Academia.eduAcademia.edu
Phy rochemisrry , Vol. 46, No. 4. pp. 745- 749, 1997 C 1997 Published by Elsevier Science Ltd. All rights resewed Pergamon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA Printed in Great Britain @X-9422:97 PII: SOO31-9422(97)0019!&4 LIGNOIDS, FLAVONOIDS AND POLYKETIDES %17.00+0.130 OF VIROLA zyxwvutsrqponmlkjih SURINAMENSIS EMA ESTER DE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ALMEIDA BLUMENTHAL,* MARCELO SOBRALDA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQ SILVA~ and MASSAYOSHI YOSHILIA~ Laboratorio de Quimica Organica, Instituto Butantan, C.P.65, C.E.P.01051, Sao Paulo-SP, Brazil; t Laboratorio de Tecnologia Farmaceutica, Universidade Federal da Paraiba, C.P. 5009, C.E.P.58051-970, Joso Pessoa, Paraiba-PB, Brazil; $ Instituto de Quimica-Universidade de Sao Paulo, C.P. 26077, C.E.P.05599-970, SBo Paulo-SP, Brazil; Instituto de Quimica, Universidade Estadual Paulista, C.P. 355, C.E.P. 14800-900, Araraquara, SPo Paulo-SP, Brazil (Received Key Word Index-Fir& surinamensis; 10 December Myristicaceae; 1996) seeds; lignoids; llavonoids; polyketides. Abstract-From the seeds of Virola surinamensis, which were collected near Altamira and near Maraba, Para State, Brazil, the following substances were isolated by chromatographic techniques: two dibenzylbutanediol lignans, dihydrocubebin and the new dihydrocubebin monolaurate, two furofuran lignans, sesamin and asarinin, three dibenzylbutyrolactol lignans, cubebin, ,!?-O-methylcubebin and a-U-methylcubebin, one dibenzylbutyrolactone lignan, hinokinin, one aryltetralin neolignan, galbulin, two tetrahydrofuran neolignans, galgravin and the new 4’-hydroxy-3’-methoxy-3,4-methylenedioxy-S.8’,7.0.7’-neolignan, one flavone, tithonine, one isoflavone, irisolidone, and two new polyketides, 3-hydroxy-l-(1 %phenylpentadecanoyl)-2,6-cyclohexanedione and I-(5-phenylpentanoyl)-2,6-cyclohexanedione. Different chemical constitutions of the fruits from the two localities were observed. 0 1997 Published by Elsevier Science Ltd INTRODUCTION RESULTS AND DISCUSSION Previous studies on Virolu species describe the occurHexane extracts of teguments and kernels from frurence of the lignans dihydrocubebin (la) [l, 21, sesits of V. surinamensis collected near Altamira, Para amin (2a) [l-5], asarinin (2b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA [l ,2, 61, cubebin (3b) [l, State, Brazil, were submitted to chromatographic fractionation affording dihydrocubebin (la) [ 111, 2,6], hinokinin (3e) [l, 2,3,6], the neolignans, galbulin (4) [3] and galgravin (5a) 171,and the flavone tithonine dihydrocubebin monolaurate (lb), sesamin (2a) [12, 131, asarinin (2b) [14], /3 and a-cubebin (3a and 3b) (6) [2]. Leaves of V. surinamensis collected at Aura [15, 161, hinokinin (3e) [17], galbulin (4) [18, 191, Hb Forest Reserve, Beltm, Para State, Brazil, contain and 8c. The chloroform extract gave P-O-methylvirolin and surinamensin which showed