger (13) Tephrocactus chichensis Cárdenas (3) Trichocereus tacaquirensis (Vaupel) Cárdenas ex Backeb. (5) Trichocereus werdermannianus Backeb. (7) Acacia feddeana Harms (14) Mastigostyla cabrerae R.C. Foster (3) Balbisia integrifolia R. Knuth (3) Abutilon fuscicalyx Ulbr. (8) Iochroma cardenasianum Hunz. (8) Bulnesia rivas-martinezii G. Navarro (6) Justicia riojana Lindau (6) Habranthus andalgalensis Ravenna (8) Chiliotrichiopsis ledifolia (Griseb.) Cabrera (3) Flourensia blakeana M.O. Dillon (4) Flourensia tortuosa Griseb. (12) Hysterionica pulchella Cabrera (6) Senecio toroanus Cabrera (3) Tillandsia tenebra L. Hrom. & W. Till (5) Gymnocalycium baldianum (Speg.) Speg. (6) Gymnocalycium pugionacanthum Backeb. ex H. Till (7) Trichocereus andalgalensis (F.A.C. Weber) Hosseus (10) Trichocereus cabrerae R. Kiesling (4) Trichocereus huascha (F.A.C. Weber) Britton & Rose (7) Adesmia pseudoincana Burkart (2) Lupinus alivillosus C.P. Sm. (3) Lupinus tucumanensis C.P. Sm. (4) Gentianella claytonioides (Gilg) T.N. Ho & S.W. Liu (5) Gentianella kurtzii (Gilg) Fabris (5) Poa plicata Hack. (9) Ranunculus lancipetalus Griseb. (8) 0.82 0.63 0.79 0.78 0.80 0.69 0.67 0.79 0.76 0.87 0.58 0.69 0.63 0.80 0.85 0.78 0.84 0.83 0.78 0.85 0.81 0.80 0.64 0.78 0.58 0.73 0.73 0.68 0.54 0.77 0.58 0.81 0.76 0.76 0.79 0.54 0.47 0.89 0.71 0.90 0.62 0.64 0.77 0.67 0.61 0.70 0.58 0.58 0.50 0.77 0.73 0.86 0.59 0.64 0.71 0.62 0.77 0.39 0.75 0.74 0.70 0.80 0.72 0.69 2540 - 3975 2540 - 3600 2160 - 4060 2411 - 4030 2500 - 3500 3680 - 3750 3460 - 3705 3355 - 3810 3355 - 3620 2410 - 3880 3360 - 4380 2600 - 2980 2540 - 3620 3355 - 3930 2990 - 3165 3340 - 4090 2710 - 3760 3020 - 3930 2500 - 3190 3070 - 3290 2410 - 3165 3830 - 4100 3110 - 3355 1370 - 3670 3050 - 3140 2870 - 3190 1810 - 3195 510 - 1670 2490 - 3410 1240 - 2860 1110 - 3250 2270 - 4375 1030 - 2780 1030 - 2070 750 - 1960 845 - 2180 780 - 2180 920 - 3690 190 - 2100 995 - 1710 3180 - 4070 1860 - 4070 2910 - 3690 3640 - 3840 2700 - 4470 670 - 4080 8.4 - 18.1 11.7 - 17.8 8.3 - 19.6 6.9 - 19.2 9.9 - 17.0 8.8 - 8.9 10.5 -15.2 6.7 - 18.6 12.1 - 18.6 9.7 - 20.4 7.2 - 13.7 12.4 - 17.8 12.1 - 17.8 12.1 - 18.6 13.1 - 16.1 8.8 - 18.6 10.0 - 19.0 13.1 - 17.8 15.1 - 17.6 11.4 - 18.2 12.3 - 18.3 6.8 - 10.1 15.6 - 19.5 13.8 - 24 15.0 - 18.1 15.9 - 26.3 5.5 - 11.1 7.6 - 14.5 7.3 - 9.6 7.0 - 10.8 5.5 - 14.4 7.5 - 18.1 4.6 - 10.4 5.9 - 14.7 11.6 - 19.6 5.7 - 12.5 8.9 - 19.7 8.1 - 12.9 5.4 - 13.8 10.7 - 14.1 12.2 - 14.8 11.0 - 14.8 9.5 - 18.1 4.8 - 14.8 8.0 - 18.6 5.8 - 15.7 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 DARWINIANA 50(2): 218-251. 2012 Asteraceae Bromeliaceae Fabaceae Fabaceae Oxalidaceae Amaryllidaceae Apocynaceae Asteraceae Asteraceae Asteraceae Asteraceae Bromeliaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Fabaceae Iridaceae Ledocarpaceae Malvaceae Solanaceae Zygophyllaceae Acanthaceae Amaryllidaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Bromeliaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Fabaceae Fabaceae Fabaceae Gentianaceae Gentianaceae Poaceae Ranunculaceae Table 2a. Continued. Lachemilla asplenifolia (Rothm.) Rothm. (2) Sclerophylax cynocrambe (Griseb.) Griseb. (10) Aloysia catamarcensis Moldenke (11) Viola trilabellata W. Becker (9) Habranthus riojanus Ravenna (2) Aphyllocladus decussatus Hieron. (1) Baccharis famatinensis Ariza (1) Flourensia niederleinii S.F. Blake (5) Senecio cremnicola Cabrera (1) Senecio famatinensis Cabrera (1) Senecio krapovickasii Cabrera (1) Senecio lanosissimus Cabrera (3) Senecio niederleinii Cabrera (2) Menonvillea famatinensis (Boelcke) Rollins (1) Gymnocalycium ritterianum Rausch (2) Trichocereus pseudocandicans Backeb. ex R. Kiesling (3) Trichocereus vatteri R. Kiesling (2) Lupinus hieronymi C.P. Sm. (1) Gentianella riojae (Gilg) Fabris ex J.S. Pringle (2) Nototriche famatinensis A.W. Hill (1) Nototriche glabra Krapov. (1) Nototriche kurtzii Krapov. (1) Nototriche niederleinii A.W. Hill (4) Nototriche pulvilla A.W. Hill (2) Acantholippia riojana Hieron. ex Moldenke (3) Isostigma molinianum Sherff (2) Gymnocalycium albiareolatum Rausch (6) Gymnocalycium kieslingii O. Ferrari (3) Gymnocalycium mazanense (Backeb.) Backeb. (5) Gymnocalycium mucidum Oehme (3) Gymnocalycium uebelmannianum Rausch (2) Anacampseros vulcanensis Añon (3) Philibertia castillonii (Lillo ex T. Mey.) Goyder (2) Eupatorium arachnoideum Legname (2) Eupatorium hickenii Cabrera & Vittet (2) Hieracium kieslingii Cabrera (1) Hieracium luteomontanum Cabrera (1) Laennecia altoandina (Cabrera) G.L. Nesom (2) Perezia volcanensis Cabrera (1) Senecio altoandinus Cabrera (1) Senecio keshua Cabrera (2) Senecio tilcarensis Cabrera (3) Senecio yalae Cabrera (2) Stevia crassicephala Cabrera (2) Stevia yalae Cabrera (2) Puya assurgens L.B. Sm. (2) 0.83 0.74 0.86 0.47 0.78 0.62 0.68 0.73 0.63 0.69 0.86 0.74 0.86 0.64 0.86 0.91 0.44 0.85 0.86 0.86 0.86 0.86 0.87 0.87 0.84 0.79 0.05 0.81 0.81 0.76 0.86 0.90 0.83 0.76 0.64 0.79 0.62 0.89 0.60 0.88 0.75 0.88 0.73 0.88 0.88 0.80 0.88 0.88 0.92 0.88 0.88 0.75 0.88 0.88 0.76 0.46 0.70 0.91 0.76 0.81 0.77 0.89 1.00 0.88 0.89 1.00 1.00 0.81 1.00 0.93 0.76 0.88 1.00 1.00 1.00 0.57 0.73 0.83 0.84 0.81 0.71 0.79 0.38 0.57 0.54 0.50 0.88 0.26 0.50 0.50 2560 - 2700 930 - 2330 760 - 2100 2330 - 4375 2815 - 3030 2330 2490 1550 - 2100 4070 3780 4070 1770 - 3195 3165 - 3690 4070 1405 - 1860 1380 - 2100 1630 - 1860 2560 2250 - 4090 4070 4070 3970 3950 - 4090 3950 - 4090 1155 - 1670 850 - 880 1110 - 1550 1260 - 1360 740 - 1270 740 - 1010 1425 - 2240 2255 - 2270 1440 - 3100 1220 - 1495 1860 - 2190 2720 2720 3605 - 4100 2270 3770 3950 - 4270 3480 - 4110 2190 - 3450 1920 - 2190 2190 - 2670 2190 - 2970 9.6 - 13.3 5.6 - 8.9 6.1 - 15.2 8.7 - 18.1 6.7 - 10.7 8.5 8.8 4.5 - 10.2 14.8 12.0 14.8 5.1 - 10.9 9.8 - 12.9 14.8 8.1 - 8.4 7.0 - 8.8 7.9 - 8.4 9.6 11.9 - 15.0 14.8 14.8 13.8 12.6 - 15.0 12.6 - 15.0 5.3 - 7.6 8.7 - 10.8 10.1 - 10.2 9.3 - 11.8 7.4 - 11.4 7.2 - 11.0 9.8 - 11.2 13.8 - 17.0 11.2 - 27.7 28.0 - 28.6 16.4 - 18.3 16.7 16.7 10.1 - 10.4 17.0 9.6 10.8 - 14.5 9.4 - 12.5 13.3 - 18.3 18.3 - 23.9 14.2 - 18.3 12.6 - 18.3 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6* 6* 6* 6* 6* 6* 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 223 Rosaceae Solanaceae Verbenaceae Violaceae Amaryllidaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Brassicaceae Cactaceae Cactaceae Cactaceae Fabaceae Gentianaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Verbenaceae Asteraceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Anacampserotaceae Apocynaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Bromeliaceae 224 Table 2a. Continued. Lobivia densispina (Werderm.) Buining (2) Lobivia gonjianii (R. Kiesling) R. Kiesling (2) Lobivia jajoiana Backeb. (1) Lobivia marsoneri (Werderm.) Backeb. (1) Parodia chrysacanthion (K. Schum.) Backeb. (3) Pyrrhocactus umadeave (Werderm.) Backeb. (3) Rebutia marsoneri Werderm. (2) Trichocereus fabrisii R. Kiesling (1) Tunilla tilcarensis (Backeb.) D.R. Hunt & J. Iliff (1) Pycnophyllum mucronulatum Mattf. (1) Cuscuta friesii Yunck. (2) Sedum jujuyense Zardini (3) Dioscorea castilloniana Hauman ex Castillón (3) Adesmia arenicola (R.E. Fr.) Burkart (1) Nototriche macrotuba Krapov. (1) Tarasa latearistata Krapov. (1) Chloraea cogniauxii Hauman (3) Plantago jujuyensis Rahn (3) Pilea jujuyensis Sorarú (2) Barbaceniopsis humahuaquensis Noher (4) Junellia ballsii (Moldenke) N. O’Leary & P. Peralta (3) Aphelandra lilacina C. Ezcurra (1) Mulinum axillilorum Griseb. (9) Macropharynx meyeri (C. Ezcurra) Xifreda (4) Matelea schreiteri (T. Mey.) Pontiroli (7) Philibertia afinis (Griseb.) Goyder (1) Aristolochia oranensis Ahumada (2) Gamochaeta longipedicellata Cabrera (2) Mutisia saltensis Cabrera (2) Senecio tocomarensis Cabrera (1) Stevia centinelae Cabrera (1) Vernonia lipeoensis Cabrera (5) Vernonia novarae Cabrera (1) Exhalimolobos burkartii (Romanczuk & Boelcke) Al-Shehbaz & C.D. Bailey (2) Lepidium jujuyanum Al-Shehbaz (1) Petroravenia eseptata Al-Shehbaz (1) Pitcairnia saltensis L.B. Sm. (1) Puya micrantha Mez (4) Parodia nivosa Backeb. (1) Maytenus cuezzoi Legname (4) Sicyos ignarus Mart. Crov. (1) Acalypha friesii Pax & K. Hoffm. (1) Astragalus fabrisii Gómez-Sosa (2) Astragalus punae I.M. Johnst. (1) Gentianella multilora (Griseb.) Fabris (2) 0.85 0.80 0.77 0.84 0.69 0.86 0.86 0.92 0.79 0.87 0.65 0.75 0.48 0.81 0.84 0.71 0.91 0.86 0.46 0.83 0.92 0.79 0.92 0.66 1.00 1.00 0.69 0.88 0.78 1.00 1.00 0.88 0.96 0.92 0.81 1.00 0.97 0.50 0.65 0.50 0.74 0.50 0.50 0.51 0.50 0.50 0.80 0.65 0.50 0.50 0.50 0.81 0.77 0.55 0.80 0.54 0.09 0.83 0.27 0.80 0.70 0.92 0.71 0.69 0.70 0.66 0.66 0.79 0.80 0.81 0.90 0.66 0.65 0.68 0.50 0.68 0.88 0.76 0.83 0.88 0.80 0.79 0.75 0.68 0.75 2560 - 2640 3360 - 3810 3337 4100 2010 - 3055 2750 - 3510 1890 - 2270 3100 2930 3395 3430 - 3750 1800 - 2270 2190 - 2640 3510 4750 3450 2640 - 3980 2670 - 3900 1170 - 1675 1740 - 2270 4000 - 4150 1420 3500 - 4810 950 - 1640 480 - 1860 970 1380 - 2210 3520 - 4100 1155 - 1620 4400 1880 1495 - 1630 360 380 - 1260 3750 4520 1110 1750 - 2000 2620 1495 - 1660 1710 570 4140 - 4940 4070 2720 - 3280 13.8 - 14.6 9.9 - 10.7 10.5 10.1 11.8 - 20.7 8.1 - 10.5 17.0 - 17.9 11.2 10.2 13.2 10.0 - 10.9 17.0 - 23.9 14.6 - 18.3 8.4 12.6 12.0 11.2 - 14.6 11.2 - 14.2 25.8 - 27.3 17.0 - 25.3 10.8 - 12.2 26.3 5.4 - 12.7 25.7 - 27.5 16.4 - 29.0 21.5 20.3 - 27.9 10.0 - 10.1 25.4 - 26.8 7.0 26.6 25.5 - 28.0 33.7 23.5 - 31.8 10.4 7.8 30.9 20.6 - 27.0 11.4 25.1 - 28.0 25.5 25.5 6.8 5.2 13.2 - 16.6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* DARWINIANA 50(2): 218-251. 2012 Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Caryophyllaceae Convolvulaceae Crassulaceae Dioscoreaceae Fabaceae Malvaceae Malvaceae Orchidaceae Plantaginaceae Urticaceae Velloziaceae Verbenaceae Acanthaceae Apiaceae Apocynaceae Apocynaceae Apocynaceae Aristolochiaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Brassicaceae Brassicaceae Brassicaceae Bromeliaceae Bromeliaceae Cactaceae Celastraceae Cucurbitaceae Euphorbiaceae Fabaceae Fabaceae Gentianaceae Table 2a. Continued. Cypella elegans Speg. (2) Nototriche cabrerae Krapov. (2) Peperomia aldrinii Villa (1) Anatherostipa henrardiana (Parodi) Peñailillo (2) Aristida pedroensis Henrard (1) Chusquea deiciens Parodi (1) Jarava breviseta (Caro & E.A. Sánchez) Peñailillo (2) Nassella novari Torres (11) Psychotria argentinensis Bacigalupo (5) Solanum fabrisii Cabrera (1) Solanum zuloagae Cabrera (2) Tropaeolum willinkii Sparre (2) Zephyranthes andina (R.E. Fr.) Traub (4) Metastelma microgynostegia Pontiroli (5) Flourensia suffrutescens (R.E. Fr.) S.F. Blake (8) Microliabum humile (Cabrera) Cabrera (3) Mikania jujuyensis Cabrera (3) Senecio inimus Cabrera (6) Senecio punae Cabrera (12) Stevia jujuyensis Cabrera (4) Trichocline macrorhiza Cabrera (6) Begonia sleumeri L.B. Sm. & B.G. Schub. (3) Dictyophragmus punensis (Romanczuk) Al-Shehbaz (5) Mancoa venturii Al-Shehbaz (5) Lobivia einsteinii (Fric) Rausch (10) Lobivia nigricans Wessner (5) Maihueniopsis minuta (Backeb.) R. Kiesling (4) Parodia stuemeri (Werderm.) Backeb. (8) Silene bersieri Bocquet (3) Silene haumanii Bocquet (4) Ipomoea volcanensis O’Donell (9) Adesmia friesii Burkart ex Ulibarri (7) Lupinus jujuyensis C.P. Sm. (2) Nototriche castillonii B.L. Burtt & A.W. Hill (3) Nototriche friesii A.W. Hill (3) Bartsia jujuyensis Cabrera & Botta (9) Anatherostipa brevis (Torres) Peñailillo (4) Aristida pubescens Caro & E.A. Sánchez (5) Eragrostis andicola R.E. Fr. (21) Solanum calileguae Cabrera (5) Valeriana altoandina Cabrera (5) Hippeastrum aglaiae (A. Cast.) Hunz. & Cocucci (13) Anthericum hickenianum Poelln. (8) Bowlesia hieronymusii H. Wolff (3) Oxypetalum tucumanense (T. Mey.) Goyder & Rapini (3) Philibertia barbata (Malme) Goyder (14) 0.92 0.73 0.66 0.80 0.68 0.73 0.88 0.90 0.33 0.88 0.80 0.82 0.16 0.57 0.80 0.81 0.70 0.70 0.72 0.67 0.66 0.85 0.68 0.77 0.77 0.69 0.90 0.57 0.88 0.78 0.80 0.88 0.88 0.88 0.78 0.86 0.60 0.83 0.74 0.75 0.75 0.74 0.83 0.80 0.79 0.77 0.77 0.94 0.70 0.85 0.66 0.73 0.73 0.81 0.79 0.88 0.85 0.82 0.77 0.87 0.83 0.80 0.88 0.78 0.51 0.78 0.76 0.80 0.76 0.74 0.85 0.93 0.79 0.80 0.63 0.83 0.87 0.79 0.85 0.80 470 - 2450 4520 360 4505 - 4810 570 1640 3230 - 3430 2530 - 4010 1290 - 1770 1480 1355 - 1750 350 - 460 2075 - 3230 785 - 1390 2650 - 3750 2750 - 3900 1495 - 2190 2670 - 4250 3460 - 4350 1155 - 1470 2600 - 4330 2600 - 3280 2530 - 4100 2270 - 4140 2940 - 4160 2610 - 2930 2640 - 3890 2255 - 3030 2670 - 4150 3770 - 4110 1590 - 2460 2270 - 4110 3500 - 4070 4000 - 4410 4010 - 5080 1605 - 4160 3100 - 3680 3260 - 3830 2270 - 4000 1390 - 2680 4080 - 4810 1200 - 2860 1540 - 2270 2385 - 4150 1150 - 1500 1330 - 3100 17.7 - 23.6 7.8 33.7 5.4 - 9.0 20.5 26.5 9.2 - 10.9 7.9 - 13.7 24.1 - 29.1 28.0 21.2 - 27.0 24.2 - 27.9 9.2 - 21.6 22.7 - 31.6 8.0 - 15.4 12.0 - 17.3 18.3 - 28. 0 11.2 - 17.3 6.2 - 15.2 26.7 - 30.3 8.1 - 18.9 11.9 - 18.9 10.1 - 13. 