Academia.eduAcademia.edu
Third time lucky? Another substantially revised sectional classification for Australasian Plagiochila (Plagiochilaceae: Jungermanniopsida) Author(s): Matt A. M. Renner, Simon D. F. Patzak, Margaret M. Heslewood, Alfons SchäferVerwimp and Jochen Heinrichs Source: Australian Systematic Botany, 30(1):70-104. Published By: CSIRO Publishing URL: http://www.bioone.org/doi/full/10.1071/SB16038 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CSIRO PUBLISHING Australian Systematic Botany, 2017, 30, 70–104 http://dx.doi.org/10.1071/SB16038 Third time lucky? Another substantially revised sectional classification for Australasian Plagiochila (Plagiochilaceae: Jungermanniopsida) Matt A. M. Renner A,D, Simon D. F. Patzak B, Margaret M. Heslewood A, Alfons Schäfer-Verwimp C and Jochen Heinrichs B A Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia. Ludwig Maximilian University, Faculty of Biology, Department of Biology and Geobio-Center, Menzinger Straße 67, D-80638 Munich, Germany. C Mittlere Letten 11, D-88634 Herdwangen-Schönach, Germany. D Corresponding author. Email: matt.renner@rbgsyd.nsw.gov.au B Abstract. Molecular phylogeny reconstruction has motivated recircumscription of all families and most genera within the Lophocoleinae, and in Plagiochila, the largest genus of this lineage, has refined the sectional classification as well. Here, we extend this ongoing revision in the first study focusing on species from Australasia, a region to date underrepresented in molecular phylogenetic datasets. We reconstructed a phylogeny containing more than 300 individuals from Australasia and the Pacific, and with this tested sectional circumscriptions within the two largely contradictory classifications recently proposed for Plagiochila. Neither scheme satisfactorily captures relationships among species and all sections prove paraphyletic or polyphyletic, with the exception of those defying these properties by virtue of containing only one species. We propose expanding the circumscription of several sections as the best option for achieving a revised classification representing monophyla that remains stable over the short to medium term, given current knowledge. Broader circumscriptions are proposed for section Denticulatae with section Tayloriae as a new synonym; section Arrectae with section Caducifoliae as a new synonym; a reinstated section Deflexifoliae; and section Plagiochila, to include P. trapezoidea; section Belangerianae to include sections Annotinae, Mitteniae and Strombifoliae as new synonyms; and section Durae with section Colensoae as a new synonym. Section Fragmentissimae is applied to the lineage previously named section Deltoideae nom. inval. or section Hodgsoniae nom. inval., as the Tasmanian P. ratkowskiana and New Zealand P. fragmentissima are the same, and sister to other species in the lineage containing P. deltoidea. Morphological characters supporting these groups are identified, but more importantly the proposed revisions provide a robust framework on which informed re-examination of morphology within this variable and species-rich genus can proceed, and we introduce some encouraging avenues in this area. Received 19 September 2016, accepted 8 February 2017, published online 31 May 2017 Introduction Molecular data have enforced whole-scale revision of the hypotheses of relationship formalised within the Linnean hierarchy in the diverse flowering plant lineage (Bremer et al. 2009). Although not as diverse, the upheavals wrought by molecular data to the classification of the non-vascular plant lineage Marchantiophyta are at least as drastic. The simple thalloid Metzgeriales (Schuster 1984) was actually two lineages (He-Nygrén et al. 2006), one of which, the Metzgeriidae, was sister to the leafy Pleurozia Dumort. (Davis 2004; He-Nygrén et al. 2004). The putative ancestor of the complex thalloids, Monocleales (Schuster 1984), was actually highly derived (Forrest and Crandall-Stotler 2004; Heinrichs et al. 2005a; Crandall-Stotler et al. 2009), and the Sphaerocarpales was nested within the Marchantiales (Forrest et al. 2006). The isolated Journal compilation  CSIRO 2017 groups Calobryales and Treubiales (Schuster 1984) were sister lineages (Forrest and Crandall-Stotler 2004), although this sister relationship is rather ancient (Cooper et al. 2012). Substantial re-arrangement of classifications in all major lineages has occurred, because molecular data repeatedly identified malleability in morphological character systems believed to be rigid, and so enforced whole-scale rearrangement of the classifications founded on those characters, from species to class (Heinrichs et al. 2005a; Renzaglia et al. 2007; Söderström et al. 2016). In retrospect, morphological characters supporting many of these relationships (e.g. Schuster 1966) were under-valued. Although the framework of relationships within the Jungermanniopsida is now fairly well resolved, the recircumscription of suborders and families is ongoing (Shaw et al. 2015; Patzak et al. 2016a). Recent changes at familial www.publish.csiro.au/journals/asb Testing relationships within Plagiochila level include the synonymisation of the small Chonecoleaceae R.M.Schust. ex Grolle with Cephaloziaceae Mig. (Patzak et al. 2016b) and the reinstatement of the Lophocoleaceae Vanden Berghen, which was recovered from synonymy with the Geocalycaceae H.Klinggr. (Hentschel et al. 2006), and the newly proposed Solenostomataceae Stotler & Crand.-Stotl. (Crandall-Stotler et al. 2009). The Lophocoleaceae was resolved in a monophylum with the families Brevianthaceae J.J.Engel & R.M.Schust. and Plagiochilaceae Müll. Frib. Whereas the Brevianthaceae is likely to have fewer than 10 species confined to Melanesia and Australasia, the family Plagiochilaceae presents an example of high species diversity, wide geographic distribution, extensive morphological variation and broad ecological amplitude (Heinrichs et al. 2004a, 2004b, 2005b; Rycroft et al. 2004; Patzak et al. 2016c). Currently, the Plagiochilaceae contains some 450–700 species, most of which belong to Plagiochila (Dumort.) Dumort. (Heinrichs 2002; Patzak et al. 2016c; Söderström et al. 2016), meaning that this genus contains some 5–9% of global liverwort species diversity (von Konrat et al. 2010; Söderström et al. 2016). The Plagiochilaceae is also one of the largest families in the liverwort lineage, being exceeded only by the Lejeuneaceae Cavers (~1500 species; Söderström et al. 2016) and possibly the Frullaniaceae Lorch. Like most other liverwort families, composition and circumscription of the Plagiochilaceae has been refined by molecular data. The broad circumscription of Schuster (1980) included genera now distributed among two suborders, and the composition of the family continues to change, primarily by the transfer of morphologically isolated elements from other families within the Lophocoleineae (Söderström et al. 2013) and the occasional exclusion of morphologically anomalous species to other suborders (Patzak et al. 2016a). Within the Plagiochilaceae, as in other families, the ongoing flux is due to the capture of smaller genera of difficult acquisition in molecular studies of ever increasing scope and depth of sampling. Genera have been transferred between families within a suborder, for example, Tetracymbaliella Grolle from Lophocoleaceae to Brevianthaceae and Pseudolophocolea R.M. Schust. & J.J.Engel from Lophocoleaceae to Plagiochilaceae (Lophocoleineae, Söderström et al. 2013), Saccogynidium Grolle from Geocalycaceae to Acrobolbaceae E.A.Hodgs. (Jungermanniineae, Shaw et al. 2015), Rivulariella D.H.Wagner from Jungermanniaceae Rchb. to Scapaniaceae Mig. (Patzak et al. 2016b), and sometimes between different suborders, for example, Pedinophyllopsis R.M.Schust. & Inoue from Jungermanniineae to Lophocoleineae (He-Nygrén and Piippo 2003), Syzygiella Spruce and Xenochila R.M.Schust. in the reverse direction (Groth and Heinrichs 2005; Patzak et al. 2016a) and Chonecolea R.M.Schust. ex Grolle from Lophocoleaceae, Harpanthaceae Arnell or Plagiochilaceae to Cephaloziellaceae Douin (Patzak et al. 2016b). Often these transfers involve morphologically and phylogenetically distinct elements whose unusual morphology has precipitated misplacement, and the transferred genera are usually retained. Unsurprisingly, genera have proven paraphyletic or polyphyletic within familial limits too. A topical example from the Lophocoleaceae is Chiloscyphus Corda, which proved paraphyletic with respect of Leptoscyphus Mitt. (Hentschel Australian Systematic Botany 71 et al. 2007), prompting segregation of Cryptolophocolea L. Söderstr., Crand.-Stotl., Stotler & Vá na (Söderström et al. 2013); however, the exact limits of Chiloscyphus have still not been resolved (He-Nygrén and Piippo 2003; Patzak et al. 2016c). The large, morphologically distinct genus Plagiochila was paraphyletic before the segregates Dinckleria Trevis., Chiastocaulon Carl and Cryptoplagiochila S.D.F.Patzak, M.A.M.Renner & Heinrichs were excluded (Groth and Heinrichs 2003; Heinrichs et al. 2006; Patzak et al. 2016c). Unfortunately, Chiastocaulon and Acrochila R.M.Schust. rendered the well known and distinctive (Inoue 1964) genus Plagiochilion S.Hatt. paraphyletic, and Acrochila, with only two species, was itself resolved polyphyletic within Chiastocaulon (Patzak et al. 2016c), so even this minimalist attempt at monophyly on the basis of morphological evidence failed. Repeatedly, hypotheses of relationship founded on homoplastic character systems have been flatly refuted by molecular data (e.g. Yu et al. 2013; Heinrichs et al. 2014; Bechteler et al. 2016). Every refutation has reinforced appreciation of the innovative morphological changes achieved to meet ecological challenges (Feldberg et al. 2014), and highlighted the role of natural selection in shaping the observed distribution of character states among groups of organisms. In turn, this corroborates to some extent earlier hypotheses of evolutionary dynamism within this lineage of relatively uncomplicated, structurally simple, plants (e.g. Schuster 2001). Well resolved, well sampled, and robust classifications are integral to formulating and refining hypotheses explaining all aspects of evolutionary dynamics, including character evolution, divergence and diversification rates. These explanations are particularly pertinent in lineages that have experienced higher diversification or lower extinction rates resulting in high extant diversity in comparison to sister lineages, because these systems may provide insight into the interaction between trait origin and phylogenetic diversity within a range of ecological contexts. Within the Plagiochilaceae, changes in generic (Groth and Heinrichs 2003; Heinrichs et al. 2006; Patzak et al. 2016c) and sectional (Heinrichs et al. 2005c; Engel and Merrill 2013; Söderström et al. 2015) classifications have been motivated by a range of factors, including nomenclatural issues, changing concepts, and shifting emphasis on different character systems. Concomitant with ongoing refinement to generic limits has been progressive, and sometimes dramatic modification of infrageneric groups. The first infrageneric classifications for Plagiochila were proposed by Lindenberg (1843, see Söderström et al. 2015, Plagiochilaceae and World Checklist, cited as 1844), including six sections with 11 infrasectional groups, all circumscribed by shoot architecture, leaf shape, arrangement and dentition, and perianth shape in Gottsche et al. (1845). These morphologically circumscribed sections were also intercontinentally distributed. In his treatment of Andean and Amazonian species, Spruce (1885) was not particularly complementary regarding Lindenberg’s sections, commenting that he found them intractable in practice, and so proposed another classification ‘which I hope may be found easier to work with, and more conformable to nature’ (Spruce 1885, p. 453). Spruce considered shoot architecture, branching pattern, gynoecium position, plant colour, perianth form, androecium position and even the 72 Australian Systematic Botany number of antheridia per bract, and recognised five sections. He commented that a sixth would be needed for ‘our P. asplenioides and P. gigantea’ that were distinct from South American species in their long tubular perianths with an elongated pedicel. This relationship, on the basis of the same characters, had earlier been postulated by Lindenberg who ‘soli manerent tum Plagiochilae genus’ [alone endured the genus Plagiochila] in Gottsche et al. (1845). Spruce divided Plagiochila into two broad groups, the Cauliflorae Spruce and Ramiflorae Spruce. The former was proposed for plants with erect or cernuous stems arising from a prostrate caudex, and shoots the branching of which was associated mostly with gynoecium production, each bearing one or two innovations that were simple or again fertile. The Ramiflorae contained plants the shoot systems of which were dichotomous in full or part, rarely one- to three-pinnate, the gynoecia terminal on ultimate branches, rarely also in ultimate axils, so the plant developed a flabelliform frond, surrounded by gynoecia. Spruce’s (1885) broad groups have not been accepted, and his five sectional names applied to groups for which names had been proposed by Lindenberg. Six sections were described by Schiffner (1900), four of which are accepted today. A geographical section concept was introduced by Carl (1931) who used characters of the gametophyte available from herbarium material, especially leaf shape, leaf cell pattern and branching to propose a classification containing 52 new sections and one new subgenus. The geographical–morphological sectional classification inherited from Carl (1931) has been progressively modified by subsequent workers who have considered characters of the sporophyte in addition to those of the gametophyte (Inoue and Schuster 1971; Schuster 1980; Inoue 1984; So 2001a, 2001b, 2001c; So and Grolle 2001; Heinrichs 2002; Engel and Merrill 2013). These revisions have considered an everwidening array of data sources, including both gametophyte and sporophyte generations. Inoue proposed eight new sections (Inoue 1958, 1965, 1975, 1984), the new subgenera Paraplagiochila Inoue and Metaplagiochila Inoue (Inoue 1984), and the new genus Steereochila Inoue (Inoue 1987). With Schuster, he also proposed three new sections and four new subsections for New Zealand and Tasmanian species (Inoue and Schuster 1971). Hässel de Menéndez (2009) described a new section from southern South America, based on the unusual female bracts and the lack of subfloral innovations, among other morphological features. Engel and Smith-Merrill (2013), likewise, considered evidence from the sterile and fertile gametophyte and the sporophyte and described four new sections from New Zealand. The first study of Plagiochila including molecular data appeared this millennium (Heinrichs et al. 2002), since which time ongoing investigations have refined both generic and sectional circumscriptions (e.g. Groth and Heinrichs 2003; Heinrichs et al. 2005a, 2006). Molecular and morphological evidence from gametophyte and sporophyte have supported the re-circumscription of several sections, and the description of the new Plagiochila section Africanae Heinrichs from Africa (Heinrichs et al. 2005c). Diagnostic morphological characters have been identified in lieu of molecular phylogenies, often from poorly studied character systems such as oil bodies, M. A. M. Renner et al. sporophyte-valve cell thickenings, and elaters, for example, the blueish-brown oil bodies of P. section Glaucescentes Carl, and the unispiral elaters of P. section Arrectae Carl in comparision to the bispiral elaters of P. section Peculiares Schiffn. (Heinrichs et al. 2004c). New morphological characters, such as the leaf surface wax in section Fuscoluteae Carl, have also been identified (Heinrichs et al. 2000a). Revised sectional circumscriptions have in most cases proven robust to increased sampling intensity, as the taxonomic coverage of molecular datasets has broadened and deepened (Heinrichs 2002; Groth et al. 2003, 2004; Heinrichs et al. 2004c, 2005d, 2006; Lindner et al. 2004). The most recent publication on the infrageneric classification (Söderström et al. 2015) was a review of the sectional classification of Plagiochilaceae, which incorporated recent molecular evidence the implications of which had not yet been fully translated into the sectional classification. Unfortunately, the progressive refinement of sectional circumscription undertaken over the past 80 years has not implied convergence on a single universally accepted infrageneric classification. In fact, within some geographic regions, quite the opposite is true. In New Zealand, 12 sections were accepted for New Zealand by Engel and Merrill (2013), but, of these, only seven were accepted by Söderström et al. (2015). Although some of the differences between these two schemes were a function of the incorporation of results from recent molecular phylogenetic investigations in one and not the other, this incompatibility of sectional concepts and classifications has highlighted the fact that resolution of the relationships within Plagiochila is far from complete (Heinrichs 2002; Groth et al. 2004; Patzak et al. 2016b), as does the recent re-instatement of P. section Abietinae Schiffn. (Jamy et al. 2016). The recent study of Patzak et al. (2016c) included 15 of an estimated 71 Australasian species (Renner et al. 2017), and did not include most Australasian sectional type species, so was not able to test recent revisions of the infrageneric classification. Other critical type species from Australasia have been included on the basis of single accessions only. There has not yet been a comprehensive test of the relationships encapsulated by the alternative sectional classification for Australasia proposed by Engel and Merrill (2013) and Söderström et al. (2015). In the present study, we expand species sampling within Australasia to include 64 of the 71 species currently believed to occur in this region (Renner et al. 2017), including all sectional types. We employed likelihood and Bayesian approaches to infer relationships among species. We aimed to resolve robust relationships between Australian species as the basis for refining sectional classifications proposed for species of this region. Our key questions were how are Australasian species related, both to each other and to species from other parts of the world? Materials and methods Taxon sampling Specimens from