Academia.eduAcademia.edu
TAXON 72 (1) • February 2023: 20–46 Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae RESEARCH ARTICLE Phylogenetic revision of Dennstaedtioideae (Dennstaedtiaceae: Polypodiales) with description of Mucura, gen. nov. Luz A. Triana-Moreno,1 Pedro B. Schwartsburd5 Agustina Yañez,2 Li-Yaung Kuo,3 & Michael Sundue6 Carl J. Rothfels,4 Nelson Túlio L. Pena,5 1 Departamento de Ciencias Biológicas, Universidad de Caldas, Manizales, Colombia; and Programa de Doctorado en Ciencias Biología, Universidad Nacional de Colombia, Bogotá, Colombia 2 Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, CONICET, División Plantas Vasculares, Av. Ángel Gallardo 470, Piso 2, C1405DJR, Ciudad Autónoma de Buenos Aires, Argentina 3 Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu City, Hsinchu, Taiwan 4 Intermountain Herbarium and Department of Biology, Utah State University, Logan, Utah 84321, U.S.A. 5 Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Av. P.H. Rolfs s.n., Viçosa, 36570-900, MG, Brazil 6 Deptartment of Plant Biology, University of Vermont, Burlington, Vermont 05405, U.S.A. Address for correspondence: Michael Sundue, sundue@gmail.com DOI https://doi.org/10.1002/tax.12858 Abstract We undertook a molecular phylogenetic revision of hayscented ferns (Dennstaedtiaceae: Dennstaedtioideae) using four plastid markers. Our sampling represents ca. 40% of the extant diversity and includes the type species for each of the relevant segregate genera. We coded 18 discrete morphological characters which we used to find diagnosable clades. We show that Dennstaedtia is polyphyletic, with the majority of species forming three morphologically distinct clades, but its type (D. flaccida) is nested within Microlepia. As such, we support the conservation of Dennstaedtia with a new type, D. dissecta. Following our results, we develop a classification of four genera: Dennstaedtia, Microlepia, Mucura (gen. nov.) and Sitobolium. Beyond the inclusion of D. flaccida, we propose to maintain Microlepia with its current circumscription. Except for a single adventive species in the Neotropics, Microlepia is a Paleotropical genus of about 60 species diagnosed by their distinctive perispore ornamentation of rodlets, and by petioles that lack epipetiolar buds. Mucura is a Neotropical genus of two species that differ from all other Dennstaedtiaceae by the combination of dichotomously branching rhizomes, petioles that lack epipetiolar buds, marginal sori with both abaxial and adaxial indusia, and trilete spores with a unique perispore ornamentation. As defined here, Dennstaedtia is a pantropical genus of about 55 species recognized by having unbranched rhizomes, petioles bearing epipetiolar buds, and by often bearing proliferous buds upon the leaves. Sitobolium is a small clade of ca. five species distinguished by their relatively small leaves that have elongate catenate hairs. These hairs often bear a capitate non-glandular terminal cell. In support of our classification, we provide a key to the eleven genera of Dennstaedtiaceae, and for the four genera of Dennstaedtioideae we provide morphological and geographic synopses, a list of constituent species, and necessary new combinations. Keywords Dennstaedtia; fern genera; Microlepia; morphology; Patania; perispore; Sitobolium Supporting Information may be found online in the Supporting Information section at the end of the article. ■ INTRODUCTION Dennstaedtia Bernh. was described by Bernhardi in 1801 based upon Trichomanes flaccidum G.Forst., a little-known species from western Pacific islands. The circumscription of Dennstaedtia has changed considerably over time but has generally united plants with marginal sori derived from the marginal initials during leaf development (Bower, 1928), that bear both abaxial and adaxial indusia (sometimes referred to as inner and outer, respectively), and long-creeping solenotostelic rhizomes (Holttum, 1968; Mickel, 1973). Moore (1859) was perhaps the first to establish its modern conception (Tryon & Tryon, 1980), as a genus of about 70 species with a nearly cosmopolitan distribution, defined by a terrestrial habit, pubescent rhizomes, petioles that frequently bear epipetiolar buds (branch buds), marginal sori with cup- or purse-shaped indusia, and trilete spores (Kramer, 1990; Moran, 1995; Navarrete & Øllgaard, 2000; PPG-I, 2016). However, early (Wolf & al., 1994; Wolf, 1995; Schuettpelz & Pryer, 2007) and recent phylogenetic studies (Perrie & al., 2015; Testo & Article history: Received: 16 Mar 2022 | returned for (first) revision: 16 May 2022 | (last) revision received: 11 Oct 2022 | accepted: 20 Oct 2022 | published online: 14 Dec 2022 | Associate Editor: Li-Bing Chang | © 2022 The Authors. TAXON published by John Wiley & Sons Ltd on behalf of International Association for Plant Taxonomy. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. 20 Version of Record Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Sundue, 2016; Shang & al., 2018; Schwartsburd & al., 2020; Wang & al., 2021) demonstrated that this concept is not monophyletic by the inclusion of Microlepia C.Presl and its small segregate genera Leptolepia Prantl and Oenotrichia Copel., genera that were differentiated from Dennstaedtia by having abaxial sori, with a single abaxial indusium. Polyphyly of Dennstaedtia was not unexpected; some forty years after its initial publication, J. Smith (1842) placed the type, D. flaccida, within the recently coined Microlepia (Presl, 1836). Copeland (1947) came to similar conclusions based upon its echinate spore morphology, and Tryon & Tryon (1980) later did as well, using SEM images. Copeland (1958) and Holttum (1968) also questioned whether the sorus position could be relied upon to distinguish Dennstaedtia and Microlepia. They commented that differences between the genera were slight, and that some species appear intermediate between the two genera, differing only by whether the indusium is strictly marginal or slightly removed from the margin and situated upon the abaxial leaf surface. They suspected that transitions between marginal and abaxial sori probably occurred multiple times. This was recently demonstrated by phylogenetic analyses, in which Schwartsburd & al. (2020) showed the evolution from marginal to abaxial sori occurred at least five times within Dennstaedtiaceae, and by Wang & al. (2021), who found that D. smithii (Hook.) T.Moore, a species with marginal sori, was nested in the Microlepia clade that otherwise have sori positioned abaxially (i.e., indicating a reversal to marginal position). Rather than merge Microlepia into Dennstaedtia, Tryon & Tryon (1980) attempted to retain Dennstaedtia by conserving a later publication of the same name based upon a type that fit their concept of the genus. They proposed to conserve Dennstaedtia T.Moore (1859) based upon D. cicutaria, against Dennstaedtia Bernh. This proposal also conserved Dennstaedtia T.Moore against several other genera, namely Sitobolium Desv. (based upon D. punctilobula), Patania C.Presl (based upon D. obtusifolia) and Adectum Link (based upon Dicksonia pilosiuscula) that were not in active use at the time. The Committee for Pteridophyta voted against their proposal, however. Holttum commented that it was premature to act without further knowledge of Asian taxa, particularly D. flaccida, and Pichi Sermolli concluded that Dennstaedtia T.Moore should be inferred to have the same type of that Dennstaedtia Bernh. (Pichi-Sermolli, 1982). Despite the ruling, Tryon and Tryon adopted Dennstaedtia T.Moore based upon D. cicutaria as the accepted name in their influential 1982 publication, which may have delayed the adoption of a resolution that was in accord with the ICBN. Schwartsburd & al. (2020) outlined possible nomenclatural solutions to the non-monophyly of Dennstaedtia by either broadly defining it to include Microlepia or by adopting a series of more narrowly defined genera: Coptidipteris (based upon D. wilfordii), Patania (based upon D. obtusifolia) and Sitobolium (based upon D. punctilobula). Any nomenclatural solution, however, is incumbent upon the phylogenetic positions of these type species, and the circumscription of genera that taxonomists find useful. While type species for most of the relevant genera have been included in recent studies (e.g., Perrie & al., 2015; Schwartsburd & al., 2020), those of Dennstaedtia and Patania have not previously been subject to phylogenetic analysis. These previous studies demonstrating the polyphyly of Dennstaedtia, and the problematic handling of the principle of priority by Tryon & Tryon (1982) led us to conduct a molecular phylogenetic analysis of the family with a robust sampling of Dennstaedtia representing ca. 40% of the extant diversity. We included type species for each of the relevant segregate genera including the types of Patania and Dennstaedtia. We also map morphological character states allowing us to evaluate their taxonomic value in generic circumscription and infrafamilial classification. Our results lead us to recircumscribe genera of Dennstaedtioideae, including the resurrection of Sitobolium, and the establishment of Mucura gen. nov. Finally, in an associated publication we propose to conserve Dennstaedtia with a new type in order to maintain nomenclatural stability (Triana-Moreno & al., 2022). ■ MATERIALS AND METHODS Taxonomic sampling. — Our goal was to sample broadly across the Dennstaedtiaceae, and densely within the Dennstaedtioideae. In this study, our sampling of Dennstaedtiaceae included all 13 genera (sensu Shang & al., 2018; Schwartsburd & al., 2020) and 93 species. For Dennstaedtia sensu PPG-I (2016), 29 species were included, representing approximately 40% of the diversity in this group. We also included 26 species in 13 genera of other Polypodiales and Cyatheales as outgroups. In total, phylogenetic sampling of Dennstaedtiaceae and outgroups included 158 terminals. Of these, 25 were collected during this research in various locations in the Andes of Colombia, for the genera Dennstaedtia (16 samples), Mucura gen. nov. (1), Blotiella (1), Hypolepis (2), Lindsaea (1), Paesia (1), Pteridium (1) and Saccoloma (2). Other samples were taken from the collection of tissues preserved in silica gel in the VT herbarium, of which 28 come from the Neotropics, three from North America and 38 from the Old World. Three samples were taken from herbarium specimens (Dennstaedtia arborescens, Castro 756; D. distenta, Sundue 4998; Mucura bipinnata comb. nov., Fawcett 470). For other taxa with no available samples and for the outgroup the sequences were downloaded from GenBank (Appendix 1). We excluded sequences of Dennstaedtiaceae that were shown by Shang & al. (2018) to be problematic. Extraction, amplification, sequencing, and alignment. — Total DNA was extracted, mainly from silica gel dehydrated laminar tissue samples, or from small fragments of herbarium specimens (ca. 1 cm2) using a CTAB protocol (Doyle & Doyle, 1987) with the addition of polyvinylpyrrolidone (PVP) to avoid inhibition of amplification by phenolic compounds (John, 1992). We PCR-amplified four regions of the chloroplast (rbcL coding gene, rpl16 intron, rps4 coding region along with the rps4-trnS intergenic spacer, and the Version of Record 21 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 trnL-F intergenic spacer) using previously published primers (Table 1). For rbcL, denaturation was started at 94°C for 5 min, followed by 35 cycles of 94°C for 30 s, 56°C for 30 s and 72°C for 1 min; and final extension at 72°C for 10 min. For rpl16, denaturation at 94°C for 5 min, followed by 35 cycles of 94°C for 30 s, 50.5°C for 30 s and 72°C for 1 min; and final extension at 72°C for 10 min. And for rps4-trnS and trnL-F, denaturation at 94°C for 5 min, followed by 35 cycles of 94°C for 30 s, 50°C for 30 s and 72°C for 1 min; and final extension at 72°C for 8 min. Amplification was confirmed by 1.2% agarose gel electrophoresis at 100 V. The PCR products were purified by applying 1 μl of ExoSAP-IT (Thermo Fischer Scientific, Lithuania) and incubating at 37°C for 15 min, followed by a further 15 min at 80°C. Each region was sequenced using the “forward” and “reverse” end primers used for amplification, and internal primers were additionally used for rbcL (Table 1). Sequencing was carried out at The Vermont Integrative Genomics Resource DNA Facility (Burlington, Vermont, U.S.A.). Resulting sequences were examined and assembled in Geneious Prime 2019.2.1 (Kearse & al., 2012). Alignments were made using MAFFT v.7.035b (Katoh & Standley, 2013) and are publicly available at https:// doi.org/10.5061/dryad.5hqbzkh99. Phylogenetic analysis. — Sequence contigs for rbcL, rpl16, rps4-trnS, and trnL-trnF were assembled from raw reads and edited using Geneious. We aligned our resulting sequences along with those harvested from GenBank using MAFFT v.7.035b (Katoh & Standley, 2013) and then concatenated them. Best-fitting models of nucleotide substitution were determined for each partitioned marker using ModelFinder (Chernomor & al., 2016; Kalyaanamoorthy & al., 2017). We chose the edge-linked proportional substitutional model and GTR+F was inferred to be the best model for each partition. The maximum likelihood (ML) and Bayesian phylogenetic (BI) and parsimony (MP) reconstructions were implemented using the CIPRES Science Gateway (Miller & al., 2010). Our ML reconstructions were conducted using IQ-tree2 TAXON 72 (1) • February 2023: 20–46 (Minh & al., 2020), and branch support was inferred from 1000 ML bootstrap (BS) replicates. Our Bayesian reconstructions were conducted using MrBayes v.3.2 (Ronquist & al., 2012). The Markov Chain Monte Carlo analysis was performed with four chains run for 6 million generations, sampling every 1000 generations. The resulting log files were inspected for convergence and adequate sampling using Tracer v.1.6 (Rambaut & al., 2018). The first 25% of trees were discarded as burn-in, and a majority-rule consensus tree was generated from the remaining trees. Branch support was inferred from posterior probabilities (PP). Our parsimony analyses were performed with PAUPRat (Sikes & Lewis, 2001), which executes Nixon’s (1999) ratchet. All characters were treated as equally weighted and unordered, gaps were treated as missing data, and non-informative characters were removed for analysis. Heuristic searches were performed using the Tree Bisection Reconnection algorithm. PAUP* v.4.a169 (Swofford, 2002) was used to calculate strict consensus trees, and also to assess bootstrap branch supports with heuristic searches on 1000 pseudo-replicates. Morphological character analysis. — We scored 18 discrete characters for ancestral state analysis of traits determined to be of value in systematic treatments for the family. These included morphological features of the sporophyte and its spores, and chromosome base numbers. Data were scored from literature (e.g., Holttum, 1968; Tryon & Tryon, 1982; Jermy & Walker, 1985; Kramer, 1990; Tryon & Lugardon, 1990; Moran, 1995; Brownsey, 1998; Navarrete & Øllgaard, 2000; Mickel & Smith, 2004; Yan & al., 2013; Yañez & al., 2014, 2016a,b; Shang & al., 2018; Schwartsburd & al., 2020) or by direct observation of specimens at COL, MO, NY, and VT. Character states were mapped onto the most likely tree resulting from our RAxML analyses using both parsimony and likelihood employing an equal rate transition model (Lewis, 2001) in MESQUITE v.3.5 (Maddison, 2008). We then visualized the distribution of these character states on the phylogeny using the “plotTree” and “add. simmap.legend” functions in the R package phytools v.0.7.70 Table 1. Primers used for amplification and sequencing. Marker Primer name Primer Sequence 5′–3′ Source rbcL 1F ATG TCA CCA CAA ACA GAG ACT AAA GC Hasebe & al. (1994) ESRBCL628F* CCA TTY ATG CGT TGG AGA GAT CG Schuettpelz & Pryer (2007) ESRBCL654R* GAA RCG ATC TCT CCA ACG CAT Schuettpelz & Pryer (2007) 1351R GCA GCA GCT AGT TCC GGG CTC CA Hasebe & al. (1994) rpl16 rpL16F ATG CTT AGT GTG YGA CTC GTT Small & al. (2005) rpL16R TCC SCN ATG TTG YTT ACG AAA T Small & al. (2005) rps4-trnS RPS4TRNSF AGT TGT TAG TTG TTG AGT AT Skog & al. (2004) RPS4TRNSR TAC CGA GGG TTC GAA TC Smith & Cranfill (2002) tab-f ATT TGA ACT GGT GAC ACG AG Taberlet & al. (1991) tab-e GGT TCA AGT CCC TCT ATC CC Taberlet & al. (1991) trnL-F * used only for sequencing. 