7 6.8 - 17.0 7.1 - 12.9 8.3 - 13.5 10.5 - 13.7 9.0 - 20.1 11.8 - 16.6 6.6 - 13.7 17.0 - 26.7 8.4 - 17.0 9.0 - 10.5 10.1 - 16.5 14.6 - 16.5 10.7 - 27.7 11.2 - 15.6 7.0 - 11.8 8.4 - 17.0 16.5 - 30.3 8.4 - 16.6 11.8 - 34.7 15.2 - 28.0 11.8 - 16.9 17.9 - 40.4 11.4 - 26.8 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7* 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 7** 8 8 8 8 8 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 225 Iridaceae Malvaceae Piperaceae Poaceae Poaceae Poaceae Poaceae Poaceae Rubiaceae Solanaceae Solanaceae Tropaeolaceae Amaryllidaceae Apocynaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Begoniaceae Brassicaceae Brassicaceae Cactaceae Cactaceae Cactaceae Cactaceae Caryophyllaceae Caryophyllaceae Convolvulaceae Fabaceae Fabaceae Malvaceae Malvaceae Orobanchaceae Poaceae Poaceae Poaceae Solanaceae Valerianaceae Amaryllidaceae Anthericaceae Apiaceae Apocynaceae Apocynaceae 226 Table 2a. Continued. Philibertia cionophora (Griseb.) Goyder (6) Flourensia macroligulata Seeligm. (3) Senecio catamarcensis Cabrera (4) Puya lilloi A. Cast. (13) Puya smithii A. Cast. (5) Tillandsia friesii Mez (4) Rebutia minuscula K. Schum. (15) Trichocereus thelegonus (F.A.C. Weber) Britton & Rose (3) Acalypha schreiteri Lillo ex Lourteig & O´Donell (4) Astragalus burkartii I.M. Johnst. (7) Gentianella cosmantha (Griseb.) J.S. Pringle (4) Gentianella tubulosa (Gilg) Fabris (7) Cardenanthus venturi R.C. Foster (2) Ennealophus simplex (Ravenna) Roitman & A. Castillo (3) Caiophora nivalis Lillo (9) Tarasa meyeri Krapov. (8) Chloraea subpandurata Hauman (7) Sacoila secundilora (Lillo & Hauman) Garay (4) Solanum collectaneum C.V. Morton (10) Solanum delitescens C.V. Morton (18) Solanum venturii Hawkes & Hjert. (7) Tropaeolum argentinum Buchenau (9) Valeriana tucumana Borsini (6) Dicliptera cabrerae C. Ezcurra (8) Bomarea macrocephala Pax (13) Schickendantziella trichosepala (Speg.) Speg. (4) Gomphrena radiata Pedersen (8) Hieronymiella speciosa (R.E. Fr.) Hunz. (11) Schinus gracilipes I.M. Johnst. (11) Anthericum argentinense (Hauman) Guagl. (9) Austropeucedanum oreopansil (Griseb.) Mathias & Constance (6) Philibertia nivea (Griseb.) Goyder (7) Flourensia riparia Griseb. (17) Gnaphalium yalaense Cabrera (1) Gutierrezia repens Griseb. (6) Hieracium niederleinii (Zahn) Sleumer (6) Hieracium tucumanicum (Zahn) Sleumer (8) Holocheilus fabrisii Cabrera (4) Hysterionica aberrans (Cabrera) Cabrera (4) Senecio cremeilorus Mattf. (11) Senecio lagellifolius Cabrera (4) Trichocline exscapa Griseb. (17) Berberis lilloana Job (11) Draba burkartiana O.E. Schulz (4) Parodiodoxa chionophila (Speg.) O.E. Schulz (8) 0.82 0.83 0.46 0.82 0.77 0.85 0.76 0.89 0.76 0.77 0.82 0.79 0.72 0.83 0.73 0.79 0.87 0.89 0.81 0.75 0.83 0.90 0.79 0.69 0.83 0.93 0.76 0.97 0.80 0.84 0.83 0.68 0.77 0.66 0.78 0.72 0.70 0.49 1.00 0.75 0.73 0.77 0.76 0.85 0.77 0.73 0.65 0.80 0.79 0.64 0.78 0.78 0.79 0.79 0.82 0.74 0.88 0.71 0.46 0.61 0.77 0.73 0.87 0. 80 0.84 0.83 0.79 0.72 0.88 0.62 0.86 0.66 0.91 0.88 0.45 0.93 0.68 0.86 0.80 0.43 0.53 0.50 0.60 0.88 0.91 0.66 0.73 0.78 0.76 0.75 0.72 0.80 0.75 1150 - 1920 2110 - 2640 2270 - 3980 830 - 2730 710 - 3180 2110 - 3290 1070 - 2710 460 - 1465 820 - 2070 1705 - 4670 1760 - 2190 3100 - 4250 3950 - 4110 2700 - 3040 2830 - 4610 2850 - 3890 1820 - 2970 460 - 1590 390 - 1495 710 - 1920 2140 - 3040 790 - 2270 1150 - 3040 2110 - 2170 1580 - 3250 2640 - 3100 2650 - 3660 1160 - 4035 690 - 3460 1110 - 2640 830 - 3395 1420 - 3070 770 - 3285 2190 2880 - 4540 2400 - 3040 1880 - 3100 1605 - 2140 980 - 4110 650 - 2600 1980 - 3270 2325 - 4470 1400 - 2570 3350 - 4400 3460 - 5000 21.3 - 40.3 6.9 - 17.0 11.4 - 17.0 13.8 - 34.4 12.2 - 24.8 6.9 - 11.2 10.3 - 28.0 11.2 - 33.3 17.1 - 27.4 8.5 - 20.1 9.7 - 18.3 9.5 - 14.8 13.6 - 16.2 12.2 - 13.3 7.5 - 19.1 8.9 - 13.4 12.6 - 22.0 24.5 - 32.5 23.4 - 33.6 22.8 - 36.6 10.7 - 20.3 10.8 - 29.0 12.2 - 40.3 12.6 - 17 8.0 - 22.0 7.2 - 18.0 5.2 - 12.9 6.8 - 15.2 8.75 - 28.2 9.1 - 22.7 12.2 - 34.5 9.2 - 30.4 5.2 - 28. 0 19.0 9.7 - 18.1 10.7 - 18.2 9.1 - 17.1 16.7 - 27.7 15.6 - 23.8 12.8 - 34.4 10.4 - 32.5 5.3 - 8.1 9.1 - 30.7 11.8 - 16.6 9.6 - 18.6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* DARWINIANA 50(2): 218-251. 2012 Apocynaceae Asteraceae Asteraceae Bromeliaceae Bromeliaceae Bromeliaceae Cactaceae Cactaceae Euphorbiaceae Fabaceae Gentianaceae Gentianaceae Iridaceae Iridaceae Loasaceae Malvaceae Orchidaceae Orchidaceae Solanaceae Solanaceae Solanaceae Tropaeolaceae Valerianaceae Acanthaceae Alstroemeriaceae Alliaceae Amaranthaceae Amaryllidaceae Anacardiaceae Anthericaceae Apiaceae Apocynaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Berberidaceae Brassicaceae Brassicaceae Table 2a. Continued. Polypsecadium tucumanense (O.E. Schulz) Al-Shehbaz (2) Puya volcanensis Castillón (3) Tillandsia zecheri W. Till (2) Gymnocalycium spegazzinii Britton & Rose (28) Rebutia deminuta (F.A.C. Weber) A. Berger (3) Stellaria cryptopetala Griseb. (22) Ipomoea lilloana O’Donell (6) Pteropepon argentinense Mart. Crov. (7) Carex pseudomacloviana G.A. Wheeler (1) Astragalus joergensenii I.M. Johnst. (9) Lupinus austrorientalis C.P. Sm. (5) Lupinus ultramontanus C.P. Sm. (3) Gentianella bromifolia (Griseb.) T.N. Ho & S.W. Liu (6) Gentianella hieronymi (Gilg) Fabris (16) Geranium leucanthum Griseb. (11) Ennealophus imbriatus Ravenna (12) Craniolaria argentina Speg. (7) Phemeranthus punae (R.E. Fr.) Eggli & Nyffeler (7) Festuca superba Parodi ex Türpe (14) Festuca uninodis Hack. (3) Nassella arcaënsis (Speg.) Torres (12) Nassella parva Torres (8) Poa ragonesei Nicora (2) Tragus andicola Zapater & Sulekic (17) Rumex lorentzianus Lindau (6) Tetraglochin paucijugatum (I.M. Johnst.) Rothm. (8) Manettia jorgensenii Standl.(9) Solanum montigenum (C.V. Morton) Cabrera (6) Solanum vernei Bitter & Wittm. (6) Urtica lilloi (Hauman) Geltman (4) Valeriana polybotrya (Griseb.) Höck (10) Glandularia lilloana (Moldenke) Botta (17) Lantana magnibracteata Tronc.(13) Lantana tilcarensis Tronc. (11) Viola castillonii (W. Becker) Xifreda & Sanso(9) Zephyranthes diluta Ravenna (4) Baccharis kurtziana Ariza (6) Baccharis niederleinii Heering (4) Cabreraea andina (Cabrera) Bonifacino (5) Flourensia hirta S.F. Blake (9) Senecio diaguita Cabrera (8) Senecio sanagastae Cabrera (3) Tagetes riojana M. Ferraro (4) Lobivia famatimensis (Speg.) Britton & Rose (4) Pyrrhocactus kattermannii R. Kiesling (2) 0.79 0.44 0.86 0.76 0.78 0.84 0.78 0.74 0.57 0.72 0.77 0.59 0.81 0.73 0.75 0.73 0.73 0.83 0.81 0.78 0.76 0.66 0.76 0.83 0.70 0.76 0.59 0.78 0.85 0.86 0.81 0.68 0.77 0.69 0.75 0.55 0.46 0.72 0.79 0.71 0.71 0.73 0.90 0.81 0.88 0.71 0.78 0.89 0.82 0.85 0.79 0.72 0.73 0.83 0.76 0.75 0.88 0.89 0.51 0.90 0.79 0.85 0.64 0.52 0.90 0.79 0.76 0.70 0.89 0.68 0.51 0.70 0.73 0.74 0.84 0.80 0.71 3040 - 3615 2670 - 3720 1985 - 2740 1290 - 3160 2000 - 3000 1860 - 4350 750 - 2320 350 - 2610 3280 1670 - 3220 3110 - 4000 2030 - 4090 2600 - 3940 3395 - 4580 1660 - 3180 820 - 3240 400 - 2130 3260 - 3860 1800 - 3940 3400 - 4160 2270 - 4140 2270 - 3460 1710 - 1840 1900 - 3690 2300 - 3460 2460 - 3400 1490 - 2430 470 - 3460 2270 - 3100 1130 - 1840 730 - 3410 295 - 3100 330 - 2270 1110 - 2930 2490 - 3510 770 - 4810 1815 - 3195 1410 - 2230 2240 - 3830 1660 - 3680 840 - 2665 1030 - 2780 1110 - 2100 1230 - 2770 2100 - 3000 12.2 - 14.1 11.0 - 14.8 6.1 - 6.2 7.5 - 17.2 11.48 - 20.72 6.6 - 16.6 10.3 - 31.7 11.5 - 28.1 16.6 8.5 - 17.0 5.9 - 16.6 13.6 - 17.4 11.0 - 18.1 10.4 - 17.8 12.2 - 26.4 9.1 - 29.0 6.3 - 28.0 7.0 - 14.1 12.2 - 25.9 8.9 - 13.3 5.3 - 19.6 10.7 - 18.1 15.2 - 25.5 6.7 - 15.5 11.0 - 18.1 10.1 - 15.9 12.8 - 19.6 9.2 - 24.7 9.7 - 17.0 15.2 - 28.4 7.3 - 19.2 6.8 - 27.9 9.9 - 26.6 7.5 - 18.7 11.0 - 17.0 5.8 - 27.1 6.2 - 11.9 6.4 - 10.2 6.2 - 12.9 4.8 - 11.0 5.1 - 12.9 4.6 - 10.5 8.8 - 12.0 4.1 - 16.7 8.81 - 18.58 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 8* 9 9 9 9 9 9 9 9 9 9 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 227 Brassicaceae Bromeliaceae Bromeliaceae Cactaceae Cactaceae Caryophyllaceae Convolvulaceae Cucurbitaceae Cyperaceae Fabaceae Fabaceae Fabaceae Gentianaceae Gentianaceae Geraniaceae Iridaceae Martyniaceae Montiaceae Poaceae Poaceae Poaceae Poaceae Poaceae Poaceae Polygonaceae Rosaceae Rubiaceae Solanaceae Solanaceae Urticaceae Valerianaceae Verbenaceae Verbenaceae Verbenaceae Violaceae Amaryllidaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Cactaceae Cactaceae 228 Table 2a. Continued. Tephrocactus alexanderi (Britton & Rose) Backeb. (11) Adesmia hunzikeri Burkart (5) Adesmia nanolignea Burkart (8) Senna fabrisii (L. Bravo) H.S. Irwin & Barneby (7) Guindilia cristata (Radlk.) Hunz. (7) Sclerophylax kurtzii Di Fulvio (19) Solanum kurtzianum Bitter & Wittm. (3) Hieronymiella marginata (Pax) Hunz. (15) Anacampseros kurtzii Bacigalupo Mulinum famatinense H. Wolff (6) Baccharis rupestris Heering (17) Conyza cordata Kuntze (9) Chersodoma argentina Cabrera (24) Chersodoma glabriuscula (Cabrera) M.O. Dillon & Sagást. (8) Chuquiraga calchaquina Cabrera (6) Hieracium streptochaetum Zahn (8) Hyaloseris rubicunda Griseb. (21) Mutisia kurtzii R.E. Fr. (29) Senecio argophylloides Griseb. (12) Senecio cylindrocephalus Cabrera (5) Senecio friesii Cabrera (9) Senecio octolepis Griseb. (21) Senecio pseudotites Griseb. (8) Senecio schreiteri Cabrera (8) Draba tucumanensis O.E. Schulz (6) Lepidium argentinum Thell. (8) Deuterocohnia haumanii A. Cast. (7) Tephrocactus weberi (Speg.) Backeb. (11) Trichocereus terscheckii (Parm. ex Pfeiff.) Britton & Rose (23) Pycnophyllum convexum Griseb. (14) Euphorbia marayensis Subils (3) Balbisia calycina (Griseb.) Hunz. & Ariza (30) Caiophora mollis (Griseb.) Urb. & Gilg (6) Mirabilis bracteosa (Griseb.) Heimerl (17) Bromus lexuosus Planchuelo (12) Jarava scabrifolia (Torres) Peñailillo (8) Nassella caespitosa Griseb. (29) Panicum chloroleucum Griseb. (27) Poa dolichophylla Hack. (19) Poa hieronymi Hack. (9) Poa nubensis Giussani, Fernández Pepi & Morrone (11) Sporobolus maximus Hauman (7) Polygala argentiniensis Chodat (10) Polygala jujuyensis Grondona (10) Fabiana friesii Dammer (9) 0.62 0.71 0.45 0.80 0.64 0.71 0.74 0.77 0.61 0.66 0.51 0.44 0.65 0.43 0.68 0.70 0.58 0.78 0.69 0.75 0.72 0.69 0.68 0.74 0.61 0.72 0.68 0.74 0.80 0.80 0,72 0,65 0,79 0.85 0.68 0.58 0.70 0.71 0.72 0.54 0.57 0.68 0.89 0.59 0.59 0.62 0.65 0.65 0.82 0.63 0.77 0,76 0,68 0,81 0,78 620 - 1960 2180 - 3510 3590 - 4360 1070 - 2230 1460 - 2650 510 - 2765 1030 - 2780 1740 - 3620 3200 - 3800 3180 - 4810 1310 - 3940 1470 - 3200 2830 - 4680 2340 - 4320 2420 - 3450 1500 - 4150 567 - 2530 2750 - 4110 2770 - 4150 1250 - 3265 2505 - 3830 1190 - 3510 2250 - 3460 810 - 2550 3000 - 4470 1140 - 3510 1170 - 2010 560 - 2050 600 - 2720 3105 - 4610 600 - 3500 1530 - 4375 2245 - 3960 1580 - 4390 1850 - 4350 1070 - 3680 2270 - 4640 1065 - 3500 910 - 3180 1220 - 2190 3500 - 4600 1780 - 2950 1410 - 3195 1920 - 4240 1730 - 4310 4.4 - 10.9 5.8 - 8.5 5.6 - 10.1 4.2 - 8.1 3.1 - 9.3 3.8 - 14.8 4.6 - 10.5 8.5 - 25.2 6.66 - 13.55 6.2 - 14.8 9.1 - 24.2 11.9 - 28.1 5.0 - 18.1 7.3 - 18.1 6.5 - 15.6 9.1 - 26.1 4.2 - 14.6 6.9 - 18.5 5.1 - 14.8 7.9 - 12.2 8.4 - 13.0 7.4 - 19.0 9.8 - 18.1 5.5 - 9.1 7.3 - 18.6 7.1 - 16.1 5.0 - 22.0 4.1 - 9.2 5.9 - 28.0 5.1 - 19.1 8.25 - 13.13 4.8 - 21.2 6.3 - 16.5 6.7 - 22-6 6.9 - 22.1 7.0 - 20.6 7.5 - 18.1 5.2 - 11.3 3.1 - 29.2 8.3 - 28.6 6.7 - 16.9 5,3 - 8,6 5,5 - 23,4 5,1 - 15,4 5,6 - 15,9 9 9 9 9 9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 DARWINIANA 50(2): 218-251. 2012 Cactaceae Fabaceae Fabaceae Fabaceae Sapindaceae Solanaceae Solanaceae Amaryllidaceae Anacampserotaceae Apiaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Brassicaceae Brassicaceae Bromeliaceae Cactaceae Cactaceae Caryophyllaceae Euphorbiaceae Ledocarpaceae Loasaceae Nyctaginaceae Poaceae Poaceae Poaceae Poaceae Poaceae Poaceae Poaceae Poaceae Polygalaceae Polygalaceae Solanaceae Table 2a. Continued. Jaborosa sativa (Miers) Hunz. & Barboza (10) Lycium schreiteri F.A. Barkley (8) Sclerophylax adnatifolia Di Fulvio (23) Sclerophylax caducifructus Di Fulvio (7) Sclerophylax tenuicaulis Di Fulvio (10) Solanum spegazzinii Bitter (8) Aloysia castellanosii Moldenke (15) Viola hieronymi W. Becker (2) Bulnesia schickendantzii Hieron. ex Griseb. (40) Plectrocarpa rougesii Descole, O´Donell & Lourteig (18) Gymnocalycium saglionis (Cels) Britton & Rose (35) Adesmia cytisoides Griseb. (14) Hoffmannseggia pumilio (Griseb.) B.B. Simpson (19) Oenothera lasiocarpa Griseb. (8) Oxalis famatinae R. Knuth (24) Jarava media (Speg.) Peñailillo (24) Hieronymiella aurea Ravenna (5) Philibertia subnivea (Malme) Goyder (1) Porophyllum cabrerae D.J.N. Hind (2) Verbesina saltensis Cabrera (1) Ixorhea tschudiana Fenzl (10) Puya castellanosii L.B. Sm. (6) Puya weberiana E. Morren ex Mez (5) Tillandsia albertiana Verv. (1) Acanthocalycium thionanthum (Speg.) Backeb. (11) Gymnocalycium marsoneri Fric ex Y. Ito (2) Lobivia korethroides (Werderm.) Werderm. (2) Parodia aureicentra Backeb. (3) Parodia penicillata Fechser & Steeg (1) Tephrocactus molinensis (Speg.) Backeb. (3) Trichocereus angelesii R. Kiesling (2) Senna rigidicaulis (Burkart ex L. Bravo) H.S. Irwin & Barneby (2) Geranium taiense Aedo & Muñoz Garm. (2) Nototriche lorentzii A.W. Hill (1) Solanum incurvipilum Bitter (1) Solanum salamancae Hunz. & Barboza (3) Baccharis petrophila R.E. Fr. (2) Tillandsia brealitoensis L. Hrom. (1) Lobivia chrysantha (Werderm.) Backeb. (2) Lobivia walteri R. Kiesling (1) Trichocereus smrzianus (Backeb.) Backeb. (3) Dioscorea stenopetala Hauman (6) Euphorbia vervoorstii Subils (2) Pelexia ovatifolia M.N. Correa (1) Glyceria saltensis Sulekic & Rúgolo (1) 0,74 0,62 0,61 0,77 0,47 0,76 0,81 0,77 0,84 0,82 0,74 0,74 0,81 0,84 0,54 0,91 0,44 0,75 0,60 0,85 0,92 0,75 0,50 0,90 0,81 0,86 0,53 1,00 1,00 0,72 0,61 0,71 0,93 0,88 0,90 0,88 0,85 0,87 0,89 1,00 0,93 0,82 0,79 0,80 1,00 0,80 0,82 0,88 0,80 0,90 0,88 0,80 0,89 0,86 0,88 0, 75 0,85 0,90 0,74 0,83 0,75 1,00 0,73 0,79 0,64 940 - 3520 1140 - 3200 1150 - 2900 1620 - 2300 910 - 3290 1840 - 4390 670 - 2460 3040 - 3195 1060 - 3265 970 - 2710 610 - 2600 1530 - 4100 1750 - 3500 2580 - 4070 1670 - 4610 2102 - 4170 2260 - 3230 1880 2900 - 3015 1720 1540 - 1965 2110 - 2930 1650 - 3510 1160 1640 - 3440 810 - 1650 3000 - 4200 2610 - 3230 1650 1480 - 2190 1640 - 1740 2220 - 2480 2730 - 2820 4150 1705 1590 - 2820 3260 - 3565 2480 3260 - 3950 2240 3230 - 3540 1000 - 1820 740 - 1290 800 3540 3,3 -23,7 5,3 - 12,9 4,3 - 16,7 4,3 - 6,8 4,3 - 15,3 6,5 - 11,8 4,0 - 10,6 10,9 - 15,1 4,1 - 19,9 4,0 - 9,6 6,3 - 29 4,7 - 17,0 4,9 - 11.9 9,2 - 17,4 4,2 - 19,1 5,1 - 17,0 5,9 - 9,2 9,1 8,2 - 9,0 10,6 6,3 - 9,9 6,2 - 8,4 5,9 - 10,5 14,1 5,4 - 9,0 19,0 - 19,9 6,1 - 11,3 5,8 - 9,2 7,0 6,7 - 9,3 7,8 - 8,3 6,8 - 8,4 9,7 - 12,9 11,8 9,6 6,9 - 10,2 8,4 6,4 8,1 - 8,7 11,5 9,2 - 9,5 18,7 - 36,6 12,5 - 21,7 22,1 9,5 10 10 10 10 10 10 10 10 10 10 10 10* 10* 10* 10* 10* 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11* 11* 11* 11* 11* 11* 11* 11* 11* L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 229 Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Verbenaceae Violaceae Zygophyllaceae Zygophyllaceae Cactaceae Fabaceae Fabaceae Onagraceae Oxalidaceae Poaceae Amaryllidaceae Apocynaceae Asteraceae Asteraceae Boraginaceae Bromeliaceae Bromeliaceae Bromeliaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Fabaceae Geraniaceae Malvaceae Solanaceae Solanaceae Asteraceae Bromeliaceae Cactaceae Cactaceae Cactaceae Dioscoreaceae Euphorbiaceae Orchidaceae Poaceae 230 Table 2a. Continued. Senecio fabrisii Cabrera (2) Senecio vervoorstii Cabrera (2) Lobivia haematantha (Speg.) Britton & Rose (4) Gentianella pulla (Griseb.) T.N. Ho & S.W. Liu (5) Tarasa trisecta (Griseb.) Krapov. (7) Oxalis sleumeri Lourteig (3) Poa cabreriana Anton & Ariza (5) Sclerophylax cocuccii Di Fulvio (5) Alternanthera cana Suess. (2) Gomphrena cladotrichoides Suess. (8) Chuquiraga echegarayi Hieron. (4) Senecio calingastensis Tombesi (2) Heliotropium ruiz-lealii I.M. Johnst. (3) Descurainia brevifructa Boelcke ex Mart.