the herbaria AK, CANB, F, GOET, MEL and NSW were sampled for DNA to capture the range of morphological and geographic variation represented in Testing relationships within Plagiochila herbarium material. Specimens derived from dedicated fieldwork in both Australia and New Zealand were included in this set of sampled herbarium specimens. Voucher details are given in Appendix 1. Sequences from 259 individuals (49% of the dataset) were generated during our study of Australasian Plagiochilaceae. This included 64 of the 71 species (90%) currently believed to occur in Australasia (Renner et al. 2017), including all sectional types. Another 110 individuals of Plagiochila species from other parts of the world were also included. The remaining individuals comprised representatives of Chiastocaulon, Dinckleria, the Lophocoleaceae and Herbertus Gray. DNA extraction, polymerase chain reaction (PCR), sequencing Clean shoot tips comprising two or three leaves were excised from dried herbarium specimens and used to extract genomic DNA with the Qiagen DNeasy 96 Plant Kit (QIAGEN, Valencia, CA, USA). Sequences for the nuclear ribosomal internal transcribed spacer region (nrITS1–5.8S-ITS2, hereafter ITS) and the chloroplast regions rps4 plus the rps4–trnS intergenic spacer (hereafter rps4) and rbcL were obtained by PCR, with the following parameters. All reaction volumes were 25 mL and contained 17 mL of MilliQ water, 2.5 mL of 10 Immolase buffer (Bioline, London), 2 mL of 2.5 mM dNTPs, 1.25 mL of 50 mM MgCl2, 0.25 mL of 0.4% bovine serum albumin (BSA), 0.5 mL of 10-mM forward primer, 0.5 mL of 10-mM reverse primer, 0.2 mL of immolase Taq and 1 mL of DNA. For amplification of rbcL and ITS, nested PCRs were performed. Temperature profile for PCR 1 was 95C for 10 min, followed by 25 cycles of 95C for 60 s, 51C for 50 s and 72C for 90 s. A final extension step of 72C for 10 min completed the thermal cycle. PCR 2 included an extra five cycles. The primer pairs used for the nested rbcL PCR were rbcL1-Pl-F (ATGTCACCACAAACGGAGACTAAARCAGGT) and rbcL-M1390-R (CTTTCCAWAYTTCRCAAGCAGCRG; Wilson et al. 2004) for the first step using genomic DNA, and rbcL-38-F (GGTGTTGGATTTAAAGCTGGTG; Wilson et al. 2004) and rbcL-1379-Pl-R (TCACAAGCAGCAGCTAGTTCA GGACTC; Groth and Heinrichs 2003) in the second PCR seeded with 1 mL of the product from PCR 1. For nrITS, the primers Hep2-F (GAGTCATCAGCTCGCGTTGAC) and HepC-R (TCTCCAGACTACAATTCGCAC) were used in the first step using genomic DNA, and Hep3-F (CGGTTCGCCGCCGGT GACG) and HepA-R (CGCCGCTACTAGGGAAATCCTA; Groth and Heinrichs 2003) were used in the second PCR, which was seeded with 1 mL of the product from PCR 1. Amplification of rps4 used the primers rps5-F (ATGTCCCG TTATCGAGGACCT) and trnS-R (TACCGAGGGTTCG AATC; Groth and Heinrichs 2003). Temperature profile for rps4 was 95C for 10 min, followed by 30 cycles of 95C for 60 s, 52C for 60 s and 72C for 150 s. A final extension step of 72C for 10 min completed the thermal cycle. Some samples required a second semi-nested PCR for rps4, using the alternate reverse primer rps4-R (TTARRCTTGRCGAGAATAATATTC; Groth and Heinrichs 2003) and identical cycling conditions. PCR cleanup, sequencing reactions and reads were completed by Macrogen Inc. (Seoul, South Korea; http://dna.macrogen. com/eng/, accessed 21 February 2017). Sequences were Australian Systematic Botany 73 assembled, checked and edited in Geneious, ver. 6 (Biomatters Ltd, Auckland, New Zealand, see http://www.geneious.com, accessed 21 February 2017). Specimen and GenBank data are provided in Appendix 1. Phylogeny reconstruction Sequence editing followed Patzak et al. (2016c) and Renner et al. (2016). Sequences were aligned manually in BioEdit version (Hall 1999). Only unambiguously alignable regions were included in the final matrix. The best-fit model of evolution for each partition was identified by jModelTest 2 (Guindon and Gascuel 2003; Darriba et al. 2012) with the Akaike information criterion (AIC). Among models specifiable within MrBayes, GTR+I+G was selected by AIC for all three partitions. Each partition was assessed for topologically conflicting nodes supported by >70% bootstrap support in maximum-likelihood trees estimated by RAxML, ver. 8 (Stamatakis 2014). We inferred relationships among individuals on the basis of the three-marker concatenated dataset by using likelihood and Bayesian inference methods. The most likely tree topology and support values were estimated using RAxML, ver. 8, with a GTRGamma substitution model and 1000 bootstrap replicates. Trees with high posterior probability were sampled by MrBayes, ver. 3.2 (Ronquist and Huelsenbeck 2003; Ronquist et al. 2012), with the matrix partitioned by marker, partitions unlinked, and a GTR+I+G model applied to each. Two runs each with four chains were executed simultaneously, and completed 15.5 million generations in 150 h of computational time with eight cores on the CIPRES Portal (Miller et al. 2010). Runs were sampled every 10 000 generations. Convergence and mixing of the runs were confirmed with Tracer, ver. 1.6, available with BEAST (Drummond et al. 2012). Majority-rule consensus trees with median node heights were calculated after combining the runs, minus burnin of 10%, in TreeAnnotator, ver. 1.8.4, to represent our best estimate of phylogeny. Herbertus sendtneri (Nees) A.Evans was chosen as outgroup, following Patzak et al. (2016c). Results The concatenated alignment comprised 533 terminals and 2453 bases, nrITS contributing 686 bases (541 parsimony informative), rps4 573 bases (362 parsimony informative), and rbcL 1194 bases (1005 parsimony informative). Missing data comprised 5% of nrITS (24 sequences) 6% of rps4 (30 sequences) and 14% of rbcL (72 sequences). Effective sample sizes from the Bayesian analysis were LnL 1173, LnPr 13890 and TL[all] 13 911 from a combined 28 million generations after burnin was excluded. Within Plagiochilaceae, the tree topology recovered by maximum likelihood analysis was the same as the majorityrule tree in Renner et al. (2017). Plagiochila was recovered monophyletic with full support (Figs 1–4). A fully supported lineage corresponding to Plagiochila section Denticulatae Schiffn. sensu Patzak et al. (2016c) was placed sister to the remainder of the genus (Fig. 2). This lineage contained several predominantly dendroid species, including P. gigantea Lindenb. and P. fuscella (Hook.f. & Taylor) Gottsche, Lindenb. & Nees, 74 Australian Systematic Botany 1 M. A. M. Renner et al. 1. Dinckleria 2 2. Pseudolophocolea 3 3. Chiastocaulon lineage 4. Plagiochila Fig. 2 4 equally sized lineages, and, at least on the basis of our sampling, both have strong representation within Australasia (Fig. 3). The Australasian representatives of the first lineage are predominantly tropical species, being regional representatives of the species rich and mostly tropical sections Cucullatae Schiffn. and Vagae Lindenb., including P. bantamensis Dumort. and P. chauviniana Mont. as examples of the former and P. obtusa Lindenb. and P. metcalfii Steph. as examples of the latter. This lineage also contains Australasian representatives in other smaller sections (Fig. 3). The second lineage contains a strong representation of mostly southern temperate Australasian species in several sublineages (Fig. 4). Many of these lineages have been recognised as distinct and formalised as sections, including section Annotinae Carl, section Strombifoliae Inoue & R.M.Schust. and section Mitteniae J.J.Engel & G.L.Merr., see Söderström et al. (2015, p. 83). However, the relationships between different sections and their constituent species warrants scrutiny in lieu of the robust topology resolved by the present analysis. Fig. 3 Discussion Summary of sectional groups Fig. 4 0.03 Fig. 1. Condensed maximum-likelihood phylogeny of the Plagiochilaceae, showing relationships among major lineages. The Chiastocaulon lineage includes representatives of the genera Chiastocaulon, Cryptoplagiochila and Pedinophyllum in our sampling. Pruned tree segments (Figs 2–4) are indicated. but also species with more usual growth form, and one species, P. banksiana Gottsche, whose shoots are prostrate. The next node separated a fully supported lineage containing P. fragmentissima Inoue & R.M.Schust. (= P. ratkowskiana Inoue) and the P. deltoidea Lindenb. species complex, along with two species tentatively attributed to P. gymnoclada Sande Lac. from Papua New Guinea and Fiji. The monophyly of the remainder of Plagiochila was strongly supported. The next node separated the remainder of Plagiochila into two nearly Neither sectional classification for Australasian Plagiochila is fully reflective of the relationships between species recovered by this study (Fig. 5). The major discrepancies are detailed below. Section Annotinae sensu Engel and Merrill (2013) was recognised for five species sharing a distinctive ventral aspect, and included section Radiculosae Inoue & R.M.Schust. as a synonym. None of the species attributed to this section are closely related to P. annotina Lindenb., although P. baylisii Inoue & R.M.Schust. was resolved within the broader Belangerianae lineage. Of the remaining species, P. radiculosa Mitt. has been transferred to its own genus on the basis of its sister relationship with Pedinophyllopsis and Pedinophyllum Lindenb., and P. bazzanioides J.J.Engel & G.L.Merr. and P. circumdentata Steph. have been placed in a lineage with P. circinalis (Lehm. & Lindenb.) Lindenb. and sister to the broader section Belangerianae Carl. Sections Annotinae and Radiculosae were placed into synonymy of section Tayloriae Carl by Söderström et al. (2015); however, the type of section Tayloriae is P. fuscella, a member of section Denticulatae as discussed further below. Section Belangerianae sensu Engel & Merrill (2013) was recognised for five species sharing terminal Frullania-type vegetative branching, including P. subflabellata Colenso, P. aculeata (Hook.f. & Taylor) Gottsche, Lindenb. & Nees, P. fasciculata Lindenb., P. pacifica Mitt. and P. arbuscula (Brid. ex Lehm. & Lindenb.) Lindenb., the sectional type. A monophylum including these species was recovered by the analysis, but this section was rendered paraphyletic by the monotypic sections Mitteniae and Strombifoliae, by the type of section Annotinae, by a specimen identified as P. fusca Sande Lac. and another lineage corresponding to an unidentified species from Queensland. Section Banksianae Carl included two species, P. banksiana and P. intertexta Hook.f. & Taylor, in the sectional scheme of Engel and Merrill (2013). These two species both belong to section Denticulatae but were not sister species. Section Testing relationships within Plagiochila Australian Systematic Botany Fig.3 Fig. 2. Maximum-likelihood phylogeny for pruned Segment 1, showing sections accepted by the present study, and voucher identifications as presented on herbarium specimens or determined using currently available literature and, for Plagiochila aff. peculiaris, comparison with type material. Numbers above branches are maximum-likelihood bootstrap-support values and Bayesian posterior probabilities respectively, with asterisk indicating full support. Note that P. andina has not yet been assigned to a section. 75 76 Australian Systematic Botany M. A. M. Renner et al. Fig. 2 Fig. 4 Fig. 3. Maximum-likelihood phylogeny for pruned Segment 2, showing sections accepted by the present study, and voucher identifications as presented on herbarium specimens or determined using currently available literature. Numbers above branches are maximum-likelihood bootstrap-support values and Bayesian posterior probabilities respectively, with asterisk indicating full support. Testing relationships within Plagiochila Australian Systematic Botany Fig. 3 Fig. 4. Maximum-likelihood phylogeny for pruned Segment 3, showing sections accepted by the present study, and voucher identifications as presented on herbarium specimens or determined using currently available literature. Numbers above branches are maximum-likelihood bootstrap-support values and Bayesian posterior probabilities respectively, with asterisk indicating full support. 77 M. A. M. Renner et al. al 20 Giganteae Banksianae Giganteae Hodgsonia Banksianae Tayloriae Hodgsonia st ud y rs trö m Th is de Sö ge l& Chiastocaulon et M er ril l Pseudolophocolea Cryptoplagiochila P. gigantea P. baileyana P. intertexta P. rutlandii P. sp. nov. P. gregaria P. banksiana P. retrospectans P. fuscella P. ratkowskiana P. sp. nov. P. spenceriana P. deltoidea .2 13 Dinckleria 01 5 Australian Systematic Botany En 78 Denticulatae Denticulatae Tayloriae Denticulatae iss ent gm Fra P. sp. indet. 1 P. abietina P. aff. pecularis Peculiares Peculiares P. aff. trapezoidea Plagiochila Plagiochila Cucullatae Cucullatae P. chauviniana P. vitiensis P. bantamensis P. daviesiana P. trigona P. parvifolia P. sp. nov. P. teysmannii P. metcalfii P. obtusa P. queenslandica P. sp. nov. P. ramosissima P. colensoi P. sp. nov. P. sp. nov. P. caducifolia P. bazzanioides P. circumdentata P. circinalis P. incurvicolla P. conturbata P. hartziana P. subflabellata P. baylisii P. fasciculata P. annotina P. strombifolia P. sp. nov. P. stephensoniana P. pacifica P. trispicata P. heterospina P. arbuscula Vagae Cucullatae Tayloriae Colensoa Caducifoliae Annotinae Deflexifoliae Colensoa e ima Durae Abietinae Vagae Vagae Durae Tayloriae Durae Arrectae Caducifoliae Arrectae Tayloriae Deflexifoliae Tayloriae Belangerianae Annotinae Belangerianae Annotinae Strombifoliae Tayloriae Strombifoliae Mittenia Tayloriae Belangerianae Belangerianae Vagae Fig. 5. Phylogeny of Plagiochila, showing sectional circumscription of two previously published schemes, on the basis of explicit statements regarding sectional membership and section synonymy, or sectional synonymy and attribution of sectional types alone, and the sectional circumscription adopted by this study. Species names were resolved on the basis of comparison with type material in lieu of phylogeny reconstruction and revision of specimen morphology. Blank areas indicate sections not included, or species explicitly assigned to section, by respective treatments. Testing relationships within Plagiochila Banksianae was treated as a synonym of section Denticulatae by Söderström et al. (2015). Section Belangerianae was not recognised by Söderström et al. (2015), who regarded it as a synonym of section Vagae on the basis of a single individual of P. arbuscula included in Groth et al. (2004). This synonymy created a polyphyletic section Vagae. Section Caducifoliae J.J.Engel & G.L.Merr. was proposed by Engel and Merrill (2013) for the regionally anomalous P. caducifolia Inoue & R.M.Schust., and was accepted by Söderström et al. (2015); however, P. caducifolia is nested within section Arrectae. Section Colensoae J.J.Engel & G.L.Merr. sensu Engel & Merrill (Engel and Merrill 2013) was proposed for the outwardly similar species P. colensoi Hook.f. & Taylor and P. incurvicolla (Hook.f. & Taylor) Gottsche, Lindenb. & Nees; however, these are not each other’s closest relatives and this section of two species is polyphyletic. Section Colensoae was not recognised by Söderström et al. (2015), who regarded it as a synonym of section Tayloriae. Section Cucullatae Schiffn. was recognised by both Engel and Merrill (2013) and Söderström et al. (2015), and was resolved monophyletic in the present study. Section Deflexifoliae Carl was accepted with two members, P. circinalis (Lehm. & Lindenb.) Lehm. and P. microdictyon Mitt. by Engel and Merrill (2013), but was regarded as a synonym of section Tayloriae by Söderström et al. (2015). Plagiochila circinalis was resolved sister to P. bazzanioides and P. circumdentata in a well supported lineage sister to the broader Belangerianae Carl. Section Giganteae was accepted with two species, P. gigantea Lindenb. and P. rutlandii Steph. by Engel and Merrill (2013), but was regarded as a synonym of section Denticulatae by Söderström et al. (2015). In our phylogeny, Plagiochila gigantea and P. rutlandii are not sister species. Section Hodgsoniae J.J.Engel & G.L.Merr. was proposed for P. deltoidea, P. fragmentissima and P. gregaria (Hook.f. & Taylor) Gottsche, Lindenb. & Nees by Engel and Merrill (2013), but these species were distributed among sections Durae Carl and Tayloriae by Söderström et al. (2015). Plagiochila deltoidea and P. fragmentissima belong to the same lineage, but neither is closely related to P. gregaria (Hook.f. & Taylor) Gottsche, Lindenb. & Nees, which belongs within section Denticulatae, making this section polyphyletic. The synonymisation of section Hodgsoniae with section Durae renders the latter polyphyletic under the scheme of Söderström et al. (2015). Section Mitteniae was proposed for P. stephensoniana Mitt. by Engel and Merrill (2013) but was placed in synonymy of section Tayloriae by Söderström et al. (2013). Plagiochila stephensoniana is one of four elements rendering section Belangerianae sensu Engel & Merrill paraphyletic. Section Strombifoliae was proposed for P. strombifolia (Taylor) Taylor, which is the only species attributed to it. Both Engel and Merrill (2013) and Söderström et al. (2015) accepted this section, which was resolved nested within the broader section Belangerianae sensu Engel & Merrill. In our phylogeny the four species of section Tayloriae accepted by Engel and Merrill (2013) were resolved in different lineages, rendering this section polyphyletic. Many sections were synonymised with section Tayloriae by Söderström et al. (2015), and these were resolved throughout the phylogeny, rendering the section polyphyletic under this scheme as well. Australian Systematic Botany 79 The type species Plagiochila taylorii Steph. was recently made a synonym of P. fuscella (Engel and Merrill 2009), which is a member of section Denticulatae. Section Peculiares was recognised by Söderström et al. (2015), and was resolved monophyletic in the present study, including one Australian species, namely P. aff. peculiares. Plagiochila trapezoidea Lindenb. was placed in a supported sister relationship with section Plagiochila. Implications The topology of the molecular phylogeny resolved from our comprehensive sampling of species indicated that several refinements to sectional circumscriptions within Plagiochila are necessary to achieve a natural classification. These refinements vary in their complexity and the severity of their taxonomic implications. At the simplest end of the spectrum, the placement of the monotypic section Caducifoliae within section Arrectae is, in hindsight, compatible with morphological