activity cubebin (3~) [20] and a-0-methylcubebin (3d) [2(1], against penetration of cercaria of Schistosoma manbesides la and 3e. soni [S]. More recently, 11 lignans, three proChromatographic fractionation of the chloroform piophenone derivatives and two y-lactones were isoextract of kernels from fruits of V. surinamensis collated from leaves and seeds of V. surinamensis collected near Maraba, Para State, Brazil, afforded gallected at Combu Island, Para State, Brazil [9]. gravin (5a) [21, 221, 5c and tithonine (6) [23], besides The chemical variability observed in specimens of 2a and 3b. The chloroform extract from pericarps V. surinamensis from different localities stimulated the yielded irisolidone (7) [24]. analysis of fruits collected at Xingu river-bank (AltaThe lignans 3c, 3d and isoflavone 7 in Virolu and mira-PA) and Tocantins river-bank (Maraba-PA). polyketides in V. surinamensis were isolated for the These fruits contain two dibenzylbutanediol lignans, first time. Compounds 3c and 3d can be artifacts [20]. two furofuran lignans, three dibenzylbutyrolactol ligThe lignan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONM lb, neolignan 5c and polyketides 8b and nans, one dibenzylbutyrolactone lignan, one aryl8c are unknown compounds. tetralin neolignan, two tetrahydrofuran neolignans, The compounds la, 2a-5a, 6 and 7, previously one flavone, one isoflavone and two polyketides. The isolated, were identified by comparison with reported nomenclature and the numbering of lignans and neospectroscopic data. lignans follow the rules outlined in a review [lo]. Compound lb showed many spectral features in common with dihydrocubebin (la) zyxwvutsrqponmlkjihgfed [l 11. The IR spectrum showed hydroxyl and carbonyl absorptions at 3498 and 1733 cm-‘. The mass spectrum did not exhi*Author to whom correspondence should be addressed. 745 146 E. E. DEALMEIDA BLUMENTHAL~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSR al. OH Pi la - R=H zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 2a - *a-Pi 1b - R=CO(CH2)&H3 2 b - tip-Pi R2 Pi Ve 4 3a-RI= P-OH;Rz=H 3 b - RI = a-OH; R2=H 3c - Rl = P-OCH,; R2=H 3d - RI = a-OCH+ R2=H 38 _ Ri=R2=0 Ar 6 0 Sa - Rl=RLP-CHa; Arl=Arka-Ve Sb - R1=@CHa; R&-CH3; Aha-Ve; SC - Rf=P-CH3; RLa-CHg Arl=a-Pi; A&@Gu P OH A&p-Ve 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 1’ 1’ n 0 4 R Sa - R=OH; n=10 8 b - R=OH; n=l4 SC - R=H; rrd OH 0 Pi = 3,4-methybnedioxyphenyl Ve =3,4dimethoxyphenyl Gu 4hydroxy-3-methoxyphenyoxyphenyl 9 bit a [Ml+ at m/z 540. Elemental analysis, carbon counts of the 13C NMR spectrum and proton integration of the ‘H NMR spectrum confirmed the linear chain with 12 carbons. The mass spectrum shoaed fragmentation at m/z 340 corresponding with [M - CH3(CH2),,,COOH]+. Constituents of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLK Virolasurinamensis 147 The ‘H NMR spectrum of 5c showed an all transgalbulin (4, 6 mg). Fr. C was submitted to flash CC