22 Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae (Revell, 2012) and the “tiplabels” function from ape v.5.5, using the “ace” function (Paradis & al., 2004). Characters and their states are provided in Appendix 2. Characterization of perispore morphology. — Perispore morphology was characterized by making semi-permanent light microscope (LM) slides in glycerin-jelly. These were observed without any acetolysis, since it can affect spore morphology (Erdtman, 1960). The perispore was characterized according to the predominant ornamental types and their arrangement on the surface, from the observation of 25 spores per specimen. Specimens studied are listed in Appendix 3. We followed the terminology employed by Tryon & Lugardon (1990), Lellinger (2002) and Punt & al. (2007). Taxonomic treatment. — Specimens from the herbaria BA, COL, LP, and VT, and the virtual collections from AAU, MO and NY were studied using PteridoPortal (pteridoportal. org); type specimens were examined using virtual collections when necessary. ■ RESULTS Characterization of the sequences. — Two hundred and tweny-four new nucleotide sequences were generated (Appendix 1). The variability of the characters in the markers varied between 42.4% (rbcL) and 91.5% (trnL-trnF), while in the concatenated matrix it was 66.4%. The percentage of parsimony informative characters varied between 33.7% (rbcL) and 76.7% (trnL-F) and was 52.8% for the concatenated matrix. These and other attributes of the markers are summarized in Table 2. Phylogenetic analyses. — Dennstaedtiaceae was recovered as monophyletic (PP = 1, BS = 98), as were its subfamilies, the Monachosoroideae (PP = 1, BS = 100), Hypolepidoideae (PP = 1, BS = 100, MP = 94) and Dennstaedtioideae (PP = 1, BS = 100, MP = 96). The six genera of Hypolepidoideae were recovered as monophyletic (Fig. 1). In contrast, genera of the Dennstaedtioideae exhibited phylogenetic relationships in conflict with current classification. Dennstaedtia s.l was divided into four clades. The first split within Dennstaedtioideae separates a large clade of tropical Dennstaedtia along with Oenotrichia and Leptolepia from the remaining Dennstaedtioideae (PP = 1, BS = 100). This clade is also home to the type of Patania. Among the remaining Dennstaedtioideae, all analyses resolved a split separating a small clade of two species— D. bipinnata and D. globulifera—from the remaining taxa. Support for the sister relationship of the two species was high (PP = 1, BS = 100), and the BI support for them as sister to the remaining Dennstaedtioideae was high as well (PP = 1), but support for this clade was weak in our ML (BS = 63) and MP results (MP = 59, suppl. Fig. S1). Support for the sister relation of the two remaining clades was high in all analyses (PP = 1, BS = 100, MP = 95). The first of these included species of relatively high latitude from eastern North America and eastern Asia. It included the type species of Coptidipteris, and Sitobolium (PP = 1, BS = 100, MP = 96). The remaining clade included species of Microlepia, along with its type, and the type of Dennstaedtia (PP = 1, BS = 100, MP = 95). Morphological character evolution. — Our reconstructions found that the presence of abaxial and adaxial indusia (Fig. 2A,B), sorus position (Fig. 3B), and rhizome indument (suppl. Fig. S2G) were useful characters at the family level; that is, they exhibited low homoplasy and were generally consistent within large clades. As for characters that help diagnose the genera that we recognized (see below), we found that the presence/absence of epipetiolar buds (Fig. 2C), the shape of the petiole base (suppl. Fig. S2C), the presence/absence of wings along the rachis-costa junction (suppl. Fig. S2D) and the perispore ornamentation (Figs. 3D, 4) were most useful. In particular, the spores of Mucura gen. nov. were defined by verrucae, prominent ridges and irregular reticles (Fig. 4A). The perispore of Microlepia was consistently defined by a three-dimensional network of rodlets (Fig. 4D). Sitobolium and Patania were variable in spore ornamentation, but morphologies were consistent within subclades, e.g., the clade corresponding to species previously recognized as Coptidipteris, which had tuberculate perispores (Fig. 4B). In contrast, the presence/absence of proliferous buds upon the lamina (Fig. 2D), rhizome branching (suppl. Fig. S2F), aculeae upon axes (suppl. Fig. S2A), and lamina division (suppl. Fig. S2B), had sufficient homoplasy or missing data such that they have less diagnostic power at this rank. Chromosome base numbers corresponded closely to the genera within the Hypolepidoideae—most genera have a single number distinct from other genera, but there is no similar pattern in the Dennstaedtioideae (Fig. 3C). The clade including Microlepia exhibited a base number of x = 43 (86), while the remaining Dennstaedtioideae tended to be bimodal, either x = 30–34 or x = 46–47. Characters found useful to differentiate the genera of the Dennstaedtioideae recognized here are summarized in Table 3, and the complete morphological data matrix is available as suppl. Table S1. ■ DISCUSSION Systematics and morphology of Dennstaedtiaceae. — Our recovery of a monophyletic Dennstaedtiaceae along with its subfamilies, the Dennstaedtioideae, Hypolepidoideae, and Monachosoroideae, agrees with previous studies (Schuettpelz & Pryer, 2007; Testo & Sundue, 2016; Shang & al., 2018, Schwartsburd & al., 2020). Morphological characters that help diagnose the family are abundant, and include longcreeping rhizomes, rhizomes protected by an indument of trichomes, the presence of epipetiolar buds, marginal sori, and the presence of an adaxial indusium (Fig. 2B). Although not included in our analysis, family characters also include leaves provided with multicellular catenate hairs, and rhizome vasculature forming solenosteles (Becari-Viana & Schwartsburd, 2017). Some of these characters however are not necessarily synapomorphies due to losses and to the aberrant character states of Version of Record 23 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 Number of samples Alignment length Constant characters (%) Variable characters (%) Non-informative variable characters under parsimony (%) Informative characters under parsimony (%) Most parsimonious trees Tree length Consistency index (CI) Retention index (RI) Rescaled consistency index (RC) Resolved clades in the strict consensus tree Polytomies in the strict consensus tree rbcL --- 71 92 1393 802 57.6 591 42.4 122 8.8 469 33.7 9756 1783 0.379 0.778 0.294 66 11 rpl16 --- 46 65 817 180 22.0 637 78.0 168 20.6 469 57.4 9918 1580 0.520 0.748 0.389 48 5 rps4-trnS --- 62 101 534 65 12.2 469 87.8 76 14.2 393 73.6 9974 1261 0.602 0.929 0.559 51 19 trnL-F --- 66 94 494 42 8.5 452 91.5 73 14.8 379 76.7 10001 1729 0.495 0.832 0.412 66 7 rbcL + rpl16 1.00 78 111 2210 982 44.4 1228 55.6 290 13.1 938 42.4 8698 3372 0.444 0.786 0.349 74 9 rbcL + rps4-trnsS 0.95 91 138 1917 857 44.7 1060 55.3 198 10.3 862 45.0 9555 3290 0.506 0.865 0.438 112 9 rbcL + trnL-F 0.97 87 127 1887 844 44.7 1043 55.3 195 10.3 848 44.9 9212 3521 0.435 0.805 0.350 92 9 rpl16 + rps4-trnS 0.90 72 118 1351 245 18.1 1106 81.9 244 18.1 862 63.8 9964 2852 0.554 0.882 0.489 66 18 rpl16 + trnL-F 0.93 75 114 1311 222 16.9 1089 83.1 241 18.4 848 64.7 9949 3314 0.506 0.818 0.414 95 6 rps4-trnS + trnL-F 0.26 78 125 1028 107 10.4 921 89.6 149 14.5 772 75.1 9961 3011 0.536 0.886 0.475 85 11 rbcL + rpl16 + rps4-trnS 0.97 91 146 2744 1047 38.2 1697 61.8 366 13.3 1331 48.5 8743 4654 0.485 0.848 0.411 94 9 rbcL + rpl16 + trnL-F 1.00 90 140 2704 1024 37.9 1680 62.1 363 13.4 1317 48.7 9168 5107 0.461 0.803 0.370 90 9 rbcL + rps4-trnS + trnL-F 0.89 93 149 2421 909 37.5 1512 62.5 271 11.2 1241 51.3 9227 4808 0.476 0.854 0.406 104 11 rpl16 + rps4-trnS + trnL-F 0.68 81 134 1845 287 15.6 1558 84.4 317 17.2 1241 67.3 9961 4622 0.527 0.863 0.455 97 12 rbcL + rpl16 + rps4-trnS + trnL-F 0.96 93 156 3238 1089 33.6 2149 66.4 439 13.6 1710 52.8 6616 6400 0.486 0.843 0.410 115 10 TAXON 72 (1) • February 2023: 20–46 Number of taxa Version of Record ILD test (p-value) Characters Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae 24 Table 2. Characterization of the alignments, and statistics for each marker and combination. 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae -/86 0.99/87 -/87 0.99/90 1/100 1/99 1/90 0.98/90 1/93 1/100 -/85 1/92 1/92 1/98 0.99/97 1/100 1/80 1/100 0.84/96 1/100 1/100 0.99/77 1/91 1/100 1/100 1/100 100 0.89/- 100 1/100 1/100 1/100 1/98 1/90 -/94 1/89 1/100 1/100 1/99 1/90 1/100 1/100 1/99 1/89 1/100 1/100 1/100 1/100 1/97 1/100 1/99 0.97/81 1/96 1/100 0.98/100 1/100 0.99/95 0.88/87 1/100 1/100 1/100 0.83/84 1/100 0.92/98 0.99/94 Dennstaedtia auriculata LUZ121 Dennstaedtia mathewsii LUZ123 Dennstaedtia coronata LUZ115 Dennstaedtia mathewsii LUZ94 Dennstaedtia auriculata LUZ104 Dennstaedtia obtusifolia LUZ99 Dennstaedtia coronata LUZ89 Dennstaedtia vagans LUZ100 Dennstaedtia kalbreyeri LUZ103 Dennstaedtia werckleana 883 Dennstaedtia obtusifolia LUZ97 Dennstaedtia arborescens LUZ106 Dennstaedtia dissecta LUZ90 Dennstaedtia dissecta LUZ91 Dennstaedtia sprucei LUZ125 Dennstaedtia sprucei LUZ124 Dennstaedtia sp. LUZ113 Dennstaedtia dissecta LUZ114 Dennstaedtia cornuta LUZ84 Dennstaedtia cornuta LUZ88 Dennstaedtia cornuta LUZ85 Dennstaedtia macrosora LUZ93 Dennstaedtia cicutaria LUZ80 Dennstaedtia cicutaria LUZ79 Dennstaedtia cicutaria LUZ78 Dennstaedtia cicutaria LUZ82 Dennstaedtia spinosa 5045 Dennstaedtia distenta LUZ120 Dennstaedtia tripinnatifida LUZ55 Dennstaedtia ampla LUZ57 Dennstaedtia glabrata LUZ38 Oenotrichia maxima WELT P026233 Leptolepia novae-zelandiae W Dennstaedtia davallioides 27283 Dennstaedtia scandens LUZ46 Dennstaedtia samoensis W Histiopteris incisa LUZ132 Histiopteris incisa LUZ131 Histiopteris stipulacea LUZ1 Histiopteris incisa LUZ28 Histiopteris incisa LUZ130 Histiopteris incisa LUZ3 Histiopteris incisa LUZ30 Blotiella pubescens Blotiella lindeniana Paesia glandulosa LUZ135 Paesia glandulosa LUZ134 Paesia acclivis LUZ133 Paesia glandulosa LUZ81 Paesia scaberula 387 Hiya brooksiae SG1731 Hiya brooksiae LUZ58 Hiya distans 2807 Hiya nigrescens MS3626 Hypolepis pedropaloensis LUZ15 Hypolepis parallelogramma 5090 Hypolepis viscosa LUZ16 Hypolepis stolonifera stolonifera 4420 Hypolepis sparsisora SG1263 Hypolepis alpina MSB3 Hypolepis rugosula rouxii 3023 Hypolepis millefolium 3029 Hypolepis tenuifolia HN31 Hypolepis resistens BLD01 Hypolepis glandulosopilosa SG1029 Pteridium esculentum gryphus LUZ137 Pteridium caudatum LUZ11 Pteridium esculentum gryphus LUZ136 Pteridium revolutum LUZ66 Monachosorum subdigitatum LUZ138 Monachosorum henryi Cyrtomium falcatum Cyrtomium fortunei Campyloneurum angustifolium Macrothelypteris torresiana Diplazium dilatatum 156 Pteris vittata 4016 Pityrogramma trifoliata 3658 Vittaria graminifolia EP423 Odontosoria scandens W Odontosoria chinensis W Odontosoria schlechtendalii 5012 Lindsaea arcuata LUZ19 Lonchitis mannii U18641N Lonchitis hirsuta EU352305 Lonchitis hirsuta U05929 Cystodium sorbifolium LUZ22 Saccoloma nigrescens LUZ17 Saccoloma sunduei LUZ6 Saccoloma elegans 14948 Saccoloma galeottii LUZ7 Saccoloma caudatum LUZ9 Saccoloma inaequale 1019 Orthiopteris kingii LUZ42 Orthiopteris campylura LUZ5 Saccoloma brasiliense LUZ21 Alsophila costularis Dennstaedtia Dennstaedtioideae Histiopteris Blotiella Paesia Hiya Hypolepidoideae Hypolepis Pteridium Monachosorum Monachosoroideae 0.07 Fig. 1. Best tree resulting from the maximum likelihood phylogenetic tree search using IQ-Tree2. Bootstrap support values >80% from 1000 iterations are presented at nodes. Clades with posterior-support of 1 and ML bootstrap values >90% are indicated with a thickened bar. Version of Record 25 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 0.99/99 0.97/97 1/83 0.99/98 1/100 0.97/100 0.93/83 0.99/97 0.99/90 1/82 1/100 1/100 1/100 -/89 0.92/84 0.91/94 1/97 1/100 1/100 0.98/97 1/100 1/100 1/82 1/63 1/100 1/100 1/100 1/100 Microlepia trichosora WYD445 Microlepia herbacea ZXL09877 Microlepia lofoushanensis YanYH13739 Microlepia crassa STET2352 Microlepia obtusiloba YYH11602 Microlepia matthewii YYH13164 Microlepia marginata YYH13287 Microlepia chrysocarpa ZXC7015 Microlepia strigosa SG021 Microlepia szechuanica W Microlepia yaoshanica YYH12136 Microlepia trapeziformis WYD303 Microlepia firma ZXL6895 Microlepia strigosa W Microlepia rhomboidea WZS004 Microlepia communis YYH13433 Microlepia yunnanensis YYH13136 Microlepia kurzii YYH12098 Microlepia platyphylla Dennstaedtia flaccida Plunket 2905 Dennstaedtia flaccida Armstrong 580 Microlepia mollifolia YYH11625 Microlepia todayensis INA-BL68 Microlepia ridleyi KNBL211 Microlepia manilensis SG1718 Microlepia scaberula INA-BL18 Microlepia subtrichosticha XP618 Microlepia hancei YYH13485 Microlepia speluncae LUZ73 Microlepia crenata ZXL09873 Microlepia boluoensis WYD629 Microlepia speluncae YYH12379 Microlepia speluncae LUZ75 Microlepia speluncae LUZ71 Microlepia speluncae LUZ70 Microlepia subspeluncae ZXL7016 Microlepia speluncae LUZ74 Dennstaedtia smithii LUZ40 Microlepia marginata LUZ68 Microlepia marginata LUZ72 Microlepia sp LUZ52 Microlepia hookeriana YYH11610 Microlepia obtusiloba LUZ24 Microlepia trichocarpa YYH12042 Microlepia khasiyana ZXL7194 Microlepia krameri YYH11607 Microlepia ampla WZS003 Microlepia tenera SG1026 Dennstaedtia zeylanica LUZ129 Dennstaedtia zeylanica LUZ64 Dennstaedtia zeylanica LUZ43 Dennstaedtia zeylanica LUZ41 Dennstaedtia zeylanica LUZ56 Dennstaedtia punctilobula LUZ128 Dennstaedtia punctilobula LUZ126 Dennstaedtia punctilobula LUZ127 Dennstaedtia hirsuta SG159 Dennstaedtia appendiculata 5294 Coptidipteris wilfordii AB574779 Mucura globulifera LUZ92 Mucura bipinnata LUZ118 TAXON 72 (1) • February 2023: 20–46 Microlepia Dennstaedtioideae Sitobolium Mucura 0.07 Fig. 1. Continued. Monachosorum, which is sister to all other Dennstaedtiaceae (Ebihara & al., 2016; Shang & al., 2018; Schwartsburd & al., 2020). Characters of the subfamilies exhibit some homoplasy but remain useful for diagnosing the clades. With a few exceptions, Dennstaedtioideae are characterized by trilete spores and round sori protected either by a single abaxial indusium or by both abaxial and adaxial indusia (Figs. 2A,B, 3A). In the latter case, these tend to form a cup-shaped indusium widely referred to as the “Dennstaedtia type”. In contrast, Hypolepidoideae mostly have monolete spores, except for Pteridium (Fig. 3A). Elongate sori are only found in Hypolepidoideae, and most genera in this subfamily lack an abaxial indusium, but they are present in Pteridium and Paesia (Fig. 2A). Within the family, we find most of the currently recognized genera are reciprocally monophyletic; results that agree with other recent amplicon phylogenetic studies (Shang & al., 2018; Schwartsburd & al., 2020; Wang & al., 2021), and a phylogenetic analysis of complete plastomes (Lu & al., 2022). These are Blotiella, Histiopteris, Hiya, Hypolepis, 26 Monachosorum, Paesia, and Pteridium. Our finding that Dennstaedtia is polyphyletic is also in accord with previous studies (Wolf & al., 1994, Wolf, 1995; Schuettpelz & Pryer, 2007; Perrie & al., 2015; Shang & al., 2018; Schwartsburd & al., 2020; Wang & al., 2021); however, here our dense sampling of Dennstaedtia provides additional insight. Like previous studies, we recover a principally tropical clade including the types of Leptolepia, Patania, and Oenotrichia, and a clade from higher latitudes including the types of Coptidipteris and Sitobolium. Previous studies also recovered a clade of Microlepia, but unlike those studies, we find that the type of Dennstaedtia (D. flaccida) nests within it. Another difference from previous studies is that we recover a clade comprising the Neotropical species D. bipinnata and D. globulifera. These species had been previously discussed as morphologically aberrant compared to other Neotropical Dennstaedtia (Tryon, 1960; Navarrete & Øllgaard, 2000), but neither had previously been subject to phylogenetic analysis. Despite our findings of nested and paraphyletic taxa, we find that morphological traits have low homoplasy with the main Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Adaxial indusium Abaxial indusium Leaf buds absent Leaf buds present Unknown Epipetiolar buds absent Epipetiolar buds present Unknown Dennstaedtia ●● ●●●●●● ●●●●●●●● ●● Sitobolium ●●●●● ●● ● ● ●● ● ● ●● Microlepia ● ● ●● Mucura ●● ●● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● ●● ●● ● ● ●● ●● ●● Histiopteris ●● ●● ● ● ●● ●● ●●● Blotiella Monachosorum ●●● ●●●●●● ● ● ●● ● ●●● Pteridium Paesia Hiya Hypolepis Leaf buds Epipetiolar buds ●● ●●●●●● ●●●●●●●● ●● Sitobolium ●●●●● ●● ● ●● ●● ● ●● Microlepia ● ● ●● Mucura ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● Histiopteris ●●● ● ● ●● ●● ●●● ●●● Monachosorum ●● ● ● Blotiella ●●●● ● ● ●● ● ●●● Paesia Pteridium Hiya Hypolepis C B Dennstaedtia Dennstaedtia A ●● ●●●●●● ●●●●●●●● ●● Sitobolium ●●●●● ●● ● ●● ●● ● ●● Microlepia ● ● ●● ● Mucura ● ● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ●● ●● ● ●● ●● Histiopteris ●●● ●● ●● ●● ● ●●● ● Blotiella Monachosorum ●●●● ●●● ●●●●●●●●●●● Paesia Pteridium Hiya Hypolepis Dennstaedtia Adaxial indusium absent Adaxial indusium present Unknown Abaxial indusium absent Abaxial indusium present Unknown ●● ●●●●●● ●●●●●●●● ●● Sitobolium ●●●●● ●● ● ●● ●● ● ●● Microlepia ● ● ●● Mucura ●● ●● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●● Histiopteris ●●● ● ●● ● ●●● ●● Blotiella Monachosorum ●● ● ● ●●● ●●●●●●●●●●● Paesia Pteridium Hiya Hypolepis D Fig. 2. Character state maps for four traits. A, Abaxial indusium present (blue) vs. absent (yellow); B, Adaxial indusium present (blue) vs. absent (yellow); C, Epipetiolar buds present (blue) vs. absent (yellow); D, Leaf buds present (blue) vs. absent (yellow). White circles indicate taxa for which character state data is missing. Version of Record 27 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 Spore shape Sorus position A ●● ●●●●●● ●●●●●●●● ●●● ●● ●● ●● ● ● ●● Microlepia ●● ●● ● ● ●● Mucura ●● ● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● Histiopteris ●● ●● ●● ● ●●● ●● Monachosorum ●●●●●●●●●●●●●●●● Blotiella Paesia Hiya B Paesia Hiya Hypolepis Perispore morphology ●● ●●●●●● ●●●●●●●● ●●● ●● ●● ●● ● ● ●● ●● ●● Microlepia ● ● ●● Mucura ●● ●● ● ● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● Histiopteris ●● ●● ● ●● ● ●●● ●● Monachosorum Blotiella ●●●●●●●●●●●●●●●● Paesia Hiya Pteridium Hypolepis Echinae Baculae Ornamented verrucae Rodlets Tubercles Rugulae Unknown ● ● ● ● ● ● ● ● ● ●● ●● ● ● ●●● ●●● ●● ●● ●● ● ● ●● Microlepia ● ● ●● ● ●● Mucura ●● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● Histiopteris ●● ●● ●● ●● ● ●●● ● Blotiella Monachosorum ●●●●●●●●●●●●●●●● Sitobolium Dennstaedtia Dennstaedtia Pteridium Hypolepis Prominent ridges Prominent ridges and verrucae Prominent ridges, verrucae + irregular reticles Verrucae Verrucae and ridges Regular reticles Regular reticles + tubercles 32 48 28 56 26 52 38 Sitobolium C ●● ●●●●●● ●●●●●●●● ●●● ●● ●● ●● ● ●● ●● Microlepia ● ●● ● ● ●● Mucura ●● ●● ●● ●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● Histiopteris ●● ●● ●● ● ●●● ●● Monachosorum ●●●●●●●●●●●●●●●● Blotiella Sitobolium Pteridium Chromosome number Unknown 43 or 86 34 46 or 47 29 44 30 31 Marginal Abaxial Dennstaedtia Dennstaedtia Trilete Monolete Unknown Sitobolium Paesia D Hiya Pteridium Hypolepis Fig. 3. Character state maps for four traits. A, Spore shape: monolete (blue), trilete (yellow); B, Sorus position: abaxial (blue), marginal (yellow). C, Chromosome base number: 43 or 86 (light blue), 34 (blue), 46 or 47 (light green), 29 (green), 44 (pink), 30 (red), 31 (light orange), 32 (orange), 48 (light purple), 28 (purple), 56 (yellow), 26 (brown), 52 (magenta), 38 (aquamarine); D, Perpispore morphology: prominent ridges (light blue), prominent ridges and verrucae (blue), prominent ridges, verrucae + irregular reticles (light green), verrucae (orange), verrucae and ridges (green), regular reticles (pink), regular reticles + tubercles (red), echinae (purple), baculae (light yellow), ornamented verrucae (brown), rodlets (yellow), tubercles (aquamarine), rugulae (light brown). White circles indicate taxa for which character state data is missing. 28 Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Fig. 4. Examples of perispore morphology of spores in distal view. A, Verrucae and irregular reticles with prominent ridges covering the corners, Mucura globulifera (Yañez & Márquez 86, LP); B, Tubercles, Sitobolium wilfordii (Unknown coll. s.n., UVMVT192145, VT); C, Verrucae and prominent ridges to the spore sides, Sitobolium hirsutum (Rothfels & al. 5282, VT); D, Network of rodlets, Microlepia speluncae (Rojas 4878, MO); E, Regular reticle, Dennstaedtia glabrata (James & Sundue 1593, VT); F, Prominent ridges, Dennstaedtia distenta (Mickel 4163, LP); G, Verrucae and ridges, Dennstaedtia dissecta (Palacios 1296, LP). — Scale bars = 10 μm. Table 3. Morphological characters found useful to differentiate the genera of the Dennstaedtioideae. Dennstaedtia Microlepia Mucura Sitobolium Epipetiolar buds Present usually Absent Absent Present Petiole base shape Sulcate Sulcate Subterete Sulcate Rachis-costa wings Absent Absent Present Absent Leaf buds Present or absent Absent Absent Absent Rhizome branching Usually unbranched Branched (or unknown) Branched Regularly branched Sorus position Marginal usually Abaxial (rarely marginal) Marginal Marginal Adaxial indusium Present usually Absent (rarely present) Present Present Perispore ornamentation Verrucae / Ornamented verrucae / Ridges / Prominent ridges / Regular reticles Rodlets, evenly distributed or forming a network Verrucae / Prominent ridges and irregular reticles Tubercles / Verrucae and prominent ridges Version of Record 29 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 clades and are therefore useful for delineating genera. Characters most useful for defining genera within Dennstaedtioideae included the presence/absence of epipetiolar buds (Fig. 2C), the presence/absence of wings along the rachis-costa junction (suppl. Fig. S2D), the shape of the petiole base (suppl. Fig. S2C), and perispore ornamentation (Fig. 3D). These results for the utility of macromorphological characters corroborate the findings of Navarrete & Øllgaard (2000), who argued that groups of Neotropical Dennstaedtioideae could be distinguished, but that most taxonomic treatments had neglected the most useful characters, those of the rhizomes and petioles. Similarly, our findings corroborate the conclusions of Tryon & Tryon (1980), Tryon & Lugardon (1990), and Yañez & al. (2016b), who found perispore morphology to be highly diagnostic. In contrast, our results demonstrate that sorus position— the historically most heavily relied upon character in the classification of Dennstaedtioideae—is homoplastic, changing from abaxial to marginal (Fig. 3B), sometimes within traditional genera. We show that sorus position changes from marginal to abaxial in the ancestor of the Microlepia clade, and then back to marginal in both D. smithii and D. flaccida. This plasticity was anticipated by Bower (1928) while working on Hypolepis, who then concluded that sorus position should not be rigidly used when defining genera as was commonly done by 18th and 19th century botanists (Paris & Barrington, 1990). Our results corroborate that sorus position is labile within the Dennstaedtioideae and does not follow a pattern that corresponds to a useful circumscription of genera. Taken together, our results demonstrate that clades of Dennstaedtioideae are morphologically diagnosable, particularly using rhizome, petiole, and perispore characters, and that previous classifications overemphasized sorus position, leading to polyphyletic genera. Classification of Dennstaedtioideae. — Our finding that the type of Dennstaedtia (D. flaccida) is nested within Microlepia confirms taxonomic suspicions dating back over 150 years (Smith, 1842). Similar conclusions were drawn by Copeland (1947), Holttum (1968), Tryon (1960), and Tryon & Tryon (1980). This result combined with the polyphyly of Dennstaedtia and previous disregard for the ICBN rule of priority (e.g., in Tryon & Tryon, 1982) have led to an unfortunate nomenclatural situation, where the type of the largest Dennstaedtioideae genus (Dennstaedtia) is embedded within the second-largest genus (Microlepia). One solution to this taxonomic problem would be to maintain a single globally distributed Dennstaedtia of ca. 130 species comprising morphologically disparate clades. The name Dennstaedtia would have priority. This classification would be convenient for users accustomed to that name, particularly for North American workers, and would be relatively unaffected by the loss of Microlepia. However, such a broadly defined Dennstaedtia would also be unwieldy in size and would fail to reflect the morphological disparity or evolutionary distinctions in the group. We do not think that users would find a single-genus classification more useful. Instead, we prefer smaller genera because they help emphasize evolutionary, 30 TAXON 72 (1) • February 2023: 20–46 morphological and geographic differences among lineages (Schuettpelz & al., 2018). This approach is also in line with sentiments presented by Perrie & al. (2015), Schwartsburd & al. (2020), Weakley (2020), and Wang & al. (2021) each of whom discussed a classification comprising several genera as an option in light of the polyphyly of Dennstaedtia. Considering taxonomic solutions that recognize multiple genera within Dennstaedtioideae, there are several options. Our results lead us to propose a classification that recognizes four morphologically diagnosable and geographically coherent clades as genera: one that consists of the bulk of species traditionally recognized in Dennstaedtia (the oldest genus name available for this clade is Patania); one that includes D. globulifera and D. bipinnata; one that includes a set of northtemperate species including the types of Sitobolium and Coptidipteris; and one that includes the species traditionally recognized in Microlepia, but which also includes the type of Dennstaedtia. To avoid the large number of name changes that would be associated with transferring Microlepia species to Dennstaedtia and the bulk of Dennstaedtia to Patania, in parallel with this paper we have submitted a proposal to conserve Dennstaedtia with a new type (D. cicutaria; Triana-Moreno & al., 2022). Our classification thus recognizes these four clades as Dennstaedtia, Microlepia, Mucura (gen. nov.), and Sitobolium. Previous authors have further split Coptidipteris from Sitobolium, but we do not see value in recognizing this small genus. Coptidipteris is based upon Dennstaedtia wilfordii, a species that differs from other Dennstaedtioideae by its glabrous leaves. In our results, it is sister to D. appendiculata, a pubescent species with a very different leaf shape. These two species share a distinctive perispore morphology of broad folds, but otherwise don’t have any conspicuous shared characters we can point to. In order to maintain monophyletic genera, recognizing Coptidipteris would lead us to either combine D. appendiculata in Coptidipteris creating a morphologically heterogenous genus, or to recognize a yet additional genus, a monotypic Emodiopteris based on D. appendiculata. Neither of these options seem more useful than a single Sitobolium, which we find to be morphologically and geographically coherent. In support of our classification, we provide morphological and geographic synopses, constituent species, and the necessary new combinations. For these, we provide basionyms and other recent combinations. For additional synonymy see Moran (1995), Mickel & Smith (2004), Navarrete & Øllgaard (2000), Yan & al. (2013), Fraser-Jenkins & al. (2017), Schwartsburd & al. (2017), Brownsey & Perrie (2018), and Hassler (2019). Species are assigned to genera either by molecular phylogenetic evidence and/or morphology. For species placed by morphology alone, we particularly emphasize rhizome morphology, epipetiolar buds, and perispore characters, which our results demonstrate are robust indicators of phylogenetic position. Species lacking sufficient evidence are listed separately and without combinations beneath the clade to which we consider them most likely to belong. Finally, we list excluded species for taxa combined under a genus to which they no longer belong. Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae ■ TAXONOMIC Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae TREATMENT Key to the genera of Dennstaedtiaceae Sorus supplied by a single vein, marginal or abaxial……2 Sorus supplied by two or more veins, marginal…………8 Rhizome short-creeping or ascending, dictyostelic; petiole with two vascular bundles; sori exindusiate ....... .................................................... Monachosorum Rhizome long-creeping, solenostelic; petiole with one vascular bundle; sori indusiate or exindusiate ............ 