-Laborde (1) Pterocactus megliolii R. Kiesling (2) Pyrrhocactus sanjuanensis (Speg.) Backeb. (3) Tephrocactus halophilus (Speg.) Backeb. (1) Prosopis calingastana Burkart (2) Viola roigii Rossow (1) Senecio belenensis Griseb. (1) Senecio delicatulus Cabrera & Zardini (2) Senecio lilloi Cabrera (1) Puna bonniae D.J. Ferguson & R. Kiesling (1) Tephrocactus geometricus (A. Cast.) Backeb. (4) Calceolaria lepidota Kraenzl. (1) Silene margaritae Bocquet (1) Lecanophora jarae (Phil.) Krapov. (4) Nototriche chuculaensis Krapov. (1) Nototriche viridula Krapov. (1) Giliastrum castellanosii J.M. Porter (2) Jaborosa cabrerae Barboza (3) Alternanthera cinerella Suess. (3) Bowlesia venturii Mathias & Constance (2) Eryngium lorentzii H. Wolff (2) Cynanchum samuelssonii Malme (1) Jobinia glossostelma (Lillo ex T. Mey.) Liede & Meve (2) Petalostelma sarcostemma (Lillo) Liede & Meve (3) Aristolochia melanoglossa Speg. (4) Baccharis cabrerae Ariza (1) Baccharis polygama Ariza (2) Baccharis rodriguezii Ariza (2) Hieracium cienegae Zahn (4) Leptostelma tucumanense (Cabrera) A. Teles (2) Lomanthus calchaquinus (Cabrera) B. Nord. & Pelser (2) Microliabum eremophilum (Cabrera) H. Rob. (1) 0,77 0,93 0,68 0,92 0,77 0,75 0,68 0,65 0,79 0,75 0,76 0,92 0,92 0,92 0.93 0.88 0.78 0.92 0,61 0,70 0,74 0,51 0,66 0,73 0,46 0,86 0,74 0,61 0,76 0,64 0,90 0,69 0,69 0,82 0,68 0,73 0,69 0,80 1,00 0,88 0,71 0,75 0,80 0,90 0,80 0,48 0,88 0,75 0,88 0,75 0,85 0,84 0,88 1,00 0,81 0,54 0,70 0,88 0,88 0.84 0.80 0.80 0.88 0,85 0,73 0,53 0,74 0,82 0,91 0,73 0,86 0,83 0,72 0,75 0,62 1,00 1,00 1.00 1720 - 3130 2300 - 3370 1900 - 3540 2580 - 3230 1640 - 2900 4370 - 5150 1810 - 4645 1510 - 2900 2160 - 2330 580 - 1590 2510 - 3250 2890 - 3430 820 - 1070 2940 660 - 920 600 - 1330 600 2180 - 2590 2960 3410 4090 - 4240 2600 2150 1645 - 3070 1810 3410 3140 - 3690 4240 3740 2600 - 2900 2730 - 3420 1790 - 1800 3040 - 3615 3040 1955 1420 - 1820 660 - 975 1610 - 2130 2860 2885 3250 2570 - 3040 1740 - 3040 2930 - 3800 3250 5,8 - 9,7 4,3 - 8,4 5,7 - 9,0 9,2 - 15,6 5,5 - 10,8 11,4 - 19,1 5,5 - 18,1 4,3 - 11,4 5,1 - 6,6 3,6 - 5,6 9,7 - 15,6 11,7 - 12,2 4,3 - 4,7 15,1 3,7 - 4,4 3,8 - 9,0 4,5 8,4 - 8,5 15,6 7,3 5,5 - 5,7 3,1 4,3 4,1 - 5,3 5,5 7,3 3,3 - 5,5 5,5 7,2 3,1 - 3,3 5,6 - 7,0 7,9 - 9,0 12,2 - 14,1 12,2 9,6 15,7 - 22,0 22,1 - 28,8 6,3 - 18,6 7,6 10,7 8,3 11.4 - 13.2 12.2 - 15.0 11.4 - 14.7 8.3 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 DARWINIANA 50(2): 218-251. 2012 Asteraceae Asteraceae Cactaceae Gentianaceae Malvaceae Oxalidaceae Poaceae Solanaceae Amaranthaceae Amaranthaceae Asteraceae Asteraceae Boraginaceae Brassicaceae Cactaceae Cactaceae Cactaceae Fabaceae Violaceae Asteraceae Asteraceae Asteraceae Cactaceae Cactaceae Calceolariaceae Caryophyllaceae Malvaceae Malvaceae Malvaceae Polemoniaceae Solanaceae Amaranthaceae Apiaceae Apiaceae Apocynaceae Apocynaceae Apocynaceae Aristolochiaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Table 2a. Continued. Mikania minima (Baker) B.L. Rob. (2) Mikania siambonensis Hieron. (1) Senecio asplenifolius Griseb. (3) Senecio cajonensis Cabrera (1) Senecio kunturinus Cabrera (2) Senecio maculatus Cabrera (2) Senecio roripifolius Cabrera (3) Senecio tucumanensis Cabrera (2) Tagetes rupestris Cabrera (4) Begonia taiensis Lillo (8) Acanthocalycium ferrarii Rausch (2) Gymnocalycium bayrianum H. Till (4) Lobivia bruchii Britton & Rose (4) Lobivia schreiteri A. Cast. (1) Trichocereus schickendantzii (F.A.C. Weber) Britton & Rose (3) Stellaria aphanantha Griseb. (1) Carex tucumanensis G.A. Wheeler (1) Dioscorea entomophila Hauman (2) Sophora rhynchocarpa Griseb. (3) Hypoxis catamarcensis Brackett (1) Mastigostyla johnstoni R.C. Foster (1) Sisyrinchium tucumanum Ravenna (3) Caiophora aconquijae Sleumer (6) Nototriche caesia A. W. Hill (3) Nototriche cajonensis Krapov. (2) Nototriche calchaquensis Krapov. (2) Nototriche rohmederi Krapov. (2) Nototriche tucumana Krapov. (1) Schreiteria macrocarpa (Speg.) Carolin (1) Oenothera pedunculifolia W. Dietr. (4) Chloraea castillonii Hauman (3) Chloraea phoenicea Speg. (2) Plantago venturii Pilg. (3) Nassella fabrisii Torres (6) Nassella leptothera (Speg.) Torres (3) Ranunculus hilii Lourteig (4) Lachemilla grisebachiana (L.M. Perry) Rothm. (1) Cestrum kunthii Francey (8) Eriolarynx iochromoides (Hunz.) Hunz. (3) Eriolarynx lorentzii (Dammer) Hunz. (8) Jaborosa oxipetala Speg. (3) Solanum sanctae-rosae Hawkes (5) Valeriana lasiocarpa Griseb. (2) Viola calchaquiensis W. Becker (1) Viola lilloana W. Becker (2) 0.32 0.85 0.77 0.81 0.80 0.85 0.78 0.81 0.76 0.68 0.77 0.80 0.74 0.39 0.85 0.75 0.81 0.75 0.69 0.88 0.85 0.75 0.91 0.86 0.86 0.77 0.68 0.48 0.52 0.66 0.83 0.77 0.42 0.77 0.85 0.81 0.69 0.87 0.80 0.83 0.69 0.81 0.82 0.88 0.92 0.88 0.85 0.92 0.69 0.74 0.72 0.78 0.88 0.66 0.94 0.71 0.88 0.78 0.86 0.72 0.79 0.82 0.86 0.88 0.84 0.80 0.89 0.92 0.88 0.77 0.72 0.79 0.81 0.86 0.72 0.76 0.86 0.77 0.84 0.83 0.75 0.77 810 - 1070 1300 3720 - 4375 4560 4460 - 4470 1650 - 4375 3360 - 3710 3510 - 4000 1820 - 3810 2100 - 3540 2320 - 3110 890 - 1490 2100 - 3180 1970 1860 - 2170 3210 3040 530 - 1740 930 - 2030 1740 3040 560 - 2560 1710 - 3040 3460 - 4440 4115 - 4460 4470 - 4760 4420 - 4760 4375 2445 830 -2500 2110 - 3045 3230 - 3640 1260 - 3040 990 - 3180 1880 - 2940 1660 - 1840 2700 940 - 1960 1510 - 1600 1280 - 1940 690 - 1960 2840 - 3220 3210 - 3720 4375 4190 - 4515 15.7 - 19.9 34.4 12.3 - 17.8 13.1 12.9 - 18.6 12.4 - 17.8 8.4 - 14.9 9.3 - 14.6 12.2 - 24.5 11.0 - 15.8 8.3 - 8.6 15.2 - 28.4 8.6 - 15.8 18.2 9.3 - 19.3 10.1 12.2 24.4 - 31.8 10.5 - 19.6 15.0 12.2 12.4 - 34.4 12.2 - 15.7 12.4 - 18.1 10.7 - 12.9 18.6 - 21.3 17.8 - 21.3 17.8 10.4 9.7 - 34.5 6.9 - 12.2 9.1 - 11.2 12.2 - 19.7 12.2 - 32.4 9.1 - 11.3 15.0 - 26.4 13.3 9.6 - 34.0 15.7 - 29.2 14.2 - 34.4 15.4 - 25.3 9.1 - 12.5 10.1 - 14.7 17.8 11.8 - 12.7 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes 231 Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Begoniaceae Cactaceae Cactaceae Cactaceae Cactaceae Cactaceae Caryophyllaceae Cyperaceae Dioscoreaceae Fabaceae Hypoxidaceae Iridaceae Iridaceae Loasaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Montiaceae Onagraceae Orchidaceae Orchidaceae Plantaginaceae Poaceae Poaceae Ranunculaceae Rosaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Valerianaceae Violaceae Violaceae 232 Table 2a. Continued. Viola munozensis W. Becker (1) Viola rodriguezii W. Becker (4) Viola tucumanensis W. Becker (2) Justicia hunzikeri Ariza (5) Gymnocalycium castellanosii Backeb. (15) Ramorinoa girolae Speg. (6) Neobouteloua paucirracemosa M.G. López & Biurrun (4) Chlidanthus yaviensis (Ravenna) Ravenna (1) Antennaria sleumeri Cabrera (1) Hieracium neofurcatum Sleumer (2) Stevia okadae Cabrera (1) Vernonia centauropsidea Hieron. (3) Puya yakespala A. Cast. (3) Lobivia chrysochete (Werderm.) Wessner (1) Lobivia sanguinilora Backeb. (1) Rebutia margarethae Rausch (1) Gentianella cabrerae (Fabris) Fabris (1) Mastigostyla brachiandra Ravenna (1) Mastigostyla implicata Ravenna (1) Nototriche sleumeri Krapov. (2) Danthonia rugoloana Sulekic (1) Nassella yaviensis Torres (1) Solanum neorossii Hawkes & Hjert. (2) Tropaeolum atrocapillare Sparre (2) Habranthus ruizlealii Ravenna (1) Chiliotrichiopsis keidelii Cabrera (39) Eupatorium saltense Hieron. (31) Eupatorium tucumanense Lillo & B.L. Rob. (11) Flourensia leptopoda S.F. Blake (4) Stevia minor Griseb. (21) Descurainia adpressa Boelcke (6) Gymnocalycium ragonesei A. Cast. (1) Carex humahuacaensis G.A. Wheeler (2) Adesmia crassicaulis Phil. (4) Astragalus crypticus I.M. Johnst. (8) Gentianella punensis (Fabris) Fabris (1) Festuca nemoralis Türpe (14) Festuca parodiana (St.-Yves ex Parodi) Nicora (15) Jarava hystricina (Speg.) Peñailillo (10) Nassella glabripoda Torres (11) Nassella meyeri Torres (9) Pappostipa hieronymusii (Pilg.) (4) Jaborosa lanigera (Phil.) Hunz. & Barboza (9) Solanum annuum C.V. Morton (10) Viola evae Hieron. ex W. Becker (2) 0.81 0.67 0.81 0.88 0.82 0.85 0.74 0.57 0.62 0.92 0.75 0.92 0.71 0.81 0.86 0.92 0.86 0.74 0.82 0.71 0.74 0.78 0.60 0.79 0.73 0.75 0.73 0.73 0.73 0.73 0.73 0.73 0.83 0.79 0.73 0.73 0.73 4300 3000 - 4560 3400 - 3480 560 - 1080 400 - 1100 800 - 1275 310 - 750 3460 1800 3220 - 3940 3685 1660 - 1850 3280 - 3940 3480 3610 3940 2990 3280 3540 4150 - 4410 3680 3540 3520 2610 - 3030 280 2490 - 4620 1310 - 2590 560 - 1720 410 -2420 2940 - 4250 3480 - 4820 180 3705 - 4030 3040 - 4375 2960 - 4375 4250 830 - 4090 1000 - 2870 2815 - 4210 1050 - 4100 2410 - 3705 2470 - 4480 3510 - 4680 2310 - 3685 4070 - 4170 17.3 10.5 - 17.8 12.2 - 13.3 9.0 - 16.0 8.9 - 15.9 6.4 - 13.7 12.6 - 15.7 15.7 24.3 16.8 - 17.9 16.5 23.4 - 25.1 16.6 - 16.8 17.4 15.8 16.8 18.1 16.6 15.5 15.9 - 16.5 15.6 15.5 17.0 17.1 - 18.4 14.5 6.8 - 17.4 16.0 - 35.0 22.4 - 31.7 6.5 - 15.0 5.2 - 18.6 7.6 - 15.9 15.3 4.4 - 10.6 3.4 - 21.3 7.8 - 17.8 4.3 12.2 - 34.5 6.1 - 36.6 5.1 - 12.9 6.9 - 19.0 6.2 - 12.8 2.8 - 8.9 5.7 - 10.4 7.7 - 16.5 3.9 - 14.8 15 15 15 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? DARWINIANA 50(2): 218-251. 2012 Violaceae Violaceae Violaceae Acanthaceae Cactaceae Fabaceae Poaceae Amaryllidaceae Asteraceae Asteraceae Asteraceae Asteraceae Bromeliaceae Cactaceae Cactaceae Cactaceae Gentianaceae Iridaceae Iridaceae Malvaceae Poaceae Poaceae Solanaceae Tropaeolaceae Amaryllidaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Brassicaceae Cactaceae Cyperaceae Fabaceae Fabaceae Gentianaceae Poaceae Poaceae Poaceae Poaceae Poaceae Poaceae Solanaceae Solanaceae Violaceae L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes Table 2b. Code of area names used in Table 2a. Area number 1 2 3 4 5 6 6* 7 7* 7** 8 8* 9 10 10* 11 11* 12 13 14 15 16 17 Area Fig. Ambato Andes La Rioja-San Juan South Bolivia-north NOA Bolivian Prepuna Catamarca and La Rioja, summits and dry inner valleys Famaina Famaina, border Jujuy, core Jujuy, border Jujuy, core and border Jujuy-Tucumán, core Jujuy-Tucumán La Rioja and San Juan, summits and dry inner valleys NOA NOA (San Juan) Salta, core Salta Salta-Catamarca, summits and dry inner valleys San Juan Tinogasta - Belén Tucumán Valle Féril Yavi-Santa Victoria 4M 4F 4I 4J 4P 4H 4H 4C 4C 4C 4E 4E 4Q 4B 4B 4L 4L 4O 4G 4N 4D 4R 4K ed in a phytogeographic scheme developed by Cabrera (1951, 1953, 1976) and Cabrera & Willink (1973 - see Fig. 1) that is widely used by South American biologists, as well as by governmental and non-governmental organizations (Ribichich, 2002). The study region includes xerophytic Chaco vegetation in north-eastern lowlands, and arid Monte vegetation in the south-eastern lowlands. Subtropical moist broadleaf forests, locally known as Yungas, are found at the eastern slopes north of 28º S. The Andes vegetation is furthermore divided in Puna vegetation between approx. 3500m-4500m above which extends the high Andean grasslands that reaches the line of perpetual snow. The Prepuna province - which is the only phytogeographic unit confined to the study region – extends northsouth through the region on the dry mountain slopes approx. between 2400 m and 3500 m asl (Fig.1 and 2B). The present study follows the phytogeograph- ic scheme of Cabrera (1951, 1953, 1976), and that of Ibisch et al. (2003) for the Yungas forests. Ibisch et al. (2003) recognized the north-south oriented Yungas forests that are found within our study region as the Tucumano-Bolivian Yungas. Due to differences in temperature, precipitation seasonality, and taxonomic composition the Tucumano-Bolivian Yungas were considered a phytogeographic unit distinct from the more tropical northwest-southeast oriented Bolivian-Peruvian Yungas forests found north of the Andes bend (~18ºS). Data set According to the catalogue of the Southern Cone flora (Zuloaga et al., 2008) 589 species of vascular plants are strictly endemic to the Argentinean portion of the study region which is approx. 1/3 of the species endemic to Argentina in general (Zuloaga et al., 1999). We compiled the distribution of 513 endemic species excluding 40 species that were only known from localities that could not be georeferenced with precision, while 36 species were excluded as they were found outside the study region while we were compiling their distribution. In addition to species endemic to north-western Argentina we added 27 species endemic to the Bolivian Prepuna or shared between the Bolivian Prepuna and north-western Argentina. These species were selected with assistance from Dr. Beck (the National Herbarium, La Paz, Bolivia) as a checklist of vascular plants of Bolivia has not been completed yet. All endemic species as well as author names are found in Table 2. Species distribution were compiled from collections deposited in the herbaria BA, BAA, LIL, LP, LPB, and SI. We considered a species sufficiently sampled when the distribution data reflected the distribution published in the Catalogue of the Plants of the Southern Cone (Zuloaga et al., 2008). Redundant locations were only georeferenced if the collections differed sufficiently in altitude to suggest that the species appears in several phytogeographic strata. To facilitate the task of georeferencing, specimens with altitude noted in the field by the collector were preferred. If the herbarium vouchers were not sufficient to cover the published distributions we added published exsiccatae from the original descriptions or monographies. Finally we used the Missouri Botanical Garden data base TROPICOS® (http://www.tropicos.org) to complete distribution data or to exclude species collected outside the study region. 