configuration of the tetrahydrofuran ring as in gal(silica gel, hexane-EtOAc, 7:3), followed by prep. belgin (5b) [25]. These compounds differ only in the TLC (silica gel, hexane-EtOAc, CHCl,-EtOAc) and pattern of the aromatic rings: the veratryl groups of recrystallization from Me&X-hexane giving dihy5b were replaced by piperonyl and guaiacyl groups in drocubebin (la, 11 mg) and cubebin (3a and 3b, 123 5c. Compounds 5b and 5c showed the same [c$ value mg). and the structure (7S, 85, 7’S, 8’S)-4’-hydroxy-3’The CHCl, extract (7.4 g) was submitted to CC methoxy-3,4-methylenedioxy-8.8’,7.0.7’-neolignan(silica gel, hexane-EtOAc, 9: 1, EtOAc) furnishing A:1,3,5,1’,3’,5’ can be depicted for compound 5c. initially frs D (223 mg) and E (4.4 g). Fr. D was The IR absorptions and ‘H NMR spectra of comsubmitted to prep. TLC (silica gel, hexane-EtOAc), pounds 8a [26] and Sb are closely comparable. The followed by recrystallization from MeOH, yielding mass spectrum of 8b exhibited a [M]+ at m/z 428 dihydrocubebin (la, 60 mg), /I-U-methylcubebin (3c, supporting the presence of four additional methylene 23 mg) and a-0-methylcubebin (3d, 25 mg). Fr. E groups in the aliphatic chain. The structure of Se was consisted essentially of a mixt. of la, 3c, 3d and 3e; it established on the basis of ‘H and 13C NMR of the was not fractionated. cyclohexyl moiety of 9 [27] and the w-phenylacyl moiFrom seeds of fruits collected near Maraba, kernels ety of 8a. The methylenic chain length was established (300 g) and pericarps (200 g) were sepd, milled and from the [Ml+ at m/z 272. extracted with CHC13 at room temp. The CHCII The lignan cubebin was isolated as a mixture of #l- extract (18 g) of kernels was crystallized from EtOH. (3a) and ce(3b) anomers. We are including 13CNMR Fatty material was filtered off and the mother liquo’ data for /I-cubebin whose ‘H NMR data were preconed under vacuum to yield 6 g. This residue was viously described [ 151. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA submitted to silica gel CC eluting with hexane and hexane-EtOAc mixts of increasing polarity providing frs F (2.2 g), G (1.8 g) and H (1.1 g). Part offr. F (220 EXPERIMENTAL mg) was submitted to prep. TLC (silica gel, benzeneGeneral. Prep. TLC, flash CC and CC were carried EtOAc) and recrystallization from hexane, affording out on silica gel PF-254,60H and 60 (Merck), respecgalgravin (5a, 25 mg), cubebin (3b, 45 mg) and 5c (15’ tively. Mps are uncorr. ‘H NMR (200 MHz) and 13C mg). Part of fr. G (200 mg) was submitted to prep. NMR (50 MHz) spectra were recorded in CDCl, with TLC (silica gel, benzene_EtOAc) affording 5c (13 mg). tithonine (6, 12 mg) and cubebin (3b, 65 mg). Fr. H TMS as int. standard. EIMS were obtained at 70 eV. was recrystallized from MeOH yielding sesamin (2a. Plant material. Ripening fruits were collected near 350 mg). Altamira and near Maraba, Para State, Brazil, by The CHCl, extract (3.8 g) of pericarps was subDr Hipolito