3 Abaxial indusium absent or minute and vestigial; spores monolete............................................................ 4 Abaxial indusium present; spores trilete ................... 5 Fiddlehead of developing leaf apex protected by reduced basal pinnules; axes armed, the spines curved, apically black when mature .......................................... Hiya Fiddlehead of developing leaf apex not protected by reduced basal pinnules; axes armed or not, when present, the spines straight, green to stramineous ........Hypolepis Sori abaxial, submarginal (rarely marginal); indusia usually scarious; perispore morphology comprising of rodlets that are evenly distributed or forming a network……Microlepia Sori marginal; lower indusia similar in texture to the upper indusia; perispore morphology various, never rodlets .... 6 Epipetiolar buds absent; adaxial axes (rachis-costae) with raised wing, the wings decurrent onto the next order; petiole bases subterete, not clearly sulcate………Mucura Epipetiolar buds usually present; adaxial axes (rachiscostae) without raised wings; petiole adaxially sulcate, the groove confluent between orders ........................ 7 Rhizome branched regularly, ca. 0.5 cm diam.; leaves less than 1 m long, lacking leaf buds; glabrous or pubescent, hairs catenate, spreading, the apex often with a capitate terminal cell; plants with a north-temperate distribution...................................................... Sitobolium Rhizome usually unbranched, thick, ca. 0.5 to 4 cm diam.; leaves often 1–2 m long, sometimes up to ca. 12 m, often with proliferous buds, hairs various, but lacking capitate terminal cells; plants primarily tropical in distribution....................................................Dennstaedtia Veins anastomosing; pinnae opposite or subopposite ....9 Veins free; pinnae all or mostly alternate ................ 10 Laminae glabrous or somewhat scaly, often glaucous; rhizomes scaly; unfurling leaf protected by reduced basal pinnules............................................... Histiopteris Laminae pubescent, green, not glaucous; rhizomes pubescent; unfurling leaf not protected by reduced basal pinnules................................................... Blotiella Rachises flexuous; spores monolete .................. Paesia Rachises straight; spores trilete ................... Pteridium = Scyphofilix Thouars, Gen. Nov. Madagasc.: 1. 1806, nom. rej. prop. – Type (designated by Farwell in Amer. Midl. Naturalist 12: 237. 1931): Polypodium speluncae L. (≡ Microlepia speluncae (L.) T.Moore). Description. – Plants terrestrial or rarely rupestral; rhizomes short to long creeping, with trichomes or bristles, branching (or unknown); petioles grooved, lacking epipetiolar buds, rarely aculeate; leaves large, erect, decompound, usually distant, or sometimes closely spaced, lamina 1–4-pinnate with strigose, acicular hairs, axes inalate; veins free, with slender apices; sori generally abaxial and protected by an abaxial indusium, indusium half cup-shaped directed outward, or rarely sori cup-shaped, protected by adaxial and abaxial indusia, and directed downward; spores trilete with perispore ornamentation of rodlets. (Fig. 5) Synopsis. – Microlepia is a monophyletic group of about 60 species resolved as sister to Sitobolium. Microlepia can be diagnosed by its distinctive perispore ornamentation of rodlets (Fig. 4D), and by petioles that lack epipetiolar buds (Mickel, 1973). The sori are generally abaxial and protected by an abaxial indusium, but marginal sori with both abaxial and adaxial indusia evolved at least twice as demonstrated by our results and those of Wang & al. (2021). Although nearly all Dennstaedtiaceae bear catenate hairs, those of Microlepia are often distinctively strigose and acicular, and never glandular. Microlepia is essentially an Old-World genus, distributed primarily in tropical and east Asia but extending to Africa and Madagascar, Australia, the western Pacific, and Hawaii. One species, M. speluncae, is widespread in the Neotropics where it appears to be adventive (Tryon & Tryon, 1982). History of use. – Microlepia has been in use since it was described by Presl (1836). The largely overlooked name Scyphofilix Thouars was published 30 years before Microlepia and would have priority (Farwell, 1931), had Schwartsburd’s (2017) proposal to conserve Microlepia against it not been approved by the General Committee. Similarly, our proposal to conserve Dennstaedtia with a new type aims to maintain nomenclatural stability of Microlepia. Taxonomic treatments. – Wang & al. (2017) reported this as one of the most taxonomically challenging clades. Species estimates vary widely, from 33 (Moore, 2010) to 60 (PPG-I, 2016), or 100 (Yuan & al., 2012). Important regional treatments include Cambodia (Sun, 2014), China (Yan & al., 2013), India (Fraser-Jenkins & al., 2017), Japan (Nakaike, 1975), Nepal (Fraser-Jenkins & al., 2015), Taiwan (Knapp, 2011; TPG, 2019, 2021), and Thailand (Tagawa & Iwatsuki, 1979). We include 44 species and 4 named hybrids here based upon molecular phylogenetic and morphological evidence. We list an additional 25 species and 1 named hybrid that remain insufficiently known to us at this time. I. Microlepia C.Presl, Tent. Pterid.: 124, t. 4, fig. 21–23. 1836, nom. cons. prop. – Type (designated by Smith, Hist. Fil.: 260. 1875): Microlepia polypodioides (Sw.) C.Presl. (≡ Dicksonia polypodioides Sw.) (= Microlepia speluncae (L.) T.Moore ≡ Polypodium speluncae L.). Constituent species Microlepia ×adulterina W.H.Wagner in Contr. Univ. Michigan Herb. 22: 153. 1999. Microlepia ×austroizuensis N.Nakato & Seriz. in J. Jap. Bot. 56: 164. 1981. 1. 1. 2. 2. 3. 3. 4. 4. 5. 5. 6. 6. 7. 7. 8. 8. 9. 9. 10. 10. Version of Record 31 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 Microlepia ×bipinnata (Makino) Y.Shimura in J. Phytogeogr. Taxon. 27: 41. 1979 ≡ Microlepia marginata var. bipinnata Makino in J. Jap. Bot. 3: 47. 1926. Microlepia boluoensis Y.Yuan & L.Fu in Nordic J. Bot. 30(2): 170. 2012. Microlepia calvescens (Wall. ex Hook.) C.Presl in Abh. Königl. Böhm. Ges. Wiss., ser. 5, 6: 455. 1851 ≡ Davallia calvescens Wall. ex Hook., Sp. Fil. 1: 172. 1845. Microlepia caudigera T.Moore, Index Fil.: 303. 1861. Microlepia chrysocarpa Ching in Sinensia 1(1): 3. 1929. Microlepia crassa Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 360. 1959. Microlepia dubia (Roxb.) C.V.Morton in Contr. U.S. Natl. Herb. 38: 342. 1974 ≡ Polypodium dubium Roxb. in Calcutta J. Nat. Hist. 4(16): 496. 1844. Microlepia firma Mett. ex Kuhn in Linnaea 36: 146. 1869. Microlepia flaccida (G.Forst) Fée, Mém. Foug. 5 (Gen. Filic.): 327. 1852 ≡ Trichomanes flaccidum G.Forst., Fl. Ins. Austr.: 85. 1786 ≡ Dennstaedtia flaccida (G.Forst.) Bernh. in J. Bot. (Schrader) 1800(2): 124, t. 1, fig. 3. 1801. TAXON 72 (1) • February 2023: 20–46 Microlepia hallbergii (J.F.R.Almeida) C.Chr., Index Filic., Suppl. Tert.: 127. 1934 ≡ Davallia hallbergii J.F.R.Almedia in J. Indian Bot. Soc. 5: 19, t. [unum.]. 1926. Microlepia hookeriana (Wall. ex Hook.) C.Presl in Abh. Königl. Böhm. Ges. Wiss., ser. 5, 6: 455. 1851 ≡ Davallia hookeriana Wall. ex Hook., Sp. Fil. 1: 172, t. 47B. 1845. Microlepia intramarginalis (Tagawa) Seriz. in J. Jap. Bot. 47: 48. 1972 ≡ Microlepia strigosa var. intramarginalis Tagawa in Act. Phytotax. Geobot. 10(3): 202. 1941. Microlepia izu-peninsulae Sa.Kurata in J. Geobot. 11: 4. 1962. Microlepia ×kandelii Fraser-Jenk., Annot. Checkl. Ind. Pterid. 1: 175. 2016. Microlepia kerrii S.J.Moore in Phytotaxa 324(2): 193, fig. 1. 2017. Microlepia krameri C.M.Kuo in Taiwania 30: 59. 1985. Microlepia kurzii (C.B.Clarke) Bedd., Handb. Ferns Brit. India: 66. 1883 ≡ Davallia kurzii C.B.Clarke in Trans. Linn. Soc. London, Bot. 1(7): 446. 1880. Microlepia majuscula (E.J.Lowe) T.Moore, Index Fil.: 297. 1861 ≡ Davallia majuscula E.J.Lowe, Ferns 8: 93, t. 33. 1859. Fig. 5. Characters of Microlepia. A, Lower leaf surface; B, Detail of abaxial sori; C, Upper leaf surface; D, Detail of pinna costae. — All from Microlepia strigosa, Philippines, Sundue 3163 (CMUH, TAIF, VT). All photos by M. Sundue. 32 Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Microlepia manilensis (Goldm.) C.Chr., Index Filic.: 427. 1906 ≡ Davallia manilensis C.Presl ex Goldm. in Nov. Actorum Acad. Caes. Leop.-Carol. Nat. Cur. 19(Suppl. 1): 465. 1843. Microlepia marginata (Panz.) C.Chr., Index Filic. 4: 212. 1905 ≡ Polypodium marginatum Panz. in Christmann & Panzer, Vollst. Pflanzensyst. 13(1): 199. 1786. Microlepia matthewii Christ in Notul. Syst. (Paris) 1(2): 54. 1909. Microlepia mollifolia Tagawa in Acta Phytotax. Geobot. 5(3): 189. 1936. Microlepia nepalensis (Spreng.) Fraser-Jenk., Kandel & Pariyar, Ferns Fern-Allies Nepal 1: 172. 2015 ≡ Davallia nepalensis Spreng., Syst. Veg. 4(1): 121. 1827. Microlepia nipponica (Miq.) C.Chr., Index Filic.: 427. 1906 ≡ Davallia nipponica Miq. in Ann. Mus. Bot. LugdunoBatavi 3: 180. 1867. Microlepia obtusiloba Hayata in Bot. Mag. (Tokyo) 23: 27. 1909. Microlepia platyphylla (D.Don) J.Sm. in London J. Bot. 1: 427. 1842 ≡ Davallia platyphylla D.Don, Prodr. Fl. Nepal.: 10. 1825. Microlepia proxima (Blume) C.Presl in Abh. Königl. Böhm. Ges. Wiss., ser. 5, 6: 455. 1851 ≡ Davallia proxima Blume, Enum. Pl. Javae 2: 238. 1828. Microlepia pseudohirta Rosenst. in Repert. Spec. Nov. Regni Veg. 9: 425. 1911. Microlepia pseudostrigosa Makino in Bot. Mag. (Tokyo) 28: 337. 1914. Microlepia rhomboidea (Wall. ex Kunze) Prantl in Arbeiten Königl. Bot. Gart. Breslau 1: 31. 1892 ≡ Davallia rhomboidea Wall. ex Kunze in Bot. Zeitung (Berlin) 8(8): 158. 1850. Microlepia ridleyi Copel. in Philipp. J. Sci., C, 11: 39. 1916. Microlepia scaberula Mett. ex Kuhn in Linnaea 36(2): 148. 1869. Microlepia setosa (Sm.) Alston in Philipp. J. Sci. 50: 177, t. 1, fig. 3. 1933 ≡ Davallia setosa Sm. in Rees, Cycl. 10: Davallia no. 18. 1808. Microlepia shubhangiae S.Sharma & Kholia in Webbia 73(2): 192. 2018. Microlepia smithii (Hook.) Y.H.Yan in Taxonomy 1(3): 256 ≡ Dicksonia smithii Hook., Sp. Fil. 1: 80, t. 28D. 1844 ≡ Dennstaedtia smithii (Hook.) T.Moore, Index Fil.: 308. 1861. Microlepia speluncae (L.) T.Moore, Index Fil.: 93 1857 ≡ Polypodium speluncae L., Sp. Pl.: 1093. 1753. Microlepia strigosa (Thunb.) C.Presl in Abh. Königl. Böhm. Ges. Wiss., ser. 5, 6: 455. 1851 ≡ Trichomanes strigosum Thunb. in Murray, Syst. Veg., ed. 14: 941. 1784 ≡ Dennstaedtia strigosa (Thunb.) J.Sm., Hist. Fil.: 265. 1875. Microlepia substrigosa Tagawa in Acta Phytotax. Geobot. 5(3): 189. 1936. Microlepia subtrichosticha Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 368. 1959. Microlepia tenera Christ in Notul. Syst. (Paris) 1(2): 53. 1909. Microlepia thailandensis S.J.Moore in Phytotaxa 324(2): 193, fig. 1. 2017. Microlepia todayensis Christ in Philipp. J. Sci., C, 3: 272. 1908. Microlepia trapeziformis (Roxb. ex Griff.) Kuhn in Festschr. 50 Jähr. Jub. Königstädt. Realschule Berlin: 347. 1882 ≡ Davallia trapeziformis Roxb. ex Griff. in Calcutta J. Nat. Hist. 4: 516. 1844. Microlepia trichocarpa Hayata, Icon. Pl. Formos. 4: 210, fig. 142. 1914. Microlepia trichosora Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 358. 1959. Microlepia yakusimensis Tagawa in Acta Phytotax. Geobot. 11(3): 238. 1942. Insufficiently known taxa Microlepia communis Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 367. 1959 [recognized by Wang & al. (2021), considered syn. of Microlepia rhomboidea by Hassler (2019)]. Microlepia concinna R.M.Tryon & A.F.Tryon in Rhodora 83: 135. 1981 ≡ [nom. nov. for] Dennstaedtia concinna Rosenst. in Hedwigia 56: 349. 1915, non D. concinna C.Presl in Moore, Index Fil.: xcvii. 1857 [insufficiently known, possible affinity with Dennstaedtia smithii]. Microlepia crenata Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 368. 1959 [recognized by Wang & al. (2021), considered a syn. of Microlepia todayensis by Hassler (2019)]. Microlepia fadenii Pic.Serm. in Webbia 27: 406. 1973 [possible syn. of Microlepia hallbergii]. Microlepia fujianensis Ching in Wuyi Sci. J. 1(1): 1. 1981 [doubtful, known only from the type]. Microlepia ×hirtiindusiata P.S.Wang in Wang & Wang, Pterid. Fl. Guizhou: 441. 2001 [presumed to be a sterile hybrid, more study is needed]. Microlepia hancei Prantl in Arbeiten Königl. Bot. Gart. Breslau 1: 35. 1892 [recognized by Wang & al. (2021), considered a syn. of M. nepalensis by Hassler (2019)]. Microlepia herbacea Ching & C.Chr. ex Tardieu & C.Chr. in Notul. Syst. (Paris) 6: 6, t. 1(1–2). 1937 [recognized by Wang & al. (2021), considered a syn. of M. mathewii by Hassler (2019)]. Microlepia khasiyana (Hook.) C.Presl in Abh. Königl. Böhm. Ges. Wiss., ser. 5, 6: 455. 1851 ≡ Davallia khasiyana Hook., Sp. Fil. 1: 173, t. 47A. 1856 [recognized by Wang & al. (2021), considered a syn. of M. strigosa by Fraser-Jenkins (2008)]. Microlepia lofoushanensis Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 364. 1959 [recognized by Wang & al. (2021), considered a syn. of M. rhomboidea by Hassler (2019)]. Dennstaedtia macgregorii Copel. in Philipp. J. Sci. 81: 4, t. 2. 1952 [insufficiently known by us, Copeland (1958) suggested an affinity with D. smithii, here treated in Microlepia]. Version of Record 33 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 Microlepia melanorhachis Rosenst. in Repert. Spec. Nov. Regni Veg. 12: 526. 1913 [insufficiently known]. Microlepia membranacea B.S.Wang in Acta Sci. Nat. Univ. Sunyatseni 1961(2): 46. 1961 [insufficiently known]. Microlepia nudisora C.Chr. in Bull. Bernice P. Bishop Mus. 177: 34. 1943 [insufficiently known]. Microlepia pilosiuscula (Sm.) C.V.Morton in Contr. U.S. Natl. Herb. 38: 313. 1974 ≡ Davallia pilosiuscula Sm. in Rees, Cycl. 11: Davallia no. 10. 1808 [possibly an earlier name for D. trapeziformis (Fraser-Jenkins, 2008)]. Microlepia protracta Copel. in Philipp. J. Sci. 81: 5. 1952 [insufficiently known]. Microlepia puberula Alderw. in Bull. Jard. Bot. Buitenzorg, sér. 2, 11: 17. 1913 [possible syn. of D. majuscula (Fraser-Jenkins & al. (2017)]. Microlepia rheophila K.Iwats. & M.Kato in Acta Phytotax. Geobot. 31(1–3): 35. 1980 [insufficiently known]. Microlepia sinostrigosa Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 360. 1959 [considered a syn. of M. pseudostrigosa Makino by Knapp (2011)]. Microlepia subspeluncae Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 244. 1959 [recognized by Wang & al. (2021), considered a syn. of M. speluncae by Hassler (2019), forming a clade with M. speluncae in our results]. Microlepia szechuanica Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 363. 1959 [recognized by Wang & al. (2021), considered a syn. of M. strigosa by Hassler (2019)]. Microlepia vitiensis Brownlie in Beih. Nova Hedwigia 55: 118. 1977 [insufficiently known]. Microlepia yaoshanica Ching in Bull. Fan Mem. Inst. Biol., n.s., 1: 299. 1949 [recognized by Wang & al. (2021), considered a syn. of M. trapeziformis by Hassler (2019), and is sister to that taxon in our phylogenetic results]. Microlepia yunnanensis Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 366. 1959 [recognized by Wang & al. (2021), considered a syn. of M. trichocarpa by Hassler (2019)]. Excluded names Microlepia fluminensis Fée, Crypt. Vasc. Brésil 1: 151, t. 51, fig. 1. 