233 DARWINIANA 50(2): 218-251. 2012 Distribution data without corresponding vouchers deposited in public herbaria were only used for some Bolivian endemics, where we added field observations from R. P. López, and also when compiling species distribution within the Cactaceae. The Cactaceae are particularly species rich in the study region (Mourelle & Ezcurra, 1996) but also one of the most underrepresented families in herbaria; as a result, specimens deposited in public herbaria are far from covering the distribution of an individual species. Since the Cactaceae is one of the main targets for commercial collectors the information on collection sites, found at Cactus-enthusiastic homepages, is overwhelming and in sharp contrast with the sparse information available from traditional academical sources. We choose to include information from a private collector homepage (http:// ralph.cs.cf.ac.uk/Cacti/finder.html). This procedure was done after consulting a specialist on the family, Dr. Roberto Kiesling, in order to avoid species that are not easily recognized in the field. Data from this source were also considered only when the location, and altitude, agrees with the distribution range defined in the Catalogue of the Plants of the Southern Cone (Zuloaga et al., 2008). A total of 3262 records were compiled and georeferenced. This gives an unimpressive average of six registers/species, which both reflect that species were not georeferenced, in the study, for redundant or proximate locations, and that endemic species of north-western Argentina and southern Bolivia are usually rare and poorly collected, many of them being only known from the type material. All specimens without GPS recorded coordinates were georeferenced according to the point-radius method of Wieczorek et al. (2004). We carefully respected the altitudes of the collection sites in order to extract climate data with as much accuracy as possible. All data have been submitted to the online version of Flora Argentina (http://www.floraargentina.edu.ar). Analyses We searched for areas of endemism using the program NDM/VNDM ver. 2.7c (Goloboff, 2005). VNDM is a grid based method that identifies an area of endemism as the congruent distributions of two or more species (Szumik et al., 2002; Szumik and Goloboff, 2004, 2007). The general outputs in VNDM are area sets (groups of cells in the grid) that are supported by the presence of two or more 234 species. Each area receives an endemism-score according to the optimality criterion developed for the method. The optimality criterion measures the ‘fit’ of each species to the area, e.g. how well each species found within the area adjust to this. The optimality criterion penalizes both absence in part of the area as well as presence in adjacent cells outside the area (if a species is present outside the area in a non-adjacent cell it is not considered among the species supporting the area). The endemism score for each area is the sum of the ‘fit’ of the supporting species. The endemism score is therefore influenced both by the number of species supporting an area as well as the distribution of the supporting species within and around the area (Szumik et al., 2002; Szumik and Goloboff, 2004). The algorithms in NDM have lately been found to outperform other and more widespread methods for delimiting areas of endemism such as hierarchical clustering (Carine et al., 2008; Escalante et al., 2009). One of the advantages of NDM is its ability to recognize overlapping distribution patterns if these are defined by different species groups. Overlapping patterns may be independent if defined by different sets of species (Szumik & Goloboff, 2004), and are to be expected when distribution analysis are based on grids if more than one environments are found in the same cell. Grid and cell size As discussed by Linder (2001) the choice of grid size is important. The use of small cells would result in a finer and more detailed resolution but at the same time increase the number of artificially empty cells where species occur but have not been recorded. We used three different cell sizes to explore both distribution patterns at different scale as well as the robustness of the resulting areas to changes in grid size (Aagesen et al., 2009; Navarro et al., 2009). Grids with cell sizes 0.2ºx0.2º, 0.5ºx0.5º, and 0.5ºx1.0º were used where 1º is approximately equal to 100 km. In the last grid we used rectangular cells rather than square cells because the north-south running Andes Mountains form a steep east-west altitude gradient that causes various habitat changes within 100 km. The rectangular cells were used to explore north-south running patterns of widely distributed but poorly collected species without lumping too many habitats into the same cell. Fill option The problem of artificial empty cells is some- L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes Fig. 2. A, annual precipitaton in mm. B, altitude (m asl) in the study region. C, map of de Martonne aridity index. Scale bars = 400 km. Color version at http://www.ojs.darwin.edu.ar/index.php/darwiniana/article/view/435/462 what alleviated in NDM by a user defined fill option (radius size) that assumes the presence of a given species if it has been collected close to the limit within a neighbouring cell (Szumik & Goloboff, 2004; Aagesen et al., 2009; Escalante et al., 2009). We used two radius sizes (see Table 1). The smallest radius size reflects approximately the error of the hand georeferenced records as determined by the point-radius method (Wieczorek et al., 2004; see Aagesen et al., 2009) while the second and wider radius size was used to explore dependence on the fill options in the final areas of endemism. Search procedure The searches were done using default settings with the following changes: swap two cells at a time; discard superfluous sets as they are found; replace a set if improved during swapping; precheck duplicates; keep overlapping subsets if 20% of species unique. Searches were done by changing the seed for each search, without replacing existing sets and deleting duplicate sets after each replicate. This search sequence was repeated until numbers of sets were stable. Consensus rules As we kept all overlapping subsets if they differed by 20% in species composition, we found several area sets that were supported by 5-20 species but differing only by one or two species. Area sets can be merged into consensus areas if they share at least some of their defining species (Szumik & Goloboff, 2007). Two consensus rules are available in VNDM. The strictest consensus rule merges area sets if they all share a user defined percentages of their defining species – (in the program called ‘against every included area’ hereafter abbreviated as consensus rule ae). The second more relaxed criterion includes an area set in a consensus if it shares a user defined percentage of its defining species with at least one other area set in the consensus – (called ‘against any included area’ hereafter abbreviated as consensus rule aa; see Aagesen et al., 2009). Ideally, the strict consensus rule ae should be used for identifying areas of endemism as at least some species are shared among all the individual area sets, thus ensuring a certain coherency within the area. Consensus areas derived from the laxer consensus rule aa, are efficient to outline gradual species overlap between area set, but the distribution of the species defining the consensus are likely to be found in just a small part of this. However, due to the high number of ae consensus produced by our data (Table 1) it was unfeasible to base the discussion on the ae consensus areas only. Consequently, we explored areas of endemism through 235 236 Table 3. Areas separating from main consensus in Fig. 4, ordered according to max. area score (grid size 0.5º x 0.5º). The areas were obtained by gradually increasing consensus criterion from 5% to 50% (ae and aa refer to different consensus rules). Area score Nr. of Families/ Genera/ Species Altitude range Aridity range Fig. Separates from main area 101 2.1-26.3 31/66/87 350-5100 6.2-33.7 4C 40% aa yes 17 7.3-23.3 22/38/55 530-4800 6.3-34.5 4D 45% aa Obtained under 0.2º x 0.2º Nr. of sub-sets in consensus Jujuy -core and border yes Tucumán Salta Area 36 2.7-13.3 14/23/27 740-4200 5.4-36.6 4L 50% aa yes 2 1 10.9-13.1 3.9-4.2 8/10/19 2/2/6 1150-4100 750-2200 4.5-15.0 7.2-11.8 4H 25% aa 25% aa Yavi-Santa Victoira yes 2 10.6-10.8 8/12/13 1700-4400 15.5-25.1 4K 25% aa Jujuy-Tucumán yes 370 2.0-10.4 38/59/85 350-5000 5.2-40.4 4E 50% aa Ambato yes 24 2.4-10.3 11/14/22 1000-3700 6.6-18.1 4M 45% aa Bolivian Prepuna yes 19 2.2-6.5 11/16/21 1400-4400 6.7-26.3 4J 25% aa Tinogasta-Belén yes 9 2.6-4.5 7/8/11 1600-4300 3.1-7.3 4N 45% aa San Juan no 8 2.0-3.8 7/10/10 850-3400 3.6-15.6 4G not part of main area no 19 2.0-3.8 12/14/19 500-4500 4.8-18.6 4P 30% aa no 14 2 2.0-3.5 2.1-2.4 10/19/20 4/4/4 560-4800 150-4600 3.1-29.2 4.7-19.1 4B not part of main area not part of main area South Bolivia-north NOA no 1 3.0-3.2 4/4/2 2000-4000 6.6-19.6 4I not part of main area Andes La Rioja-San Juan no 6 2.1-2.8 8/10/11 1000-4500 3.8-24.1 4F not part of main area Salta-Catamarca summits and dry inner valleys no 4 2.1-2.8 7/7/8 1500-5100 4.3-19.1 4O 45% aa Catamarca-La Rioja summits and dry inner valleys NOA NOA-San Juan DARWINIANA 50(2): 218-251. 2012 yes Famatina Famatina border L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes the laxer aa rule that produced less, and more inclusive consensus areas. Environmental data and aridity Environmental data for the study region that includes both Argentina and Bolivia is limited to the data available in WorldClim (Hijmans et al., 2005). We used the program Diva-Gis 7.4.0.1 (Hijmans et al., 2005-2010) to extract altitude, temperature, and precipitation of the collection sites. As the collection sites span from 500 m asl to 5000 m asl and an annual mean temperature from -3ºC to 23ºC we used humidity rather than rainfall when comparing different sites. We adopted the aridity index of De Martonne (1927) that can be calculated through the limited environmental variables available for the study region, and furthermore provides a quantitative measure for the useful but somewhat imprecise terms arid, semi-arid, humid, etc. Aridity Index of de Martonne. Accumulated annual precipitation / (annual mean temperature + 10). We use the following categories (De Martonne, 1927; Almorox, 2003): 0-5: desert; 5-10: semi desert; 10-20: semi arid; 20-30: subhumid; 30-60: humid; >60: wet. Distribution of aridity within the study region is shown in Fig. 2C. RESULTS The results are summarized in Table 1-3. In general, the number of area sets increased with cell size, but the bigger cells also produced more overlapping distribution patterns that grouped into fewer consensus areas under the laxer aa rule (Table 1). The two different fill radius produced nearly identical results in number of area sets and consensus areas, hence support for the resulting areas did not depend on a specific fill ratio. The discussion is based on the analyses using the widest fill ratios. Five hundred-nineteen (519) species supported some area under at least one grid size, while 21 species did not support any area (Table 2). Of these, eight species are only known from a single or two localities, while the remaining species are widely distributed within the region. The study region has been sufficiently sampled to analyse species distribution under cell sizes 0.5ºx0.5º where most cells of the study region are assigned to one or more areas of endemism (Fig. 3A). When the cell size is reduced to 0.2ºx0.2º only Fig. 3. Areas of endemism and sample density of endemic species. Empty cells: presence of one or more endemic species in the cell. Colour illed cells: cell assigned to one or more areas of endemism. The colour scale represents areas of endemism of higher (darker) versus lower (lighter) endemism score. A, grid size 0.5ºx0.5º. B, grid size 0.2ºx0.2º. Color version at http://www.ojs.darwin. edu.ar/index.php/darwiniana/article/view/435/462 the cores of the main areas are recovered even if presence of one or more endemic species is recorded in most cells (Fig. 3B). Consequently, we base our discussion on the results from analysing cells of 0.5ºx0.5º. The two alternative cell sizes with either smaller or longer cells were only used to explore the distributions of species that did not support distribution patterns under the 0.5ºx0.5º grid. When using a grid size of 0.5ºx0.5º, the lax aa consensus rule produced seven distribution patterns, under both the 5% and 10% consensus criterion (Table 1). About 2/3 of the endemic species were gathered in a single main consensus area (Fig. 4A), while five distinct distributions, with a total of 49 species, did not form part of the main pattern (see discussion below). A single area consisting of four species was considered an artefact and not discussed any further (the species from this pattern are considered part of the complex Jujuy-Tucumán area, see Discussion and Appendix). The remaining 120 endemic species did not support any area under this grid size. In order to explore sub-areas of the main consensus area in Fig. 4. A this was decomposed by gradually increasing the consensus criterion. By this 237 DARWINIANA 50(2): 218-251. 