characters shared by P. caducifolia and other species of section Arrectae, in particular P. spinulosa (Dicks.) Dumort. and P. lunata S.W. Arnell. The synonymisation of section Caducifoliae with section Arrectae is uncontroversial, and means that section Arrectae is newly recorded for southern temperate Australasia. Another simple issue concerns section Deflexifoliae; this section is reinstated from synonymy of section Tayloriae for P. circinalis, P. bazzanioides and P. circumdentata, all of which share closely imbricate leaves with deep U-shaped insertion lines, granular oil bodies, exclusively lateral– intercalary vegetative branching, and long, ligulate perianths with parallel dorsal and ventral keels. This section is endemic to southern temperate Australasia, and all species occur in New Zealand where two are endemic. The type species, P. circinalis, also occurs in Tasmania, Victoria, and south-eastern New South Wales. What happens with section Hodgsoniae? Plagiochila deltoidea and P. fragmentissima, two of the three species placed in section Hodgsoniae by Engel and Merrill (2013), are related, and belong to a newly identified lineage within Plagiochila with species from Papua New Guinea and Fiji. This lineage belongs between section Denticulatae and the monophylum containing all other species. The third species, P. gregaria, was nested within section Denticulatae. There are defining morphological characters for this lineage in the ventral–intercalary stolon origin and lack of vegetative Frullania-type branching. As pointed out by Söderström et al. (2015) section Hodgsoniae is invalid because it was published without description. An earlier name, section Denticulatae, was also published without description. The earliest valid name available for this lineage is section Fragmentissimae (Inoue & R.M.Schust.) R.M.Schust., which we reinstate below. Section Deltoideae was synonymised with section Durae by Groth et al. (2004) who recovered P. deltoidea in a sister relationship with P. dura. However, their P. deltoidea sequence actually comes from P. ramosissima (Hook.) Lindenb. For more than a decade, section Durae has been accepted as having a South-American–Australasian distribution (Heinrichs et al. 2005c), on the basis of the sister relationship between Plagiochila dura De Not. from South America and a 80 Australian Systematic Botany New Zealand individual identified as P. ramosissima, as discussed above. An additional member of this lineage resolved by the present study is P. colensoi Hook.f. & Taylor, which carries section Colensoae with it into synonymy of section Durae. The Australasian–South American distribution of this section holds, and its range extends into the Wet Tropics Bioregion of north-eastern Queensland, with the resolution of relationships to a lineage of small epiphytes. Section Denticulatae was resolved sister to the remainder of Plagiochila by Patzak et al. (2016c), who accepted a circumscription encompassing all species within the lineage, including P. chonotica Taylor, P. banksiana, and two lineages of P. gigantea. Of these, P. gigantea II is as labelled, whereas P. gigantea I and P. sp. are both P. fuscella, the type species of the grossly polyphyletic section Tayloriae, and which rendered section Denticulatae paraphyletic under the scheme of Söderström et al. (2015). There are two options for resolving this paraphyly (the polyphyly of Tayloriae being a separate issue). Under the first option, section Denticulatae could be restricted to the type species, P. nobilis Gottsche, and all other species removed to some or all of the Alternantes Carl, Banksianae, Giganteae and Baileyanae Inoue & R.M.Schust., and a new section for P. rutlandii. There are two difficulties inherent to this approach. First, there are no clear morphological grounds for identifying limits to sectional circumscription compatible with the phylogeny, as it is currently known. Second, the fragmentation will result in a sectional classification potentially incapable of accommodating new species added to the phylogeny, and it may be necessary to propose more new sections if these are resolved on the backbone of the clade. Third, although not problematic per se, the monotypic sections necessary to maintain the Tayloriae themselves communicate little about the relationships among species. Under the second option, section Denticulatae could be maintained in its current broad circumscription by the formal synonymisation of section Tayloriae with section Denticulatae, and the maintenance in synonymy of other sections, following the proposals of Söderström et al. (2015). This approach would be robust to the addition of previously unplaced species, avoids difficulties associated with defining subgroups within this lineage, and formalises a robust hypothesis of relationship among a distinct group of species. This is the approach we favour, and we formalise the synonymy of section Tayloriae below. This also effectively deals with section Tayloriae, the most polyphyletic section under the classification proposed by Söderström et al. (2015), by eliminating it. Where does Plagiochila trapezoidea belong? This species could well fit into section Plagiochila, given its perianth morphology and branching types, and spores having low surface structure that seems typical of section Plagiochila. However, according to Inoue (1984), P. trapezoidea has a thin-walled capsule epidermis, a feature otherwise occurring only in sections Hylacoetes and Cucullatae (Inoue 1984; Heinrichs 2002). Here we adopt a conservative position regarding the sectional placement of this species, and assign it to section Plagiochila. The alternative, proposal of a new section, would create a monotypic group of unknown durability. M. A. M. Renner et al. The following five species of the widespread paleotropical section Belangerianae were accepted for New Zealand by Engel and Merrill (2013): P. aculeata (Hook.f. & Taylor) Gottsche, Lindenb. & Nees, P. arbuscula, P. pacifica, P. subflabellata and P. fasciculata. However, section Belangerianae was regarded as a synonym of section Vagae (Söderström et al. 2015) on the basis of a specimen from Japan included in the study of Groth et al. (2004). In our study, specimens corresponding with the type of P. arbuscula were resolved in a lineage sister to the morphologically similar P. stephensoniana in a rather different part of the phylogeny, suggesting that the Japanese specimen was misidentified. This topology carries the section Belangerianae out of synonymy with section Vagae, but may not necessarily mandate its re-instatement. The section as circumscribed by Engel and Merrill (2013) was rendered paraphyletic by section Strombifoliae, the type species of section Annotinae and P. baylisii the latter also being attributed to section Annotinae by Engel and Merrill (2013), one species attributed to section Colensoae, one species identified as P. fusca, and an unidentified species from north-eastern Queensland. The paraphyly of section Belangerianae sensu Engel & Merrill (2013) is probably the biggest issue of the present study because it involves making a decision about the status of three or possibly four sections that are resolved nested within the broadly circumscribed section Belangerianae accepted by Engel and Merrill (2013). There are two options. The first is to retain these embedded sections and recognise additional sections to achieve monophyletic groups across the phylogeny. This could be achieved by proposing a new section for Plagiochila incurvicolla and the P. fasciculata complex. The challenge is achieving a circumscription for the new section that successfully differentiates the species belonging to it from those belonging to section Belangerianae in a narrower sense. As the circumscription accepted by Engel and Merrill (2013) suggests, this is not an easy task. All share pinnately branched, dimorphic leafy shoot systems with Frullania-type branching, a five- to six-stratose capsule with thickenings in all layers, and colourless, homogenous or at most few-segmented oil bodies with a smooth surface. The leaves of all species bear triangular teeth. The sections nested within the broader Belangerianae also share these features, with the exception of P. annotina and P. strombifolia, the vegetative branching of which is predominantly or exclusively lateral–intercalary. Plagiochila stephensoniana differs in its multicellular spores and unispiral elaters adherent to the capsule valves, but shares the same shoot architecture, and branching-, oil body- and capsule-anatomy characters as P. arbuscula and its allies. The nestedness of section Fuscae Carl within the broader section Belangerianae requires confirmation against additional specimens, particularly as species circumscription and identification are challenging issues within this large genus. The relationships among the Queensland species, the P. fusca specimen, P. strombifolia and P. annotina, are all poorly resolved and subject to fluctuation among inferential approaches. This lack of signal surrounding nodes critical to inference of robust sectional limits is a considerable impediment to attempts to subdivide the broader Belangerianae that strive for stability in the medium to long term. The broad morphological similarity Testing relationships within Plagiochila of species across the lineage, and the lack of clear internal phylogenetic subdivision correlated with defining morphological characters are strong arguments in favour of accepting a broad sectional circumscription. We believe this has two significant advantages. First, on the basis of current sampling, the monophylum is well supported. We believe that this is unlikely to change in response to the inclusion of additional species. Part of our basis for this assertion is that the monophylum can be defined using morphological characters of known utility for sectional circumscription in other parts of the phylogeny, and these characters encompass a range of morphological features, including habit, branching types, Frullania-type branching oil bodies and capsule anatomy. In these features, the broader Belangerianae consistently differ from its sister lineage, the Deflexifoliae, which lacks terminal vegetative branching entirely, has granular oil bodies and ligulate perianths. It is likely that species could be attributed to a broad section Belangerianae on the basis of these morphological characters alone, and this is the second significant advantage. The alternative, splitting the Belangerianae, would have the opposing disadvantages, in that further refinement to sectional circumscription may be necessary in response to species being added to phylogenetic datasets, and morphological circumscription of sections may have little predictive power, and may need to change in response to the inclusion of each additional species. As evidence for the utility of broad sectional circumscriptions within Plagiochila, we note that section Vagae encompasses a large clade of equivalent phylogenetic distinctiveness to our proposed Belangerianae, and that this group is both morphologically distinct, but also internally variable. In particular, P. obtusa possesses unusual morphological characters, but shares with all other species the characteristic alternating Frullania-type vegetative branching and production of vegetative propagules from leaf surfaces. With regard to sectional name, there is high potential here for us to contribute to a legacy of inadequately founded sectional synonymies. The identity, and monophyly of Plagiochila fusca, both need to be corroborated before a formal synonymy between section Belangerianae and section Fuscae is proposed. As we have resolved with certainty only the type species of section Belangerianae, we apply this name to the lineage, and abstain from further comment on the status of section Fuscae. Morphological characters Relationships currently inferred among species of Plagiochila mostly prove unreliable, and both sectional classifications recently applied to Australasian Plagiochila require revision to achieve monophyly of recognised groups. The severity of para- and polyphyly varies within both schemes. The most extreme case of polyphyly is presented by section Tayloriae as circumscribed by Söderström et al. (2015), which has, on the basis of Australasian sectional type species alone, six independent origins and encompasses nearly all major lineages within Plagiochila, and the segregate genus Cryptoplagiochila. The only sections resolved monophyletic are those that defy polyphyly by virtue of being monotypic, such as section Strombifoliae and section Mitteniae and those proposed by Inoue (1984) as subgenera. Section Deflexifoliae sensu Engel Australian Systematic Botany 81 & Merrill (2013) may be monophyletic, but P. microdictyon was not included in our dataset, so its monophyly has not been tested. Morphology, or at least the morphological characters that have been employed, have proven positively misleading in establishing higher-order relationships. Some examples below highlight the extent, both structurally and phylogenetically, of the challenge faced by taxonomists inferring relationships within Plagiochila using morphological data. The first significant difficulty is that shared possession of unusual features does not necessarily imply a close relationship. Several unusual features have motivated the placement of unrelated species in section Annotinae, including the following: presence of teeth on the dorsal leaf margin in P. baylisii, P. bazzanioides and P. circumdentata; paraphyllia on the stems of P. bazzanioides and P. circumdentata; and lamelliform appendages on perianths of P. annotina, and P. baylisii. Of these species, only two, P. bazzanioides and P. circumdentata, are related and they are related to another species with none of these characters, namely P. circinalis. A ventral lobe on the perianth is an unusual feature within Plagiochila, and occurs in P. banksiana and P. intertexta. Although both species are members of section Denticulatae, they are not each other’s closest relatives, even among New Zealand taxa. The unusual monospiral elaters of section Mitteniae are shared with species of the unrelated section Arrectae. Tightly spicate androecia with entire male bracts united with the opposing bract occur in both P. deltoidea and P. gregaria, which belong in different major lineages. Within P. deltoidea, expression of this character is inconsistent. Shared possession of this combination of distinctive reproductive features does not necessarily indicate a close relationship. These two species also share spores that are two- to four-celled while still in the capsule (Engel and Merrill 2013), as do species of the Neotropical section Glaucescentes and species of the pantropical section Vagae (Heinrichs et al. 2000b). Branch types were repeatedly emphasised as of critical importance to all levels of leafy liverwort classification (Schuster 1984, 2001) and, within the Plagiochilaceae, have been employed as the basis for distinctions among genera, sections and species (Carl 1931; Hattori 1947; Inoue and Schuster 1971; Heinrichs et al. 2006). Generally, the presence or absence of a particular branch type, whether vegetative or associated with the production of reproductive structures, has been interpreted as significant. However, in some families such as the Lophocoleaceae, the shared possession of branching types did not always serve to delimit natural groups (Engel 1991, 2009; Schuster 2001; Engel and He 2010; Engel et al. 2010). Branch types exhibit homoplasy within Plagiochila as well. For instance, three lineages within section Belangerianae, as accepted here, lack terminal branching and other unrelated lineages such as section Vagae have Frullaniatype vegetative branches. The occurrence of Frullania-type branches and lateral–intercalary branches seems to be highly homoplastic in Plagiochila, and several sections consistently have both branching types, for example, sections Glaucescentes and Vagae. Branch types have been employed to circumscribe generic segregates or re-instatements, Chiastocaulon differs 82 Australian Systematic Botany from Plagiochila in the widespread occurrence of ventral– intercalary vegetative branches (Groth and Heinrichs 2003, Heinrichs et al. 2006, Patzak et al. 2016c), and Dinckleria differs from most Plagiochila species by stolon production by ventral–intercalary, rather than lateral–intercalary branching (Renner et al. 2016). The second significant difficulty is that overall similarity in a wide range of features, including habit, branching, leaf-shape and dentition, does not necessarily imply a close relationship. Two species, P. fragmentissima and P. gregaria, are so similar that they have been regarded, but not formalised, as synonyms (Söderström et al. 2015). The New Zealand P. fragmentissima is the same as the Tasmanian P. ratkowskiana, which is unrelated to P. gregaria, despite their overall morphological similarity. In another example, a relationship between Cryptoplagiochila radiculosa and section Annotinae was hypothesised by Engel and Merrill (2013, p. 405), who noted that ‘the relationship between P. radiculosa and P. annotina, however, M. A. M. Renner et al. is underscored by the striking similarities in habit, leaf shape and arrangement, androecial position, and spores, despite the total absence of leaf marginal teeth in P. radiculosa’. That similarity can be an unreliable indicator of relationships has been emphasised by molecular phylogenetic studies in many other lineages of bryophytes (Ramaiya et al. 2010; Renner et al. 2011; Dong et al. 2012). Instances such as those described above beg the question whether any relationships within Plagiochila can be confidently inferred independent of molecular data. The difficulties they reflect are unlikely to be endemic to the Australasian region, given that representatives of nearly every major lineage occur here, these issues show no inclination towards phylogenetic restriction, and the manifestation of homoplastic characters in extraterritorial species suggest that they show no inclination towards geographic restriction either. More than anything else, the parlous state of the current infrageneric classification reflects the difficulties involved when inferring relationships A B C D Fig. 6. A, B. Ventral intercalary stolons from Plagiochila deltoidea F1141750, showing origin from ventral stem surface between leaf insertion lines (A), and a newly forming ventral intercalary branch showing the proliferating, elongated