1869 ≡ Dennstaedtia fluminensis (Fée) C.Chr., Index Filic.: 217. 1905 (= Dennstaedtia cornuta (Kaulf.) Mett.). Microlepia lindsayiformis Fée, Crypt. Vasc. Brésil 1: 152, t. 51, fig. 2. 1869 (‘lindsayaeformis’) ≡ Dennstaedtia lindsayiformis (Fée) C.Chr., Index Filic.: 217. 1905 (= Dennstaedtia cornuta (Kaulf.) Mett.). II. Dennstaedtia Bernh. in J. Bot. (Schrader) 1800(2): 124. 1801, nom. cons. prop. – Type: Dennstaeaedtia dissecta (Sw.) T.Moore (Dicksonia dissecta Sw.), typ. cons. prop. = Patania C.Presl, Tent. Pterid: 137, t. 5, fig. 12–14. 1836 – Type (designated by Christensen, Index Filic.: xxix. 1906): Patania obtusifolia (Willd.) C.Presl (≡ Dicksonia obtusifolia Willd.). 34 TAXON 72 (1) • February 2023: 20–46 = Leptolepia Prantl in Arbeiten Königl. Bot. Gart. Breslau 1: 23. 1892 – Type (designated by Christensen, Index Filic.: xxviii. 1960): Leptolepia novae-zelandiae (Colenso) Mett. ex Diels. (≡ Davallia novae-zelandiae Colenso). = Costaricia Christ in Bull. Soc. Bot. Genève, ser. 2, 1(5): 229. 1909 – Type: Costaricia werckleana Christ. = Oenotrichia Copel. in Univ. Calif. Publ. Bot. 16: 82. 1929 – Type: Oenotrichia maxima (E.Fourn.) Copel. (≡ Leucostegia maxima E.Fourn.). = Paradennstaedtia Tagawa in J. Jap. Bot. 27(6): 213. 1952 – Type: Paradennstaedtia glabrata (Ces.) Tagawa (≡ Dicksonia glabrata Ces.). Description. – Plants terrestrial or rupestral (or rarely epiphytic); rhizomes short to long creeping, unbranched, with catenate hairs; petioles grooved, adaxially sulcate, usually bearing epipetiolar buds, rarely aculeate; leaves large, erect, decompound, 2–4-pinnate, often with proliferous buds, axes inalate; veins free, with enlarged or slender apices; sori usually marginal, usually provided with abaxial and adaxial indusia fused into purse- or cup-shaped involucre; spores trilete, perispore regular reticles, ridges and verrucate. (Fig. 6) Synopsis. – As defined here, Dennstaedtia is generally a pantropical genus but absent from continental Africa. It includes ca. 55 species sister to all other Dennstaedtioideae. Dennstaedtia is recognized by having rhizomes that are usually unbranched, petioles bearing epipetiolar buds, and by often bearing proliferous buds upon the leaves. The leaves of most species are large, and some species such as D. scandens are indeterminate and scandent over other vegetation. The spores of Neotropical species exhibit verrucae and ridges (Fig. 4F,G), whereas regular reticles are found among Paleotropical species (Fig. 4E). Neotropical species of Dennstaedtia are fairly morphologically homogenous, whereas Paleotropical species exhibit more trait variation, at least in our analysis. This is particularly true of species formerly treated in the small genera Leptolepia (Dennstaedtia novae-zelandiae) and Oenotrichia (Dennstaedtia maxima) which differ by branched rhizomes, the lack of epipetiolar buds, and abaxial sori along with the constituent loss of the adaxial indusia. Dennstaedtia maxima further differs by rhizomes provided with scales instead of hairs and by having monolete (rarely trilete) spores. These taxa are part of an unresolved polytomy. If they prove to be sister to the remainder of Dennstaedtia, some users may prefer to recognize them as small genera. The early Eocene Dennstaedtia christophelii Pigg & al. (2021) has been placed in this clade based upon its similarity to D. mathewsii (Hook.) C.Chr. and D. producta Mett. This age sits between two recent clade age estimates; Testo & Sundue (2016) estimated the crown group of Dennstaedtia to have diverged during the late Eocene, and Schwartsburd & al. (2020) estimated it to diverge during the mid-Miocene. History of use. – This circumscription retains the familiar circumscription of Dennstaedtia minus the two species of Mucura gen. nov., the two species moved to Microlepia, and the temperate clade here recognized as Sitobolium. The oldest available name for this clade is Patania Presl (1836), but our Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Fig. 6. Characters of Dennstaedtia. A, Upper Leaf surface with leaf buds present in pinna axils; B, Upper leaf surface and grooved rachis-costa axes without raised wings; C, Lower leaf surface and marginal sori; D, Creeping unbranched rhizome; E, Subterete petioles with prominent epipetiolar buds. — All photos by M. Sundue except E by P.H. Hovenkamp. Version of Record 35 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 proposal (Triana-Moreno & al., 2022) to conserve Dennstaedtia with D. dissecta as the type would permit its continued use and avoid further name changes. The New Zealand endemic D. novae-zelandiae was previously recognized as the monotypic genus Leptolepia. Dennstaedtia maxima, endemic to New Caledonia, was previously recognized as Oenotrichia. Taxonomic treatments. – The Neotropical species of Ecuador were revised by Navarrete & Øllgaard (2000), who pioneered the emphasis of rhizome characters. Schwartsburd & al. (2017) treated the Bolivian species, and Mexican and Mesoamerican species were treated by Mickel & Smith (2004) and Moran (1995), respectively. Brownsey & Perrie (2018) treated the species from New Zealand, and those from the Western Pacific were treated by Nakamura (2008). Copeland (1958) recognized several narrowly distributed species in his treatment of Philippine ferns that presumably belong here, but which are insufficiently known by us. We include 37 constituent species of Dennstaedtia based upon molecular phylogenetic and morphological evidence, and we make necessary combinations for two of them. We list an additional 15 that remain insufficiently known to us at this time. New combinations and constituent species Dennstaedtia ampla (Baker) Bedd. in J. Bot. 31: 227. 1893 ≡ Dicksonia ampla Baker in J. Linn. Soc. 22: 223. 1886. Dennstaedtia antillensis (Jenman) C.Chr., Index Filic.: 216. 1905 ≡ Dicksonia antillensis Jenman in J. Bot. 24: 267. 1886. Dennstaedtia arborescens (Willd.) E.Ekman ex Maxon in Proc. Biol. Soc. Wash. 43: 88. 1930 ≡ Davallia arborescens Willd., Sp. Pl. 5: 470. 1810. Dennstaedtia arcuata Maxon in Amer. Fern J. 35(1): 22. 1945. Dennstaedtia articulata Copel. in Leafl. Philipp. Bot. 2: 396. 1908. Dennstaedtia auriculata Navarr. & B.Øllg. in Nordic J. Bot. 20(3): 337, fig. 5a–d. 2000. Dennstaedtia canaliculata Alderw. in Bull. Jard. Bot. Buitenzorg, ser. 2, 16: 6. 1914. Dennstaedtia cicutaria (Sw.) T.Moore, Index. Fil.: 97. 1857 ≡ Dicksonia cicutaria Sw. in J. Bot. (Schrader) 1800(2): 91. 1801. Dennstaedtia cornuta (Kaulf.) Mett. in Ann. Sci. Nat., Bot., sér. 5, 2: 260. 1864 ≡ Dicksonia cornuta Kaulf., Enum. Filic.: 227. 1824. Dennstaedtia coronata (Sodiro) C.Chr., Index Filic.: 216. 1905 ≡ Dicksonia adiantoides var. coronata Sodiro, Recens. Crypt. Vasc. Quit.: 23. 1883. Dennstaedtia davallioides (R.Br.) T.Moore, Index Fil.: 305. 1861 ≡ Dicksonia davallioides R.Br., Prodr.: 158. 1810. Dennstaedtia dissecta (Sw.) T.Moore, Index Fil.: 305. 1861 ≡ Dicksonia dissecta Sw. in J. Bot. (Schrader) 1800(2): 91. 1801. Dennstaedtia distenta (Kunze) T.Moore, Index Fil.: 306. 1861 ≡ Dicksonia distenta Kunze, Analecta Pteridogr.: 39. 1837. 36 TAXON 72 (1) • February 2023: 20–46 Dennstaedtia elmeri Copel., Leafl. Philipp. Bot. 1: 233. 1907. Dennstaedtia glabrata (Ces.) C.Chr., Index Filic.: 217. 1905 ≡ Dicksonia glabrata Ces. in Rendiconto Accad. Sci. Fis & Mat. 16: 24, 28. 1877. Dennstaedtia glauca (Cav.) C.Chr. ex Looser in Revista Chilena Hist. Geogr. 69: 184. 1932 ≡ Davallia glauca Cav., Descr. Pl.: 278. 1802. Dennstaedtia hooveri Christ in Philipp. J. Sci., C, 2: 169. 1907. Dennstaedtia kalbreyeri Maxon in Proc. Biol. Soc. Wash. 51: 40. 1938 ≡ Dicksonia pubescens Baker in J. Bot. 19: 203. 1881, nom. illeg, non Schkuhr 1809 ≡ Dennstaedtia pubescens C.Chr., Index Filic.: 218. 1905, nom. illeg. Dennstaedtia macrosora Navarr. & B.Øllg. in Nordic J. Bot. 20(3): 340, fig. 6N–O. 2000. Dennstaedtia magnifica Copel. in Univ. Calif. Publ. Bot. 18: 218. 1942. Dennstaedtia maxima (E.Fourn.) L.A.Triana & Sundue, comb. nov. ≡ Leucostegia maxima E.Fourn. in Ann. Sci. Nat., Bot., sér. 5, 18: 334. 1873 ≡ Oenotrichia maxima (E.Fourn.) Copel. in Univ. Calif. Publ. Bot. 16: 82. 1929. Dennstaedtia mathewsii (Hook.) C.Chr., Index. Filic.: 218. 1905 ≡ Deparia mathewsii Hook., Sp. Fil. 1: 85, t. 30B. 1844. Dennstaedtia novae-zelandiae (Colenso) Keyserl., Polyp. Herb. Bunge.: 22. 1873 ≡ Davallia novae-zelandiae Colenso in Tasmanian J. Nat. Sci. 2: 182. 1842 ≡ Microlepia novae-zelandiae (Colenso) J.Sm., Cat. Ferns Kew: 67. 1856 ≡ Leptolepia novae-zelandiae (Colenso) Mett. ex Diels in Engler & Prantl, Nat. Pflanzenfam. 1: 212, fig. 11a, b. 1899. Dennstaedtia novoguineensis (Rosenst.) Alston in J. Bot. 77: 289. 1939 ≡ Dennstaedtia smithii var. novoguineensis Rosenst. in Repert. Spec. Nov. Regni Veg. 10: 323. 1912. Dennstaedtia obtusifolia (Willd.) T.Moore, Index Fil.: 306. 1861 ≡ Dicksonia obtusifolia Willd., Sp. Pl. 5(1): 483. 1810. Dennstaedtia paucirrhiza Navarr. & B.Øllg. in Nordic J. Bot. 20(3): 333, fig. 3a–e. 2000. Dennstaedtia producta Mett. in Ann. Sci. Nat., Bot., sér. 5, 2: 260. 1864. Dennstaedtia resinifera (Blume) Mett. ex Kuhn in Ann. Mus. Bot. Lugduno-Batavi 4: 290. 1869 ≡ Cheilanthes resinifera Blume, Enum. Pl. Javae: 138. 1828. Dennstaedtia samoensis (Brack.) T.Moore, Index Fil.: 307. 1857 ≡ Sitolobium samoense Brack., U.S. Expl. Exped., Filic.: 274, t. 38, fig. 1. 1854. Dennstaedtia scandens (Blume) T.Moore, Index Fil.: 307. 1861 ≡ Dicksonia scandens Blume, Enum. Pl. Javae: 240. 1828. Dennstaedtia spinosa Mickel in Amer. Fern J. 58(1): 90. 1968. Dennstaedtia sprucei T.Moore, Index Fil.: 308. 1861. Dennstaedtia tripinnatifida Copel. in Philipp. J. Sci. 60: 109, t. 16. 1936. Dennstaedtia tryoniana Navarr. & B.Øllg. in Nordic J. Bot. 20(3): 334, fig. 2a–j. 2000. Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Dennstaedtia vagans (Baker) Diels in Engler & Prantl, Nat. Pflanzenfam. 1(4): 218. 1899 ≡ Dicksonia vagans Baker in J. Bot. 162. 1871. Dennstaedtia werckleana (Christ) Navarr. & B.Øllg. in Nordic J. Bot. 20(3): 344, fig. 8h–j. 2000 ≡ Costaricia werckleana Christ in Bull. Soc. Bot. Genéve 1(5): 229. 1909. Dennstaedtia wercklei (Christ) R.M.Tryon in Contr. Gray Herb. 187: 50. 1960 ≡ Saccoloma wercklei Christ in Bull. Herb. Boiss., sér. 2, 4(11): 1100. 1904. Insufficiently known species Dennstaedtia anthriscifolia (Bory) T.Moore, Index Fil: 303. 1861 ≡ Lonchitis anthriscifolia Bory in Willd., Sp. Pl. 5: 461. 1810 [treated in Dennstaedtia by Tardieu-Blot (1958), who described the spores as minutely spiny, an uncommon character state for the clade]. Dennstaedtia dennstaedtioides (Copel.) Copel. in Philipp. J. Sci., C, 2: 126. 1907 ≡ Microlepia dennstaedtioides Copel. in Philipp. J. Sci. 1, Suppl. 2: 148, fig. 4. 1906 [insufficiently known]. Dennstaedtia fusca Copel. in Philipp. J. Sci. 81: 4, t. 3. 1952 [insufficiently known]. Oenotrichia macgillivrayi (E.Fourn.) Copel. in Univ. Calif. Publ. Bot. 16: 82. 1929 ≡ Leucostegia maxima E.Fourn. in Ann. Sci. Nat., Bot., ser. 5, 18: 344. 1873 [insufficiently known]. Dennstaedtia madagascariensis (Kunze) Tardieu in Humbert, Fl. Madag. Fam. 5(1): 11. 1958 ≡ Dicksonia madagascariensis Kunze, Analecta Pteridogr.: 38. 1837 [the long-creeping rhizomes appear to lack epipetiolar buds]. Dennstaedtia merrillii Copel. in Philipp. J. Sci., C, 2: 126. 1907 [insufficiently known]. Dennstaedtia parksii Copel. ex Morton in Bull. Bernice P. Bishop Mus. 220: 28, fig. 4. 1959 [insufficiently known]. Dennstaedtia penicillifera Alderw. in Bull. Jard. Bot. Buitenzorg, ser. 2, 28: 17, t. 1. 1918 [insufficiently known]. Dennstaedtia philippinensis Copel. in Leafl. Philipp. Bot. 9: 3107. 1920 [insufficiently known]. Dennstaedtia remota (Christ) Diels in Engler & Prantl, Nat. Pflanzenfam. 1(4): 218. 1899 ≡ Dicksonia remota Christ in Verh. Naturf. Ges. Basel 11: 423. 1896 [insufficiently known]. Dennstaedtia rufidula C.Chr. in Gard. Bull. Straits Settlem. 7: 226, t. 51. 1934 [insufficiently known]. Dennstaedtia shawii Copel. in Philipp. J. Sci. 30: 326. 1926 [insufficiently known]. Dennstaedtia sumatrana Alderw. in Bull. Dép. Agric. Indes Néerl. 18: 6. 1908 [insufficiently known]. Dennstaedtia terminalis Alderw. in Bull. Jard. Bot. Buitenzorg, ser. 2, 16: 6, t. 4. 1914 [insufficiently known, the apparently long-creeping rhizome is aberrant for this clade]. Dennstaedtia williamsii Copel. in Philipp. J. Sci. 1, Suppl. 2: 148. 1906 [insufficiently known]. Excluded names Dennstaedtia appendiculata (Wall. ex Hook.) J.Sm., Hist. Fil.: 265. 1875 ≡ Dicksonia appendiculatum Wall. ex Hook., Sp. Fil. 1: 79, t. 27C. 1844 ≡ Sitobolium appendiculatum (Wall. ex Hook.) L.A.Triana & Sundue. Dennstaedtia elwesii (Baker) Bedd., Handb. Ferns Brit. India: 26. 1883 ≡ Dicksonia elwesii Baker in Hooker & Baker, Syn. Fil., ed. 2: 54. 1874 [= Sitobolium appendiculatum (Wall. ex Hook.) L.A.Triana & Sundue]. Dennstaedtia scabra (Wall. ex Hook.) T.Moore, Index Fil.: 307. 1861 ≡ Dicksonia scabra Wall. ex Hook, Sp. Fil. 1: 80, t. 28B. 1844 [= Sitobolium zeylanicum (Sw.) L.A. Triana & Sundue]. III. Sitobolium Desv. in Mém. Soc. Linn. Paris 6: 262. 1827 [Sitolobium J.Sm. in J. Bot. (Hooker) 3: 418. 1841, orth. var., Litolobium Newman in Phytologist 5: 236. 1854, orth. var.] – Type: Sitobolium punctilobulum (Michx.) Desv. (≡ Nephrodium punctilobulum Michx.). = Adectum Link, Fil. Spec.: 42. 1841 – Type: Adectum pilosiusculum (Willd.) Link (≡ Dicksonia pilosiuscula Willd.). = Coptidipteris Nakai & Momose in Cytologia, Vol. Fuji Jub. 1: 365. 1937 [Coptodipteris, orth. var.] – Type: Coptidipteris wilfordii (T.Moore) Nakai & Momose (≡ Microlepia wilfordii T.Moore). = Fuziifilix Nakai & Momose in Cytologia, Vol. Fuji Jub. 1: 365. 1937 – Type: Fuziifilix pilosella (Hook.) Nakai & Momose (≡ Davallia pilosella Hook.). = Emodiopteris Ching & S.K.Wu in Acta Phytotax. Sin. 16(4): 21. 