2012 procedure sub-areas separate successively from the main area with those defined by less overlapping species separating first. We decomposed the main area both to extract the individual high endemic areas as well as to assign all endemic species to sub-areas with a closer association between area extension and distributions of the defining species (see, Consensus rules). All final sub-areas (Table 3, Fig. 4) are also found under the strictest ae consensus rule. A total of 17 areas of endemism are discussed below. The 120 species that did not support areas in the 0.5ºx0.5º grid were assigned to one of these 17 areas according to results found under the 0.2ºx0.2º or 0.5ºx1.0º grids (Table 2). Two areas are based exclusively on results obtained by analysing cells sizes of 0.5ºx1.0º; these areas were not found under the smaller cell sizes. Only 21 species did not support any of the final areas. We have named areas of endemism according to the political division in which the core of the area occurs. The political names do not indicate that the areas fit any political border or that the political borders have influenced the analysis. The names are simply useful for a quick spatial orientation. In some cases, such as Famatina and Ambato, the political names coincide with the mountain range in which the endemic species from the core areas have been found. In other cases such as Jujuy and Tucumán several mountain ranges and valleys are included in the core of the areas with some of these situated in the neighbouring province Salta. Even when subdividing the main area into subareas, most of the defining species will be distributed only in part of the area. One example is Aphelandra lilacina that has only been collected in ‘El Rey’ National Park in the province of Salta. The cell including ‘El Rey’ National Park lies in the south easternmost low endemic part of the Jujuy border area (Fig. 4C). Consigning Aphelandra lilacina to the Jujuy area is therefore slightly misleading, but a necessity unless a prohibited high number of consensus areas are shown. However, as our aim is to provide an overview of the distribution of the endemic species in north-western Argentina we concentrate the discussion on main distribution patterns. Further details of the individual species distribution can be consulted in the online version of the Flora Argentina (http://www.floraargentina. edu.ar) that includes dot distribution maps and label information for all specimens included in the present study. 238 Table 4. Main radiations within the study region. Only families with 10 or more endemic species, and genera with ive or more species have been included. For the families, the percentage of the total number of endemic species within the region is shown. Main families: nr. of endemic species Main genera: nr. of endemic species Asteraceae: 126 (23%) Senecio: 39 Hieracium: 10 Flourensia: 9 Baccharis: 8 Stevia: 6 Cactaceae: 75 (14%) Lobivia: 16 Gymnocalycium: 15 Trichocereus: 13 Parodia: 7 Tephrocactus: 6 Poaceae: 46 (8%) Nassella: 12 Poa: 6 Fabaceae: 34 (6%) Lupinus: 10 Adesmia: 8 Astragalus: 8 Solanaceae: 29 (5%) Solanum: 18 Sclerophylax: 6 Malvaceae: 25 (5%) Nototriche:19 Bromeliaceae: 17 (3%) Puya: 9 Apocynaceae: 15 (3%) Philibertia: 8 Violaceae: 12 (2%) Gentianaceae: 11 (2%) Viola: 12 Gentianella: 11 DISCUSSION The vast majority of the vascular flora endemic to the southern part of the central Andes outlines small, successively overlapping sub-areas that combine into a single main consensus area only under the lax consensus rule and a very lax consensus criterion (Fig. 4A). Endemism is far from evenly distributed among the sub-areas but declines gradually towards the south and west of the study region. Peaks of endemism are found near the humid Andes slopes in Jujuy, Tucumán/Ambato, and to a lesser extent in the isolated Sierra de Famatina in La Rioja. Although the main portion of the endemic species conform to the patchy distribution patterns that L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes Fig. 4. A-L. Areas of endemism discussed in the text and in Appendix 1. The colour scale represents cells of higher (darker) versus lower (lighter) endemism score within each area. The colour scale is scaled to show max details of endemism within each area. For max and min score within the individual areas see Table 3. A, main consensus. B, NOA. C, Jujuy, core and border. D, Tucumán. E, Jujuy-Tucumán. F, La Rioja-San Juan Andes. G, San Juan. H, Famatina. I, South Bolivia-north NOA. J, Bolivian Prepuna. K, Yavi-Santa Victoria. L, Salta core and border. 239 DARWINIANA 50(2): 218-251. 2012 form the consensus in Fig. 4A, the southern part of the central Andes can still be recognized as a single area of endemism, defined by at least 53 species that are widely distributed within the region (the NOA area in Fig. 4B). Here we discuss taxonomic composition and habitat of the endemic species from the study region in general, as well as the individual main distribution areas such as the general NOA pattern and sub-areas of the main consensus in Fig. 4A. Sub-areas were separated from the main consensus by gradually raising the consensus criterions, which causes sub-areas to separate successively. A total of 18 different sub-areas were identified (Table 2-3) among which we discuss selected high-endemic areas. A description of the remaining areas is found in Appendix 1. Fig. 4. Continued. J-R. J, Bolivian Prepuna. K, YaviSanta Victoria. L, Salta core and border. M, Ambato. N, Tinogasta-Belén. O, Salta-Catamarca. P, Catamarca-La Rioja. Q, La Rioja-San Juan. R, Valle Fertil. Color version at http://www.ojs.darwin.edu.ar/index.php/darwiniana/article/view/435/462 240 Altitude and Aridity Our results indicate that 473 of the endemic species, nearly 90%, have been collected at middle altitudes between 1500-3500 m asl (Table 2), a pattern that is consistent with the notion that Prepuna slope vegetation harbours the main part of the endemic species. Only 40 species are restricted to altitudes below 1500 m asl while 33 species are restricted to high Andean environments above 4000 m asl (mainly from the genera Senecio L., Nototriche Turcz., and Viola L.). The relative low number of endemic high Andean species is perhaps unexpected and may be underestimated as collection of high Andean localities above 4000 m asl are sparse. However, part of the high Andean flora were left out of the analyses as it is shared with the neighbouring Chile. In accordance with the general arid climate of the central Andes, the semi-arid environments (AI=10-20, Fig. 2C) appear as the principal habitat type for the endemic species. Semi-arid environments harbour about 80% of the endemic flora with 30% (159 species) being restricted to this habitat type. Semi-arid environment are mostly extended at lower altitudes (compare Fig. 1 and 2A), but only 14 endemic species are restricted to altitudes below 1000 m asl (Table 2). Consequently the relatively narrow band of semiarid habitats between 1500-3500 m asl (compare Fig. 2 B and C) includes the main portion of the endemic species, making the topographic complex plateau, slope, and valley system of the southern central Andes the main locations for endemism. As few as 36 species are restricted to subhumid L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes or humid environments (AI=20-60, Fig. 2C) indicating that the diverse Tucumano-Bolivian Yungas forest is surprisingly poor in endemic species at a local scale. This is in accordance with Ibisch et al. (2003) who considered the endemism of the Tucumano-Bolivian Yungas to be unimportant at a local Bolivian scale and moderate at the inclusive scale considering the Tucumano-Bolivian Yungas forests in their entire extension. The Bolivian-Peruvian Yungas forests were in contrast considered the main area of endemism for Bolivia. Endemism in the south-western Bolivia were, as in the present study, mainly found in the Prepuna vegetation and in the arid interandean forests (Ibisch et al., 2003). In this study the mountain grasslands above the tree line are rich in local endemics [note that these grasslands were considered the highest strata of the Yungas by Cabrera (1976), while we follow Ibisch et al. (2003) who included these grasslands in the subhumid Puna restricting the term Tucumano-Bolivian Yungas to forest vegetation]. Local endemics are also nearly lacking from desert environments with only seven species found exclusively in habitats with an aridity index below 5 (Table 2). Although desert environments are found throughout the study region, they become part of the distribution pattern only in the areas that include patches of desert climate separated from the Andes (i.e. in the Catamarca, La Rioja, and San Juan provinces – Table 3, Fig. 2C). Only a single species, Gentianella punensis, is collected above 3500 m asl where it is endemic to vegas in the deserts of northern Salta. Dry adapted endemic desert species are consequently restricted to desert parches of middle or low altitudes, such as the inner basins of the Andes that are covered by Monte vegetation. High Andean desert environments are common on both sites of the Andes in the northern part of the study region (compare Fig. 2 B and C), hence desert endemics may be lacking from the northern areas because the endemic species are shared between Argentina and Chile, hence excluded from our analyses. Taxonomic groups The Asteraceae outnumbers all other families in the region, with 121 endemic species from 35 genera (Table 2 and 4); furthermore, it is the only family with endemic species supporting all areas (except Valle Fértil - Fig. 4R). The endemic Asteraceae are found in all environments ranging from species restricted to humid habitat (e.g., Mikania siambonensis and Vernonia novarae), to desert environment (e.g., Senecio lilloi), and from strict high Andean (e.g., Senecio kunturinus and S. delicatulus) to lowland species (e.g. Eupatorium tucumanense and Isostigma molfinianum). Nearly 1/3 of the endemic Asteraceae belong to the genus Senecio with 39 endemic species in the study region – twice as many species as the second most common genera Lobivia Britton & Rose (Cactaceae), Nototriche (Malvaceae), and Solanum L. (Solanaceae) (see Table 4). Nonetheless, the remaining 2/3 of the endemic Asteraceae are highly diverse belonging to 16 of approx. 48 Asteraceae tribes (Funk et al., 2009), the most numerous being the Astereae Cass., Eupatorieae Cass., and Heliantheae Cass. including 17, 13, and 10 species each. Although both the origin and early diversification of the Asteraceae are likely to have occurred in southern South America (Funk et al., 2009) the main radiations of Asteraceae within the study region belong to clades that are principally found in the northern hemisphere, e.g., Senecio, Hieracium L., Flourensia DC., Baccharis L., and Stevia Cav. (see Funk et al., 2009 for biogeography of the family). Still, all tribes from the basal Asteraceae grade (Mutisieae s. l. sensu Cabrera; Ortiz et. al. 2009) are represented, although in lower numbers, among the local endemic species, with Hyalideae Panero being the only exception. The Asteraceae endemics are consequently not only numerous within the region but also phylogenetically diverse, both reflecting the general family trend of being especially diverse in arid environments (Funk et al., 2009) as well as the fact that the Asteraceae is the most diverse family both in number of genera and species within the southern cone (Zuloaga et al., 1999; Moreira-Muñoz & Muñoz-Schick, 2007). Cactaceae is the second most numerous family with 74 endemic species and 15 genera within the study region (Table 3). Unlike the Asteraceae the main part of the endemic Cactaceae belong to a single clade (55 species), the tribe Trichocereeae Buxb. that principally consists of high Andean species from the eastern slopes of the central Andes (Ritz et al., 2007, Hernández-Hernández et al., 2011). The remaining Cactaceae species are either close relatives to the Trichocereeae from the Core Cactoideae II clade that also includes the Trichocereeae (Hernández-Hernández et al., 2011) or from early diverging lines of the subfamily Opuntioideae (Griffith & Portery, 2009). 241 DARWINIANA 50(2): 218-251. 2012 Like the Asteraceae, the Cactaceae are considered to be of South American origin with the early diversification of the tribes Trichocereeae and Opuntioideae situated in the Central Andes (Nyffeler, 2002; Edwards et al., 2005; Griffith & Porter 2009). While the extreme succulence of most Cactaceae species makes the family well adapted to the aridity of the southern central Andes, the Cactaceae endemics occupy nearly as wide an array of habitats as the Asteraceae including strict Altoandine species restricted to altitudes above 4000 m (Lobivia marsoneri), with endemic species only lacking from the most humid part of the study region. Following Asteraceae, Poaceae is the second most diverse family in the southern cone (Zuloaga et al., 1999) and reaches the study region as the third most numerous family with 45 endemic species from 20 different genera (Table 3). The endemic species belong to both of the main Poaceae clades, the BEP and the PACMAD clades (GPWG 2001; Sánchez-Ken et al., 2007; GPWG II, 2012). The BEP clade generally appears in colder climates than the PACMAD clade (Edwards & Smith, 2010), and it is more species rich in the study region, with 34 endemic species versus 11 from the PACMAD. Like Asteraceae, the endemic Poaceae species are found in most of the available habitat types (see Table 2) with two species restricted to subhumid or humid environments (Aristida pedroensis and Chusquea deficiens), high Andean species restricted to altitudes above 4000 m asl (Anatherostipa henrardiana and Poa nubensis) and lowland species only found below 1000 m asl (e.g., Digitaria catamarcensis and Neobouteloua paucirracemosa). Only strict desert endemics are lacking although a single species from semi-desert environments enter desert habitats (Pappostipa hieronymusii). In addition to the main families discussed above, the Solanaceae and Malvaceae both include genera with considerable radiations within the region. The genus Solanum with 18 endemic species occupies a wide array of habitats from semi-arid to humid environments between 500 and 4000 m asl. Several of the Solanum endemics reach sub-humid and humid sites, with four of the species restricted to these habitats, while desert environments are occupied by another Solanaceae genus, Sclerophylax Miers with six endemic