mass of dividing cells, which separates the rows of matured ventral cortical cells (B). C. Lateral intercalary stolons from P. abietina (NSW848776). D. Lateral intercalary stolons from P. gregaria (AK322588), showing origin from within leaf insertion lines. Testing relationships within Plagiochila among species within a lineage expressing considerable morphological variation and homoplasy. This is nothing new, relationships resolved on the basis of molecular data have frequently contradicted relationships formalised within the Linnean hierarchy, every instance of which indicates complexities in morphological evolution involving symplesiomorphy, convergence and multiple independent origins (Long et al. 2000; Shaw 2000; Vanderpoorten et al. 2002). These complexities have the downside of confounding attempts to derive natural classifications from morphological data alone (Weigend et al. 2013; Clements et al. 2015), but they also have the upside of informing our appreciation for how dynamic plants actually are. Within the Plagiochilaceae, evolutionary lability and associated homoplasy in morphological character systems regarded as having high taxonomic utility, particularly from the vegetative and reproductive gametophyte, has not yet been quantified. Homoplasy is a known issue within lineages where high species richness contrasts with low morphological complexity and variation (Heinrichs et al. 2004d; Devos et al. 2011). Plagiochila, in contrast to many leafy liverwort genera, expresses both high species richness and high morphological complexity and variation. Plagiochilaceae species have, with a small number of exceptions, shoot systems divided into erect leafy shoots and creeping stolons. The combination of shoot systems differentiated into stolons and leafy shoots interacts with varying modes of stolon and leafy-shoot production to produce a wide diversity of shoot architectures, possibly the widest of any liverwort lineage, which may contribute to the high species diversity and broad ecological range of the lineage. For example, within section Denticulatae, shoot systems grow by monopodial replication of an integrated stolon plus leafy-shoot module, whereas in all other lineages shoot systems grow by sympodial replication of a module with a differentiated creeping basal stolon, and an erect leafy shoot. Plant architecture can contribute to circumscribing monophyletic groups in addition to branch types, which have been the focus of so much attention both across leafy liverworts, and within Plagiochila. A Australian Systematic Botany 83 Branch types exhibit informative patterns of tissue-specific production. This is particularly valuable as branch types are present in most individuals, and captured within nearly all herbarium specimens regardless, and can be used as a universally applicable framework for placing specimens into a section. The genera Dinckleria and Chiastocaulon both produce stolons by ventral–intercalary branching, whereas most Plagiochila species have lateral–intercalary stolons. The exception is section Fragmentissimae, which has ventral–intercalary stolons (Fig. 6). Vegetative branching within leafy-shoot sectors of Chiastocaulon is ventral–intercalary or Frullania-type. In contrast, within leafy-shoot sectors of Dinckleria branches arise by either lateral–intercalary or Frullania-type branching, and subfloral innovations are exclusively lateral–intercalary in origin. Vegetative branching within leafy-shoot sectors of Plagiochila is almost exclusively lateral, either intercalary or terminal Frullania-type, except when the shoot tip is damaged, in which case lateral– and ventral–intercalary branches arise below the damaged tip. Species in the lineages Vagae and Belangerianae produce vegetative branches predominantly of the Frullania-type. Species in other lineages, the vegetative branching of which is exclusively lateral–intercalary in origin may produce Frullania-type male branches, the only location within the plant where terminal branching occurs (Engel and Merrill 2013). Plagiochila incurvicolla occasionally produces ventral– intercalary vegetative branches from undamaged shoots. Subfloral innovations in Dinckleria and most Plagiochila species are lateral–intercalary in origin. In Chiastocaulon, subfloral innovations are ventral–intercalary when a single subfloral innovation is produced, and lateral when two or more are initiated. One lineage of Plagiochila, section Denticulatae, also produces ventral–intercalary subfloral innovations. When aggregations of male branches occur, these are usually produced by Frullania-type branching. In section Fragmentissimae, at least one species produces ventral– intercalary branches at the base or from within male branches and these may be again fertile. B Fig. 7. Teeth. A. Plagiochila baileyana NSW880459. B. P. fuscella var. fuscella MEL2235519. 84 Australian Systematic Botany M. A. M. Renner et al. A B C D Fig. 8. Oil bodies. A. Plagiochila baileyana (NSW880459). B. Plagiochila sp. indet. of section Vagae (NSW Renner 6806). C. Plagiochila fasciculata (NSW, Renner 6800). D. Plagiochila fasciculata (NSW, Renner 6801). Scale bars: 25 mm. A distinction between sharply spinose-aciculate teeth, and teeth of other form was utilised by Inoue and Schuster (1971) in their artificial key to species. In our phylogeny, species with spinose-aciculate teeth group within section Denticulatae, and, thus, the character can contribute to circumscription of this group. In addition to the spinose teeth, many species in this section have cell walls around the leaf margin thickened and intensely pigmented, being often golden or golden-brown (Fig. 7). Oil bodies again prove phylogenetically informative. All regional species of the section Belangerianae share colourless, homogeneous (or nearly so), smooth oil bodies, which is a convenient differentiating character from outwardly similar species belonging to section Vagae that have granular oil bodies (Fig. 8). This character, in addition to vegetative branching, distinguishes section Belangerianae from section Deflexifoliae. Conclusions Substantial modification of the sectional classification is required to achieve natural groups corresponding to monophyletic lineages. A combination of broadening the circumscription of some recognised entities, and synonymising smaller embedded sections will achieve a natural classification. Review and revision of the morphological circumscription of each section is necessary in lieu of the relationships recovered by reconstruction of molecular phylogeny. The current classification suggests that new defining characters, if they exist, must be identified in lieu of phylogeny, following a comprehensive re-appraisal of the full range of Australasian species. Morphological character systems employed have failed to accurately predict relationships. This task will be facilitated by full resolution of the substantial nomenclatural and taxonomic confusion surrounding Australasian species. In Australasia, as in other parts of the world, informative characters will likely be derived from facets of morphology so far neglected and under-utilised, including oil body-, spore-, and sporophyte-derived characters. Acknowledgement that an architectural component is key to understanding patterns of branch-type diversity and variation within Plagiochilaceae may also increase the utility of this character system. Testing relationships within Plagiochila Taxonomic treatment Here, we present a sectional classification and arrangement for Australasian species. Only sections with Australasian types are included, and species lists within each section include species currently recognised on the basis of published literature, or known to occur on the basis of published data (Renner et al. 2017). Plagiochila sect. Denticulatae Schiffn., Hepat. Fl. Buitenzorg 106 (1900) Type: Plagiochila nobilis Gottsche. Plagiochila sect. Banksianae Carl, Ann. Bryol. Suppl. 2: 138 (1931). Type: Plagiochila banksiana Gottsche. Plagiochila sect. Giganteae Carl, Ann. Bryol. Suppl 2: 143 (1931). Type: Plagiochila gigantea Lindenb. Plagiochila sect. Tayloriae (as ‘Taylori ‘) Carl, Ann. Bryol. Suppl 2: 140 (1931), syn. nov. Type: Plagiochila taylorii Steph. [=P. fuscella (Hook.f. & Taylor) Gottsche, Lindenb. & Nees]. Plagiochila subsect. Baileyanae Inoue & R.M.Schust., J. Hattori Bot. Lab. 34: 172 (1971) Type: Plagiochila baileyana Steph. Shoot systems in species of section Denticulatae grow by monopodial replication of a unit having a short erect basal stolon-like sector and a leafy shoot section on top. The stolonlike section in these species does not creep. However, a few of species, such as P. gregaria and P. rutlandii, have a shortcreeping basal stolon, and P. banksiana hardly has any stolons at all. Another feature shared by many species is that the cell walls of marginal leaf cells are evenly and continuously thickened, and may be distinctly gold or yellow–brown pigmented. This is particularly prominent in P. baileyana, P. gigantea, P. fuscella and P. retrospectans. Third, teeth are often spinose to acicular, triangular teeth are not a conspicuous feature of leaves in species of this section, but P. gregaria and an undescribed species from Tasmania and New Zealand are again exceptions. Fourth, subfloral innovations are ventral– intercalary in origin when one is present, but lateral–intercalary when two or more are present. Species in other sections of Plagiochila produce lateral–intercalary subfloral innovations alone, regardless of the number present below the gynoecium. Australasian species • Plagiochila baileyana Steph. • Plagiochila banksiana Gottsche. • Plagiochila fuscella (Hook.f. & Taylor) Gottsche, Lindenb. & Nees. • Plagiochila gigantea Lindenb. • Plagiochila gregaria (Hook.f. & Taylor) Gottsche, Lindenb. & Nees. • Plagiochila intertexta Hook.f. & Taylor. • Plagiochila retrospectans Lindenb. • Plagiochila rutlandii Steph. A Australian Systematic Botany 85 Plagiochila sect. Fragmentissimae (Inoue & R.M.Schust.) R.M.Schust., Hepaticae and Anthocerotae of North America 4: 449 (1980) Plagiochila subsect. Fragmentissimae Inoue & R.M.Schust., J. Hattori Bot. Lab. 34: 154 (1971). Type: Plagiochila fragmentissima Inoue & R.M.Schust. Plagiochila sect. Deltoideae E.A.Hodgs., Trans. Roy. Soc. New Zealand 73: 271 (1944), nom. inval. [Art. 38.1a: no description]. Plagiochila sect. Hodgsoniae J.J.Engel & Merr., Nova Hedwigia 96: 403 (2013), nom. inval. [Art.38.1a: no description]. In species belonging to section Fragmentissimae, stolons initiate by ventral–intercalary branching, either exclusively or in combination with lateral–intercalary branching from the ventral part of the lateral merophyte, as in one species within the P. gymnoclada aggregate. In all other sections of Plagiochila, stolons originate by lateral–intercalary branches only. Terminal vegetative branching is absent from species in this section. The outer surfaces of the capsules of at least one species are water repellent and covered with a distinctive low ornamentation that can be removed by chloroform. Whether this ornamentation is wax and whether it is produced by the sporophyte itself, or is deposited onto the capsule by surrounding gametophyte tissue during sporophyte maturation, should be investigated. Australasian species • Plagiochila deltoidea Lindenb. • Plagiochila axillaris Colenso. • Plagiochila fragmentissima Inoue & R.M.Schust., J. Hattori Bot. Lab. 34: 155 (1971). Type: New Zealand, South Island: Deep Cove, Doubtful Sd., Fiordland Natl. Park, R.M.Schuster 53315 (MASS). Plagiochila ratkowskiana Inoue, Brunonia 3: 141. 1980. syn. nov.A Type: Tasmania, Mt Wedge, 1000 m, leg. A.V.Ratkowsky n. 78/59 (holotype: TNS, isotype: HO!). Plagiochila sect. Belangerianae Carl, Ann. Bryol. Suppl. 2: 117 (1931) Type: Plagiochila belangeriana Lindenb. [= P. arbuscula (Brid. ex Lehm.) Lindenb.] Plagiochila sect. Annotinae Carl, Ann. Bryol. Suppl. 2: 143 (1931), syn. nov. Type: Plagiochila annotina Lindenb. Plagiochila sect. Mitteniae J.J.Engel & Merr., Nova Hedwigia 96: 401 (2013), syn. nov. Type: Plagiochila stephensoniana Mitt. Plagiochila subsect. Obscurae Inoue & R.M.Schust., J. Hattori Bot. Laboratory 34: 160 (1971), syn. nov. Type: Plagiochila obscura Colenso (= P. stephensoniana Mitt.). NOTE ADDED IN PROOF. Ongoing revision of Australasian specimens suggests that Plagiochila fragmentissima is likely the same as our Plagiochila aff. gregaria in Fig. 2. If this is indeed the case the lineage referred to in this paper as sect. Fragmentissimae will require a new name. 86 Australian Systematic Botany Plagiochila sect. Strombifoliae Inoue & R.M.Schust., J. Hattori Bot. Lab. 34: 130 (1971), syn. nov. Type: Plagiochila strombifolia Taylor. Species of section Belangerianae bear Frullania-type vegetative branches, at least occasionally, and most species have pinnate di- or tri-morphic shoot systems, wherein stature is negatively correlated with branch order. The plants do not often produce vegetative propagules. Plagiochila annotina is anomalous in its lack of Frullania-type branches. Teeth on leaves tend to increase in stature towards the leaf base. Australasian species • Plagiochila annotina Lindenb. • Plagiochila arbuscula (Brid. ex Lehm. & Lindenb.) Lindenb. • Plagiochila baylisii Inoue & R.M.Schust. • Plagiochila conturbata Steph. • Plagiochila fasciculata Lindenb. • Plagiochila hartziana Pearson. • Plagiochila incurvicolla (Hook.f. & Taylor) Gottsche, Lindenb. & Nees. • Plagiochila pacifica Mitt. • Plagiochila stephensoniana Mitt. • Plagiochila strombifolia Taylor. • Plagiochila subflabellata Colenso. • Plagiochila trispicata Colenso. M. A. M. Renner et al. not differentially thickened and pigmented, and the teeth on the leaves are triangular, with a broad base. Australasian species • Plagiochila colensoi Hook.f. & Taylor. • Plagiochila ramosissima (Hook.) Lindenb. • Plagiochila sp. indet. Plagiochila sect. Arrectae Carl, Ann. Bryol. Suppl. 2: 52 (1931) Type: Plagiochila arrecta Gottsche. Plagiochila sect. Caducifoliae J.J.Engel & Merr., Nova Hedwigia 96: 407 (2013), syn. nov. Type: Plagiochila caducifolia Inoue & R.M.Schust. Members of section Arrectae produce exclusively lateral– intercalary vegetative branches, have simple, intercalary androecia; homogeneous or indistinctly coarse-segmented oil bodies, and unispiral elaters (Heinrichs et al. 2004c). Plagiochila caducifolia shares with some other species of section Arrectae the striolate ornamentation on the leaf-cell surfaces, particularly on the cells towards the leaf base. Australasian species • Plagiochila caducifolia Inoue & R.M.Schust. Plagiochila sect. Deflexifoliae Carl, Ann. Bryol. Suppl. 2: 139 (1931) Plagiochila sect. Vagae Lindenb., Monogr. Hep. Gen. Plagiochilae xv (1844) Type: Plagiochila deflexifolia Steph. [= P. circinalis (Lehm. & Lindenb.) Lehm.] The species of section Deflexifoliae have irregularly branched, monomorphic leafy shoots arising by lateral– intercalary branches only. The leaves are transversely inserted and orientated, and toothed to varying degrees. Two of the species bear paraphyllia on the dorsal stem surface. The perianths are oblong with parallel dorsal and ventral keels. Type: Plagiochila patula (Sw.) Lindenb. Species of section Vagae share Frullania-type vegetative branching, which is often partially or completely pseudodichotomous, in that the branch displaces to some degree the parent shoot. The species frequently produce propagules, mostly from the ventral leaf surface, and often have endosporous protonemata, perianths often with one or two wings, all layers of capsule walls with thickenings, and colorless, granular oil bodies. Australasian species • Plagiochila bazzanioides J.J.Engel & G.L.Merr. • Plagiochila circinalis (Lehm. & Lindenb.) Lehm. • Plagiochila circumdentata Steph. Plagiochila sect. Durae Carl, Ann. Bryol. Suppl. 2: 123 (1931) Type: Plagiochila dura De Not. Plagiochila sect. Ramosissimae Inoue & R.M.Schust., J. Hattori Bot. Lab. 34: 202 (1971). Type: Plagiochila ramosissima (Hook.) Lindenb. Plagiochila sect. Colensoae [as ‘Colensoa’] J.J.Engel & Merr., Nova Hedwigia 96: 406 (2013), syn. nov. Type: Plagiochila colensoi Hook.f. & Taylor. Both P. colensoi and P. ramosissima grow by monopodial replication of a shoot unit, having a short erect basal stolon-like sector and a leafy shoot section on top, a feature they share with species of section Denticulatae. However, unlike that section, the leaf marginal cell walls in these two species are Australasian species • • • • • • • • • Plagiochila daviesiana Steph. Plagiochila metcalfii Steph. Plagiochila norfolkiensis Steph. Plagiochila obtusa Lindenb. Plagiochila parvifolia Lindenb. Plagiochila queenslandica Steph. Plagiochila teysmannii Sande Lac. Plagiochila trigona Steph. Plagiochila wattsiana J.J.Engel & G.L.Merr. Plagiochila sect. Peculiares Schiffn. Hepat. Fl. Buitenzorg 107 (1900) Type: Plagiochila peculiaris Schiffn. Many species of section Peculiares have flexuose leaf cells and rhizoids continuously distributed along the stem within leafy shoot sectors. They are also conspicuously nitid. Stolons and vegetative branches are exclusively lateral–intercalary. Testing relationships within Plagiochila Australasian species • Plagiochila aff. peculiaris (NSW 880483). Plagiochila sect. Abietinae Schiffn. Hepat. Fl. Buitenzorg: 106 (1900) Type: Plagiochila abietina (Nees) Mont. Species in section Abietinae share regularly dimorphic, pinnately branched shoot systems with Frullania-type vegetative branches, paraphyllia on the stems, and no vegetative reproduction. Australasian species • Plagiochila abietina (Nees) Nees & Mont. Plagiochila Dumort. sect. Plagiochila Type: Plagiochila asplenioides (L.) Dumort. Species of Plagiochila section Plagiochila have lateral– intercalary stolons and vegetative branches, granular oil bodies, long cylindrical perianths and an ellipsoidal capsule with thickenings in all cell layers, and bispiral elaters (Heinrichs et al. 2004c); however, P. trapezoidea has a capsule with a thin-walled outer layer (Inoue 1984). Australasian species • Plagiochila aff. trapezoidea (NSW 855092). Plagiochila sect. Cucullatae Schiffn., Denkschr. Kaiserl. Akad. Wiss., Wien. Math.