1978 – Type: Emodiopteris appendiculata (Wall. ex Hook.) Ching & S.K.Wu (≡ Dicksonia appendiculata Wall. ex Hook.). Description. – Plants terrestrial or rupestral; rhizomes short to long creeping, generally branched, with catenate hairs; petioles grooved, adaxially sulcate, bearing epipetiolar buds, unarmed; leaves small to moderately sized, generally less than 1 m long, erect, decompound, 2–4-pinnate, usually with catenate hairs and sometimes glandular hairs, without proliferous leaf buds, axes inalate; veins free, with enlarged apices; sori marginal, provided with abaxial and adaxial indusia fused into a cup-shaped involucre; spores trilete, perispore of prominent ridges and verrucae, or tubercles. (Fig. 7) Synopsis. – Sitobolium is a small clade of ca. five species sister to Microlepia. Sitobolium are distinguished by their relatively small leaves that have elongate catenate hairs. These hairs often bear a capitate non-glandular terminal cell. Sitobolium punctilobulum and S. appendiculatum additionally have glandular hairs. Sitobolium wilfordii, however, is glabrous. All Sitobolium have epipetiolar buds, enlarged vein endings, and marginal cup-shaped sori comprised of both abaxial and adaxial indusia. The epipetiolar buds distinguish them from their closest relatives, Microlepia and Mucura, but this character is homoplastic and widespread in the family. Sitobolium appendiculatum and S. wilfordii have Version of Record 37 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 previously been treated as Emodiopteris and Coptidipteris respectively. The two are united in having tuberculate perispore morphology (Fig. 4B) (vs. the verrucate perispore, with prominent ridges seen in other Sitobolium species), but otherwise lack diagnostic characters to distinguish them as a distinct genus and are therefore included here. The geographical distribution of Sitobolium is the Northern Hemisphere; most species are East Asian—S. punctilobulum is the single North American species. We recovered it as a sister to the East Asian S. zeylanica (as S. scabra) as did Schwartsburd & al. (2020), who inferred an early Miocene divergence time between the two. This age estimate corresponds well with a major dispersal event from Asia to North America for many plant groups using the Bering land bridge or North Atlantic land bridges (Lee & al., 2020). TAXON 72 (1) • February 2023: 20–46 History of use. – Sitobolium was in use by early authors until Moore (1859) subsumed it under his concept of Dennstaedtia (Tryon & Tryon, 1980). The original spelling by Desvaux was altered by J. Smith to ‘Sitolobium’, but there is no reason to believe that Desvaux’s spelling was incorrect. Taxonomic treatments. – The Asian species have been treated (in Dennstaedtia) by Knapp (2011) and Yan & al. (2013), and by Fraser-Jenkins & al. (2015, 2017), who updated some taxonomy and nomenclature. Sitobolium punctilobulum, the only species in the Western Hemisphere, was monographed by Conard (1908). We include five constituent species of Sitobolium based upon molecular phylogenetic and morphological evidence, and we make necessary combinations for four of them. Fig. 7. Characters of Sitobolium. A, Habit; B, Lower leaf surface and marginal sori with cup-shaped indusia; C, Creeping branched rhizome and petioles with epipetiolar buds; D, Grooved adaxial rachis-costa axes without raised wings. — All photos by M. Sundue except B by R.C. Moran. 38 Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae New combinations and constituent species Sitobolium appendiculatum (Wall. ex Hook.) L.A.Triana & Sundue, comb. nov. ≡ Dicksonia appendiculata Wall. ex Hook., Sp. Fil. 1: 79, t. 27C. 1844 ≡ Dennstaedtia appendiculata (Wall. ex Hook.) J.Sm., Hist. Fil.: 265. 1875. = Dicksonia elwesii Baker in Hooker & Baker, Syn. Fil., ed. 2: 54. 1874 ≡ Dennstaedtia elwesii (Baker) Bedd., Handb. Ferns Brit. India: 26. 1883. Sitobolium hirsutum (Sw.) L.A.Triana & Sundue, comb. nov. ≡ Davallia hirsuta Sw. in J. Bot. (Schrader) 1800(2): 87. 1801 ≡ Dennstaedtia hirsuta (Sw.) Mett. ex Miq. in Ann. Mus. Bot. Lugduno-Batavi 3(6): 181. 1867. Sitobolium punctilobulum (Michx.) Desv. in Mém. Soc. Linn. Paris 6: 263. 1827 ≡ Nephrodium punctilobulum Michx., Fl. Bor.-Amer. 2: 268. 1803 ≡ Dennstaedtia punctilobula (Michx.) T.Moore, Index Fil.: 97. 1857. Fig. 8. Characters of Mucura. A, Habit; B, Upper leaf surface and alate rachis-costa axes; C, Lower leaf surface and marginal sori with cylindrical indusia; D, Unbranched rhizome and petiole lacking epipetiolar buds. — All photos by M. Sundue. Version of Record 39 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 Sitobolium wilfordii (T.Moore) L.A.Triana & Sundue, comb. nov. ≡ Microlepia wilfordii T.Moore, Index Fil.: 299. 1861 ≡ Dennstaedtia wilfordii (T.Moore) Christ, Geogr. Farne: 192, 195. 1910 ≡ Coptidipteris wilfordii (T.Moore) Nakai & Momose in Cytologia, Vol. Fuji Jub. 1: 365, fig. 1a, 2i, 3c, 4c, d. 1937. Sitobolium zeylanicum (Sw.) L.A.Triana & Sundue, comb. nov. ≡ Dicksonia zeylanica Sw. in J. Bot. (Schrader) 1800(2): 91. 1801 ≡ Dennstaedtia zeylanica (Sw.) Zink ex Fraser-Jenk. & Kandel in Fraser-Jenkins & al., Ferns Fern-Allies Nepal 1: 161. 2015. = Dicksonia scabra Wall. ex Hook., Sp. Fil. 1: 80, t. 28B. 1844 ≡ Dennstaedtia scabra (Wall. ex Hook.) T.Moore, Index Fil.: 307. 1861 = Dennstaedtia melanostipes Ching in Chien & Chun, Fl. Reipubl. Popularis Sin. 2: 357. 1959. Excluded names Sitobolium adiantoides J.Sm. in London J. Bot. 1: 434. 1842 [= Dicksonia bipinnata Cav. ≡ Dennstaedtia bipinnata (Cav.) Maxon in Proc. Biol. Soc. Wash. 51: 39. 1938]. Sitobolium dubium (R.Br.) Brack., U.S. Expl. Exped., Filic. 16: 273 ≡ Davallia dubia R.Br., Prodr.: 157. 1810 ≡ Calochlaena dubia (R.Br.) M.D.Turner & R.A.White in Amer. Fern J. 78: 92. 1988. Sitobolium plumieri (Hook.) J.Sm., Ferns Brit. For., ed. 2: 319. 1877 ≡ Dicksonia plumieri Hook., Sp. Fil. 1: 72. 1846 [= Davallia domingensis Spreng., Anleit. Kenntn. Gew. 3: 149, t. 4, fig. 33. 1804 ≡ Saccoloma domingense (Spreng.) C.Chr., Arbeiten Königl. Bot. Gart. Breslau 1: 21. 1815. Sitobolium rubiginosum (Kaulf.) J.Sm. in London J. Bot. 1: 434 ≡ Dicksonia rubiginosa Kaulf., Enum. Filic.: 226. 1824 [= Dicksonia cicutaria Sw. in J. Bot. (Schrader) 1800(2): 91. 1801 ≡ Dennstaedtia cicutaria (Sw.) T.Moore., Index Fil.: 97. 1857]. Sitobolium stramineum (Labill.) Brack., U.S. Expl. Exped., Filic.: 16. 1854 ≡ Dicksonia straminea Labill., Sert. Austro-Caledon.: 7. 1824 ≡ Calochlaena straminea (Labill.) M.D.Turner & R.A.White in Amer. Fern J. 78: 92. 1988. IV. Mucura L.A.Triana & Sundue, gen. nov. – Type: Mucura bipinnata (Cav.) L.A.Triana & Sundue (≡ Dicksonia bipinnata Cav.). Diagnosis. – Differing from all other Dennstaedtiaceae by having dichotomously branching rhizomes, petioles that lack epipetiolar buds, marginal sori with both abaxial and adaxial indusia forming a cylindrical or cup-shaped involucre, and trilete spores with a verrucate and broadly ridged perispore, and sometimes irregular reticles. Description. – Plants terrestrial; rhizomes long creeping, dichotomously branching, pubescent; petioles subterete, without an adaxial sulcus, with an omega-shaped vascular bundle, lacking epipetiolar buds; leaves large, erect, decompound, laminar axes alate, the wings decurrent onto the next order, lacking proliferous leaf buds; veins free, with slender apices; sori 40 marginal, provided with abaxial and adaxial indusia that together form a cylindrical cup-shaped involucre; spores trilete, broadly ridged and verrucate, and sometimes irregular reticles. (Fig. 8) Distribution and habitat. – Distributed from Mexico and the West Indies to the southern cone of South America, in humid forests, from sea level to 3500 m. Largely absent from Amazonia. Etymology. – This name is a Spanish feminine noun [múkuɾa] derived from the Caribbean and Chibcha linguistic families (Flórez, 1955) that refers to a fired clay pot, commonly made by indigenous people living within the geographic distribution of the genus. These clay pots are characterized by having a globose base, like the indusium of Mucura globulifera, and a long narrow neck, reminiscent of the cylindrical indusium of M. bipinnata. Discussion. – Mucura comprises two Neotropical species that may be sister to the clade of Microlepia and Sitobolium. It is distributed from Mexico and the West Indies to the southern cone of South America but not distributed in Amazonia. Previously treated in Dennstaedtia, Navarrete & Øllgaard (2000) emphasized the morphological disparity between species treated here as Mucura and other Neotropical species of Dennstaedtia. We agree, and our ancestral character state reconstruction recovers several autapomorphic states. It has a rachis-costa architecture found in no other lineage where the axes are provided with adaxial wings that are continuous between orders (from the rachis to the pinna costae, and pinna costae to pinnule costules). Mucura has a unique perispore ornamentation consisting of verrucae, broad ridges, and irregular reticles on the distal face (Fig. 4A). Also unique to Mucura are the subterete petiole bases; as far as we have seen, all other Dennstaedtioideae have petioles that are adaxially sulcate. Notably, Mucura lacks epipetiolar buds which are present in nearly all other Dennstaedtiaceae. They can further be distinguished from Dennstaedtia by their elongate, and branched rhizomes. These distinct morphological features, along with its phylogenetic position, warrant recognition of this clade at the rank of genus. New combinations and constituent species Mucura bipinnata (Cav.) L.A.Triana & Sundue, comb. nov. ≡ Dicksonia bipinnata Cav., Descr. Pl.: 174. 1802 ≡ Dennstaedtia bipinnata (Cav.) Maxon in Proc. Biol. Soc. Wash. 51(8): 39. 1938. Mucura globulifera (Poir.) L.A.Triana & Sundue, comb. nov. ≡ Polypodium globuliferum Poir. in Lamarck, Encycl. 5: 554. 1804 ≡ Dicksonia globulifera (Poir.) Kuntze, Revis. Gen. Pl. 3(3): 378. 1898 ≡ Dennstaedtia globulifera (Poir.) Hieron. in Bot. Jahrb. Syst. 34(4): 455. 1904. ■ AUTHOR CONTRIBUTIONS LATM conceived of the project, and LATM and MS contributed to all aspects of the research. AY contributed to the analysis of the evolution of morphological characters in general and to the palynological analysis. CJR and LYK contributed samples. All authors contributed to writing Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae and revising the manuscript. — LATM, https://orcid.org/0000-00025344-0697; AY, https://orcid.org/0000-0002-4508-2148; LYK, https:// orcid.org/0000-0002-3388-3757; CJR, https://orcid.org/0000-0002-66051770; NTLP, https://orcid.org/0000-0002-3145-8183; PBS, https://orcid. org/0000-0002-5305-9300; MS, https://orcid.org/0000-0003-1568-150X ■ ACKNOWLEDGMENTS We would like to thank Robbin Moran for helpful discussion and checking specimens at MO. Susan Fawcett, David Barrington, and Weston Testo provided valuable comments on the manuscript. Alejandra Vasco, Jonathan Castro, Susana Vega, Alejandro Marín, Sarah Morris, and Verónica Bedoya assisted MS with field work. We acknowledge The New York Botanical Garden for providing leaf tissue samples. This article is part of the Ph.D. thesis of LATM, which was partially supported by a grant from Universidad Nacional de Colombia (HERMES-40890). The Bogotá Botanical Garden allowed LATM to join some field trips of their project “Conservación ex situ de los helechos de Cundinamarca”. Angélica Aponte, Ayda Patiño, Miguel Triana and Amparo Moreno assisted LATM with fieldwork. José Murillo provided DNA samples, assisted LATM with some fieldwork and made useful comments and suggestions on the preliminary analyses. NTLP thanks FAPEMIG and IAPT (2020). PBS thanks CNPq (204998/2017-4). ■ LITERATURE CITED Becari-Viana, I. & Schwartsburd, P.B. 2017. Morpho-anatomical studies and evolutionary interpretations of the rhizomes of extant Dennstaedtiaceae. Amer. Fern J. 107: 105–123. https://doi.org/ 10.1640/0002-8444-107.3.105 Bower, F.O. 1928. The ferns (Filicales) treated comparatively with a view to their natural classification, vol. 3, The leptosporangiate ferns. Cambridge: University Press. https://doi.org/10.5962/bhl. title.26129 Brownsey, P.J. 1998. Dennstaedtiaceae. Pp. 214–228 in: Orchard, A.E. & McCarthy, P.M. (eds.), Flora of Australia, vol. 48. Melbourne: ABRS/CSIRO. Brownsey, P.J. & Perrie, L.R. 2018. Flora of New Zealand: Ferns and lycophytes, fasc. 19, Dennstaedtiaceae. Lincoln: Manaaki Whenua Press. https://doi.org/10.7931/B11G9K Chernomor, O., von Haeseler, A. & Minh, B.Q. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65: 997–1008. https://doi.org/10.1093/sysbio/syw037 Conard, H.S. 1908. The structure and life-history of the hay-scented fern. Washington, D.C.: Carnegie Institution of Washington. https://doi.org/10.5962/bhl.title.54873 Copeland, E.B. 1947. Genera filicum: The genera of ferns. Waltham: Chronica Botanica. Copeland, E.B. 1958. Fern flora of the Philippines. Manila: Bureau of Printing. Doyle, J.J. & Doyle, J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. Bot. Soc. Amer. 19: 11–15. Ebihara, A., Nakato, N., Amoroso, V.B., Hidayat, A. & Kuo, L.Y., 2016. Monachosorum arakii Tagawa (Dennstaedtiaceae) is a relict “international” hybrid: A reassessment of the Monachosorum species. Syst. Bot. 4: 586–595. https://doi.org/10.1600/036364416 X692307 Erdtman, G. 1960. The acetolysis method: A revised description. Svensk Bot. Tidskr. 54: 561–564. Farwell, O.A. 1931. Fern notes II: Ferns in the herbarium of Parke, Davis & Co. Amer. Midl. Naturalist 12: 233–311. https://doi.org/10. 2307/2420088 Flórez, L. 1955. Algunas voces indígenas en el español de Colombia. Revista Colomb. Antropol. 4: 286–310. https://doi.org/10.22380/ 2539472X.1817 Fraser-Jenkins, C.R. 2008. Endemics and pseudo-endemics in relation to the distribution patterns of Indian pteridophytes. Taiwania 53: 264–292. Fraser-Jenkins, C.R., Kandel, D.R. & Pariyar, S. 2015. Ferns and fernallies of Nepal, vol. 1. Kathmandu: Government of Nepal, Ministry of Forests and Environment, Department of Plant Resources. Fraser-Jenkins, C.R., Gandhi, K.N., Kholia, B.S. & Benniamin, A. 2017. An annotated checklist of Indian pteridophytes, part 1. Dehra Dun: Bishen Singh Mahendra Pal Singh. Hasebe, M., Omori, T., Nakazawa, M., Sano, T., Kato, M. & Iwatsuki, K. 1994. rbcL gene sequences provide evidence for the evolutionary lineages of leptosporangiate ferns. Proc. Natl. Acad. Sci. U.S.A. 91: 5730–5734. https://doi.org/10.1073/pnas. 91.12.5730 Hassler M. 2019. World ferns: Checklist of ferns and lycophytes of the world (version Nov 2018). In: Roskov, Y., Ower, G., Orrell, T., Nicolson, D., Bailly, N., Kirk, P.M., Bourgoin, T., DeWalt, R.E., Decock, W., Nieukerken, E. van, Zarucchi, J. & Penev, L. (eds.), Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist. Digital resource at www.catalogueoflife.org/annualchecklist/2019. Naturalis, Leiden, the Netherlands: Species 2000. Holttum, R.E. 1968. Flora of Malaya. Singapore: Government Printing Office. Jermy, A.C. & Walker, T.G. 1985. Cytotaxonomic studies of the ferns of Trinidad. London: British Museum (Natural History). John, M.E. 1992. An efficient method for isolation of RNA and DNA from plants containing polyphenolics. Nucl. Acids Res. 20: 2381. https://doi.org/10.1093/nar/20.9.2381 Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., von Haeseler, A. & Jermiin, L.S. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature, Meth. 14: 587–589. https:// doi.org/10.1038/nmeth.4285 Katoh, K. & Standley, D.M. 2013. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molec. Biol. Evol. 30: 772–780. https://doi.org/10.1093/ molbev/mst010 Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. 2012. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/ bts199 Knapp, R., 2011. Ferns and fern allies of Taiwan. Taipei: KBCC Press and Yuan-Liou Publishing. Kramer, K.U. 1990. Dennstaedtiaceae. Pp. 81–94 in: Kramer, K.U., Green, P.S. & Kubitzki, K. (eds.), The families and genera of vascular plants, vol. 1, Pteridophytes and gymnosperms. Berlin & Heidelberg: Springer. https://doi.org/10.1007/978-3-662-026045_20 Lee, G.E., Condamine, F.L., Bechteler, J., Pérez-Escobar, O.A., Scheben, A., Schäfer-Verwimp, A., Pocs, T. & Heinrichs, J. 2020. An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea. Sci. Rep. 10: 1–13. https://doi. org/10.1038/s41598-020-71039-1 Lellinger, D.B. 2002. A modern multilingual glossary for taxonomic pteridology. Pteridologia 3: 1–263. https://doi.org/10.5962/bhl. title.124209 Lewis, P.O. 2001. A likelihood approach to estimating phylogeny from discrete morphological character data. Syst. Biol. 50: 913–925. https://doi.org/10.1080/106351501753462876 Lu, J.M., Du, X.Y., Kuo, L.Y., Ebihara, A., Perrie, L.R., Zuo, Z.Y., Shang, H., Chang, Y.H. & Li, D.Z. 2022. Plastome phylogenomic Version of Record 41 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 analysis reveals evolutionary divergences of Polypodiales suborder Dennstaedtiineae. B. M. C. Pl. Biol. 22: 511. https://doi.org/10. 