species in the region (Table 2). As opposed to the taxa mentioned above, the radiation of Nototriche (Malvaceae) is exclusively high Andean, with all 19 endemic species found in semi-desert to semi-arid environments above 4000 242 m asl. Other well documented high Andean radiations such as Gentianella Moench, Lupinus L., and Valeriana L. (von Hagen & Kadereit, 2001; Bell & Donoghue, 2005; Hughes & Eastwood, 2006) are less important in the region with eleven, seven, and five endemic species, all found at lower altitudes than Nototriche. Main areas of endemism The NOA (Nor-Oeste-Argentina) area. The NOA area (Fig. 4B) is the general area of endemism for the southern part of the central Andes. The area is supported by species that are widely distributed within the study region and overlaps with all below mentioned sub-areas segregated from the main consensus in Fig. 4A. Four species reach the south of San Juan (Table 2) and consequently define a slightly wider pattern than the NOA area shown in Fig. 4B. The northern limit of the NOA area coincides with the political border between Argentina and Bolivia hence the pattern probably extends into southern Bolivia. However, the scarcity of intensive botanical explorations in this part of Bolivia prevents us to speculate on the exact northern limit of the NOA pattern. So far among the defining NOA species only Mirabilis bracteosa, Mutisia kurtzii, and Trichocereus terscheckii have been collected in Bolivia, but endemic Argentinean taxa widely distributed in Jujuy are most probably also present in southern Bolivia. Since the distribution pattern spans approximately 1000 km from north to south, the pattern is unsurprisingly not recovered when using cell sizes of 0.2ºx0.2º, a feature that requires collection sites every 20 to 40 km depending on the settings of the fill option (see Material and Methods). The NOA pattern emerges when using cell sizes of 0.5ºx0.5º in which case 24 species are sufficiently well collected to define the area (Table 2). Other common, but less frequently collected species such as the columnar cactus Trichocereus terscheckii, support the north-south running pattern when the grid is changed to a cell size of 0.5ºx1.0º, allowing for even wider distances between the collecting sites. A total of 54 species support the area when using a cell size of 0.5ºx1.0º (Table 2). All NOA endemics are found in desert, semi-desert and semi-arid habitats with several species also reaching either desert or sub-humid sites. Humid environments are not part of the pattern, which L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes is consistent with the north-southern range of the area, e.g. the distributions of the defining species that reach out of the region where the humid habitats are found. Consequently, the moist requiring species are restricted to the northern portion of the study region and support sub-areas in Fig. 4A but not the general NOA pattern. The broader distribution pattern reaching San Juan is slightly dryer and does not include sub-humid habitats. The NOA pattern includes all altitudinal layers of the vegetation as the defining species are found from 500 m to above 4500 m asl. However, slopes vegetation seem to be an important part of the distribution pattern as all species appear between 1500 m and 3500 m asl. Most species have broad ranges with some ranging nearly 3000 m asl (e.g. Oxalis famatinae see Table 2). The highest part of the NOA pattern is defined by species restricted to high Andean vegetation above 3000 m asl (e.g., Mulinum famatinense and Pycnophyllum convexum). The lowest part of the distribution pattern includes several plants that are common to Monte vegetation (Cabrera, 1976) and is delimited by Tephrocactus weberi that is found between 500-2000 m asl in desert and semi-desert habitats. Several of the species that define the NOA pattern are common elements in the vegetation of the study region. These include the bushes Bulnesia schickendantzii, Plectocarpa rougesii (Zygophyllaceae), Mutisia kurtzii, and Cersodoma argentina (Asteraceae), as well as the grasses Panicum chloroleucum and Sporobolus maximus. Common but less frequently collected species that support the north-south running pattern when the grid is changed to cell size 0.5ºx1.0º, include the columnar cactus Trichocereus terscheckii, the opuntioid cactus Tephrocactus weberi, the cushion forming Bromeliaceae Deuterocohnia haumanii and Hieronymiella marginata (Amaryllidaceae) (Table 2). High endemic areas: Jujuy, Tucumán, and Jujuy-Tucumán. Within the study region, the cells of highest endemism score include the cores of the Jujuy area, the Tucumán area, and the combined Jujuy-Tucumán area (Fig. 4C-E). These three areas are jointly supported by nearly 30% of the endemic species found in the region, and are furthermore by far the most diverse both in number of genera and families (Table 2). When also considering the species that define the diffuse border of the core areas (Fig. 4C, Table 2), about 45% of the endemic species are confined to these three distribution patterns that undoubtedly form the main area of endemism in the southern cone east of the Andes. Common for the cores of both the Jujuy and Tucumán areas are that they include some of the study regions most variable cells both in terms of altitude, temperature, and precipitation. The available habitats within these areas range through all phytogeographic unites described for north-western Argentina (Cabrera, 1976). While variability in temperature and altitude do not decline along the north-south gradient of the study region, amount of rainfall does decline (Fig. 2A). Humid sites with an aridity index above 30 are mainly found at the eastern Andean slopes in both the Jujuy and Tucumán areas (Fig. 2C). Consequently, endemic species from humid environments, such as the subtropical Tucumano-Bolivian Yungas forests are only found in the three high endemic areas (Table 2). Nevertheless, and although the Tucumano-Bolivian Yungas forest is one of the most diverse phytogeographic units in Argentina (Cabrera, 1976; Zuloaga et al., 1999 ), it should be noted that only twelve species are restricted to humid sites in the present study (Table 2), indicating that the Yungas vegetation includes few endemic species at this local scale. The main part of the endemic species are distributed through the broad array of available habitats both in terms of altitude and aridity (Table 3), with no species occupying the entire range (Table 2).Variability in precipitation rather than high rainfall might therefore be the main factor that causes high level of endemism within the Jujuy and Tucumán areas. The decline in endemism in the center of the Jujuy-Tucumán area is consistent with the patterns found in general diversity studies (Szumik et al., 2012), and distribution maps of the Yungas forest (Hawkes & Hjerting, 1969; Cabrera, 1976; Brown, 1995). It is unclear whether the decline in diversity and endemism is caused by lack of collections or whether some habitats - e.g., humid high Andean grasslands - are lacking in this part of the area. Minor areas of endemism: San Juan, Famatina, and south-western Bolivia. Several minor areas of endemism separate from the general area consensus in Fig. 4A. Here we discuss two southern most areas in San Juan, the central Famatina area, as well as an area related to the vegetation in south-western Bolivia. The full list of areas is found in Appendix 1. San Juan: Two areas of endemism are defined by species restricted to the southern most part of the 243 DARWINIANA 50(2): 218-251. 2012 study region, the Andes of La Rioja-San Juan (Fig. 4F) and the San Juan area (Fig. 4G, Table 2). These two areas are well defined and do not combine with the general consensus area even under very lax consensus criteria, hence the areas do not share species with any of the other areas of endemism. This distinct distribution pattern of the endemic species from the southern part of the study region may reflect that the San Juan areas lie close to the limit of the Patagonian phytogeographic unit sensu Cabrera (1976), hence close to a general change in vegetation types that is widely recognized among biogeographers (e.g., Olson et al. 2001; Morrone, 2006). The San Juan areas are among the most arid areas within the study region. Although some of the species that define the Andes area of La Rioja-San Juan (Fig. 4F) reach sub-humid locations according to Table 2, these sub-humid locations fall at sites where the annual mean temperature is below 0º C rather than at sites with high rainfall (note that for the same annual precipitation the aridity index of de Martonne will increase with falling mean annual temperature). Famatina. The Famatina areas both separate from the main area when raising the consensus criterion to 25% (Fig. 4H). The two partly overlapping areas include a highly endemic area of species found mainly above 1500 m asl as well as a low endemic border area of species found at lower altitudes. The areas do not share species, hence, these areas do not combine into a single consensus area. Combined both Famatina areas are supported by 28 endemic species found in desert/semi-desert and semi-arid environments between 700 m and 4000 m asl. The area with highest endemism score contains primarily the isolated Nevados de Famatina that reaches above 6000 m asl. Mining activity at 4.600 m asl has ensured long standing accessibility to the high peaks where botanical exploration has been relatively constant since the late 19th century. The Famatina is, consequently, one of the best sampled high Andean locations south of the high-endemic areas in Jujuy and Tucumán. Nonetheless, Famatina is defined by much less endemic species than the areas Jujuy and Tucumán. Furthermore, diversity within this area is low as more than half of the endemic species belong to three of the most species rich radiations within the study region: Senecio, Nototriche at altitudes above 3000 m asl, and Gymnocalycium Pfeiff. ex Mittler in the border area (Fig. 4H) below 2000 m asl. 244 South-western Bolivia-northern Argentina. Towards the northern part of the study region four species delimit a shared, well defined Bolivian-Argentinean area that do not combine with any other distribution pattern even under very lax consensus criteria (Fig. 4I, Table 2-3). The area overlaps partly with the NOA pattern (Fig. 4B) but stretches further north into Bolivia. The Bolivian portion of this area corresponds to the Bolivian Prepuna as defined by López (2000) while the Argentinean part only includes the northern most part of the Prepuna province sensu Cabrera (1976). The area defined in Fig. 4I includes semi-desert and semi-arid habitats between 200-4000 m. When increasing the cell size to 0.5ºx1.0º two additional species (Deuterocohnia strobilifera and Oxalis cotagaitensis) are incorporated into the area. Although only six species support the Bolivian-Argentinean area, our study did not sample exhaustively this region, therefore it is most likely that other species share a similar distribution pattern. According to the Catalogue of the Plants of the Southern Cone (Zuloaga et al., 2008) at least 70 species are distributed from Salta to Bolivia many of which may approximately fit the area in Fig. 4I. This distribution pattern stresses the similarity between the flora of southern Bolivia and north-western Argentina as mentioned by López (2000, 2003), but further sampling within the region is needed to establish the size and importance of the area. The Bolivian Prepuna, sensu López (2000), is nested within the above south-western Bolivia-northern Argentina distribution pattern but combined with the main distribution pattern shown in Fig. 4A. The Bolivian Prepuna segregates from the main area in Fig. 4A when the consensus criterion is raised to 25% or higher (Fig. 4J). The Bolivian Prepuna is formed by two overlapping distribution patterns one of which enters northern Jujuy (Argentina). Both patterns are supported by species that are mainly found in semi-arid environments from 2500 m up to 4000 m asl with the highest collection sites lying in the Argentinean side of the pattern. Since we did not compile an exhaustive list of species endemic to southern Bolivia, the Bolivian Prepuna may also be supported by more species that those included in our study. Phytogeographic divisions: the Prepuna province and areas of endemism Although Cabrera aimed to base his classic phytogeographic scheme on the presence of endem- L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes ic taxa from family to species level (Cabrera 1951, 1953, 1976), the system was not based on quantitative studies and did not apply consistent criteria for defining the individual phytogeographic units (Ribichich, 2002). It is therefore not surprising that quantitative analyses, based on endemic species distribution, result in areas of endemism that do not correspond to Cabrera’s phytogeographic divisions. In our analyses all areas were defined by species from a wide array of altitudes in most cases including lowland, slopes, and high Andean species (Table 2). Moreover, as the areas with highest endemism were found in regions where several climatic regimes meet (Jujuy and Tucumán), they include several phytogeographic units within shortest distances of each other. As a result, the species that define the high endemic areas are just as variable as the areas themselves in their altitude and aridity ranges (Table 2). Cabrera (1976) defined the Prepuna province as xeric slope vegetation with emphasis on the distribution of emblematic species such as columnar cacti and cushion forming Bromeliaceae species, mentioning several species from different families as common on the slopes. López (2000, 2003) later extended the Prepuna to include a similar xeric vegetation in the south-western Bolivia. The Prepuna, which is here included in its entire extension, does not appear among the resulting areas of endemism, hence the Prepuna province sensu Cabrera (1976) is not definable