-Naturwiss. Kl. 70: 160 (1900) Type: Plagiochila sandei Dozy ex Sande Lac. Species in section Cucullatae share a folded or pouchlike elaboration of the antical leaf base, and male branches with relatively loosely spaced, contiguous male bracts with rounded, leaf-like lobes. Leaves are often spinose-ciliate. Small underleaves are usually present on leafy shoots. Australasian species Plagiochila bantamensis (Reinw., Blume & Nees) Mont. Plagiochila blepharophora (Nees) Lindenb. Plagiochila chauviniana Mont. Plagiochila reischeckiana Steph. fide Engel and Merrill (2013). • Plagiochila sandei Dozy ex Sande Lac. • Plagiochila sciophila Nees. • Plagiochila vitiensis Mitt. • • • • Incertae sedis Plagiochila microdictyon Mitt. Acknowledgements This study was funded by the Australian Government through the Australian Biological Resources Study (ABRS) by a Research Fellowship (grant RFL213–14) awarded to M. A. M. Renner and the Royal Botanic Gardens & Domain Trust; and an a Ludwig Maximilian University student research grant to S. D. F. Patzak. The Foundation and Friends of the Royal Botanic Gardens provided funding for M. A. M. Renner to visit herbaria in Chicago, Geneva, London, and Munich, which was critical for establishing Australian Systematic Botany 87 the names for entities resolved by this study. We thank Peter de Lange and David Meagher for providing material for study; Ewen Cameron (AK), Brendan Lepschi (CANB), and the curators at F, FH, GOET, HO, JE, M, MEL, S for loans, access to specimens and permission for destructive sampling; and John Engel, Matt von Konrat, and David Glenny for their support of the project. References Bechteler J, Lee GE, Schäfer-Verwimp A, Pócs T, Peralta DF, Renner MAM, Schneider H, Heinrichs J (2016) Towards a monophyletic classification of Lejeuneaceae IV: reinstatement of Allorgella, transfer of Microlejeunea aphanella to Vitalianthus and refinements of the subtribal classification. Plant Systematics and Evolution 302, 187–201. doi:10.1007/s00606-015-1252-8 Bremer B, Bremer K, Chase MW, Fay MF, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Moore MJ, Olmstead RG, Rudall PJ, Sytsma KJ, Tank DC, Wurdack K, Xiang JQY, Zmarzty S (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161, 105–121. doi:10.1111/j.1095-8339.2009.00996.x Carl H (1931) Die Arttypen und die systematische Gliederung der Gattung Plagiochila Dum. Annales Bryologici Supplementary Volume 2, 1–170. Clements MA, Howard CG, Miller JT (2015) Caladenia revisited: results of molecular phylogenetic analyses of Caladeniinae plastid and nuclear loci. American Journal of Botany 102, 581–597. doi:10.3732/ajb.1500021 Cooper ED, Henwood MJ, Brown EA (2012) Are the liverworts really that old? Cretaceous origins and Cenozoic diversifications in Lepidoziaceae reflect a recurrent theme in liverwort evolution. Biological Journal of the Linnean Society. Linnean Society of London 107, 425–441. doi:10.1111/j.1095-8312.2012.01946.x Crandall-Stotler BJ, Stotler RE, Long DG (2009) Phylogeny and classification of the Marchantiophyta. Edinburgh Journal of Botany 66, 155–198. doi:10.1017/S0960428609005393 Darriba D, Taboada Gl, Doallo R, Posada D (2012) jModelTest2: more models, new heuristics and parallel computing. Nature Methods 9, 772. doi:10.1038/nmeth.2109 Davis C (2004) A molecular phylogeny of leafy liverworts (Jungermanniidae, Marchantiophyta). In ‘Molecular Systematics of Bryophytes’. (Eds B Goffinet, V Hollowell, R Magill) pp. 61–86. (Missouri Botanical Gardens Press: St Louis, MO, USA) Devos N, Renner MAM, Gradstein SR, Shaw AJ, Vanderpoorten A (2011) Molecular data challenge traditional subgeneric divisions in the leafy liverwort Radula. Taxon 60, 1623–1632. Dong S, Schäfer-Verwimp A, Meinecke P, Feldberg K, Bombosch A, Pócs T, Schmidt AR, Reitner J, Schneider H, Heinrichs J (2012) Tramps, narrow endemics and morphologically cryptic species in the epiphyllous liverwort Diplasiolejeunea. Molecular Phylogenetics and Evolution 65, 582–594. doi:10.1016/j.ympev.2012.07.009 Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29, 1969–1973. doi:10.1093/molbev/mss075 Engel JJ (1991) Studies on Geocalycaceae (Hepaticae). II. Stolonivector, a new genus from New Zealand. The Journal of the Hattori Botanical Laboratory 69, 79–86. Engel JJ (2009) Studies on Lophocoleaceae (Hepaticae). XVIII. Stolonivector Engel in New Zealand, including two new species, together with comments on generic endemism of Austral Hepaticae. Nova Hedwigia 88, 335–346. doi:10.1127/0029-5035/2009/0088-0335 Engel JJ, He XL (2010) Studies on Lophocoleaceae. XIX. The systematic identity of Cyanolophocolea R.M.Schust., an intriguing liverwort from New Zealand and Australia, based on morphological and molecular evidence. The Bryologist 113, 149–163. doi:10.1639/0007-2745-113.1.149 88 Australian Systematic Botany Engel JJ, Merrill GLS (2009) Austral Hepaticae 46. The identity of Plagiochila retrospectans (Nees ex Spreng.) Lindenb. and P. fuscella (Hook.f. & Taylor) Gottsche, Lindenb. & Nees, two misunderstood Australasian species. Nova Hedwigia 89, 287–301. doi:10.1127/0029-5035/2009/0089-0287 Engel JJ, Merrill GLS (2013) Austral Hepaticae. 49. New section names and synonymy in Plagiochila, with reference to New Zealand species [Plagiochilaceae (Jörg.) K.Müll.]. Nova Hedwigia 96, 399–408. doi:10.1127/0029-5035/2013/0085 Engel JJ, He XL, Glenny D (2010) Studies on Lophocoleaceae XXII. The systematic position of Amphilophocolea R.M.Schust. together with comments on the status of Tetracymbaliella Grolle and Lamellocolea R.M.Schust. Phytotaxa 9, 41–52. doi:10.11646/phytotaxa.9.1.6 Feldberg K, Schneider H, Stadler T, Schäfer-Verwimp A, Schmidt AR, Heinrichs J (2014) Epiphytic leafy liverworts diversified in angiospermdominated forests. Scientific Reports 4, 5974. doi:10.1038/srep05974 Forrest LL, Crandall-Stotler BJ (2004) A phylogeny of the simple thalloid liverworts (Jungermanniopsida, Metzgeriidae) as inferred from five chloroplast genes. In ‘Molecular Systematics of Bryophytes’. (Eds B Goffinet, V Hollowell, R Magill) pp. 119–140. (Missouri Botanical Gardens Press: St Louis MO, USA) Forrest LL, Davis EC, Long DG, Crandall-Stotler BJ, Clark A, Hollingsworth ML (2006) Unraveling the evolutionary history of liverworts (Marchantiophyta): multiple taxa, genomes and analyses. The Bryologist 109, 303–334. doi:10.1639/0007-2745(2006)109[303:UTEHOT]2.0.CO;2 Gottsche CM, Lindenberg JBG, Nees von Esenbeck SG (1845) ‘Synopsis Hepaticarum.’ (Meissner: Hamburg, Germany) Groth H, Heinrichs J (2003) Reinstatement of Chiastocaulon Carl (Plagiochilaceae) based on evidence from nuclear ribosomal ITS and chloroplast gene rps4 sequences. Plant Biology 5, 615–622. doi:10.1055/s-2003-44716 Groth H, Heinrichs J (2005) Maximum likelihood analyses of chloroplast gene rbcL sequences indicate relationships of Syzygiella (Jungermanniopsida) with Lophoziaceae rather than Plagiochilaceae. Cryptogamie. Bryologie 26, 49–57. Groth H, Linder M, Wilson R, Hartmann FA, Schmull M, Gradstein SR, Heinrichs J (2003) Biogeography of Plagiochila (Hepaticae). Natural species groups span several floristic kingdoms. Journal of Biogeography 30, 965–978. doi:10.1046/j.1365-2699.2003.00916.x Groth H, Linder M, Heinrichs J (2004) Phylogeny and biogeography of Plagiochila (Plagiochilaceae) based on nuclear and chloroplast DNA sequences. In ‘Molecular Systematics of Bryophytes’. (Eds B Goffinet, V Hollowell, R Magill) pp. 365–387. (Missouri Botanical Gardens Press: St Louis MO, USA) Guindon S, Gascuel O (2003) A simple, fast, and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704. doi:10.1080/10635150390235520 Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98. Hässel de Menéndez GG (2009) Andinopatagonian species of Plagiochila (Plagiochilaceae, Marchantiophyta) Sectio I. Duseniae Carl emend. Hässel and Sectio II. Jacquinotiae Hässel sect. nov. Nova Hedwigia 89, 71–95. doi:10.1127/0029-5035/2009/0089-0071 Hattori S (1947) Five new genera of Hepaticae. Biosphaera 1, 3–7. He-Nygrén X-L, Piippo S (2003) Phylogenetic relationships of the generic complex Chiloscyphus-Lophocolea-Heteroscyphus (Geocalycaceae, Hepaticae): Insights from three chloroplast genes and morphology. Annales Botanici Fennici 40, 317–329. He-Nygrén X-L, Ahonen I, Juslén A, Glenny D, Piippo S (2004) Phylogeny of liverworts: beyond a leaf and a thallus. In ‘Molecular Systematics of Bryophytes’. (Eds B Goffinet, V Hollowell, R Magill) pp. 87–118. (Missouri Botanical Gardens Press: St Louis MO, USA) M. A. M. Renner et al. He-Nygrén X-L, Juslén A, Ahonen I, Glenny D, Piippo S (2006) Illuminating the evolutionary history of liverworts. Cladistics 22, 1–31. doi:10.1111/j.1096-0031.2006.00089.x Heinrichs J (2002) A taxonomic revision of Plagiochila sect. Hylacoetes, sect Adiantoideae, and sect. Fuscoluteae in the Neotropics with a preliminary subdivision of neotropical Plagiochilaceae into nine lineages. Bryophytorum Bibliotheca 58, 1–184. Heinrichs J, Anton H, Gradstein SR, Mues R, Holz I (2000a) Surface wax, a new taxonomic feature in Plagiochilaceae. Plant Systematics and Evolution 225, 225–233. doi:10.1007/BF00985469 Heinrichs J, Anton H, Gradstein SR, Mues R (2000b) Systematics of Plagiochila sect. Glaucescentes Carl (Hepaticae) from tropical America: a morphological and chemotaxonomical approach. Plant Systematics and Evolution 220, 115–138. doi:10.1007/BF00985374 Heinrichs J, Groth H, Holz I, Rycroft DS, Renker C, Pröschold T (2002) The systematic position of Plagiochila moritziana, P. trichostoma, and P. deflexa based on ITS sequence variation of nuclear ribosomal DNA, morphology, and lipophilic secondary metabolites. The Bryologist 105, 189–203. doi:10.1639/0007-2745(2002)105[0189:TSPOPM]2.0.CO;2 Heinrichs J, Groth H, Lindner M, Feldberg K, Rycroft DS (2004a) Molecular, morphological, and phytochemical evidence for a broad species concept of Plagiochila bifaria (Hepaticae). The Bryologist 107, 28–40. doi:10.1639/0007-2745(2004)107[28:MMAPEF]2.0.CO;2 Heinrichs J, Lindner M, Pócs T (2004b) nrDNA internal transcribed spacer data reveal that Rhodoplagiochila R.M.Schust. (Marchantiophyta: Jungermanniales) is a member of Plagiochila sect. Arrectae Carl. Organisms, Diversity & Evolution 4, 109–118. doi:10.1016/j.ode.2004.01.001 Heinrichs J, Lindner M, Groth H (2004c) Sectional classification of the North American Plagiochila (Hepaticae, Plagiochilaceae). The Bryologist 107, 489–496. doi:10.1639/0007-2745(2004)107[489:SCOTNA]2.0.CO;2 Heinrichs J, Groth H, Lindner M, Renker C, Pócs T, Pröschold T (2004d) Intercontinental distribution of Plagiochila corrugata (Plagiochilaceae, Hepaticae) inferred from nrDNA ITS sequences and morphology. Botanical Journal of the Linnean Society 146, 469–481. doi:10.1111/j.1095-8339.2004.00340.x Heinrichs J, Gradstein SR, Wilson R, Schneider H (2005a) Towards a natural classification of liverworts (Marchantiophyta based on the chloroplast gene rbcL. Cryptogamie. Bryologie 26, 131–150. Heinrichs J, Wilson R, Feldberg K, Hentschel J, Schäfer-Verwimp A, LeónYánez S, Yandún S (2005b) The systematic position of Plagiochila (Jamesoniella) dependula (Jungermanniopsida) inferred from nrITS sequences and morphology, with notes on its differentiation from Plagiochila fuscolutea. Journal of Bryology 27, 319–327. doi:10.1179/174328205X714156 Heinrichs J, Linder M, Gradstein SR, Groth H, Buchbender V, Solga A, Fischer E (2005c) Origin and subdivision of Plagiochila (Jungermanniidae: Plagiochilaceae) in tropical Africa based on evidence from nuclear and chloroplast DNA sequences and morphology. Taxon 54, 317–333. doi:10.2307/25065360 Heinrichs J, Lindner M, Groth H, Renker C (2005d) Distribution and synonymy of Plagiochila punctata (Taylor) Taylor, with hypotheses on the evolutionary history of Plagiochila sect. Arrectae (Plagiochilaceae, Hepaticae). Plant Systematics and Evolution 250, 105–117. doi:10.1007/s00606-004-0220-5 Heinrichs J, Linder M, Groth H, Hentschel J, Feldberg K, Renker C, Engel JJ, von Konrat M, Long DG, Schneider H (2006) Goodbye or welcome Gondwana? Insights into the phylogenetic biogeography of the leafy liverwort Plagiochila with a description of Proskauera, gen. nov. (Plagiochilaceae, Jungermanniales). Plant Systematics and Evolution 258, 227–250. doi:10.1007/s00606-006-0411-3 Heinrichs J, Dong S, Schäfer-Verwimp A, Peralta DF, Feldberg K, Schmidt AR, Schneider H (2014) Towards a monophyletic classification of Testing relationships within Plagiochila Lejeuneaceae II: subtribes Pycnolejeuneinae and Xylolejeuneinae subtr. nov., transfer of Otolejeunea to Lepidolejeuninae, and generic refinements. Phytotaxa 163, 61–76. doi:10.11646/phytotaxa.163.2.1 Hentschel J, Wilson R, Burghardt M, Zündorf HJ, Schneider H, Heinrichs J (2006) Reinstatement of Lophocoleaceae (Jungermanniopsida) based on chloroplast gene rbcL data: exploring the importance of female involucres for the systematics of Jungermanniales. Plant Systematics and Evolution 258, 211–226. doi:10.1007/s00606-006-0408-y Hentschel J, Feldberg K, Zuendorf HJ, Hellwig FH, Schneider H, Heinrichs J (2007) The systematic position of Pachyglossa and Clasmatocolea (Jungermanniopsida: Lophocoleaceae) inferred from nrDNA ITS sequences and morphology. Taxon 56, 1136–1142. doi:10.2307/25065908 Inoue H (1958) The family Plagiochilaceae of Japan and Formosa, II. The Journal of the Hattori Botanical Laboratory 20, 54–106. Inoue H (1964) The genus Plagiochilion. The Journal of the Hattori Botanical Laboratory 27, 51–72. Inoue H (1965) Contributions to the knowledge of the Plagiochilaceae of southeastern Asia. VII. Synopsis of Plagiochila Dum. in the Himalayan region. Bulletin of the National Science Museum, Tokyo 8, 375–408. Inoue H (1975) Notes on the Plagiochilaceae. IV. Sectio Caducilobae (sect. nov.) of the genus Plagiochila Dum. The Journal of the Hattori Botanical Laboratory 39, 339–343. Inoue H (1984) ‘The Genus Plagiochila (Dum.) Dum. in Southeast Asia.’ (Academia Scientific Books Inc.: Tokyo, Japan) Inoue H (1987) Steereochila, a new genus of the Plagiochilaceae from the neotropics. Memoirs of the New York Botanical Garden 45, 279–282. Inoue H, Schuster RM (1971) A monograph of the New Zealand and Tasmanian Plagiochilaceae. The Journal of the Hattori Botanical Laboratory 34, 1–225. Jamy M, Renner MAM, Patzak SDF, Heslewood MM, Schäfer-Verwimp A, Heinrichs J (2016) Reinstatement of Plagiochila sect. Abietinae (Plagiochilaceae, Jungermanniopsida). Cryptogamie. Bryologie 37, 351–360. doi:10.7872/cryb/v37.iss4.2016.351 Lindenberg JBW (1843) ‘Species hepaticarum, fasc. 5.’ (Henry & Cohen) Lindner M, Pócs T, Heinrichs J (2004) On the occurrence of Plagiochila stricta on Madagascar, new to Africa. The Journal of the Hattori Botanical Laboratory 96, 261–271. Long D, Möller M, Preston J (2000) Phylogenetic relationships of Asterella (Aytoniaceae, Marchantiopsida) inferred from chloroplast DNA sequences. The Bryologist 103, 625–644. doi:10.1639/0007-2745(2000)103[0625:PROAAM]2.0.CO;2 Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In ‘Proceedings of the Gateway Computing Environments Workshop (GCE)’, 14 November 2010, New Orleans, LA, USA. pp 1–8. (Institute of Electrical and Electronics Engineers: Piscataway, NJ, USA) Patzak SDF, Vá na J, Renner MAM, Heinrichs J (2016a) Transfer of the leafy liverwort Xenochila from Plagiochilaceae (Lophocoleineae) to Jungermanniaceae (Jungermanniineae). Plant Systematics and Evolution 302, 891–899. doi:10.1007/s00606-016-1305-7 Patzak SDF, Schäfer-Verwimp A, Vána J, Renner MAM, Peralta DF, Heinrichs J (2016b) Chonecoleaceae (Lophocoleineae) is a synonym of Cephaloziellaceae (Cephaloziineae) and Rivlariella (Jungermanniineae) belongs to Scapaniaceae s.l. (Cephaloziineae). Phytotaxa 267, 91–102. doi:10.11646/phytotaxa.267.2.1 Patzak SDF, Renner MAM, Schäfer-Verwimp A, Feldberg K, Heslewood MM, Peralta DF, Souza A, Schneider H, Heinrichs J (2016c) A phylogeny of Lophocoleaceae–Plagiochilaceae–Brevianthaceae and a revised classification of Plagiochilaceae. Organisms, Diversity & Evolution 16, 481–495. doi:10.1007/s13127-015-0258-y Ramaiya M, Johnston MG, Shaw B, Heinrichs J, Hentschel J, von Konrat M, Davison PG, Shaw AJ (2010) Morphologically cryptic biological species Australian Systematic Botany 89 within the liverwort Frullania asagrayana. American Journal of Botany 97, 1707–1718. doi:10.3732/ajb.1000171 Renner MAM, Brown EA, Wardle GM (2011) The Lejeunea tumida species group is positively polyphyletic (Lejeuneaceae: Jungermanniopsida). Australian Systematic Botany 24, 10–18. doi:10.1071/SB10047 Renner MAM, Heslewood MM, Jamy M, Patzak SDF, Engel JJ, Glenny DS, von Konrat MJ, Schäfer-Verwimp A, Heinrichs J (2016) An integrative revision of Dinckleria (Plagiochilaceae: Jungermanniopsida). Australian Systematic Botany 29, 95–118. doi:10.1071/SB16003 Renner MAM, Heslewood MM, Patzak SDF, Schäfer-Verwimp A, Heinrichs J (2017) By how much do we underestimate species diversity of liverworts using morphological evidence? An example from Australasian Plagiochila (Plagiochilaceae: Jungermanniopsida). Molecular Phylogenetics and Evolution 107, 576–593. doi:10.1016/j.ympev.2016.12.018 Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG (2007) Bryophyte phylogeny: advancing the molecular and morphological frontiers. The Bryologist 110, 179–213. doi:10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2 Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. doi:10.1093/bioinformatics/btg180 Ronquist F, Teslenko M, van der Mark P, Ayres D, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542. doi:10.1093/sysbio/sys029 Rycroft DS, Groth H, Heinrichs J (2004) Reinstatement of Plagiochila maderensis (Jungermanniopsida: Plagiochilaceae) based on chemical evidence and nrDNA ITS sequences. Journal of Bryology 26, 37–45. doi:10.1179/jbr.2004.26.1.37 Schiffner V (1900) Die Hepaticae der Flora von Buitenzorg. I. Band. Denkschriften der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse 70, 1–220. Schuster RM (1966) ‘The Hepaticae and Anthocerotae of North America. Vol. I.’ (Columbia University Press: New York, NY, USA) Schuster RM (1980) ‘The Hepaticae and Anthocerotae of North America. Vol. IV.’ (Columbia University Press: New York, NY, USA) Schuster RM (1984) Evolution, phylogeny and classification of the Hepaticae. In ‘New Manual of Bryology’. (Ed. RM Schuster) pp. 892–1070. (Hattori Botanical Laboratory: Nichinan, Japan) Schuster RM (2001) On Amphilophocolea Schust. and Cyanolophocolea (Schust.) Schust., new austral genera of Lophocoleoideae (Geocalycaceae). Nova Hedwigia 72, 91–104. Shaw AJ (2000) Molecular phylogeography and cryptic speciation in the mosses, Mielichhoferia elongata and M. mielichhoferiana (Bryaceae). Molecular Ecology 9, 595–608. doi:10.1046/j.1365-294x.2000.00907.x Shaw B, Crandall-Stotler B, Vána J, Stotler RE, von Konrat MJ, Engel JJ, Davis EC, Long DG, Sova P, Shaw AJ (2015) Phylogenetic relationships and morphological evolution in a major clade of leafy liverworts (Phylum Marchatiophyta, Order Jungermanniales): suborder Jungermanniineae. Systematic Botany 40, 27–45. doi:10.1600/036364415X686314 So ML (2001a) On several little known species of Plagiochila in Australasian and the Pacific with description of Plagiochila sublyallii sp. nov. from Papua New Guinea. New Zealand Journal of Botany 39, 109–114. doi:10.1080/0028825X.2001.9512718 So ML (2001b) Recognised species of Plagiochila in Australasia and some island groups of the Pacific Ocean. New Zealand Journal of Botany 39, 395–421. doi:10.1080/0028825X.2001.9512745 So ML (2001c) Studies on Plagiochila subgenus Metaplagiochila (Plagiochilaceae, Hepaticae). Australian Systematic Botany 14, 677–688. doi:10.1071/SB00033 90 Australian Systematic Botany So ML, Grolle R (2001) On Plagiochila subgenus Plagiochila section Abietinae (Hepaticae). Systematic Botany 26, 459–469. Söderström L, Crandall-Stotler BJ, Stotler RE, Vána J, Hagborg A, von Konrat MJ (2013) Notes on early land plants today. 36. Generic treatment of Lophocoleaceae (Marchantiophyta). Phytotaxa 97, 36–43. doi:10.11646/phytotaxa.97.2.3 Söderström L, Hagborg A, von Konrat M (2015) Notes on early land plants today. 69. Circumscription of Plagiochilaceae (Marchantiophyta) with a preliminary infrageneric subdivision of Plagiochila. Phytotaxa 208, 75–91. doi:10.11646/phytotaxa.208.1.8 Söderström L, Hagborg A, von Konrat MJ, Bartholomew-Began S, Bell D, Briscoe L, Brown EA, Cargill DC, Costa DP, Crandall-Stotler BJ, Cooper ED, Dauphin G, Engel JJ, Feldberg K, Glenny DS, Gradstein SR, He XL, Heinrichs J, Hentschel J, Ilkiu-Borges AL, Katagiri T, Konstantinova NA, Larraín J, Long DG, Nebel M, Pócs T, Puche F, Reiner-Drehwald E, Renner MAM, Sass-Gyarmati A, Schäfer-Verwimp A, Moragues JGS, Stotler RE, Sukkharak P, Thiers BM, Uribe J, Vána J, Villarreal JC, Wigginton M, Zhang L, Zhu RL (2016) World checklist of hornworts and liverworts. PhytoKeys 59, 1–828. doi:10.3897/phytokeys.59.6261 Spruce R (1885) Hepaticae of the Amazon and the Andes of Peru and Ecuador II. Transactions and Proceedings of the Botanical Society of Edinburgh 15, 309–509. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. doi:10.1093/bioinformatics/btu033 M. A. M. Renner et al. Vanderpoorten A, Hedenäs L, Cox CJ, Shaw AJ (2002) Phylogeny and morphological evolution of the Amblystegiaceae. Molecular Phylogenetics and Evolution 23, 1–21. doi:10.1006/mpev.2001.1067 von Konrat MJ, Söderström L, Renner MAM, Hagborg A, Briscoe L, Engel JJ (2010) Early land plants today (ELPT): how many liverwort species are there? Phytotaxa 9, 22–40. doi:10.11646/phytotaxa.9.1.5 Weigend M, Luebert F, Selvi F, Brokamp G, Hilger HH (2013) Multiple origins for Hound’s tongues (Cynoglossum L.) and navel seeds (Omphalodes Mill.): the phylogeny of the borage family (Boraginaceae s. str.). Molecular Phylogenetics and Evolution 68, 604–618. doi:10.1016/j.ympev.2013.04.009 Wilson R, Gradstein SR, Heinrichs J, Groth H, Ilkiu-Borges AL, Hartmann FA (2004) Phylogeny of the Lejeuneaceae: a cladistic analysis of chloroplast gene rbcL sequences and morphology with preliminary comments on the mitochondrial nad4–2 spacer region. In ‘Molecular Systematics of Bryophytes’. (Eds B Goffinet, V Hollowell, R Magill) pp. 189–202. (Missouri Botanical Gardens Press: St Louis MO, USA) Yu Y, Pócs T, Schäfer-Verwimp A, Heinrichs J, Zhu RL, Schneider H (2013) Evidence for rampant homoplasy in the phylogeny of the epiphyllous liverwort genus Cololejeunea (Lejeuneaceae). Systematic Botany 38, 553–563. doi:10.1600/036364413X670304 Handling editor: Endymion Cooper Testing relationships within Plagiochila Australian Systematic Botany 91 Appendix 1. Specimens used in the present study, including information about the origin of the studied material, voucher information, as well as GenBank accession numbers Accession numbers in bold were generated during this study and first published in Renner et al. (2017), accession numbers without asterisks were first published in Patzak et al. (2016c) and those with asterisks were sourced from GenBank Species Voucher nrITS rps4 rbcL Brevianthus flavus (Grolle) R.M.Schust. & J.J.Engel Chiastocaulon aff. dendroides Chiastocaulon aff. dendroides Chiastocaulon biserialis (Lehm. & Lindenb.) S.D.F.Patzak, M.A.M.Renner, Schäf.Verw. & Heinrichs Chiastocaulon biserialis Chiastocaulon biserialis Australia, Tasmania, Renner 5927 (NSW895251) Japan, Kurita 84 (HIRO) Japan, Ohnishi 5570 (HIRO) Australia, Pócs 0060B (JE) KT992494 KT992643 KT992570 AY438232 AY438233 KT992526 AY438212 AY438213 – AY699991 DQ194105 KT992601 New Zealand, Renner 6778 (NSW870823) Australia, Tasmania, Klazenga N5793 (MEL2111031) Indonesia, Sumatra, Schäfer-Verwimp 24847 (M) KT992527 KX828513 KT992671 KX828544 KT992602 KX828528 KT992487 KT992636 – Indonesia, Sumatra, Schäfer-Verwimp & Verwimp 25009 (M) Malaysia, Schäfer-Verwimp & Verwimp 18728 (M) Australia, Queensland, Renner 6925 (NSW855115) New Caledonia, Mueller NC344 (JE) KT992483 KT992632 KT992560 KT992482 KT992631 KT992559 KX828512 KX828545 KX828529 KT992528 KT992672 KT992603 New Zealand, South Island, Schäfer-Verwimp & Verwimp 14080 (M) KT992490 KT992639 KT992566 New Zealand, Renner Hf/T18 (AK282526) Australia, Queensland, Renner 6920b (NSW855500) Australia, Queensland, Renner 6922 (NSW855484) Fiji, Renner 5547 (NSW894781) Indonesia, Sumatra, Schäfer-Verwimp & Verwimp 25041 (JE) Malaysia, Duerhammer 26 (GOET) Malaysia, Gradstein 10391 (GOET) Australia, Queensland, Renner 6426 (NSW896965) New Zealand, Engel 22421 (F1141172) New Zealand, Renner 6783 (NSW898898) New Zealand, Braggins 13/240C (NSW) Australia, Queensland, Renner 2218 (NSW980503) Australia, Queensland, Renner 6424 (NSW896963) Australia, Queensland, Renner 6921 (NSW870359) Australia, Queensland, Renner 7324 (NSW880489) Fiji, Renner 5815, (NSW980518) Australia, Queensland, Brown 12/346 (NSW879207) Japan, Onishi 5588 (HIRO) KT992540 KX828516 KT992684 KX828548 KT992614 KX828532 KX828515 KX828547 KX828531 KT992529 KT992491 KT992673 KT992640 – KT992567 KT992492 KT992480 KX828514 KT992641 KT992629 KX828546 KT992568 KT992557 KX828530 KX828518 KX828519 KX828517 KX828522 KX828550 KX828551 KX828549 KX828554 KX828534 KX828535 KX828533 KX828538 KT992533 KT992677 KT992607 KX828521 KX828553 KX828537 KX828520 KX828552 KX828536 KT992534 KX828523 KT992678 KX828555 KT992608 KX828539 AY438238* AY438220* AY699999* KX828524 KX828556 KX828540 Chiastocaulon braunianum (Nees) S.D.F.Patzak, M.A.M.Renner, Schäf.Verw. & Heinrichs Chiastocaulon braunianum Chiastocaulon braunianum Chiastocaulon braunianum Chiastocaulon caledonicum (Steph.) S.D.F.Patzak, M.A.M.Renner, Schäf.Verw. & Heinrichs Chiastocaulon conjugatum (Hook.) S.D.F.Patzak, M.A.M.Renner, Schäf.Verw. & Heinrichs Chiastocaulon conjugatum Chiastocaulon dendroides (Nees) Carl Chiastocaulon dendroides Chiastocaulon dendroides Chiastocaulon dendroides Chiastocaulon dendroides Chiastocaulon dendroides Chiastocaulon dendroides Chiastocaulon flamabilis M.A.M.Renner Chiastocaulon flamabilis Chiastocaulon flamabilis Chiastocaulon geminifolium (Mitt.) M.A.M.Renner Chiastocaulon geminifolium Chiastocaulon geminifolium Chiastocaulon geminifolium Chiastocaulon geminifolium Chiastocaulon geminifolium Chiastocaulon maybarae (S.Hatt.) S.D.F.Patzak, M.A.M.Renner, Schäf.Verw. & Heinrichs Chiastocaulon oppositum (Reinw., Blume & Nees) S.D.F.Patzak, M.A.M.Renner, Schäf.-Verw. & Heinrichs Australia, Queensland, Renner 6886 (NSW870834) (continued next page) 92 Australian Systematic Botany M. A. M. Renner et al. Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Chiastocaulon oppositum Australia, Queensland, Renner 7239 (NSW880626) Australia, Streimann 57083 (CANB9519226) Indonesia (V), Bali, Schäfer-Verwimp & Verwimp 16774 (M) Indonesia, Bali, Schäfer-Verwimp & Verwimp 20711 (M) Indonesia, Java, Gradstein 11062 (BIOT) Indonesia, Malaysia, Gradstein 10347 (GOET) Indonesia, Malaysia, Gradstein 10392 (GOET) Indonesia, Sulawesi, Gradstein 12005 (GOET) Indonesia, Sumatra, Schäfer-Verwimp & Verwimp 24959 (M) Indonesia, Sumatra, Schäfer-Verwimp & Verwimp 25015 (M) Indonesia, Sumatra, Schäfer-Verwimp & Verwimp 25158 (M) Australia, Queensland, Renner 6459 (NSW897000) New Zealand, Braggins 98/237 (AK254223) KX828525 KX828557 KX828541 KX828526 KT992489 KX828558 KT992638 KX828542 KT992565 KT992488 KT992637 KT992564 KT992479 KT992477 KT992628 KT992626 KT992556 KT992554 KT992478 KT992627 KT992555 KT992476 KT992625 KT992553 KT992486 KT992635 KT992563 KT992485 KT992634 KT992562 KT992484 KT992633 KT992561 KT992535 KT992679 KT992609 KT992538 KT992682 KT992612 New Zealand, Braggins 99/313 (AK254563) New Zealand, Renner 6776c (NSW870827) New Zealand, Braggins 00/296D (AK254836) Malaysia, Schäfer-Verwimp & Verwimp 18828 (M) KT992536 KT992537 KT992539 KT992680 KT992681 KT992683 KT992610 KT992611 KT992613 KT992481 KT992630 KT992558 Jamaica, Schäfer-Verwimp 35035 (JE) KT992510 KT992657 KT992585 Costa Rica, Gradstein 9404 (GOET) AM282806* – DQ312483* Indonesia, Sumatra, Schäfer-Verwimp & Verwimp 24801 (JE) Chile, Drehwald 3206 (GOET) São Tomé Island, Shevock 39727 (JE) KT992522 – KT992597 KT992503 KT992508 KT992651 KT992655 KT992578 KT992583 South Africa, Arts RSA 129/38 (JE) Portugal, Azores, Schwab 113 (JE) KT992504 AM282810* KT992652 – KT992579 DQ312484* Chile, Franzaring HF-00-44B (GOET) AM491290* KT992659 KT992587 India, Schäfer-Verwimp & Verwimp 28105 (JE) Ecuador, Gradstein 10119 (GOET) KT992511 KT992658 KT992586 AM282817* – DQ312485* São Tomé Island, Shevock 39856 (JE) Australia, Streimann 51629 (JE) KT992509 AM282819* KT992656 – KT992584 DQ312486* New Zealand, Schäfer-Verwimp & Verwimp 14318 (JE) Chile, Busch et al. Bryo 01396 (JE) Australia, Streimann 58464 (GOET) KT992523 – KT992598 AM282835* AM282836* – – DQ312488* DQ312489* KT992512 – KT992588 Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon oppositum Chiastocaulon proliferum (Mitt.) S.D.F.Patzak, M.A.M.Renner, Schäf.Verw. & Heinrichs Chiastocaulon proliferum Chiastocaulon proliferum Chiastocaulon proliferum Chiastocaulon theriotanum (R.M.Schust.) S.D.F.Patzak, M.A.M.Renner, Schäf.Verw. & Heinrichs Chiloscyphus coadunatus (Sw.) R.M.Schust. & J.J.Engel Chiloscyphus connatus (Sw.) J.J.Engel & R.M.Schust. Chiloscyphus costatus (Nees) J.J.Engel & R.M.Schust. Chiloscyphus cucullistipulus (Steph.) Hässel Chiloscyphus difformis (Nees) J.J.Engel & R.M.Schust. Chiloscyphus fasciculatus (Nees) Nees Chiloscyphus fragrans (Moris & De Not.) J.J.Engel & R.M.Schust. Chiloscyphus humilis (Hook. f. & Taylor) Hässel Chiloscyphus latifolius (Nees) J.J.Engel & R.M.Schust. agg. Chiloscyphus martianus (Nees) J.J.Engel & R.M.Schust. Chiloscyphus martianus Chiloscyphus muricatus (Lehm.) J.J.Engel & R.M.Schust. Chiloscyphus novae-zeelandiae (Lehm. & Lindenb.) J.J.Engel & R.M.Schust. Chiloscyphus sabuletorum Chiloscyphus semiteres (Lehm.) Lehm. & Lindenb. Chiloscyphus vermicularis (Lehm.) Hässel de Menéndez Dominican Republic, Schäfer-Verwimp & Verwimp 26738 (JE) (continued next page) Testing relationships within Plagiochila Australian Systematic Botany 93 Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Cryptolophocolea costata (Nees) L.Söderstr. Indonesia, Sumatra, Schäfer-Verwimp & Verwimp 24801 (JE) New Zealand (I), Engel 23337 (GOET) KT992522 – KT992597 DQ194059* DQ194017* DQ194182* KT992541 KU888882 KT992685 KU888859 KT992615 KU888871 KT992532 DQ194051 AM180613 KT992676 DQ193991 AM180506 KT992606 DQ194073 KU888883 KT992531 KU888860 KU888858 KT992675 KU888872 KU888870 KT992605 KU888886 KU888863 KU888875 KU888885 KU888862 KU888874 AM180614* AM180507* – KU888884 KU888888 KT992530 DQ194052 KU888861 KU888864 KT992674 DQ194015 KU888887 KU888865 KU888873 KU888876 KT992604 DQ194074 & DQ194088 KU888877 – KU888867 KU888879 KU888889 KU888866 KU888878 AJ413177* AM491300* AY438203* – AY699993* DQ312494* KT992513 KT992660 KT992589 AM180588* – DQ312493* Cryptoplagiochila radiculosa (Mitt.) S.D.F.Patzak, M.A.M.Renner & Heinrichs Cryptoplagiochila radiculosa Dinckleria fruticella (Hook.f. & Taylor) J.J.Engel & Heinrichs Dinckleria fruticella Dinckleria fruticella Dinckleria fruticella Dinckleria fruticella Dinckleria fruticella Dinckleria pleurata (Hook.f. & Taylor) Trevis. Dinckleria pleurata Dinckleria pleurata Dinckleria pleurata Dinckleria pleurata Dinckleria pleurata Dinckleria pleurata Dinckleria pleurata Dinckleria pleurata Dinckleria singularis (Schiffn.) M.A.M.Renner, Schäf.-Verw. & Heinrichs Dinckleria singularis Herbertus sendtneri (Nees) A.Evans Heteroscyphus allodontus (Hook.f. & Taylor) J.J.Engel & R.M.Schust. Heteroscyphus argutus (Nees) Schiffn. Heteroscyphus aselliformis (Reinw., Blume & Nees) Schiffn. Heteroscyphus ciliatus (Steph.) Schiffn. Heteroscyphus dubius (Gottsche) Schiffn. Heteroscyphus fissistipus (Hook.f. & Taylor) Schiffn. Heteroscyphus integrifolius (Lehm. & Lindenb.) Fulford Heteroscyphus integrifolius Heteroscyphus knightii (Steph.) Grolle Heteroscyphus polyblepharis (Spruce) Schiffn. Heteroscyphus polychaetus (Spruce) Hentschel & Heinrichs Heteroscyphus spectabilis (Steph.) Schiffn. Heteroscyphus succulentus (Gottsche) Schiffn. Heteroscyphus wettsteinii (Schiffn.) Schiffn. Leptoscyphus amphibolius (Nees) Grolle New Zealand, Renner 6787 (NSW880455) New Zealand, Braggins 04/140D (AK288985) New Zealand, de Lange 11766 (NSW986163) New Zealand, Engel 20426 (GOET) New Zealand, Engel 23943 & von Konrat (GOET) New Zealand, Glenny I34 (NSW986162) New Zealand, Braggins 02/171 (AK287362) Australia, Queensland, Renner 6822a (NSW870364) Australia, Queensland, Renner 6827 (NSW870365) Australia, Victoria, Meagher s.n. (MEL2326625) New Zealand (II), Schäfer-Verwimp & Verwimp 14071 (GOET) New Zealand, Braggins 06/004 (AK294976) New Zealand, Renner 6789 (NSW870825) New Zealand, Renner 6790 (NSW870826) New Zealand, Schäfer-Verwimp & Verwimp 13777 (GOET) Australia, New South Wales, Renner 6756 (NSW978715) Australia, Queensland, Renner 6877 (NSW859316) Australia, Queensland, Renner 6750 (NSW970423) Bolivia, Groth s.n. (GOET) New Zealand, Frahm 20-6 (GOET) Thailand, Schäfer-Verwimp & Verwimp 23900 (JE) Indonesia, Gradstein 10240 (GOET) New Zealand, Schäfer-Verwimp & Verwimp 13770 (JE) Principe Island, Shevock 40146 (JE) Ireland, Long H4064 (JE) KT992514 KT992661 KT992590 KT992515 AM282841* KT992662 – KT992591 DQ312496* Chile (I), Franzaring CH-00-132 (JE) KT992516 KT992663 KT992592 Chile (II), Zündorf 21260 (JE) New Zealand, South Island, Renner 6136 (NSW) Ecuador, Schäfer-Verwimp & Nebel 31844 (JE) Ecuador, Gradstein & Mandl 10139 (GOET) KT992517 KT992493 KT992664 KT992642 KT992593 KT992569 KT992518 KT992665 KT992594 AM491296* - DQ312487* Principe Island, Shevock 40257 (JE) Malaysia, Schäfer-Verwimp & Verwimp 18640 (JE) Malaysia, Schäfer-Verwimp & Verwimp 19023 (JE) Brazil, Schäfer-Verwimp & Verwimp 14748 (JE) KT992505 KT992519 KT992653 KT992666 KT992580 KT992595 KT992506 KT992654 KT992581 EU350435* EU661830* – (continued next page) 94 Australian Systematic Botany M. A. M. Renner et al. Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Leptoscyphus amphibolius Leptoscyphus amphibolius Leptoscyphus amphibolius Leptoscyphus amphibolius Leptoscyphus amphibolius Leptoscyphus australis (Gottsche, Lindendb. & Nees) R.M.Schust. Leptoscyphus cleefii Fulford Leptoscyphus cuneifolius (Hook.) Mitt. Mexico (I), Long 29617a (RBGE) Mexico (II), Long 29617b (RBGE) Mexico (III), Burghardt 4469 (GOET) Panama, Dauphin et al. 1578 (GOET) Ecuador, Kottke & Preussing s.n. (JE) Australia, Glenny 9431 (LG) EU350433* EU350434* EU350432* AM491302* EU350431* EU350455* EU661828* EU661829* EU661827* – EU661826* EU661825* – – – DQ312502* – – Venezuela, Long 33049 (RBGE) Ecuador (I), Schäfer-Verwimp & Preussing 23299/b (JE) Great Britain (I), Schumacker SBCO 768 (hb. R. Schumacker) Great Britain (II), Vanderpoorten 3101 (LG) Great Britain (III), Long 29812 (RBGE) Ireland, Blockeel TB 31/1325 (hb. T. L. Blockeel) Portugal, Madeira, Schäfer-Verwimp & Verwimp 26050 (JE) Ecuador (II), Schäfer-Verwimp & Preussing 23312/c (JE) South Africa, Prince Edward Islands, Gremmen, 98-124 (JE) Costa Rica, Schäfer-Verwimp & Holz SV/H0364 (JE) Dominica, Schäfer-Verwimp & Verwimp 17647 (JE) Costa Rica, Gradstein 9694 (GOET) EU350449* EU350458* EU661835* EU661836* – – EU350461* EU661857* – EU350462* EU350459* EU350463* EU661839* EU661838* EU661837* – – – EU350460* EU661854* – EU350464* EU661853* – AM491303* - DQ312503* EU350457* EU661855* – EU350456* EU661840* – EU350441* EU661852* – KT992497 KT992645 KT992572 EU350446* KT992520 EU661850* KT992667 – KT992596 EU350450* KT992521 KT992507 EU350453* EU350454* EU661841* KT992668 – EU661843* EU661844* – – KT992582 – – AM491304* EU661846* DQ312504* EU350447* EU661845* – KT992496 KT992644 KT992571 EU350440* EU661851* – EU350451* EU661847* – EU350442* EU661848* – EU350444* EU661856* – EU350443* EU661849* – EU350437* EU661832* – EU350438* EU661833* – Leptoscyphus cuneifolius Leptoscyphus cuneifolius Leptoscyphus cuneifolius Leptoscyphus cuneifolius Leptoscyphus cuneifolius Leptoscyphus cuneifolius Leptoscyphus expansus (Lehm.) Grolle Leptoscyphus gibbosus (Taylor) Mitt. Leptoscyphus gibbosus Leptoscyphus gradsteinii Vanderp., Schäf.Verw. & D.G.Long Leptoscyphus gradsteinii Leptoscyphus gradsteinii Leptoscyphus hexagonus (Nees) Grolle Leptoscyphus hexagonus Leptoscyphus infuscatus (Mitt.) E.W.Jones Leptoscyphus infuscatus Leptoscyphus infuscatus Leptoscyphus intermedius Grolle Leptoscyphus jackii (Steph.) Grolle Leptoscyphus jackii Leptoscyphus jackii Leptoscyphus lambinonii Vanderp., Schäf.Verw. & D.G.Long Leptoscyphus physocalyx (Hampe & Gottsche) Gottsche Leptoscyphus porphyrius (Nees) Grolle Leptoscyphus porphyrius Leptoscyphus porphyrius Leptoscyphus porphyrius subsp. azoricus (H.Buch & Perss.) Vanderp. & Heinrichs Leptoscyphus porphyrius subsp. azoricus Ecuador (II), Schäfer-Verwimp & Nebel 32205 (M) Ecuador (I), Schäfer-Verwimp et al. 24282 (JE) Ecuador, Schäfer-Verwimp & Nebel 31883 (JE) Venezuela, Long 33049-b (RBGE) Equatorial Guinea, Bioko, Mueller B560 (JE) Réunion, Arts Reu 59/3/ (JE) Malawi, Wiggington M1696b (hb. Hodgetts) Guadeloupe, Schäfer-Verwimp & Verwimp 22530 (JE) Ecuador (I), Schäfer-Verwimp et al. 24296 (GOET) Ecuador (III), Schäfer-Verwimp et al. 24429 (M) Ecuador (II), Schäfer-Verwimp & Nebel 32769 (M) Costa Rica, Schäfer-Verwimp & Holz SV/H0342 (JE) Venezuela, Pócs 05034 H (EGR) Ecuador (I), Schäfer-Verwimp & Preussing 23229/a (JE) Ecuador (II), Schäfer-Verwimp et al. 24214/a (JE) Ecuador (IV), Schäfer-Verwimp & Preussing 23448 (JE) Portugal, Azores (II), Terceira, Schumacker 20030611 (hb. Schumacker) Portugal, Azores (III), Flores, Schumacker 2000 0818/5 (hb. Schumacker) (continued next page) Testing relationships within Plagiochila Australian Systematic Botany 95 Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Leptoscyphus porphyrius subsp. azoricus Portugal, Azores (IV), Flores, Schumacker 2000 0824 (hb. Schumacker) Portugal, Azores (I), Schumacker 20020812 (hb. Schumacker) Costa Rica, Schäfer-Verwimp & Holz SV/H 0345 (JE) Ecuador, Schäfer-Verwimp et al. 24148 (JE) Germany, Schäfer-Verwimp 35485 (M) Great Britain, Rycroft 020907 (GOET) EU350439* EU661834* – EU350436* EU661831* – KT992525 KT992670 KT992600 KT992524 KT992498 AY438234* KT992669 KT992646 AY438216* KX090153 KX090171 KT992599 KT992573 DQ194085 & DQ194071 KX090165 KX090154 KX090172 KX090166 KY051312 KY051060 KY050813 AM180591* DQ194046* AJ422027* AJ422028* KX090150 KX090151 KX090152 KY051396 KY051417 KY051404 KY051406 KY051468 KY051387 KY051316 KY051317 AM180487* DQ193996* AY438204* AY438205* – KX090170 – KY051149 KY051172 KY051159 KY051161 KY051221 KY051141 KY051064 KY051065 – DQ194152* DQ194108* DQ194109* KX090162 KX090163 KX090164 KY050901 KY050922 KY050911 KY050913 KY050969 KY050892 – KY050817 KY051318 KY051314 KY051066 KY051062 KY050818 KY050815 KY051315 KY051063 KY050816 – KY051278 KY051023 KY051545 KY051307 KY051055 KY051542 KY051304 KY051052 KY051544 KY051306 KY051054 KY051543 KY051305 KY051053 KY051541 KY051303 KY051051 KY051546 AY550130* DQ194028* AM180592* KY051319 KY051308 AY547691* DQ193974* AM180488* KY051067 KY051056 AY699995* DQ194111* – KY050819 KY051320 KY051321 KY051322 AM180593* KY051068 KY051069 KY051070 AM180489* KY050820 – KY050821 – Leptoscyphus porphyrius subsp. azoricus Leptoscyphus trapezoides (Mont.) L.Söderstr. Leptoscyphus trapezoides Pedinophyllum interruptum (Nees) Kaal. Pedinophyllum interruptum Plagiochila abietina (Nees) Nees & Mont. Plagiochila abietina Plagiochila abietina Plagiochila acanthocaulis Sull. Plagiochila acanthocaulis (Sw.) Lindenb. Plagiochila adianthoides (Sw.) Lindenb. Plagiochila aerea Taylor Plagiochila aff. abietina Plagiochila aff. abietina Plagiochila aff. abietina Plagiochila aff. deltoidea Plagiochila aff. deltoidea Plagiochila aff. deltoidea Plagiochila aff. deltoidea Plagiochila aff. gregaria Plagiochila aff. gregaria Plagiochila aff. peculiaris Plagiochila aff. peculiaris Plagiochila aff. peculiaris Plagiochila aff. peculiaris Plagiochila aff. peculiaris Plagiochila aff. peculiaris Plagiochila aff. trapezoidea Plagiochila aff. trapezoidea Plagiochila aff. trapezoidea Plagiochila aff. trapezoidea Plagiochila aff. trapezoidea Plagiochila aff. trapezoidea Plagiochila alternans Lindenb. & Gottsche Plagiochila andina Steph. Plagiochila andina Plagiochila annotina Lindenb. Plagiochila annotina Plagiochila annotina Plagiochila annotina Plagiochila ansata (Hook.f. & Taylor) Gottsche, Lindenb. & Nees Australia, Queensland, Renner 6977 (NSW848775) Australia, Queensland, Renner 7274 (NSW848776) Australia, Queensland, Renner 7275 (NSW849299) Chile, Holz 252 (GOET) Argentina, Long 31680 (GOET) Costa Rica, Heinrichs et al. 4314 (GOET) Costa Rica, Heinrichs et al. 4321 (GOET) Fiji, Renner 5464 (NSW890131) Fiji, Renner 5486 (NSW890173) Fiji, Renner 5778 (NSW895657) New Zealand, Beever 101-14e (AK298125) New Zealand, de Lange 9989 (AK327793) New Zealand, Engel 20837 (F1141749) New Zealand, Engel 20913 (F1141788) New Zealand, Engel 22583 (F1141352) New Zealand, Renner 6782 (NSW899353) Australia, Queensland, Renner (NSW852983) Australia, Queensland, Renner 2230 (NSW980513) Australia, Queensland, Renner 6449 (NSW) Australia, Queensland, Renner 7273 (NSW849269) Australia, Queensland, Renner 7312 (NSW880483.1) Australia, Queensland, Renner 7312 (NSW880483.2) Australia, Queensland, Renner 6480 (NSW897031) Australia, Queensland, Renner 6928 (NSW855092) Australia, Queensland, Renner 6976 (NSW858927) Australia, Queensland, Renner 6982 (NSW858922) Australia, Queensland, Renner 7273 (NSW849294) Australia, Queensland, Renner 7278 (NSW) Bolivia, Heinrichs et al. 4178 (GOET) Bolivia (II), Heinrichs & Müller 4046 (GOET) Bolivia (I), Heinrichs & Müller 4100 (GOET) New Zealand, Braggins 04/055D (AK290979) New Zealand, Braggins 06/089 (AK303109) New Zealand, Engel 20962 (F1141203) New Zealand, Engel 21731 (F1141204) Chile, Holz 570A (GOET) (continued next page) 96 Australian Systematic Botany M. A. M. Renner et al. Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila arbuscula (Brid.) Lindenb. Australia, Queensland, Renner 6328a (NSW896723) Australia, Queensland, Renner 6550 (NSW849132) Australia, Queensland, Renner 6575 (NSW970430) Australia, Queensland, Renner 6873 (NSW859315) Australia, Queensland, Renner 6876 (NSW870537) Australia, Queensland, Renner 6879 (NSW870542) Australia, Queensland, Renner 6883 (NSW870547) Australia, Queensland, Renner 6887 (NSW870551) Australia, Queensland, Renner 6892 (NSW870653) Australia, Queensland, Renner 6895 (NSW859116) Australia, Queensland, Renner 7070 (NSW870688) Australia, Queensland, Renner 7277 (NSW849263) Australia, Queensland, Renner 7335 (NSW880510) New Zealand, Shevock 44130 (JE) Sumatra, Hoffmann 89-209bis (CANB9310875) Australia, Queensland, Renner 2123 (NSW980500) Japan, Yamaguchi 18280 (HIRO) Italy, Schäfer-Verwimp & Verwimp 35859 (M) USA (II), Kentucky, Risk 10849 (DUKE) Australia, Queensland, Renner 7311 (NSW880456) Australia, Queensland, Renner 7318 (NSW880459) New Zealand (II), Frey & Pfeiffer 98-T121 (GOET) New Zealand, Curnow 3480 (CANB9406344) New Zealand, de Lange 9934 (AK323586) New Zealand, Shevock 44032 (JE) Australia, Queensland, Renner 6287 (NSW896671) Australia, Queensland, Renner 6293 (NSW849176) Australia, Queensland, Renner 6947 (NSW870748) Australia, Queensland, Renner 6948 (NSW870754) Australia, Queensland, Renner 7117 (NSW853005) Fiji, Renner 5344 (NSW889357) Fiji, Renner 5444 (NSW889486) Japan, Yamaguchi 16890 (HIRO) KY051349 KY051097 KY050848 KY051334 KY051082 KY050833 KY051350 KY051098 KY050849 KY051337 KY051085 KY050836 KY051338 KY051086 KY050837 KY051339 KY051087 KY050838 KY051340 KY051088 KY050839 KY051341 KY051089 KY050840 KY051342 KY051090 KY050841 KY051336 KY051084 KY050835 KY051343 KY051091 KY050842 KY051335 KY051083 KY050834 KY051344 KY051092 KY050843 KT992499 KY051330 KT992647 KY051078 KT992574 KY050829 KY051351 KY051099 KY050850 AY550131* KT992544 AJ748130* KY051464 AY547692* KT992688 AY608099* KY051217 DQ194112* KT992617 DQ439699* KY050965 KY051465 KY051218 KY050966 AY550132* AY547694* DQ194114* KY051360 KY051359 KT992500 KY051367 KY051109 KY051108 KT992648 KY051117 KY050860 KY050859 KT992575 KY050868 KY051361 KY051110 KY050861 KY051363 KY051112 KY050863 – KY051113 KY050864 KY051362 KY051111 KY050862 KY051364 KY051365 AY275160* KY051114 KY051115 AY547695* KY051366 KY051116 KY050865 KY050866 DQ194084* & DQ194070* KY050867 AJ866749* AJ866764* Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila arbuscula Plagiochila cf arbuscula Plagiochila asplenioides (L.) Dumort. Plagiochila austinii A.Evans Plagiochila baileyana Steph. Plagiochila baileyana Plagiochila banksiana Gottsche Plagiochila banksiana Plagiochila banksiana Plagiochila banksiana Plagiochila bantamensis (Reinw., Blume & Nees) Mont. Plagiochila bantamensis Plagiochila bantamensis Plagiochila bantamensis Plagiochila bantamensis Plagiochila bantamensis Plagiochila bantamensis Plagiochila bantamensis Plagiochila bantamensis Plagiochila barteri Mitt. Australia, Queensland, Renner 6286 (NSW896670) Malawi, O'Shea M7062a (GOET) (continued next page) Testing relationships within Plagiochila Australian Systematic Botany 97 Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila baylisii Inoue & R.M.Schust. Plagiochila bazzanioides J.J.Engel & G.L.Merr. Plagiochila bazzanioides Plagiochila bazzanioides Plagiochila bicuspidata Gottsche Plagiochila bifaria (Sw.) Lindenb. Plagiochila bifaria Plagiochila boryana Gottsche Plagiochila britannica Paton Plagiochila buchtiniana Steph. Plagiochila caducifolia Inoue & R.M.Schust. Plagiochila caducifolia Plagiochila caducifolia Plagiochila caducifolia Plagiochila carringtonii ssp. lobuchensis Grolle Plagiochila chauviniana Mont. New Zealand, Renner 01/147 (AK255189) New Zealand, de Lange 8301 (AK308901) KY051368 KY051370 KY051118 KY051120 KY050869 KY050871 New Zealand, de Lange 9696 (AK322361) New Zealand, Braggins s.n. (AK257177) Chile, Drehwald 3201 (GOET) Ecuador (II), Holz EC-01-416 (GOET) Spain, Drehwald 3922 (GOET) Bolivia, Heinrichs et al. 4182 (GOET) Great Britain, Rycroft 00015 (GOET) Bolivia, Groth s.n. (GOET) New Zealand, Engel 22932 (F1141635) New Zealand, Engel 27071B (C0311977F) New Zealand, Engel 26697 (C0311975F) New Zealand, Engel 22807 (F1141636) Bhutan, Long 28857 (GOET) KY051371 KY051369 AY390532* AJ422010* AJ413173* AJ866753* AY275162* AJ413306* KY051373 – KY051372 – AJ414631* KY051121 KY051119 DQ194019* AY438206* – AJ866768* AY438207* AY438208* KY051124 KY051123 KY051122 KY051125 AY438209* KY050872 KY050870 DQ194188* – DQ194117* – DQ194119* DQ194120* KY050875 KY050874 KY050873 KY050876 DQ194121* Australia, Queensland, Renner 6549 (NSW880463) Fiji, Renner 5443 (NSW889647) Fiji, Renner 5449 (NSW889658) Fiji, Renner 5451 (NSW889660) Papua New Guinea, Streimann 40603 (CANB8911426) Papua New Guinea, Streimann 41062 (CANB8911877) Chile (I), Holz 631 (GOET) Chile (III), Rycroft 020720-24 (GOET) Chile (II), Holz & Franzaring CH-00-108 (GOET) Australia, Victoria, Renner 5199 (NSW893123) New Zealand, Braggins 04/080B (AK290529) New Zealand, Braggins s.n. (AK286464) New Zealand, Braggins s.n. (AK287614) New Zealand, Engel 20651 (F1141269) New Zealand, Engel 21406 (F1141268) New Zealand, Engel 22810 (F1141095) New Zealand, Pfeiffer 98-T166 (GOET) New Zealand, Renner 6774 (NSW903565) New Zealand, Renner 6781 (NSW903564) New Zealand, Streimann 51055 (CANB9304386) Australia, Tasmania, Jobson 3415 (MEL2293031) New Zealand, Braggins 95/121 (AK255132) New Zealand, Engel 21192 (F1141079) New Zealand, Braggins 01/691 (AK309826) New Zealand, Renner 6793 (NSW900040) New Zealand, Renner 6777a (NSW900148) New Zealand, Renner 2572a (AK298571) Rwanda (I), Buchbender & Fischer 1115 (GOET) Australia, Queensland, Renner 2265 (NSW980505) Australia, Queensland, Renner 6425 (NSW896964) Australia, Queensland, Renner 6984 (NSW880559) KY051376 KY051128 KY050879 KY051377 KY051378 KY051379 KY051374 KY051129 KY051130 KY051131 KY051126 KY050880 KY050881 KY050882 KY050877 KY051375 KY051127 KY050878 AM180594* DQ194050* AY550134* AM180490* DQ194002* AY547697* – DQ194157* DQ194122* KY051386 KY051140 KY050891 KY051381 KY051380 – KY051384 – KY051383 DQ194032* KY051389 KY051388 KY051382 KY051134 KY051132 KY051133 KY051138 KY051137 KY051136 DQ193977* KY051143 KY051142 KY051135 KY050885 KY050883 KY050884 KY050889 KY050888 KY050887 – KY050894 KY050893 KY050886 KY051385 KY051139 KY050890 KY051390 KY051392 KY051391 KY051412 KY051476 KY051416 AJ866751* – KY051145 KY051144 KY051167 KY051229 KY051171 AJ866765* KY050895 KY050897 KY050896 – – – DQ194123* KY051454 KY051207 KY050959 KY051450 KY051203 KY050955 KY051449 KY051202 KY050954 Plagiochila chauviniana Plagiochila chauviniana Plagiochila chauviniana Plagiochila chauviniana Plagiochila chauviniana Plagiochila chonotica Taylor Plagiochila chonotica Plagiochila chonotica Plagiochila circinalis (Lehm. & Lindenb.) Lindenb. Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circinalis Plagiochila circumdentata Steph. Plagiochila circumdentata Plagiochila circumdentata Plagiochila colensoi Hook.f. & Taylor Plagiochila colensoi Plagiochila colensoi Plagiochila colorans Steph. Plagiochila conturbata Steph. Plagiochila conturbata Plagiochila conturbata (continued next page) 98 Australian Systematic Botany M. A. M. Renner et al. Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila conturbata Australia, Queensland, Renner 7263 (NSW849236) Australia, Queensland, Renner 7298 (NSW880471) Australia, Queensland, Renner 7310 (NSW880457) Australia, Queensland, Renner 1915 (NSW980506) Costa Rica, Heinrichs et al. 4192 (GOET) South Africa, Marion-Island, Gremmen 94-007 (GOET) Ecuador, Holz 558 E/5-01 (GOET) KY051443 KY051196 KY050948 KY051448 KY051201 KY050953 KY051447 KY051200 KY050952 KY051455 KY051208 KY050960 AJ422015* DQ194033* AY438210* DQ193979* – – AJ422012* AY438211* DQ194126* KY051393 KY051146 KY050898 AJ416083* AY550135* – KY051403 KY051400 – KY051399 KY051402 AY550136* KY051410 KY051409 KY051394 AM180597 AJ422014* AY569439* AY547698* KY051153 KY051158 KY051155 KY051152 KY051154 KY051157 AY547699* KY051165 KY051164 KY051147 AM180493 AY438214* – DQ194128* KY050905 KY050910 KY050907 KY050904 KY050906 KY050909 DQ194129* KY050917 KY050916 KY050899 – DQ194130* DQ194027* AJ413308* AY550137* DQ194037* AM180599* AY275163* DQ193981* AY438215* AY547700* DQ193984* AM180495* AY547701* DQ194102* DQ194131* DQ194133* DQ194135* – – AM180600* KY051453 AM180496* KY051206 DQ194127* KY050958 KY051451 KY051204 KY050956 KY051356 KY051105 KY050856 KY051357 KY051106 KY050857 KY051452 KY051205 KY050957 KY051433 KY051188 KY050938 KY051437 KY051192 KY050942 KY051425 KY051180 KY050930 KY051427 KY051182 KY050932 KY051428 KY051183 KY050933 Plagiochila conturbata Plagiochila conturbata Plagiochila conturbata Plagiochila cristata (Sw.) Lindenb. Plagiochila crozetensis Kaal. Plagiochila cucullifolia var. anomala Heinrichs & Gradst. Plagiochila daviesiana Steph. Plagiochila deflexa Mont. & Gottsche Plagiochila deflexirama Taylor Plagiochila deltoidea Lindenb. Plagiochila deltoidea Plagiochila deltoidea Plagiochila deltoidea Plagiochila deltoidea Plagiochila deltoidea Plagiochila ramosissima (as P. deltoidea) Plagiochila deltoidea Plagiochila deltoidea Plagiochila deltoidea Plagiochila dependula Taylor Plagiochila disticha (Lehm. & Lindenb.) Lindenb. Plagiochila divergens Steph. Plagiochila diversifolia Lindenb. & Gottsche Plagiochila dura De Not. Plagiochila dusenii Steph. Plagiochila elegans Mitt. Plagiochila ensiformis Taylor Plagiochila equitans Gottsche Plagiochila fasciculata Lindenb. Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Australia, Queensland, Renner 6918 (NSW858917) Costa Rica (II), Heinrichs et al. 4160 (GOET) Costa Rica, Heinrichs 11 (GOET) New Zealand, Engel 18409 (F1141063) New Zealand, Engel 20652 (F1141748) New Zealand, Engel 22727 (F1141080) New Zealand, Engel 22920 (F1140885) New Zealand, Engel 23325 (F1141064) New Zealand, Engel 23428 (F1141729) New Zealand, Frey 98-T116 (GOET) New Zealand, Renner 6776b (NSW899342) New Zealand, Renner 6780 (NSW899341) New Zealand, Braggins s.n. (AK287128) Ecuador, Heinrichs et al. 4442 (GOET) Ecuador, Holz 436 E/5-01 (GOET) Kenia, Solga s.n. (GOET) Ecuador, Holz 017 E/5-01 (GOET) Chile, Drehwald 3190 (GOET) Argentina, Holz 146 (GOET) China, Long 33675 (GOET) Ecuador, Sauer & Gradstein MS-E 115, BEGP 149 (GOET) Chile, Holz 625 (GOET) Australia, New South Wales, Renner 6771 (NSW978730) Australia, New South Wales, Renner 6801 (NSW900149) Australia, New South Wales, Renner 6813 (NSW850854) Australia, New South Wales, Renner 6842 (NSW859320) Australia, New South Wales, Renner 6848 (NSW900152) Australia, New South Wales, Steimann 44457 (CANB9008881) Australia, New South Wales, Steimann 61245 (CANB9910863.1) Australia, New South Wales, Streimann 38243 (CANB9006252) Australia, New South Wales, Streimann 47674 (CANB9107719) Australia, New South Wales, Streimann 47856 (CANB9107902) (continued next page) Testing relationships within Plagiochila Australian Systematic Botany 99 Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila fasciculata Australia, New South Wales, Streimann 49561 (CANB9216583) Australia, Queensland, Renner 6809 (NSW850851) Australia, Queensland, Renner 6811 (NSW850853) Australia, Queensland, Renner 6824 (NSW870747) Australia, Renker A18.2 (GOET) Australia, Tasmania, Curnow 2141 (CANB8807469) Australia, Tasmania, Moscal 14255 (CANB781957) Australia, Tasmania, Whinray 1291 (MEL2238068) Australia, Tasmania, Whinray B1877 (MEL2209256) Australia, Victoria, Curnow 4176 (CANB9501564) Australia, Victoria, Streimann 42679 (CANB8915211) Australia, Victoria, Streimann 43785 (CANB9007770) Australia, Victoria, Streimann 58768 (CANB9802439) Australia, Victoria, Streimann 58820 (CANB9802491) Australia, Victoria, Streimann 58825 (CANB9802496) Australia, New South Wales, Renner 6758 (NSW978717) Mexico, Gradstein 8274 (GOET) Japan, Kurita 147 (HIRO) Australia, Tasmania, Ratkowsky H1571 (CANB8409926) Australia, Tasmania, Whinray B2227 (MEL2354417) Indonesia, Bali, Schäfer-Verwimp & Verwimp 20704 (GOET) India, Long 23002 (GOET) Indonesia, Gradstein 10259 (GOET) New Zealand, de Lange 7355 (AK303495) New Zealand, Streimann 51026 (CANB9304357) New Zealand, Streimann 51191 (CANB9306641) New Zealand, Streimann 51342 (CANB9306792) Australia, Victoria, Streimann 50924 (CANB9304254) New Zealand, Frey & Pfeiffer 98-T88 (GOET) Costa Rica, Heinrichs et al. 4400 (GOET) Seychelles, Pócs 9342/B (GOET) New Zealand (II), Engel & von Konrat 23911 (F) New Zealand, Shevock 43981 (JE) New Zealand, Streimann 51236 (CANB9306686) New Zealand, Glenny I18 (NSW) KY051429 KY051184 KY050934 KY051355 KY051104 KY050855 KY051444 KY051197 KY050949 KY051446 KY051199 KY050951 DQ194040* KY051421 DQ193988* KY051176 DQ194138* KY050926 KY051419 KY051174 KY050924 KY051441 – KY050946 KY051440 KY051195 KY050945 KY051430 KY051185 KY050935 KY051424 KY051179 KY050929 KY051426 KY051181 KY050931 KY051434 KY051189 KY050939 KY051435 KY051190 KY050940 KY051436 KY051191 KY050941 KY051358 KY051107 KY050858 AJ744790* AY550138* KY051496 DQ193989* AY547703* KY051257 DQ194139* DQ194140* KY051003 KY051497 KY051258 KY051004 AY438237* AY438219* DQ194141* AY438235* DQ194041* KY051456 KY051458 AY438217* DQ193992* KY051209 KY051211 – DQ194143* – – KY051459 KY051212 KY050961 KY051460 KY051213 – KY051457 KY051210 – AY550143* AJ416086* AJ866746* AM180604* AY547721* AY547704* AJ866760* AM180499* DQ194186* DQ194144* DQ194145* DQ194146* KT992501 KY051466 KT992649 – KT992576 KY050962 KY051462 KY051215 KY050963 Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fasciculata Plagiochila fastigiata Lindenb. & Gottsche Plagiochila flexuosa Mitt. Plagiochila fragmentissima Inoue & R.M.Schust. Plagiochila fragmentissima Plagiochila frondescens (Nees) Lindenb. Plagiochila fruticosa Mitt. Plagiochila fusca Sande Lac. Plagiochila fuscella Taylor Plagiochila fuscella Plagiochila fuscella Plagiochila fuscella Plagiochila fuscella Plagiochila fuscella Plagiochila fuscolutea Taylor Plagiochila fusifera Taylor Plagiochila gigantea Lindenb. Plagiochila gigantea Plagiochila gigantea Plagiochila gigantea (continued next page) 100 Australian Systematic Botany M. A. M. Renner et al. Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila gregaria (Hook.f. & Taylor) Gottsche, Lindenb. & Nees Plagiochila gregaria Plagiochila gregaria Plagiochila gymnocalycina (Lehm. & Lindenb.) Mont. Plagiochila gymnoclada Sande Lac. Plagiochila gymnoclada New Zealand, de Lange 9936 (AK323588) KY051467 KY051220 KY050968 New Zealand, Engel 21089 (F1141554) New Zealand, de Lange 8302 (AK308902) Bolivia, Drehwald 4729 (GOET) KY051469 – AY390531* KY051222 KY051219 AY438218* KY050970 KY050967 DQ194147* Fiji, Renner 5538 (NSW890228) Papua New Guinea, De Sloover 42776 (CANB9312443) Japan, Yamaguchi 12271 (HIRO) Indonesia, Gradstein 11036 (GOET) KY051471 KY051470 KY051224 KY051223 KY050972 KY050971 AY275164* AJ866735 AY547705* AJ866757 KY051423 KY051178 DQ194149* DQ194080 & DQ194066 KY050928 KY051420 KY051175 KY050925 KY051422 KY051177 KY050927 DQ194045* – DQ194150* Plagiochila hakkodensis Steph. Plagiochila hampeana Gottsche Plagiochila hartziana Pearson Plagiochila hartziana Plagiochila hartziana Plagiochila heterodonta (Hook.f. & Taylor) Gottsche, Lindenb. & Nees Plagiochila heterophylla Lindenb. ex Lehm. Plagiochila heterophylla Plagiochila heterospina Steph. Plagiochila heterospina Plagiochila heterospina Plagiochila heterospina Plagiochila heterostipa Steph. Plagiochila hookeriana Lindenb. Plagiochila incerta Gottsche Plagiochila incurvicolla (Hook.f. & Taylor) Gottsche, Lindenb. & Nees Plagiochila incurvicolla Plagiochila incurvicolla Plagiochila incurvicolla Plagiochila integerrima Steph. Plagiochila intertexta Mitt. Plagiochila intertexta Plagiochila intertexta Plagiochila intertexta Plagiochila javanica (Sw.) Nees & Mont. Plagiochila kiaerii Gottsche Plagiochila korthalsiana Molk. Plagiochila lastii Mitt. Plagiochila longiramea Steph. Plagiochila lunata S.W.Arnell Plagiochila macrostachya Lindenb. Plagiochila maderensis Gottsche ex Steph. Plagiochila magna Inoue Plagiochila metcalfii Steph. Plagiochila metcalfii Plagiochila metcalfii Plagiochila minutula (Hook.f. & Taylor) Gottsche, Lindenb. & Nees Plagiochila nobilis Gottsche Australia, Tasmania, Curnow 2660 (CANB8808028) Australia, Tasmania, Ratkowsky H1553 (CANB8408762) Australia, Tasmania, Curnow 2606 (CANB8807975) South Africa, Marion Island, Ochyra 1317/03 (GOET) Great Britain, Rycroft 97006, B.E.G.P. 80 (GOET) Jamaica, Schäfer-Verwimp 35404 (JE) Fiji, Renner 5333 (NSW889332) Fiji, Renner 5417 (NSW889522) Fiji, Renner 5476 (NSW890152) Fiji, Renner 5323 (NSW889302) Malawi, O'Shea M7070a (GOET) AY275165* AY547706* DQ194151* KT992542 KY051346 KY051347 KY051348 KY051345 AJ866735* KT992686 KY051094 KY051095 KY051096 KY051093 AJ866757* Chile, Holz 560 (GOET) Madagascar, Pócs 9447/L (GOET) New Zealand, Engel 23137 (F1132133) AM180605* AJ866737* KY051473 AM180500* AJ866761* KY051226 KY050845 KY050846 KY050847 KY050844 DQ194080* & DQ194066* – DQ194101* KY050974 New Zealand, Renner 01/136 (AK255217) New Zealand, Renner 6796 (NSW899787) New Zealand, Braggins 13/031A (NSW) Malawi, O'Shea M7552a (GOET) New Zealand, Engel 21764A (F1141311) New Zealand, Engel 23347 (F1182057) New Zealand, Renner 01/253B (AK282335) New Zealand, Engel 21090 (F1141683) Indonesia, Java, Gradstein 10209 (GOET) Madagascar, Pócs 9477/A6 (GOET) Indonesia, Gradstein 10258 (GOET) Comoros, Pócs et al. 9273/U (GOET) Bolivia, Heinrichs et al. 4071 (GOET) KY051413 KY051474 KY051472 AY275166* KY051502 KY051503 KY051501 – AJ744791* AJ866747* DQ194049* AY550139* AF539463* KY051168 KY051227 KY051225 AY547707* KY051263 KY051265 KY051262 KY051264 DQ193998* – DQ194000* AY547708* AY547709* Lesotho, Duckett 34026 (GOET) Ecuador, Holz 080 E/5-01 (GOET) Portugal, Madeira (II), Rycroft 99030 (GOET) Japan, Kurita 258 (HIRO) Norfolk Island, Streimann (CANB9513847) Norfolk Island, Ward 94-1A (CANB9507854) Norfolk Island, Curnow 4867 (CANB9513836) South Africa, Prince Edward Islands, Ochyra 434/01 (GOET) Indonesia, Gradstein 10253 (GOET) DQ194026* AJ422016* AY462143* AY275167* – – – DQ194003* AY547710* DQ194005* AY438221* KY051232 KY051230 KY051231 KY050919 KY050975 KY050973 DQ194095* KY051008 KY051010 KY051007 KY051009 DQ194154* DQ194094* DQ194156* DQ194097* DQ194089* & DQ194075* DQ194100* DQ194160* DQ194161* DQ194162* KY050979 KY050977 KY050978 DQ194054* DQ194007* – DQ194055* DQ194010* DQ194166* (continued next page) Testing relationships within Plagiochila Australian Systematic Botany 101 Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila obovata Steph. Plagiochila obovata Plagiochila obtusa Lindenb. Chile (I), Holz 385 (GOET) Chile (II), Holz 583 (GOET) Australia, Queensland, Renner 6941 (NSW853117) Japan, Kurita 132 (HIRO) Japan, Ohnishi 5723 (HIRO) Costa Rica, Heinrichs et al. 4158 (GOET) Ecuador, Anton ECU4 (GOET) New Zealand, de Lange K212 (AK313957) New Zealand, de Lange K219 (AK305199) New Zealand, de Lange K250 (AK305205) Cook Islands, Rarotonga, de Lange CH196 (NSW) Australia, Queensland, Renner 6902 (NSW858870) Thailand, Schäfer-Verwimp & Verwimp 23824 (GOET) Australia, Queensland, Renner 6332a (NSW896732) Brazil, Gradstein 3703 (GOET) Costa Rica, Holz CR 00-0176 (GOET) Bhutan, Long 28832 (GOET) India, Long 22802 (GOET) Portugal, Schäfer-Verwimp & Verwimp 31246 (M) Japan, Ohnishi 5771 (HIRO) Great Britain, Rycroft 01013 (GOET) Australia, Queensland, Renner 6521 (NSW898761) Australia, Queensland, Renner 7103 (NSW858831) Australia, Queensland, Renner 7107 (NSW852980) Australia, Queensland, Renner 6334 (NSW896736) Ecuador (II), Holz 045 E/5-01 (GOET) New Zealand, Engel 22033 (F1141444) Malaysia, Schäfer-Verwimp & Verwimp 18736/A (GOET) Costa Rica, Heinrichs et al. 4154 (GOET) Australia, New South Wales, Streimann 43891 (CANB9007877) Australia, Tasmania, Jobson (MEL2235519) Australia, Victoria, Klazenga (MEL2131756) Australia, Victoria, Streimann 50816 (CANB9300450) Chile (II), Rycroft 020723-6 (GOET) AM180610* AM180611* – AM180503* AM180504* KY051251 – – KY050998 AY275168* AY275169* AJ422017* DQ194057* KY051493 KY051491 KY051492 KY051494 AY438222* AY547711* AY547712* DQ194013* KY051254 KY051252 KY051253 KY051255 DQ194167* – AY699997* DQ194171* KY051001 KY050999 KY051000 KY051002 KY051485 KY051241 KY050988 DQ194058* DQ194014* DQ194172* KY051487 KY051243 KY050990 AY550140* AY275170* AY550141* AY550142* KT992543 AY547713* AY547714* AY547716* AY547717* KT992687 DQ194173* DQ194174* DQ194176* DQ194177* KT992616 AY438239* AJ413174* KY051489 AY438223* AY547719* KY051245 DQ194179* DQ194180* KY050992 KY051480 KY051236 KY050983 KY051477 KY051233 KY050980 KY051488 KY051244 KY050991 AJ422020* KY051495 AY569441* AY438225* KY051256 AY569440* DQ194181* – DQ194184* AJ422021* KY051498 AY547720* KY051259 DQ194185* KY051005 KY051500 KY051461 KY051499 KY051261 KY051214 KY051260 – – KY051006 AJ781752* AJ866767* DQ194187* Bolivia (I), Groth 101 (GOET) Ecuador, Holz 408 E/5-01 (GOET) AJ416081* AJ416080* AY438226* DQ194009* DQ194189* DQ194165* New Zealand, de Lange 11767 (NSW848797) New Zealand, Glenny I20 (NSW) Indonesia, Gradstein 9970 (GOET) Japan, Ohnishi 5720 (HIRO) Japan, Ohnishi 5400 (HIRO) USA, Smith & Davison s.n. (GOET) Nepal, Long 21348 (GOET) KY051524 KY051463 AJ414634* AY550144* AY275171* DQ194039* AY275172* KY051289 KY051216 AY438228* AY547723* AY547724* DQ193987* AY438227* KY051035 KY050964 DQ194191* DQ194192* DQ194193* DQ194136* DQ194194* Plagiochila orbicularis (S.Hatt) S.Hatt. Plagiochila ovalifolia Mitt. Plagiochila ovata Lindenb. & Gottsche Plagiochila pachyloma Taylor Plagiochila pacifica Mitt. Plagiochila pacifica Plagiochila pacifica Plagiochila pacifica Plagiochila parvifolia Lindenb. Plagiochila parvifolia Plagiochila parvifolia Plagiochila patentissima Steph. Plagiochila patriciae J.Heinrichs & H.Anton Plagiochila peculiaris Schiffn. Plagiochila poeltii Inoue & Grolle Plagiochila porelloides (Torr. ex Nees) Lindenb. Plagiochila pulcherrima Horik. Plagiochila punctata (Taylor) Taylor Plagiochila queenslandica Steph. Plagiochila queenslandica Plagiochila queenslandica Plagiochila queenslandica Plagiochila raddiana Lindenb. Plagiochila ramosissima (Hook.) Lindenb. Plagiochila renitens (Nees) Lindenb. Plagiochila retrorsa Gottsche Plagiochila retrospectans Lindenb. Plagiochila retrospectans Plagiochila retrospectans Plagiochila retrospectans Plagiochila rubescens (Lehm. & Lindenb) Lindenb. Plagiochila rutilans Lindenb.var. rutilans Plagiochila rutilans var. moritziana (Lindenb. & Gottsche) Heinrichs Plagiochila rutlandii Steph. Plagiochila rutlandii Plagiochila sandei Dozy Plagiochila satoi S.Hatt. Plagiochila sciophila Nees Plagiochila sciophila Plagiochila semidecurrens (Lehm. & Lindenb.) Lindenb. (continued next page) 102 Australian Systematic Botany M. A. M. Renner et al. Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila sp. Australia, New South Wales, Renner 6753 (NSW978711) Australia, New South Wales, Renner 6755 (NSW978714) Australia, New South Wales, Renner 6763 (NSW978721) Australia, New South Wales, Renner 6769 (NSW978728) Australia, New South Wales, Renner 6773 (NSW978732) Australia, New South Wales, Renner 6805 (NSW850847) Australia, New South Wales, Renner 6807 (NSW850849) Australia, New South Wales, Streimann 60997 (CANB9910339.1) Australia, Queensland, Renner 6416 (NSW896955) Australia, Queensland, Renner 6826 (NSW858805) Australia, Queensland, Renner 6839 (NSW870815) Australia, Queensland, Renner 6840 (NSW858815) Australia, Queensland, Renner 6846 (NSW858826) Australia, Queensland, Renner 6882 (NSW859317) Australia, Queensland, Renner 6898 (NSW859318) Australia, Queensland, Renner 6920a (NSW855499.1) Australia, Queensland, Renner 6920a (NSW855499.2) Australia, Queensland, Renner 6929 (NSW855503) Australia, Queensland, Renner 7112 (NSW852994) Australia, Queensland, Renner 7294 (NSW880570) Australia, Queensland, Renner 7302 (NSW880473) Fiji, Renner 5407 (NSW889511) Fiji, Renner 5523 (NSW890205) Australia, Queensland, Renner 6406 (NSW900037) Australia, Queensland, Renner 7331 (NSW880506) Australia, Queensland, Renner 7334 (NSW880509) New Zealand, Curnow 3556 (CANB9408642) New Zealand, Engel 20706 (F1141750) New Zealand, Engel 22601 (F1141724) New Zealand, Streimann 51257 (CANB9306707) New Zealand, Braggins 04/055C (AK290978) Belgium, Dauphin et al. 3811 (GOET) Kenya (I), Chuah 0310/AB (GOET) New Zealand, Braggins 05/084 (AK294765) New Zealand, Shevock 44043 (JE) KY051519 KY051282 KY051028 KY051520 KY051283 KY051029 KY051521 KY051284 KY051030 – KY051285 KY051031 KY051522 KY051286 KY051032 KY051504 KY051266 KY051011 KY051505 KY051267 KY051012 – KY051287 KY051033 KY051518 KY051281 KY051027 KY051509 KY051271 KY051016 KY051514 KY051276 KY051021 KY051510 KY051272 KY051017 KY051511 KY051273 KY051018 KY051512 KY051274 KY051019 KY051513 KY051275 KY051020 KY051506 KY051268 KY051013 KY051507 KY051269 KY051014 KY051508 KY051270 KY051015 KY051445 KY051198 KY050950 KY051516 KY051279 KY051024 KY051515 KY051277 KY051022 – KY051517 KY051411 KY051280 – KY051166 KY051025 KY051026 KY050918 KY051407 KY051162 KY050914 KY051408 KY051163 KY050915 KY051398 KY051405 KY051401 KY051397 KY051151 KY051160 KY051156 KY051150 KY050903 KY050912 KY050908 KY050902 KY051395 AY275173* AJ744796* KY051523 KT992502 KY051148 AY547725* AJ866758* KY051288 KT992650 KY050900 DQ194195* DQ194098* KY051034 KT992577 Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. Plagiochila sp. nov. Plagiochila sp. nov. Plagiochila sp. nov. Plagiochila spenceriana Colenso Plagiochila spenceriana Plagiochila spenceriana Plagiochila spenceriana Plagiochila spenceriana Plagiochila spinulosa (Dicks.) Dumort. Plagiochila squamulosa Mitt. Plagiochila stephensoniana Mitt. Plagiochila stephensoniana (continued next page) Testing relationships within Plagiochila Australian Systematic Botany 103 Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila stephensoniana New Zealand (II), South Island, SchäferVerwimp & Verwimp 14091 (GOET) Indonesia, Gradstein 10309 (GOET) Madagascar, Pócs 9868/AF (GOET) Costa Rica, Heinrichs et al. 4401 (GOET) Malawi, Hodgetts M2490a (GOET) Australia, New South Wales, Renner 5860 (NSW898641) Australia, Tasmania, Croft 10377 (CANB8904602) Australia, Tasmania, Curnow 4310 (CANB9503011) Australia, Tasmania, Curnow 4476 (CANB9503774) Australia, Tasmania, Curnow 4492 (CANB9504674) Australia, Tasmania, Curnow 4512 (CANB9504694) Australia, Tasmania, Curnow 4551 (CANB9504733) Australia, Tasmania, Streimann 59563 (CANB9803242) Australia, Tasmania, Streimann 59690 (CANB9803373) Australia, Victoria, Curnow 4153 (CANB9501541) Australia, Victoria, Klazenga N5846 (MEL2114285) Australia, Victoria, Streimann 43616 (CANB9007597) Australia, Victoria, Streimann 50471 (CANB9219468) Australia, Victoria, Streimann 58774 (CANB9802445) Australia, Victoria, Streimann 58818 (CANB9802489) Australia, Lord Howe Island, Streimann 55832 (CANB9514159) Australia, Lord Howe Island, Streimann 55882 (CANB9514209) New Zealand, Braggins 05/059 (AK293730) New Zealand, Braggins 05/116c (AK297119) New Zealand, Braggins 95/695D (AK286012) New Zealand, de Lange 9994 (AK327798) New Zealand, Engel 20862 (F1141137) New Zealand, Engel 22174 (F1141650) New Zealand, Engel 22604 (F1141589) New Zealand, Engel 22661 (F1141192) New Zealand, Engel 23329 (F1141186) New Zealand, Engel 23639 (C0311971F) New Zealand, Salter s.n. (AK322871) Australia, Lord Howe Island, Brown 00/35 (NSW444725) French Guiana, Holz FG 32 (GOET) Nepal, Long 17359 (GOET) Costa Rica, Heinrichs et al. 4175 (GOET) Costa Rica, Heinrichs et al. 4146 (GOET) Australia, Queensland, Renner 6917 (NSW855511.1) DQ194062* DQ194021* DQ194196* AJ866744* AJ633128* AJ416646* AJ866734* KY051539 AJ866763* AJ866766* AY438229* AJ866759* KY051302 DQ194197* – DQ194198* DQ194099* KY051050 KY051525 KY051290 KY051036 KY051529 KY051294 KY051040 KY051533 – KY051041 KY051530 KY051295 KY051042 KY051531 KY051296 KY051043 KY051532 KY051297 KY051044 KY051536 KY051299 KY051047 KY051537 KY051300 KY051048 KY051528 KY051293 KY051039 KY051538 KY051301 KY051049 KY051526 KY051291 KY051037 KY051527 KY051292 KY051038 KY051534 – KY051045 KY051535 KY051298 KY051046 KY051431 KY051186 KY050936 KY051432 KY051187 KY050937 KY051414 KY051415 KY051352 KY051169 KY051170 KY051100 KY050920 KY050921 KY050851 KY051418 KY051475 KY051439 KY051438 KY051354 – KY051313 KY051353 KY051442 KY051173 KY051228 KY051194 KY051193 KY051103 KY051102 KY051061 KY051101 – KY050923 KY050976 KY050944 KY050943 KY050854 KY050853 KY050814 KY050852 KY050947 AY275174* AY550145* AJ416084* AJ422026* KY051540 AY438224* AY547726* AY438230* AY438231* KY051248 DQ194199* DQ194200* DQ194201* – KY050995 Plagiochila streimannii Inoue Plagiochila stricta Lindenb. Plagiochila stricta Plagiochila strictifolia Steph. Plagiochila strombifolia (Taylor) Taylor Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila strombifolia Plagiochila subflabellata Colenso Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subflabellata Plagiochila subplana Lindenb. Plagiochila subtropica Steph. Plagiochila superba (Nees) Mont. & Nees Plagiochila tabinensis Steph. Plagiochila teysmannii Sande Lac. (continued next page) 104 Australian Systematic Botany M. A. M. Renner et al. Appendix 1. (continued ) Species Voucher nrITS rps4 rbcL Plagiochila teysmannii Australia, Queensland, Renner 6917 (NSW855511.2) Australia, Queensland, Renner 6930 (NSW) Indonesia, Gradstein 10308 (GOET) Australia, Queensland, Renner 6511 (NSW898713) Japan, Kurita 257 (HIRO) Costa Rica, Heinrichs et al. 4324 (GOET) Australia, Queensland, Renner 6900 (NSW858853) Australia, Queensland, Renner 6915 (NSW858855) Australia, Queensland, Renner 6952 (NSW859321) Australia, Queensland, Renner 6954 (NSW) Australia, Queensland, Renner 6955 (NSW858653) Australia, Queensland, Renner 7075 (NSW858867) Australia, Queensland, Renner 7113 (NSW853008) Australia, Queensland, Renner 6899 (NSW858850) New Zealand, Braggins 04/067 (AK290513) New Zealand, Braggins 13/279 (NSW) New Zealand, de Lange 10631 (AK330919) New Zealand, de Lange 10649 (AK330937) New Zealand, de Lange 9705 (AK322390) New Zealand, de Lange CH1666 (AK303347) New Zealand, Engel 20933 (F1141705) New Zealand, Engel 22686 (F1141703) New Zealand, Glenny I37 (NSW) New Zealand, Braggins 04/015A (AK286177) Ecuador, Holz 070 E/5-01 (GOET) Bolivia, Heinrichs et al. 4058 (GOET) Costa Rica, Heinrichs et al. 4331 (GOET) Australia, Queensland, Renner 6492 (NSW909521) Australia, Queensland, Renner 6541 (NSW899754) Fiji, Renner 5448 (NSW889656) New Zealand, Renner 4189 (F) – KY051249 KY050996 – AJ866745* – KY051246 AJ866762* KY051250 KY050993 DQ194203* KY050997 AY550146* AJ416082* KY051482 AY547727* AY547728 * KY051238 DQ194204* – KY050985 KY051483 KY051239 KY050986 KY051486 KY051242 KY050989 KY051490 KY051479 KY051247 KY051235 KY050994 KY050982 KY051484 KY051240 KY050987 KY051478 KY051234 KY050981 KY051481 KY051237 KY050984 KY051324 KY051329 KY051327 KY051328 KY051326 KY051325 KY051332 KY051331 KY051333 KY051323 AJ422024* DQ194064* AY275175* KY051549 KY051072 KY051077 KY051075 KY051076 KY051074 KY051073 KY051080 KY051079 KY051081 KY051071 AY547729* DQ194023* DQ194024* KY051311 KY050823 KY050828 KY050826 KY050827 KY050825 KY050824 KY050831 KY050830 KY050832 KY050822 DQ194206* DQ194207* DQ194208* KY051059 KY051548 KY051310 KY051058 KY051547 – KY051309 KF851433* KY051057 KF852336* KT992470 KT992619 KT992547 KT992469 KT992618 KT992546 KT992471 KT992620 KT992548 KT992474 KT992623 KT992551 KT992475 KT992624 KT992552 KT992472 KT992621 KT992549 KT992468 – KT992545 KT992473 KT992622 KT992550 Plagiochila teysmannii Plagiochila teysmannii Plagiochila teysmannii Plagiochila trabeculata Steph. Plagiochila trichostoma Gottsche Plagiochila trigona Steph. Plagiochila trigona Plagiochila trigona Plagiochila trigona Plagiochila trigona Plagiochila trigona Plagiochila trigona Plagiochila trigona Plagiochila trispicata Colenso Plagiochila trispicata Plagiochila trispicata Plagiochila trispicata Plagiochila trispicata Plagiochila trispicata Plagiochila trispicata Plagiochila trispicata Plagiochila trispicata Plagiochila trispicata Plagiochila turgida Herzog Plagiochila validissima Steph. Plagiochila vincentina Lindenb. Plagiochila vitiensis Mitt. Plagiochila vitiensis Plagiochila vitiensis Pseudolophocolea denticulata R.M.Schust. & J.J.Engel Tetracymbaliella cymbalifera (Hook.f. & Taylor) Grolle Tetracymbaliella cymbalifera Tetracymbaliella subsimplex (Austin) J.J.Engel Tetracymbaliella subsimplex Tetracymbaliella subsimplex Tetracymbaliella subsimplex Tetracymbaliella subsimplex Tetracymbaliella subsimplex New Zealand (I), South Island, Renner 6139 (NSW895440) New Zealand (II), South Island, Renner 6104 (NSW895384) Australia, Tasmania (I), Renner 5928 & Brown (NSW895282) Australia, Tasmania (III), Renner 5960 (NSW880807) Australia, Tasmania (IV), Renner 5930 & Brown (NSW895256) Australia, Tasmania (V), Renner 5896 & Brown (NSW892110) Australia, Tasmania (VI), Renner 5946 (NSW880770) Australia, Tasmania (II), Renner 6009 & Brown (NSW880772) www.publish.csiro.au/journals/asb