1186/s12870-022-03886-1 Maddison, W.P. 2008. Mesquite: A modular system for evolutionary analysis. Evolution 62: 1103–1118. https://doi.org/10.1111/j. 1558-5646.2008.00349.x Mickel, J.T. 1973. The classification and phylogenetic position of the Dennstaedtiaceae. Pp. 135–144 in: Jermy, A.C., Crabbe, J.A. & Thomas, B.A. (eds.), Phylogeny and classification of the ferns. London: Academic Press. Mickel, J.T. & Smith, A.R. 2004. The pteridophytes of Mexico. New York: New York Botanical Garden Press. Miller, M.A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Pp. 45–52 in: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 Nov 2010. Piscataway: IEEE. https://doi.org/10.1109/GCE.2010.5676129 Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. 2020. IQTREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molec. Biol. Evol. 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015 Moore, S.J. 2010. Monographic study on the fern genus Microlepia (Dennstaedtiaceae). Ph.D. thesis. Department of Life Science, National Taiwan Normal University, Taipei, Taiwan. Moore, T. 1859 (“1857”). Index filicum. London: William Pamplin. https://doi.org/10.5962/bhl.title.55301 Moran, R.C. 1995. Dennstaedtia. Pp. 150–163 in: Moran, R.C. & Riba, R. (eds.), Flora Mesoamericana, vol. 1, Psilotaceae a Salviniaceae. México D.F.: Universidad Nacional Autónoma de México. Nakaike, T. 1975. Enumeratio Pteridophytarum Japoniucm: Filicales. Tokyo: University of Tokyo Press. Nakamura, M. (ed.) 2008. Illustrated Flora of ferns and fern allies of South Pacific islands. National Museum of Nature and Science, No. 8. Tokyo: Tokai University Press. Navarrete, H. & Øllgaard, B. 2000. The fern genus Dennstaedtia (Dennstaedtiaceae) in Ecuador, new characters, new species and a new combination. Nordic J. Bot. 20: 319–346. https://doi.org/ 10.1111/j.1756-1051.2000.tb00747.x Nixon, K.C. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407–414. https://doi.org/10.1111/ j.1096-0031.1999.tb00277.x Paradis, E., Claude, J. & Strimmer, K. 2004. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. https://doi.org/10.1093/bioinformatics/btg412 Paris, C.A. & Barrington, D.S. 1990. William Jackson Hooker and the generic classification of ferns. Ann. Missouri Bot. Gard. 77: 228–238. https://doi.org/10.2307/2399536 Perrie, L.R., Shepherd, L.D. & Brownsey, P.J. 2015. An expanded phylogeny of the Dennstaedtiaceae ferns: Oenotrichia falls within a non-monophyletic Dennstaedtia, and Saccoloma is polyphyletic. Austral. Syst. Bot. 28: 256–264. https://doi.org/10.1071/SB15035 Pichi-Sermolli, R.E.G. 1982. Report of the Nomenclature Committee for Pteridophytes. Taxon 31: 310–318. https://doi.org/10.2307/ 1219998 Pigg, K.B., DeVore, M.L., Greenwood, D.R., Sundue, M., Schwartsburd, P. & Basinger, J.F. 2021. Fossil Dennstaedtiaceae and Hymenophyllaceae from the Early Eocene of the Pacific Northwest. Int. J. Pl. Sci. 182: 793–807. https://doi.org/10.1086/ 715633 PPG-I 2016. A community-derived classification for extant lycophytes and ferns. J. Syst. Evol. 54: 563–603. https://doi.org/10.1111/jse. 12229 Presl, K.B. 1836. Tentamen pteridographiae; seu Genera filicacearum. Pragae [Prague]: Typis Filiorum Theophili Haase. https://doi.org/ 10.5962/bhl.title.630 42 TAXON 72 (1) • February 2023: 20–46 Punt, W., Hoen, P.P., Blackmore, S. & Le Thomas, A. 2007. Glossary of pollen and spore terminology. Rev. Palaeobot. Palynol. 143: 1–81. https://doi.org/10.1016/j.revpalbo.2006.06. 008 Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67: 901–904. https://doi.org/10.1093/ sysbio/syy032 Revell, L.J. 2012. phytools: An R package for phylogenetic comparative biology (and other things). Meth. Ecol Evol. 3: 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x Ronquist, F., Teslenko, M., Van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. 2012. MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Syst. Biol. 61: 539–542. https://doi.org/10.1093/sysbio/sys029 Schuettpelz, E. & Pryer, K.M. 2007. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56: 1037–1050. https://doi.org/10.2307/25065903 Schuettpelz, E., Rouhan, G., Pryer, K.M., Rothfels, C.J., Prado, J., Sundue, M., Windham, M.D., Moran, R.C. & Smith, A.R. 2018. Are there too many fern genera? Taxon 67: 473–480. https://doi.org/10.12705/673.1 Schwartsburd, P.B. 2017. (2508) Proposal to conserve the name Microlepia against Scyphofilix (Dennstaedtiaceae). Taxon 66: 516–516. https://doi.org/10.12705/662.20 Schwartsburd, P.B., Navarrete, H., Smith, A.R. & Kessler, M. 2017. Prodromus of a fern flora for Bolivia. XXVI. Dennstaedtiaceae. Phytotaxa 332: 251–268. https://doi.org/10.11646/phytotaxa. 332.3.2 Schwartsburd, P.B., Perrie, L.R., Brownsey, P., Shepherd, L.D., Shang, H., Barrington, D.S. & Sundue, M. 2020. New insights into the evolution of the fern family Dennstaedtiaceae from an expanded molecular phylogeny and morphological analysis. Molec. Phylogen. Evol. 150: 106881. https://doi.org/10.1016/j.ympev. 2020.106881 Shang, H., Sundue, M., Wei, R., Wei, X.P., Luo, J.J., Liu, L., Schwartsburd, P.B., Yan, Y.H. & Zhang, X.C. 2018. Hiya: A new genus segregated from Hypolepis in the fern family Dennstaedtiaceae, based on phylogenetic evidence and character evolution. Molec. Phylogen. Evol. 127: 449–458. https://doi.org/10. 1016/j.ympev.2018.04.038 Sikes, D.S. & Lewis, P.O. 2001. Software manual for PAUPRat: A tool to implement Parsimony Ratchet searches using PAUP*. Storrs. http:// www.iab.uaf.edu/people/derek_sikes/PAUPRat_manual.pdf. Skog, J.E., Mickel, J.T., Moran, R.C., Volovsek, M. & Zimmer, E.A. 2004. Molecular studies of representative species in the fern genus Elaphoglossum (Dryopteridaceae) based on cpDNA sequences rbcL, trnL-F, and rps4-trnS. Int. J. Pl. Sci. 165: 1063–1075. https://doi.org/10.1086/423877 Small, R.L., Lickey, E.B., Shaw, J. & Hauk, W.D. 2005. Amplification of noncoding chloroplast DNA for phylogenetic studies in lycophytes and monilophytes with a comparative example of relative phylogenetic utility from Ophioglossaceae. Molec. Phylogen. Evol. 36: 509–522. https://doi.org/10.1016/j.ympev.2005.04.018 Smith, A.R. & Cranfill, R.B. 2002. Intrafamilial relationships of the thelypteroid ferns. Amer. Fern J. 92: 131–149. https://doi.org/10. 1640/0002-8444(2002)092[0131:IROTTF]2.0.CO;2 Smith, J. 1842. An arrangement and definition of the genera of ferns, with observations on the affinities of each genus. London J. Bot. 1: 659–668. Stamatakis, A. 2014. RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 Suissa, J.S., Sundue, M. & Testo, W.L. 2021. Mountains, climate and niche heterogeneity explain global patterns of fern diversity. J. Biogeogr. 48: 1296–1308. https://doi.org/10.1111/jbi.14076 Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Sullivan, J. & Joyce, J. 2005. Model selection in phylogenetics. Annual Rev. Ecol. Evol. 36: 445–466. https://doi.org/10.1146/ annurev.ecolsys.36.102003.152633. Sun, B.Y. 2014. Biodiversity of Cambodia: Lycophytes and ferns. Incheon: National Institute of Biological Resources. Swofford, D.L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods) Version 4. Sunderland, Massachusetts: Sinauer. Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Molec. Biol. 17: 1105–1109. https://doi.org/10. 1007/BF00037152 Tagawa, M. & Iwatsuki, K. 1979. Pteridophytes. Pp. 1–128 in: Smitinand, T. & Larsen, K. (eds.), Flora of Thailand, vol. 3(1). Bangkok: Royal Forest Department. Tardieu-Blot, M. 1958. Flore de Madagascar et des Comores, fam. 5, Polypodiaceae s.l., 5(1), Dennstaedtiacées. Paris: FirminDidot. https://doi.org/10.5962/bhl.title.6600 Testo, W. & Sundue, M. 2016. A 4000-species dataset provides new insight into the evolution of ferns. Molec. Phylogen. Evol. 105: 200–211. https://doi.org/10.1016/j.ympev.2016.09.003 TPG 2019. Updating Taiwanese pteridophyte checklist: A new phylogenetic classification. Taiwania 64: 367–395. https://doi.org/10. 6165/tai.2019.64.367 TPG 2021. Taiwan Pteridophyte Checklist v2021.2. Excel sheet available via https://groups.google.com/forum/#!forum/taiwanpteridophyte-group (accessed 02 Jul 2021). Triana-Moreno, L.A., Schwartsburd, P.B., Yañez, A., Pena, N.T.L., Kuo, L.Y., Rothfels, C. & Sundue, M. 2022. (2892) Proposal to conserve the name Dennstaedtia (Dennstaedtiaceae) with a conserved type. Taxon 71: 688–690. https://doi.org/10.1002/tax.12756 Tryon, A.F. & Lugardon, B. 1990. Spores of the Pteridophyta: Surface, wall structure, and diversity based on electron microscope studies. New York: Springer. https://doi.org/10.1007/978-1-4613-8991-0 Tryon, R.M. 1960. A review of the genus Dennstaedtia in America. Contr. Gray Herb. 187: 23–52. https://doi.org/10.5962/p.336394 Tryon, R.M. & Tryon, A.F. 1980. (532) Proposal to conserve the name Dennstaedtia T. Moore (1859) (Pteridophyta) against Dennstaedtia Bernh. (1801), Sitobolium Desv. (1827), Patania Presl (1836), and Adectum Link (1841). Taxon 29: 512–513. https://doi.org/10. 2307/1220645 Tryon, R.M. & Tryon, A.F. 1982. Ferns and allied plants; with Special reference to tropical America. New York: Springer. https://doi. org/10.1007/978-1-4613-8162-4 Wang, J.C., Chang, Y., Chiou, W.L. & Liu, H. 2017. Two new species of Microlepia (Dennstaedtiaceae, Polypodiopsida) from Thailand. Phytotaxa 324: 193–197. https://doi.org/10.11646/ phytotaxa.324.2.8 Wang, T., Liu, L., Luo, J.J., Gu, Y.F., Chen, S.S., Liu, B., Shang, H. & Yan, Y.H. 2021. Finding hidden outliers to promote the consistency of key morphological traits and phylogeny in Dennstaedtiaceae. Taxonomy 1: 256–265. https://doi.org/10. 3390/taxonomy1030019 Weakley, A.S. 2020. Flora of the southeastern United States. Chapel Hill: University of North Carolina Herbarium, North Carolina Botanical Garden. Wolf, P.G. 1995. Phylogenetic analyses of rbcL and nuclear ribosomal RNA gene sequences in Dennstaedtiaceae. Amer. Fern J. 85: 306–327. https://doi.org/10.2307/1547812 Wolf, P.G., Soltis, P.S. & Soltis, D.E. 1994. Phylogenetic relationships of dennstaedtioid ferns: Evidence from rbcL sequences. Molec. Phylogen. Evol. 3: 383–392. https://doi.org/10.1006/mpev.1994. 1044 Yan, Y.H., Qi, X.P., Liao, W.B., Xing, F.W., Ding, M.Y., Wang, F.G., Zhang, X., Wu, Z., Serizawa, S., Prado, J., Funston, A., Gilbert, M. & Nooteboom, H.P. 2013. Dennstaedtiaceae. Pp. 147–168 in: Wu, C.-Y., Raven, P.H. & Hong, D.-Y. (eds.), Flora of China, vol. 2–3, Lycopodiaceae through Polypodiaceae. Beijing: Science Press; St. Louis: Missouri Botanical Garden Press. Yañez, A., Arana, M.D., Marquez, G.J. & Oggero, A.J. 2014. The genus Dennstaedtia Bernh. (Dennstaedtiaceae) in Argentina. Phytotaxa 174: 69–81. https://doi.org/10.11646/phytotaxa.174. 2.1 Yañez, A., Márquez, G.J. & Morbelli, M.A. 2016a. Spore morphology and ultrastructure of Dennstaedtiaceae from Paranaense Phytogeographic Province I.: Genus Dennstaedtia. Rev. Palaeobot. Palynol. 224: 181–194. https://doi.org/10.1016/j.revpalbo.2015. 06.012 Yañez, A., Márquez, G.J. & Morbelli, M.A. 2016b. Palynological analysis of Dennstaedtiaceae taxa from the Paranaense Phytogeographic Province that produce Trilete spores II: Microlepia speluncae and Pteridium arachnoideum. Anais Acad. Brasil. Ci. 88: 877–890. https://doi.org/10.1590/0001-3765201620150230 Yuan, Y., Fu, L. & Ma, C.Y. 2012. Microlepia boluoensis sp. nov. (Dennstaedtiaceae) from Guangdong, China. Nordic J. Bot. 30: 168–173. https://doi.org/10.1111/j.1756-1051.2011.01318.x Appendix 1. Species names and GenBank accession numbers of DNA sequences used in this study. Names are presented using the classification presented in this paper. List of GenBank accessions used in this study presented as follows: Taxon, unique identifier, collector and collection number for the voucher, GenBank accession number for rbcL, rpl16, rps4-trnS, trnL-F. A dash (–) indicates data that were unavailable. Sequences generated as part of this study are marked with an asterisk (*). Alsophila costularis Baker, NC_044080, T. Wang & al. s.n., NC_044080, NC_044080, NC_044080, NC_044080. Blotiella lindeniana (Hook.) R.M.Tryon, 3401, P.B. Schwartsburd 3401, MT409883, –, –, –. Blotiella lindeniana (Hook.) R.M.Tryon, LUZ20, L.A. Triana 1041, Colombia (COL), –, –, OK092426*, OK092317*. Blotiella pubescens R.M.Tryon, U05911, D. Strasberg s.n. (UTC, REU), U05911, –, –, –. Campyloneurum angustifolium (Sw.) Fée, MA28464, Martínez 28464 (NY), MF317986, –, –, MF318327. Cyrtomium falcatum (L.f.) C.Presl, 2397, X.C. Zhang 2397, EF394238, –, –, –. Cyrtomium falcatum (L.f.) C.Presl, 26520908, YNUH DDCF2014, –, 26520908, –, –. Cyrtomium falcatum (L.f.) C.Presl, EF177268, Driscoll & Barrington s.n., –, –, –, EF177268. Cyrtomium fortunei J.Sm., –, S. Li & al. s.n., NC_037510, NC_037510, NC_037510, NC_037510. Cystodium sorbifolium (Sm.) J.Sm., LUZ22, C.W. Chen 3196, Solomon Islands (TAIF), –, –, –, OK092318*. Dennstaedtia sp., LUZ113, M. Sundue 3991, Costa Rica (VT), –, –, OK092474*, OK092346*. Dennstaedtia ampla (Baker) Bedd., LUZ57, Wade 4671, Malaysia (TAIF), –, OK092384*, OK092427*, –. Dennstaedtia arborescens (Willd.) E.Ekman & Maxon, LUZ106, J. Castro 756, Colombia (COL), OK092514*, OK092385*, OK092428*, –. Dennstaedtia auriculata Navarr. & B.Øllg., LUZ104, J. Murillo 4791, Colombia (COL), –, –, OK092429*, OK092319*. Dennstaedtia auriculata Navarr. & B.Øllg, LUZ121, C.J. Rothfels 4973, Peru (UC), OK092515*, –, OK092430*, OK092320*. Dennstaedtia cicutaria (Sw.) T.Moore, LUZ78, L.A. Triana 993, Colombia (COL), OK092517*, OK092386*, OK092432*, OK092322*. Dennstaedtia cicutaria (Sw.) T.Moore, LUZ79, L.A. Triana 1016, Colombia (COL), OK092518*, OK092387*, OK092433*, OK092323*. Dennstaedtia cicutaria (Sw.) T.Moore, LUZ80, L.A. Triana 1036, Colombia (COL), OK092519*, OK092388*, OK092434*, OK092324*. Dennstaedtia cicutaria (Sw.) T.Moore, LUZ82, L.A. Triana 1043, Colombia (COL), OK092520*, OK092389*, OK092435*, OK092325*. Dennstaedtia cornuta (Kaulf.) Mett., LUZ84, L.A. Triana 1017, Colombia (COL), OK092521*, OK092390*, OK092436*, OK092326*. Dennstaedtia cornuta Version of Record 43 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 TAXON 72 (1) • February 2023: 20–46 Appendix 1. Continued. (Kaulf.) Mett., LUZ85, L.A. Triana 1022, Colombia (COL), OK092522*, OK092391*, OK092437*, OK092327*. Dennstaedtia cornuta (Kaulf.) Mett., LUZ88, L.A. Triana 1040, Colombia (COL), –, OK092392*, OK092438*, –. Dennstaedtia coronata (Sodiro) C.Chr., LUZ89, L.A. Triana 1033, Colombia (COL), –, OK092393*, OK092441*, –. Dennstaedtia coronata (Sodiro) C.Chr., LUZ115, W.L. Testo 758, Costa Rica (VT), –, OK092394*, OK092442*, OK092328*. Dennstaedtia davallioides (R.Br.) Moore, 27283, L. Perrie 3585 (WELT), KT983819, MH918674, –, –. Dennstaedtia dissecta (Sw.) Moore, LUZ114, W.L. Testo 721, Costa Rica (VT), –, –, OK092447*, OK092330*. Dennstaedtia dissecta (Sw.) Moore, LUZ90, L.A. Triana 1025, Colombia (COL), OK092523*, OK092395*, OK092443*, OK092329*. Dennstaedtia dissecta (Sw.) Moore, LUZ91, L.A. Triana 1030, Colombia (COL), –, OK092396*, OK092444*, –. Dennstaedtia distenta (Kunze) T.Moore, LUZ120, M. Sundue 4998, Mexico (VT), OK092524*, OK092397*, OK092448*, OK092331*. Dennstaedtia glabrata (Ces.) C.Chr., LUZ38, L.Y. Kuo 1926, Philippines (TAIF), –, –, OK092451*, –. Dennstaedtia kalbreyeri Maxon, LUZ103, J. Murillo 4790, Colombia (COL), OK092528*, OK092400*, OK092454*, –. Dennstaedtia macrosora Navarr. & B.