simply by the presence of two or more unique Prepuna species. The partly overlapping south-western Bolivia/ northern NOA and the NOA area (Figs. 7 and 12) cover geographically the Prepuna in its entire extension. Both areas are defined by several of Cabrera’s (1976) Prepuna species including columnar cacti and cushion forming Deuterocohnia Mez species. Notably three of the species mentioned by Cabrera: Aphylloclados spartioides, Cercidium andicola, and Prosopis ferox define the joint Southern-Bolivia/northern NOA (Fig. 4I) supporting the northern Prepuna as delimited by López (2000, 2003) in which the Bolivian Prepuna separates as an independent area of endemism (Fig. 4J). Columnar Trichocereus (A. Berger) Riccob. species define both the Bolivian Prepuna and the NOA area while most of Cabrera’s (1976) remaining Prepuna species support the NOA area. The NOA distribution pattern does, however, also include species from other altitude strata, hence, although it appears to include the Prepuna it defines a broader area of endemism in the southern central Andes. CONCLUSIONS Located in the center of the South American dry diagonal, the aridity of southern central Andes is reflected in the distribution of its endemic vascular flora. Of 540 endemic plant species, more than 2/3 are restricted to semi-desert and semi-arid habitats including some of these regions main radiations, such as the ultra high Andean Nototriche (Malvaceae) and the radiation of Gymnocalycium (Cactaceae) found below 2000 m. Even the 39 endemic species from the cosmopolitan genus Senecio (Asteraceae) are almost exclusively found in semi-desert or semi-arid habitats with only two species entering subhumid or humid locations. The distributional bias of the endemic species towards arid sites is in contrast with that of vascular plant diversity in the region, since the Tucumano-Bolivian Yungas forests, on the humid eastern Andes slopes, undoubtedly include the most diverse vegetation of the region (Brown, 1995; Ibisch et al., 2003). The Tucumano-Bolivian Yungas forests in north-western Argentina are, however, a patch of a more extensive area of endemism whose northern limit is found south of the Andes bend at approx. 18ºS (Ibisch et al., 2003). Emblematic Yungas species, such as Juglans australis Griseb., Podocarpus parlatorei Pilg, and Duranta serratifolia (Griseb.) Kuntze appear to be endemic to the Tucomano-Bolivian Yungas. Other species such as Alnus acuminata Kunth and Fuchsia boliviana Carrière are widely distributed along the eastern slopes and further north to Mexico. These forests may consist of several nested or partly overlapping distribution patterns as is the case of the endemic vegetation of the arid slopes of the southern central Andes. Any attempt to evaluate endemism of the Tucomano-Bolivian Yungas should include these forests in their entire extension. Although the Yungas forests are of little importance for endemisms at the scale of our study, the high endemic areas of the region lies in juxtaposition, west of the main rainfall zones (Fig 1a). The endemic species of these areas are found in a broad and variable range of aridity and altitude (Table 2), hence, rather than high rainfall itself, the gradual decreasing rain-veil west of the main rainfall zone caused by the complex topography of the region, may be the main factor allowing for the elevated number of endemic species to coexist in these areas. 245 DARWINIANA 50(2): 218-251. 2012 We did not find any relationship between the main areas of endemism and phytogeographic units previously defined, as the main areas of endemism appeared in cells that included a widest array of habitats. The Prepuna province sensu Cabrera (1976) and López (2000, 2003) was not defined by the endemic species as a unit; instead, two partly overlapping areas covered the entire extension of the Prepuna (Figs. 6 and 14). Both areas include several Prepuna characteristics sensu Cabrera (1976). Nevertheless, of these two areas, the NOA area should be considered a general area of endemism for the southern central Andes since it also included high Andean and lowland species. ACKNOWLEDGEMENTS We thank Claudia Szumik for helpful discussions and support. We also thank the staff at The Lillo Foundation (Tucumán) as well as Dr. Beck and the staff at the National Herbaria of Bolivia for help and hosting us during our visits to these Institutes. We also thank the staff at IBODA for the identification of all newly collected material, and Fernando Biganzoli for accompanying us on several collecting trips. We gratefully acknowledge GBIF and John Wieczorek for the georeferencing workshop in Buenos Aires. CONICET (PIP-CONICET 0207) and National Geographic (Grant Nº 8862-10) funded the project and field collections respectively. BIBLIOGRAPHY Aagesen, L.; C. A. Szumik; F. O. Zuloaga & O. Morrone. 2009. Quantitative biogeography in the South America highlands – recognizing the Altoandina, Puna and Prepuna through the study of Poaceae. Cladistics 25: 295-310. Almorox, J. 2003. Climatología aplicada al medioambiente y Agricultura. Monografía del Depto. de Edafología. Madrid: Universidad Politécnica de Madrid. Arroyo, M. T. K.; R. Rozzi; J. A. Simonetti; P. Marquet & M. Salaberry. 1999. Central Chile, en R. A. Mittermeier, N. Myers, P. Robles Gil & C. Goettsch Mittermeier (eds.), Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecorregions, pp. 161-171. México: CEMEX. Arroyo, M. T. K.; P. Marquet; C. Marticorena; J. Simonetti; L. A. Cavieres; F. A. Squeo & R. Rozzi. 2004. Chilean winter rainfall - Valdivian forests, en R. A. Mittermeier, P. Robles, M. Hoffmann, J. Pilgrim, T. Brooks, C. Goettsch-Mittermeier, J. Lamoreux & G. A. B. da Fonseca (eds.), Hotspots Re- 246 visited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions, pp. 99-103. México: CEMEX. Bannister, J. R.; O. J. Vidal, E. Teneb & V. Sandoval. 2012. Latitudinal patterns and regionalization of plant diversity along a 4270-km gradient in continental Chile. Austral Ecology 37: 500-509. Bell, C. D. & M. J. Donoghue. 2005. Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organism, Diversity & Evolution 5: 147-159. Bianchi, A. R. & S. C. Cravero. 2010. Atlas climático digital de la República Argentina. Salta: Instituto Nacional de Tecnología Agropecuaria. Brown, A. D. 1995. Fitogeografía y conservación de las selvas de montaña del noroeste de Argentina, en S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and Conservation of Neotropical Montane Forests, pp. 663-672. New York: The New York Botanical Garden. Cabrera, A. L. 1951. Territorios itogeográicos de la República Argentina. Boletín de la Sociedad Argentina de Botánica 4: 21–65. Cabrera, A. L. 1953. Esquema itogeográico de la República Argentina. Revista del Museo Eva Perón, Botánica 8: 87–168. Cabrera, A. L. 1976. Regiones itogeográicas argentinas. Enciclopedia Argentina de Agricultura y Jardinería, vol. 2, parte 1. Buenos Aires: ACME. Cabrera, A. L. & A. W. Willink. 1973. Biogeografía de América Latina. Serie de Biología OEA. Monografía 13: 1–117. Carine, M. A.; C. J. Humphries, I. R. Guma, J. A. Reyes-Betancort & A. Santos Guerra. 2008. Areas and algorithms: evaluating numerical approaches for the delimitation of areas of endemism in the Canary Islands archipelago. Journal of Biogeography 36: 593-611. Crisp, M.; S. Laffan, H. P. Linder & A. Monro. 2001. Endemism in the Australian lora. Journal of Biogeography 28: 183–198. de Martonne, E. 1927. Regions of interior-basin drainage. Geographical Review 17: 397-414. Edwards, E. J.; R. Nyffeler & M. J. Donoghue. 2005. Basal cactus phylogeny: implicactions of Pereskia (Cactaceae) paraphyly for the transition to the cactus life form. American Journal of Botany 92: 1177-1188. Edwards, E. J. & S. A. Smith. 2010. Phylogenetic analyses reveal the shady history of C4 grasses. Proceedings of the National Academy of Sciences 107: 2535-2537. Escalante, T.; C. A. Szumik & J. J. Morrone. 2009. Areas of endemism of Mexican mammals: reanalysis applying the optimality criterion. Biological Journal of the Linnean Society 98: 468-478. Funk, V. A.; A. A. Anderberg, B. G. Baldwin, R. J. Bayer, M. Bonifacino, I. Breitwieser, L. Brouillet, R. Carbajal, R. Chan, A. X. P. Coutinho, D. J. Crawford, J. V. Crisci, M. L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes O. Dillon, S. E. Freire, M. Galbany-Casals, N. Garcia-Jacas, B. Gemeinholzer, M. Gruenstaeudl, H. V. Hansen, S. Himmelreich, J. W. Kadereit, M. Källersjö, V. Karaman-Castro, P. O. Karis, L. Katinas, S. Keeley, N. Kilian, R. T. Kimball, T. K. Lowrey, J. Lundberg, R. J. McKenzie, T. Mesin, M. E. Mort, B. Nordenstam, C. Oberprieler, S. Ortiz, P. B. Pelser, C. P. Randle, H. Robinson, N. Roque, G. Sancho, J. C. Semple, M. Serrano, T. F. Stuessy, A. Susanna, M. Unwin, L. Urbatsch, E. Urtubey, J. Vallès, R. Vogt, S. Wagstaff, J. Ward & L. E. Watson 2009. Compositae metatrees: the next generation, en V. A. Funk, A. Susanna, T. F. Stuessy & R. Bayer (eds.), Systematics, evolution and biogeography of the Compositae, pp. 747-777. Vienna: International Association for Plant Taxonomy. Goloboff, P. 2004. NDM⁄VMDM, programs for identiication of areas of endemism. Program and documentation. Available at http://www.zmuc.dk/public/phylogeny/endemism. Grass Phylogeny Working Group. 2001. Phylogeny and subfamilial classiication of the grasses (Poaceae). Annals of the Missouri Botanical Garden 88: 373–457. Grass Phylogeny Working Group II. 2012. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytologist 193: 304–312. Grifith, M. P. & J. M. Porter. 2009. Phylogeny of Opuntioideae (Cactaceae). International Journal of Plant Sciences 170: 107-116. Hawkes, J. G. & J. P. Hjerting. 1969. The potatoes of Argentina, Brazil, Paraguay, and Uruguay – a biosystematic study. Oxford: Clarendon Press. Hernández-Hernández, T.; H. M. Hernández, J. A. De-Nova, R. Puente, L. E. Eguiarte & S. Magallón. 2011. Phylogenetic relationships and evolution of growth form in Cactaceae (Caryophyllales, Eudicotyledoneae). American Journal of Botany 98: 44-61. Hijmans, R. J.; S. E. Cameron, J. L. Parra, P. G. Jones & A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. Hijmans, R. J.; L. Guarino, A. Jarvis, R. O’Brien, P. Mathur, C. Bussink, M. Cruz, I. Barrantes & E. Rojas. 2005-2010. DIVA-GIS, manual and program http://www.diva-gis.org Hughes, C. & R. Eastwood. 2006. Island radiation on a continental scale: exceptional rates of plant diversiication after uplift of the Andes. Proceedings of the National Academy of Sciences 103: 10334-10339. Ibisch, P.L.; S.G. Beck, B. Gerkmann & A. Carretero. 2003. La diversidad biológica: ecorregiones y ecosistemas, en P. L. Ibisch & G. Mérida (eds.), Biodiversidad: La Riqueza de Bolivia, pp. 47-88. Santa Cruz de la Sierra: Editorial Fundación Amigos de la Naturaleza (FAN). Kier, G.; J. Mutke, E. Dinerstein, T. H. Ricketts, W. Küper, H. Kreft & W. Barthlott. 2005. Global patterns of plant diver- sity and loristic knowledge. Journal of Biogeography 32: 1107–1116. Linder, H. P. 2001. Plant diversity and endemism in sub-Saharan tropical Africa. Journal of Biogeography 28: 169-182. López, R. P. 2000. La prepuna boliviana. Ecología en Bolivia 34: 45-70. López, R. P. 2003. Diversidad lorística y endemismo de los valles secos bolivianos. Ecología en Bolivia 38: 27-60. López, R. P. & S. Beck. 2002. Phytogeographical afinities and life form composition of the Bolivian Prepuna. Candollea 57: 77-96. López, R. P.; D. L. Alcázar & M. J. Macía. 2006. The arid and dry plant formations of South America and their loristic connections: new data, new interpretation? Darwiniana 44: 18-31. Montecinos, A. & P. Aceituno. 2003. Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. Journal of Climate 16: 281-296. Moreira-Muñoz, A. & M. Muñoz-Schick. 2007. Classiication, diversity, and distribution of Chilean Asteraceae: implications for biogeography and conservation. Diversity and Distributions 13: 818-828. Morrone, J. J. 2001. Biogeografía de América Latina y el Caribe, vol. 3, 148 pp. Zaragoza: SEA. Morrone, J. J. 2006. Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology 51: 467-494. Mourelle, C. & E. Ezcurra. 1996. Species richness of Argentine cacti: a test of biogeographic hypotheses. Journal of Vegetation Science 7: 667-680. Navarro, F. R.; F. Cuezzo, P. A. Goloboff, C. Szumik, M. Lizarralde de Grosso & G. Quintana. 2009. Can insect data be used to infer areas of endemism? An example from the Yungas of Argentina. Revista Chilena de Historia Natural 82: 507-522. Nyffeler, R. 2002. Phylogenetic relationships in the Cactus family (Cactaceae) based on evidence from trnK/matK and trnLtrnF sequences. American Journal of Botany 89: 312-326. Olson, D. M.; E. Dinerstein, E. D. Wikramanayak, N. D. Burgess, G. V. N. Powell, E. C. Underwood, J. A. D’Amico, I. Itoua, H. E. Strand, J. C. Morrison, C. J. Loucks, T. F. Allnutt, T. H. Ricketts, Y. Kura, J. F. Lamoreux, W. W. Wettengel, P. Hedao & K. R. Kassem. 2001. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 51: 933-938. Orme, C. D. L.; R. G. Davies, M. Burgess, F. Eigenbrod, N. Pickup, V. A. Olson, A. J. Webster, T.-S. Ding, P. C. Rasmussen, R. S. Ridgely, A. J. Stattersield, P. M. Bennett, T. M. Blackburn, K. J. Gaston & I. P. F. Owens. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436: 1016-1019. 247 DARWINIANA 50(2): 218-251. 2012 Ortiz, S.; M. Bonifacino, J. V. Crisci, V. A. Funk, H. V. Hansen, D. J. N. Hind, L. Katinas, N. Roque, G. Sancho, A. Susanna & C. Tellería. 2009. The basal grade of Compositae: Mutisieae (sensu Cabera) and Carduoideae, en V. A. Funk, A. Susanna, T. F. Stuessy & R. Bayer (eds.), Systematics, evolution and biogeography of the Compositae, pp. 193-213. Vienna: International Association for Plant Taxonomy. Ribichich, A. M. 2002. El modelo clásico de la itogeografía de Argentina: un análisis crítico. Interciencia 27: 669-675 Ritz, C. M.; L. Martins, R. Mecklenburg, V. Goremykin & F. H. Hellwig. 