F. Paulino Filho (Universidade Estadual mitted to recrystallization from EtOH and filtration Paulista, Araraquara, SLo Paulo State, Brazil). The of fatty material. The coned mother liquor (2.4 g) was specimens were identified by Dr William A. Rodrigues submitted to prep. TLC (silica gel, benzene_EtOAc), (Instituto National de Pesquisas da Amazonia, followed by recrystallization from Me&O, affording Manaus, Amazonas State, Brazil). irisolidone (7, 14 mg). Isolation of constituents. Seeds from both fruits were (8R,8’R)- 9- Dodecanoy l- 9’- hy droxy - 3,4,3’,4’removed and air-dried. Teguments and kernels (200 dimethy lenedioxy - 8.8’~lignan- A: 1,3,5,1’,3’,5’ (lb). Oil. g) from seeds collected near Altamira were milled [alo- 13.3” (CHCl,; ~0.075). IR vE,“:cm-‘: 3498,2926, and extracted in a Soxhlet apparatus successively with 2855,2776, 1733, 1609, 1490, 1443, 1362, 1247, 1189, hexane and CHCI,. The hexane extract (11.3 g) was 1041, 930. ‘H NMR (200 MHz, CDC&): 6 0.85 (t, suspended in hot MeOH and kept overnight at 0”. J = 6.3 Hz, 3H-12”), 1.23 (br s, 2H-3” to 2H-1 l”), The insoluble portion (0.9 g) was sepd by filtration, 1.88-1.97 (m, H-8, H-8’), 2.28 (t, J = 7.5 Hz; 2H-2”), submitted to silica gel CC and elution with hexane2.53 (dd, J= 7.8, 13.8 Hz; 2H-7, 2H-7’), 2.70 (dd, EtOAc mixts of increasing polarities; recrystallization from Me,C&hexane afforded polyketide 8b (0.4 g). J = 6.8, 13.8 Hz; 2H-7, 2H-7’) 3.59 (d, J = 5.4 Hz; 2H-9’), 4.01 (dd, J = 5.4, 11.3 Hz; 2H-9), 4.12 (dd, The mother liquor was coned under vacuum and the J= 6.0, 11.3Hz;2H-9),5.90(s,20CH,0),6.50-6.71 residue (8.5 g) partitioned between hexane and MeOH (m, 6ArH). “C NMR (50 MHz, CDCl,): 6 13.7 (C(1: 9). The MeOH layer (2.5 g) was submitted to flash 12”), 22.3 (C-11”), 24.6 (C-3”) 28.9-29.3 (C-4” to CCC (silica gel, hexane-EtOAc, 4: 1) providing frs A 9”), 31.6 (C-lo”), 34.1 (C-2”), 35.1 (C-7), 35.3 (C-7’), (173 mg), B (1.2 g) and C (466 mg). Fr. A was sub40.4 (C-8), 43.6 (C-8’), 62.6 (C-9’), 64.6 (C-9), 101.1 mitted to CC (silica gel, benzene), followed by prep. (OCH,O), 108.4 (C-2, C-2’), 109.5 (C-5, C-5’), 122.1 TLC (silica gel, hexane-EtOAc) and finally recrys(C-6, C-6’), 145.8 (C-4, C-4’), 147.6 (C-3, C-3’), 173.7 tallization from Me&O-hexane giving sesamin (2a, 12 mg) asarinin (2b, 24 mg) and Sc (19 mg). Fr. B (C-l”). MS m/z (rel. int.): 340 (9) 135 (100). (Found: C, 71.54; H, 8.33. C32H4407 requires: C, 71.11; H, was submitted to CC (silica gel, hexaneCHC&, 1: l), 8.15%). followed by prep. TLC (silica gel, benzene-MeOH, (8R,8’R,9S)- 9- Hy droxy - 3,4,3’,4’- dimethy lenedioxy hexane-EtOAc, CHCl,) yielding dihydrocubebin 8.8’,9.0.9’-lignand: 1,3,5,1’,3’,5’ (3a). 13C NMR (50 monolaurate (lb, 6 mg), hinokinin (3e, 815 mg) and 748 E. E.DEALMEDABLUMENTHAL~~ MHz, CDC&): S 33.5 (C-7), 38.8 (C-7’), 42.8 (C-8’), 51.9 (C-8), 72.4 (C-9’), 98.7 (C-9), 100.8 (OCH,O), 108.1 (C-2, C-2’), 109.1 (C-5,C-5’) 121.4(C-6’), 121.7 (C-6), 133.8 (C-l’), 134.5 (C-l), 145.7 (C-4, C-4’), 147.6 (C-3, C-3’). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQ al. (C-4), 24.2 (C-3’), 31.1 (C-4’), 33.2 (C-5), 35.7 (C-5’), 38.8 (C-3), 40.4 (C-2’), 113.0 (C-l), 125.7 (C-9’), 128.3 (C-7’, C-l l’), 128.4 (C-8’, C-lo’), 142.3 (C-6’), 195.3 (C-6), 198.6 (C-2), 206.1 (C-l’). MS m/z (rel. int.): 272 [Ml+ (l), 167 (63), 139 (lOO), 91 (48). (8R,8’R,9S)- 9fi- M ethoxy - 3,4,3’,4’- dimethy tene- dioxy-8.8’.9.0.9’-lignan-A: 1,3,5,1’,3’,5’ (Se). Amorphous solid. [alp-2.2” (CHC&, c 0.2). i3C NMR (50 MHz, CDCl,): 6 33.6 (C-7), 39.3 (C-7’), 43.2 (C-8’), 52.1 (C-8), 54.5 (OCH& 72.2 (C-9’), 100.8 (OCH,O), 105.4 (C-9), 108.1 (C-2, C-2’), 108.9 (C-S’), 109.2 (C5), 121.4 (C-6’), 121.6 (C-6), 134.0 (C-l’), 134.8 (C-l), 145.6 (C-4’), 145.9 (C-4), 147.5 (C-3’), 147.7 (C-3). (8R,8’R,9R)- 9a- M ethoxy - 3,4,3’,4’- dimethy lene- dioxy-8.8’,9.0.9’-lignan-A: 1,3,5,1’,3’,5’ (3d). Oil. [&-- 17.9“ (CHCl,; c 0.2). 13C NMR (50 MHz, CDCl,): 6 38.7 (C-7’), 39.2 (C-7), 45.8 (C-8’), 52.4 (CS), 54.7 (OCH& 72.0 (C-9’), 100.8 (OCH,O), 108.0 (C-2, C-2’), 108.9 (C-5’), 109.1 (C-5), 109.9 (C-9), 121.4 (C-6’), 121.7 (C-6), 133.4 (C-l’), 134.2 (C-l), 145.7 (C-4’), 145.8 (C-4), 147.5 (C-3’), 147.6 (C-3). (7S,8S,7’S,8’S)- 4’- Hy droxy - 3’- methoxy - 3,4- methylenedioxy-8.8’,7.0.7’-neolignan-A: 1,3,5,1’,3’,5’ (5~). Oil. [ol]b- 17.9” (CHCl,; c 0.125) ‘H NMR (200 MHz, CDCl,): 6 1 .O (d, J = 5.8 Hz; 3H-9,3H-9’), 1.02 (d, J = 5.7 Hz; 3H-9, 3H-9’), 1.66-1.79 (m, H-8, H8’), 3.89 (s, OCH1), 4.59 (d, J = 9.2 Hz; H-7, H-7’), 5.56 (s, OH), 5.92 (s, OCH20), 6.73-7.01 (m, 6ArH). 13C NMR (50 MHz, CDC&): 6 13.8 (C-9, C-9’), 50.8 (C-8’), 51.1 (C-8), 55.9 (OCH,), 88.2 (C-7), 88.4 (C7’), 100.9 (OCH,O), 106.6 (C-2), 107.9 (C-5), 108.6 (C-2’), 114.0 (C-5’), 119.4 (C-6’), 119.7 (C-6), 134.1 (C-l’), 136.6 (C-l), 145.1 (C-4), 146.6 (C-3’), 146.9 (C-4), 147.8 (C-3). MS m/z (rel. int.): 342 [Ml+ (43), 192 (66) 190 (lOO), 180 (13), 178 (25), 177 (26), 175 (55) 164 (20), 162 (27), 152 (17), 151 (91) 150 (18), 149 (49). 3- Hy droxy 1-( 15- pheny lpentadecanoy l)- 2,6cy clohexanedione (8b). Colorless crystals. Mp 69-70” (Me,CO-hexane). [c(]n-5.0’ (CHC&; c 0.2). IR v:g cm-‘: 3424,2919,2848, 1666, 1544, 1495, 1467, 1405, 1114, 755, 704. ‘H NMR (200 MHz, CDCl,): S 1.19 (br s, 9CH2), 1.54 (m, 3CH2), 1.62-1.85 (m, H-4,,), 2.24-2.37 (m, H-4,,), 2.53 (t, J= 7.7 Hz; 2H-15’), 2.68-2.76 (m, 2H-5), 2.80-3.08 (m, 2H-2’), 3.88 (s, OH), 4.03 (dd, J = 4.4, 13.2 Hz; H-3), 7.04-7.24 (m, 5ArH). 13C NMR (50 MHz, CDC&): 6 24.5 (C-3’), 27.1 (C-5), 29.3-29.6 (C-4’to C-13’), 31.3 (C-4), 31.5 (C-14’), 36.0 (C-15’), 40.2 (C-2’), 71.6 (C-3), 110.3 (Cl), 125.5 (C-19’), 128.2 (C-17’, C-21’), 128.4 (C-18’, C-20’), 142.9 (C-16’), 195.6 (C-6), 197.9 (C-2), 206.1 (C-l’). MS m/z (rel. int.): 428 [Ml+ (loo), 183 (19), 155 (3), 91 (33). l- (5- Pheny lpentanoy f)- 2,6- cy clohexanedione Acknowledgements- - W e CAPES, aid. FAPESP are grateful and FEDIB to CNPq, for financial REFERENCES 1. Cavalcante, S. H., Fernandes, D., Paulino Fo., H. F., Yoshida, M. and Gottlieb, 0. R., Phytochemistry , 1985, 24, 1865. 