2007. The molecular phylogeny of Rebutia (Cactaceae) and its allies demonstrates the inluence of paleogeography on the evolution of South American mountain cacti. American Journal of Botany 94: 1321–1332. Rodriguez-Cabral, M. A.; M. A. Nuñez & A. S. Martínez. 2008. Quantity versus quality: endemism and protected areas in the temperate forest of South America. Austral Ecology 33: 730-736. Sánchez-Ken, J. G.; L. G. Clark, E. A. Kellogg & E. E. Kay. 2007. Reinstatement and emendation of Subfamily Micrairoideae (Poaceae). Systematic Botany 32: 71-80. Simpson, B. B. & C. A. Todzia. 1990. Pattern and processes in the development of the high Andean lora. American Journal of Botany 77: 1419-1432. Skelnář, P.; E. Dušková & H. Balslev. 2011. Tropical and Temperate: Evolutionary history of Páramo lora. Botanical Review 77: 71-108. Szumik, C.; L. Aagesen, D. Casagranda, V. Arzamendia, D. Baldo, L. E. Claps, F. Cuezzo, J. M. Díaz Gómez, A. Di Giacomo, A. Giraudo, P. Goloboff, C. Gramajo, C. Kopuchian, S. Kretzschmar, M. Lizarralde, A. Molina, M. Mollerach, F. Navarro, S. Nomdedeu, A. Panizza, V. V. Pereyra, M. Sandoval, G. Scrocchi & F. O. Zuloaga. 2012. Detecting areas of endemism with a taxonomically diverse data set: plants, mammals, reptiles, amphibians, birds, and insects from Argentina. Cladistics. 28: 317–329. Szumik, C.; F. Cuezzo, P. A. Goloboff & A. Chalup. 2002. An optimality criterion to determine areas of endemism. Systematic Biology 51: 806–816. Szumik, C. & P. A. Goloboff. 2004. Areas of endemism: an improved optimality criterion. Systematic Biology 53: 973–980. Szumik, C. & P. A. Goloboff. 2007. NDM/VNDM: Computer programs to indentify areas of endemism. Biogeografía 2: 32-37. von Hagen, K. B. & J. W. Kadereit. 2001. The phylogeny of Gentianella (Gentianaceae) and its colonization of the southern hemisphere as revealed by nuclear and chloroplast DNA sequence variation. Organism, Diversity & Evolution 1: 61-79. Wieczorek, J.; Q. Guo & R. J. Hijmans. 2004. The point-radius method for georeferencing locality descriptions and calculation associated uncertainty. International Journal of Geographical Information Science 18: 745–767. 248 Zhou, J. & K. M. Lau. 1998. Does a monsoon climate exist over South America? Journal of Climate 11: 1020-1040. Zuloaga, F. O.; O. Morrone & D. Rodríguez. 1999. Análisis de la biodiversidad en plantas vasculares de la Argentina. Kurtziana 27: 17-167. Zuloaga, F.O.; O. Morrone and M. J. Belgrano. 2008. Catálogo de las Plantas Vasculares del Cono Sur. Monographs in Systematic Botany from the Missouri Botanical Garden 107: 609–967. APPENDIX 1 NOA (Fig. 4B) The NOA pattern is described in detail in the discussion. Here we only add that the area is composed by three different main patterns. In its widest version the pattern runs from the limit between Argentina and Bolivia to San Juan supported by four species (see Table 2) the most notably being Adesmia cytisoides and Jarava media. Several species are distributed as shown in the consensus area in Fig. 4B e.g., Panicum chloroleucum and Polygala argentiniensis, while the third group of species are lacking in the northernmost part of the area, e.g., Bulnesia schickendantzii, Plectrocarpa rougesii and Sporobolus maximus. Yavi-Santa Victoria (Fig. 4K) The Santa Victoria-Yavi area separates as an individual area of endemism in the north-eastern corner of the Jujuy border. The Santa Victoria-Yavi area is supported by 17 endemic species with distributions tightly adjusted to the area, that separates from the general area of endemism at 15% aa, hence the high endemism scores is due to little species overlap between this area and other distribution patterns rather than a high number of endemic species. Nearly all defining species have been collected in the surroundings of Yavi in semi-arid Puna or along the high Andean road between Yavi and Santa Victoria in sub-humid high Andean, or montane grassland. We suspect that the Santa Victoria-Yavi area is artificially delimited both towards the north and south. Botanical collections are incomplete in southern Bolivia but the eastern slopes of the Eastern Andes range in Salta area almost unexplored botanically except for the road leading to Santa Victoria. Jujuy (Fig. 4C) The core of the area that lies within the Eastern L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes Andes range is supported by 67 endemic species from 48 genera and 23 families (Table 2). The endemic species are found in a wide range of available habitats in semi-desert to humid environments between 500 - >4500 m asl that includes the tropical moist Yungas forest (Sierra Calilegua), mountain grasslands (Sierra de Calilegua, Sierra de Zenta), as well as the slopes of the inner dry valleys (Quebrada de Humahuaca). The few species that are found exclusively above 3500 m, in this area, are from well to sparsely collected high peaks such as Mina Aguilar and Nevado de Chañi, as well as Nevado del Castillo and Cerro de Fundición in Salta. The Jujuy area is not easily delimited as the core is surrounded by a diffuse border with a gradually decreasing endemism score (Fig. 4C). The high number of sub-sets included in the consensus also indicates that the distribution patterns supporting this area are far from uniform (Table 3). A total of 35 species are endemic to the border (Table 2) that includes same habitats as the core as well as Puna environment between the Eastern and Western Andes range. The main part of the species defining the border area are either species found in the Puna (e.g., Lobivia einsteinii, Mancoa venturii, and Senecio punae) or species present along the the mountain grasslands reaching the Santa Victoria area (e.g., Macropharynx meyeri, Microliabum humile, and Silene bersieri). Part of the area enters Bolivia as four of the defining species have been found in the Tarija department (Parodia stuemeri, Psychotria argentinensis, Puya micrantha, and Solanum calileguae). More of the border species are likely to appear in the southern Bolivia as botanical inventories become more complete. Salta (Fig. 4L) Between the high-endemic Jujuy and Tucumán areas lies the Salta area that separates from the main consensus under the 50% consensus criterion. A total of 29 species are endemic to the core area mainly found in montane grasslands, and slopes of the inner dry Valleys. Like the Jujuy area, the Salta area has diffuse borders that overlap and shares species with the border of the Jujuy area and the northern part of the Tucumán area. The high Andean endemics are restricted to this part of the area where endemic species from Nevado del Castillo and Cerro del Cajón also supports the southern Jujuy or northern Tucumán area respectively. The high mountains peaks of the core area such as Cerro Malcante (5226 m) and Nevados de Palermo (6200m) have not been explored botanically to our knowledge and could add new endemics to this area. Tucumán (Fig. 4D) Like the Jujuy area the Tucumán area lies in the eastern Andes range and contains mainly the same habitat types as in the core-Jujuy area. In terms of altitude, temperature, and precipitation, the Tucumán area is just as variable as the core area of Jujuy. A total of 62 species are endemic to the area from a total of 41 genera and 25 families (Table 2). The area includes tropical moist Yungas forest (eastern slopes of Sierra del Aconquija and Cumbres de Tafi), mountain grasslands (Cumbres del Tafí, Cumbres Calchaquíes and Sierra del Aconquija), as well as the slopes of the inner dry Valleys (Valles Calchaquíes). Species found exclusively above 3500 m asl are mainly from peaks of the two main ranges (Sierra Aconquija and Cumbres Calchaquíes) or from Cerro del Cajón in the northern extreme of Sierra de los Quilmes. Unlike the Jujuy area, the Tucumán area has well defined limits without diffuse border mainly because species distribution towards the west can be defined as an independent area of endemism, see the Ambato area below. Jujuy-Tucumán (Fig. 4E) The combined Jujuy-Tucumán area is defined by species that are found in the cores and/or borders of both the Jujuy and Tucumán areas. The Jujuy-Tucumán area contains the most complex distribution patterns of the study region, being the left over of the main consensus area when all sub-areas are extracted at a consensus criterion of 50%. Like the Jujuy area, the high amount of individual sub-sets that are included in this area indicates that distribution patterns supporting this area are not uniform and variations among these are the main source of the high number of subsets found in the analysis in general. Ambato (Fig. 4M) West of the Tucumán area and partly overlapping with this lies the Ambato area (Fig. 4M) that is defined by species that reach further south and/ or east than the species defining the Tucumán area. The high endemic core of the area incudes 16 endemic species (35% aa) found in semi-desert to semi-arid environments from 500-3500 m. These species are mainly found in the montane grasslands 249 DARWINIANA 50(2): 218-251. 2012 along the eastern slopes of Sierra Ambato and in high Andean habitats of Cerro Manchado. The border of the Ambato area extends from the core towards the north and west partly overlapping with the Belén-Tinogasta area (Fig. 4N). species found below 3000 m. Highest altitudes of the defining species are found in Sierra Pie de Palo and Sierra del Tontal. The southern San Juan area is one of the driest areas with 50% of the specimens collected in desert environments. Belén-Tinogasta (Fig. 4N) The Belén-Tinogasta area (Fig. 4N) is the western most and least species rich of the three partly overlapping areas of Tucumán, Ambato, and Belén-Tinogasta. The area is supported by 12 species from rare collections in arid or hyper-arid regions of Sierras de Belén or northern Tinogasta. Only a single species [Tephrocactus geometricus (A. Cast.) Backeb.] have been collected repeatedly within the area in Sierras de Belén and Sierra de Zapata. The area furthermore includes rare collection of endemic species from the valleys southeast of Cerro Chucula (Tinogasta) and from the eastern slopes of Sierra de Fiambalá northwest of Belén. Famatina (Fig. 4H) Endemism in the Famatina area are mainly from the isolated Nevados de Famatina but some species are also found in the surrounding valleys of Chilcito and Vinchina as well as Cuesta de Miranda. The core of the area is supported by 20 endemic species mainly found in semi-desert to semi-arid environments from 1000-4000 m. Twelve of the defining species are endemic to Nevados de Famatina with nine species restricted to altitudes at approx. 4000 m asl including five species of the ultra high Andean Nototriche genera. The border of the Famatina areas is composed of a single area mainly defined by four Gymnocalycium species from low altitudes in valleys north-east of the Nevados de Famatina. Andes La Rioja-San Juan (Fig. 4F) Includes high Andes in La Rioja and San Juan and is mainly defined by species found above 3000 m in the regions of Laguna Brava (La Rioja) and Parque Nacional San Guillermo (San Juan) or collected along the few high Andean roads south of San Guillermo. Few species from the Andean foothill, e.g., Aphyllocladus ephedroides and Solanum glaberrimum also support the area. San Juan (Fig. 4G) The southern San Juan area is found outside the Andes range. The area includes valleys and minor peaks of the Pampeanas Ranges with all defining 250 Inner valleys and Pampeanas Range The four partly overlapping areas below are defined by species mainly found in the inner valleys, slopes and summits of the Sierras Pampeanas. Three of the four areas include species that reach above 4000 m asl with the lower part of the area set by the altitude of the valley button in the respective areas. Species from the areas are restricted to semi-desert and semi-arid habitats while few enter desert environments. Sub-humid locations are only reached in these areas at high altitudes with low annual mean temperature rather than higher rainfall. Salta-Catamarca summits and dry inner valleys (Fig. 4O). The northernmost of the Pampeanas Range areas are defined by species distributed along valleys and high Andean locations from Santa Rosa de Tastil (Quebrada del Toro, Salta) to Sierra Ambato and Quebrada de Belén (Catamarca). Catamarca-La Rioja summits and dry inner valleys (Fig. 4P). This area includes mainly the locations Hualfin, Andalgalá, Londres, Cuesta de Zapata, and Mina Capillitas in Catamarca as well as Los Corrales in Famatina, La Rioja. Several species are found in the semi-desert of the inner valleys, e.g., the five Cactaceae species that defines the area as well as Sclerophylax cynocrambe from the arid radiation of Solanaceae. The high Andean part of the area is defined by species distributed along the summits of the Calchaquíes, Ambato and Famatina e.g., Poa plicata and Viola triflabellata. La Rioja-San Juan summits and dry inner valleys (Fig. 4Q – obtained under cell size 0.5ºx1.0º). The area is mainly defined by species distributed in valleys from southern Catamarca to San Juan. Several of the endemic species from a wide array of families reach desert environments in this area, e.g., Flourensia hirta and Senecio sanagastae (Asteraceae), Lobivia famatimensis and Tephrocactus alexanderi (Cactaceae), Senna fabrisii (Fabaceae), Guindilia cristata (Sapindaceae), L. AAGESEN ET AL. Areas of endemism in the Southern Central Andes and Sclerophylax kurtzii (Solanaceae). Only few species in this area reach high Andean environments, e.g., Zephyranthes diluta (Amaryllidaceae) and Adesmia nanolignea (Fabaceae) that are found along the high Andes of La Rioja and San Juan. Valle Fértil (Fig. 4R – obtained under cell size 0.5ºx1.0º). This minor area of endemism only ap- pears when using longitudinal cells of 0.5ºx1.0º in which case four species from different families define the area (Table 2). The main part of the area consists of the valley between Sierra de Valle Fértil/Sierra de La Huerta in San Juan and Sierra de Los Llanos/Sierra de las Minas in La Rioja. This area also reaches the northern part of San Luis, where nearly all defining species have been confirmed. 251