2. Kato, M. J., Yoshida, M. and Gottlieb, 0. R., Phytochemistry, 1992,31,283. 3. Kato, M. J., Yoshida, M. and Gottlieb, Phytochemistry, 1990,29, 0. R., 1799. 4. Martinez, V. J. C., Cuca, S. L. E. and Marbnez, M. P., Review Colombia Q&mica, 1985, 14, 117. 5. Von Rotz, R. R., Cuca, S. L. E. and Martinez, V. J. C., Review Colombia Quimica, 1989. 16, 51. 6. Cavalcante, 7. 8. 9. 10. 11. S. H., Yoshida, M. and Gottlieb, 0. R., Phytochemistry, 1985, 24, 1051. Barata, L. E. S. and Baker, P. M., Ciencia Cultivaro, 1973, 25, (Supl.) 169. Barata, L. E. S., Baker, P. M., Gottlieb, 0. R. and Ruveda, E. A., Phytochemistry, 1978,17,783. Lopes, N. P., Blumenthal, E. E. A., Cavalheiro, A. J., Kato, M. J. and Yoshida, M., Phytochemistry (in press). Gottlieb, 0. R. and Yoshida, M., in Lignans in Natural Products of W oody Plants, ed. J. N. Rowe. Springer, New York, 1989, p. 439. Satyanarayana, P. and Venkateswarlu, S., Tetrahedron, 1991,47, 12. Marcos, Riguera, 8931. M., Jimenez, C., Villaverde, M. C., R., Castedo, L. and Stermitz, F., Planta M edica, 1990, 56, 89. 13. Sun, N.-J., Chang, C.-J. and Cassady, J. M., Phy305 1. 14. Pelter, A., Ward, R. S., Rao, E. V. and Sastry, K. V., Tetrahedron, 1976, 32, 2783. 15. Wei-Ming, C., Mayer, R. and Rticker, G., tochemistry , 1987,26, Archives of Pharmaceuticals, 1987, 320, 374. 16. Koul, S. K., Taneja, 17. 18. (SC). Oil. IR v$z; cm-‘: 3026,2941,2860, 1667, 1557, 1497, 1454, 1421, 1190, 751, 701. ‘H NMR (200 MHz, CDC&): 6 1.66-1.70 (m, 2H-3’, 2H-4’), 1.90-1.99 (m, 2H-4), 2.48 (t, J = 6.5 Hz; 2H-3, 2H-5’), 2.65 (t, J = 6.2 Hz; 2H-5), 3.05 (t, J = 6.7 Hz; 2H-2’), 7.137.31 (m, SArH). “C NMR (50 MHz, CDCI,): 6 19.0 PADCT, 19. 20. S. C., Dhar, K. L. and Atal, C. K., Phytochemistry, 1983, 22, 999. Lopes, L. M. X., Yoshida, M. and Gottlieb, 0. R., Phytochemistry, 1983, 22, 1516. Nemethy, E. K., Lago, R., Hawkins, D. and Calvin, M., Phytochemistry, 1986,25,959. Fonseca, S. F., Nielson, L. T. and Ruveda, 1~.A., Phytochemistry, 1979, 18, 1703. Rticker, G., Langmann, B. and Siqueira, N. S., Planta M edica, 1981, 41, 143. 21. Holloway, chemistry, D. and Scheinmann, 1974, 13, 1233. F., Phyto- Constituents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIH of Vii-ola surinamensis 749 22. Fonseca, S. F., Barata, L. E. S., Rdveda, E. A. and Baker, P. M., Canadian Journal of Chemistry, 1979, 57,441. 23. Correa, J. and Cervera, M. L., Bulletin de la Soc- 25. Sarkanen, K. V. and Wallis, A. F. A., Journal of Heterocyclic Chemistry, 1973, 10,1025. 26. Kato, M. J., Lopes, L. M. X., Paulino Fo., H. F., Yoshida, M. and Gottlieb, 0. R., Phytochemistry, i&t Chimique de France, 1971, 2,475. 24. Prakash, L., Zaman, A. and Kidwai, A. R., Journal of Organic Chemistry, 1965, 30, 3561. 1985, 24, 533. 27. Mudd, A., Journal of the Chemical Society, Perkin Transactions I, 1983,216l.