Øllg. LUZ93, L.A. Triana 990, Colombia (COL), OK092529*, –, OK092456*, OK092335*. Dennstaedtia mathewsii (Hook.) C.Chr., LUZ123, C.J. Rothfels 5068, Peru (UC), –, –, OK092459*, OK092336*. Dennstaedtia mathewsii (Hook.) C.Chr., LUZ94, L.A. Triana 991, Colombia (COL), OK092530*, –, OK092457*, –. Dennstaedtia maxima (E.Fourn.) L.A.Triana & Sundue, WELT_P026233, WELT P026233 (WELT), KT983830, –, –, –. Dennstaedtia novae-zelandiae (Colenso) L.A.Triana & Sundue, W, P.G. Wolf 682, U18639, –, –, –. Dennstaedtia obtusifolia (Willd.) T.Moore, LUZ97, L.A. Triana 1015, Colombia (COL), OK092531*, –, OK092460*, –. Dennstaedtia obtusifolia (Willd.) T.Moore, LUZ99, L.A. Triana 1038, Colombia (COL), OK092532*, OK092401*, OK092461*, OK092337*. Dennstaedtia samoensis (Brack.) T.Moore, W, P.G. Wolf 425, U18637, –, –, –. Dennstaedtia scandens (Blume) Moore, LUZ46, L.Y. Kuo 2806, Taiwan (TAIF), –, –, OK092472*, –. Dennstaedtia spinosa Mickel, M. Sundue 5045, MT416337, MT470019, MT593216, –. Dennstaedtia sprucei T.Moore, LUZ124, C.J. Rothfels 4974, Peru (UC), OK092539*, OK092404*, OK092475*, OK092347*. Dennstaedtia sprucei T.Moore, LUZ125, C.J. Rothfels 4975, Peru (UC), OK092540*, –, OK092476*, OK092348*. Dennstaedtia tripinnatifida Copel., LUZ55, Wade 4441, Solomon Islands (TAIF), –, OK092405*, OK092477*, –. Dennstaedtia vagans (Baker) Diels, LUZ100, L.A. Triana 1019, Colombia (COL), OK092541*, –, OK092478*, –. Dennstaedtia werckleana (H.Christ) Navarrete & B.Øllg., 883, J.H. Nitta 883 (CR, UC), MW138147, –, –, –. Diplazium dilatatum Blume, 156, X.C. Zhang 156, KC254418, KY427344, –, KC254497. Histiopteris incisa (Thunb.) J.Sm., LUZ130, C.J. Rothfels 4956, Peru (UC), OK092544*, OK092409*, OK092481*, OK092354*. Histiopteris incisa (Thunb.) J.Sm., LUZ131, C.J. Rothfels 5051, Peru (UC), OK092545*, OK092410*, OK092482*, OK092355*. Histiopteris incisa (Thunb.) J.Sm., LUZ132, C.J. Rothfels 5050, Peru (UC), OK092546*, OK092411*, OK092483*, OK092356*. Histiopteris incisa (Thunb.) J.Sm., LUZ28, L.Y. Kuo 2685, Philippines (TAIF), OK092543*, OK092407*, –, OK092351*. Histiopteris incisa (Thunb.) J.Sm., LUZ3, M. Sundue 3947, Mexico (VT), OK092542*, OK092406*, OK092479*, OK092349*. Histiopteris incisa (Thunb.) J.Sm., LUZ30, L.Y. Kuo 3286, China (TAIF), –, OK092408*, –, OK092352*. Histiopteris stipulacea Copel., LUZ1, M. Sundue 3635, Papua New Guinea (VT), –, OK092412*, OK092484*, OK092357*. Hiya brooksiae (Alderw.) H.Shang, LUZ58, Wade 4710, Malaysia (TAIF), –, OK092413*, OK092485*, OK092358*. Hiya brooksiae (Alderw.) H.Shang, SG1731, SG1731, MH289639, MH289746, MH289711, –. Hiya distans (Hook.) Brownsey & Perrie, 2807, L. Perrie 2807, MT416341, MT470023, –, MT593239. Hiya nigrescens (Hook.) H.Shang, MS3626, M. Sundue 3626, MH289641, MH289737, MH289703, MT593240. Hypolepis alpina (Blume) Hook., MSB3, MSB3, –, MH289729, MH289697, MT593277. Hypolepis glandulosopilosa H.G.Zhou & H.Li, SG1029, HygSG1029, MH289632, MH289720, MH289688, MT593258. Hypolepis millefolium Hook., 3029, Perrie 3029 (WELT), EF469956, MH918677, –, MT593262. Hypolepis parallelogramma (Kunze) C.Presl, 5090, Rodríguez 5090, MT416326, MT633763, MT559743, MT593267. Hypolepis pedropaloensis Schwartsb. & J.Prado, LUZ15, L.A. Triana, Colombia 1011 (COL), OK092547*, –, OK092486*, OK092359*. Hypolepis resistens (Kunze) Hook., BLD01, BLD01, MG944782, MH289724, MH289692, MG944788. Hypolepis rugosula (Labill.) J.Sm., 3023, Roux 3023, MT426184, MT470050, MT593223, MT593283. Hypolepis sparsisora (Schrad.) Kuhn, SG1263, HysSG1263, MH289631, MH289732, MH289700, MT593286. Hypolepis stolonifera Fée var. stolonifera, 4420, P.B. Schwartsburd 4420, MT426189, MT470062, MT563116, MT593296. Hypolepis tenuifolia (G.Forst.) Bernh., HN31, HN31, MG944786, MH289733, MH289701, MG944791. Hypolepis viscosa H.Karst., LUZ16, L.A. Triana 1012, Colombia (COL), OK092548*, OK092414*, OK092487*, OK092360*. Lindsaea arcuata Kunze, LUZ19, L.A. Triana 1028, Colombia (COL), OK092549*, –, –, OK092361*. Lonchitis hirsuta L., EU352305, F. Axelrod 9601 (UTC), EU352305, –, –, –. Lonchitis hirsuta L., U05929, F. Axelrod 4221 (UPRRP, UTC), U05929, –, –, –. Lonchitis mannii Alston, U18641N, Wolf 339, LMU18641, –, –, –. Macrothelypteris torresiana (Gaudich.) Ching, 33947882, R. Wei & al. s.n., –, NC_035858, –, –. Macrothelypteris torresiana (Gaudich.) Ching, PE4087, Zhang 4087 (PE), JN572346, –, –, JN572265. Microlepia sp., LUZ52, L.Y. Kuo 3226, China (TAIF), –, –, OK092492*, OK092364*. Microlepia ampla Ching, Wei Hongjin (PE), MK051603.1, –, MK051946.1, MK052476.1. Microlepia boluoensis Y.Yuan & L.Fu, WYD629, Yan Yuehong & al. (PE), MK051673.1, –, MK051922.1, MK052452.1. Microlepia chrysocarpa Ching, ZXC7015, Zhang Xianchun (PE), MK051808.1, –, MK052061.1, MK052599.1. Microlepia communis Ching, YYH13433, Yan Yuehong & al. (PE), MK051638.1, –, MK051882.1, MK052412.1. Microlepia crassa Ching, STET2352, Li Zhongyang (PE), MK051799.1, –, MK052052.1, MK052590.1. Microlepia crenata Ching, ZXL09873, Zhou Xile & al. (PE), MK051701.1, –, MK051954.1, MK052484.1. Microlepia firma Mett. ex Kuhn, ZXL6895, Zhou Xile & al. (PE), MK051813.1, –, MK052070.1, MK052608.1. Microlepia flaccida (G.Forst) L.A.Triana & Sundue, A580, K. Armstrong 580, Vanuatu, OK092525*, OK092398*, OK092449*, OK092332*. Microlepia flaccida (G.Forst) L.A.Triana & Sundue, P2905, G. Plunket 2905, Vanuatu, OK092526*, OK092399*, OK092450*, OK092333*. Microlepia hancei Prantl, YYH13485, Yan Yuehong & al. (PE), MK051726.1, –, MK051978.1, MK052515.1. Microlepia herbacea Ching & C.Chr. ex Tardieu & C.Chr., ZXL09877, Zhou Xile & al. (CNS, PE), MK051794.1, –, MK052047.1, MK052586.1. Microlepia hookeriana (Wall. ex Hook.) C.Presl, YYH11610, Yan Yuehong (PE), MK051844.1, –, MK052105.1, MK052650.1. Microlepia khasiyana (Hook.) C.Presl, ZXL7194, Zhou Xile (PE), MK051627.1, –, MK052087.1, MK052625.1. Microlepia krameri C.M. Kuo, YYH11607, Yan Yuehong (PE), MK051595.1, –, MK051873.1, MK052403.1. Microlepia kurzii (C.B.Clarke) Bedd., YYH12098, Yan Yuehong (PE), MK051631.1, –, MK051874.1, MK052404.1. Microlepia lofoushanensis Ching, YanYH13739, Yan Yuehong (PE), MK051727.1, –, MK051979.1, MK052516.1. Microlepia manilensis (Goldm.) C.Chr., SG1718, Yan Yuehong & Shang Hui (PE), MK051865.1, –, MK052118.1, MK052670.1. Microlepia marginata (Panz.) C.Chr., LUZ68, T.Y. Nwe 332, Myanmar (NY), –, OK092415*, OK092489*, –. Microlepia marginata (Panz.) C.Chr., LUZ72, T.Y. Nwe 476, Myanmar (NY), –, –, OK092490*, OK092362*. Microlepia marginata (Panz.) C.Chr., YYH13287, Yan Yuehong (PE), MK051720.1, –, MK051972.1, MK052509.1. Microlepia matthewii Christ, YYH13164, Yan Yuehong (PE), MK051636.1, –, MK051880.1, MK052410.1. Microlepia mollifolia Tagawa, YYH11625, Yan Yuehong (PE), MK051709.1, –, MK051962.1, MK052494.1. Microlepia obtusiloba Hayata, LUZ24, L.Y. Kuo 2427, Taiwan (TAIF), –, –, OK092491*, OK092363*. Microlepia obtusiloba Hayata, YYH11602, Yan Yuehong (PE), MK051842.1, –, MK052103.1, MK052648.1. Microlepia platyphylla (D.Don) J.Sm., –, P.G. Wolf 673, U18642, –, –, –. Microlepia rhomboidea (Wall. Ex Kunze) Prantl, WZS004, Wei Hongjin (PE), MK051786.1, –, MK052039.1, MK052578.1. Microlepia ridleyi Copel., KNBL211, Yan Yuehong (PE), MK051864.1, –, MK052117.1, MK052669.1. Microlepia scaberula Mett. Ex Kuhn, INA-BL18, Yan Yuehong (PE), MK051645.1, –, MK051889.1, MK052419.1. Microlepia smithii (Hook.) Y.H.Yan, LUZ40, L.Y. Kuo 2319, Taiwan (TAIF), OK092550*, OK092416*, OK092493*, –. Microlepia speluncae (L.) T.Moore, LUZ70, T.Y. Nwe 140, Myanmar (NY), –, OK092417*, –, –. Microlepia speluncae (L.) T.Moore, LUZ71, T.Y. Nwe 159, Myanmar (NY), –, OK092418*, –, –. Microlepia speluncae (L.) T.Moore, LUZ73, T.Y. Nwe 530, Myanmar (NY), –, OK092419*, OK092494*, OK092365*. Microlepia speluncae (L.) T.Moore, LUZ74, T.Y. Nwe 874, Myanmar (NY), OK092551*, OK092420*, –, OK092366*. Microlepia speluncae (L.) T.Moore, LUZ75, T.Y. Nwe 580, Myanmar (NY), OK092552*, OK092421*, –, OK092367*. Microlepia speluncae (L.) T.Moore, YYH12379, Yan Yuehong 12379 (Herbarium), MK051712.1, –, MK052078.1, MK052501.1. Microlepia strigosa (Thunb.) C.Presl, SG021, Shang Hui (PE), MK051656.1, –, –, MK052433.1. Microlepia strigosa (Thunb.) C.Presl, W, P. Wolf s.n., U05931, –, –, –. Microlepia subspeluncae Ching, Chien & Chun, ZXL7016, Zhou Xile & al. (PE), MK051871.1, –, –, MK052616.1. Microlepia subtrichosticha Ching, XP618, Yan Yuehong & al. (PE), MK051699.1, –, MK051951.1, MK052481.1. Microlepia szechuanica Ching, Chien & Chun, W, P. Wolf 660, U18643, –, –, –. Microlepia tenera Christ, SG1026, Shang Hui (PE), MK051801.1, –, MK052054.1, MK052592.1. Microlepia todayensis Christ, INA-BL68, Yan Yuehong (PE), MK051735.1, –, MK051983.1, MK052524.1. Microlepia trapeziformis (Roxb. ex Griff.) Kuhn, WYD303, Yan Yuehong & al. (PE), MK051667.1, –, MK051916.1, 44 Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae Appendix 1. Continued. MK052446.1. Microlepia trichocarpa Hayata, YYH12042, Yan Yuehong (PE), MK051607.1, –, MK051964.1, MK052498.1. Microlepia trichosora Ching in Chien & Chun, WYD445, Yan Yuehong (PE), MK051855.1, –, MK052110.1, MK052662.1. Microlepia yaoshanica Ching, YYH12136, Yan Yuehong (PE), MK051834.1, –, MK052095.1, MK052640.1. Microlepia yunnanensis Ching, Chien & Chun, YYH13136, Yan Yuehong (PE), MK051719.1, –, MK051971.1, MK052508.1. Monachosorum henryi Christ, –, R. Moran 5461 (HAST, MO, F), U05932, –, –, –. Monachosorum subdigitatum (Blume) Kuhn, LUZ138, C.J. Rothfels 4744, Peru (UC), OK092553*, OK092422*, OK092496*, –. Mucura bipinnata (Cav.) L.A.Triana & Sundue, LUZ118, S. Fawcett 470, Puerto Rico (VT), OK092516*, –, OK092431*, OK092321*. Mucura globulifera (Poir.) L.A.Triana & Sundue, LUZ92, L.A. Triana 1013, Colombia (COL), OK092527*, –, OK092453*, OK092334*. Odontosoria chinensis (L.) J.Sm., W, T. Ranker 1231 (COLO), U05934, –, –, –. Odontosoria scandens (Desv.) C.Chr., W, F. Axelrod 5353 (UPRRP), U05935, –, –, –. Odontosoria schlechtendalii (C.Presl) C.Chr., 5012, M. Sundue 5012, MT633753, –, –, –. Orthiopteris campylura (Kunze) Copel., LUZ5, C.W. Chen 4025, Solomon Islands (TNM), –, –, OK092497*, OK092369*. Orthiopteris kingii (Bedd.) Holttum, LUZ42, L.Y. Kuo 2571, Philippines (TAIF), –, –, OK092498*, –. Paesia acclivis (Kunze) Kuhn, LUZ133, C.J. Rothfels 4920, Peru (UC), OK092554*, OK092423*, OK092499*, OK092370*. Paesia glandulosa (Sw.) Kuhn, LUZ134, C.J. Rothfels 5113, Peru (UC), OK092556*, –, OK092501*, OK092372*. Paesia glandulosa (Sw.) Kuhn, LUZ135, C.J. Rothfels 5138, Peru (UC), OK092557*, –, OK092502*, OK092373*. Paesia glandulosa (Sw.) Kuhn, LUZ81, L.A. Triana 1042, Colombia (COL), OK092555*, OK092424*, OK092500*, OK092371*. Paesia scaberula (A.Rich.) Kuhn, 387, P.G. Wolf 387 (UTC), U05937, –, –, –. Pityrogramma trifoliata (L.) R.M.Tryon, 3658, C.J. Rothfels 3658 (DUKE), KM008145, 38745998, –, KM007920. Pteridium caudatum (L.) Maxon, LUZ11, L.A. Triana 983, Colombia (COL), –, –, OK092503*, OK092374*. Pteridium esculentum (G.Forst.) Cockayne, LUZ136, C.J. Rothfels 5031, Peru (UC), OK092558*, –, OK092504*, OK092375*. Pteridium esculentum (G.Forst.) Cockayne, LUZ137, C.J. Rothfels 4896, Peru (UC), OK092559*, –, OK092505*, OK092376*. Pteridium revolutum (Blume) Nakai, LUZ66, T.Y. Nwe 807, Myanmar (NY), OK092560*, OK092425*, OK092506*, OK092377*. Pteris vittata L., 4016, C.J. Rothfels 4016 (DUKE), KM008232, –, –, KM008008. Saccoloma brasiliense Mett., LUZ21, C. Mynssen 1091, Brasil (TUR), –, –, OK092507*, OK092378*. Saccoloma caudatum Copel., LUZ9, M. Sundue 3101, Mexico (VT), –, –, OK092508*, OK092379*. Saccoloma elegans Kaulf., 14948, Tuomisto 14948 (TUR), HQ157302, –, –, GU478728. Saccoloma galeottii (Fée) A.Rojas, LUZ7, M. Sundue 3507, Mexico (VT), –, –, OK092509*, OK092380*. Saccoloma inaequale (Kunze) Mett., 1019, M.M. Jones 1019 (TUR), KJ628823, –, MG561410, MG561418. Saccoloma nigrescens (Mett.) A.Rojas, LUZ17, L.A. Triana 1020, Colombia (COL), –, –, OK092512*, OK092382*. Saccoloma sunduei A.Rojas, LUZ6, M. Sundue 3186, Colombia (VT), –, –, OK092513*, OK092383*. Sitobolium appendiculatum (Wall. ex Hook.) L.A.Triana & Sundue, 5294, X.C. Zhang 5294, MK051807, –, –, –. Sitobolium hirsutum (Sw.) L.A.Triana & Sundue, SG159, SG159, –, –, –, MK052591. Sitobolium punctilobulum (Michx.) Desv., LUZ126, C.J. Rothfels 3812, United States (DUKE), OK092533*, –, OK092462*, OK092338*. Sitobolium punctilobulum (Michx.) Desv., LUZ127, C.J. Rothfels 4568, Canada (DUKE), OK092534*, –, OK092463*, OK092339*. Sitobolium punctilobulum (Michx.) Desv., LUZ128, C.J. Rothfels 4581, Canada (DUKE), OK092535*, OK092402*, OK092464*, OK092340*. Sitobolium wilfordii (T.Moore) L.A.Triana & Sundue, AB574779, TNS-763999 (TNS), AB574779, –, –, –. Sitobolium zeylanicum (Sw.) L.A.Triana & Sundue, LUZ129, C.J. Rothfels 4747, Malaysia (UC), OK092538*, –, OK092471*, OK092344*. Sitobolium zeylanicum (Sw.) L.A.Triana & Sundue, LUZ41, L.Y. Kuo 2352, Taiwan (TAIF), OK092536*, –, OK092467*, –. Sitobolium zeylanicum (Sw.) L.A.Triana & Sundue, LUZ43, L.Y. Kuo 2722, Philippines (TAIF), OK092537*, OK092403*, OK092468*, OK092341*. Sitobolium zeylanicum (Sw.) L.A.Triana & Sundue, LUZ56, Wade 4659, Malaysia (TAIF), –, –, OK092469*, OK092342*. Sitobolium zeylanicum (Sw.) L.A.Triana & Sundue, LUZ64, T.Y. Nwe 365, Myanmar (NY), –, –, OK092470*, OK092343*. Vittaria graminifolia Kaulf., EP423, E. Schuettpelz 1772 (US), 38747268, 38747299, –, –. Appendix 2. Characters and their states. Character number. Character name. (State number) State name. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. Rhizome branching. (0) Unbranched; (1) branched. Rhizome indument. (0) Trichomes; (1) scales; (2) glabrous. Petiole base shape. (0) Subterete; (1) grooved. Rachis-costae grooves. (0) Decurrent; (1) not decurrent. Sorus position. (0) Marginal; (1) abaxial. Sorus vasculature. (0) Single vein; (1) several veins. Spore shape. (0) Trilete; (1) monolete. Perispore morphology. (0) Rodlets; (1) prominent ridges and verrucae; (2) tubercles; (3) prominent ridges, verrucae and irregular reticles; (4) verrucae; (5) verrucae and ridges; (6) prominent ridges; (7) ornamented verrucae; (8) irregular reticles; (9) regular reticles; (10) irregular reticles and tubercles; (11) baculae; (12) rugulae; (13) echinae; (14) folds; (15) ridges and tubercles; (16) grains; (17) plain; (18) striate; (19) rodlets and grains. Venation. (0) Free; (1) anastomosing. Vein tips. (0) Slender; (1) enlarged. Chromosome number. (0) 43 or 86; (1) 34; (2) 46 or 47; (3) 29; (4) 44; (5) 30; (6) 31; (7) 32; (8) 33; (9) 48; (10) 28; (11) 56; (12) 49; (13) 26; (14) 38; (15) 52. Aculeae. (0) Unarmed; (1) armed. Lamina division. (0) Simple; (1) up to 1-pinnate; (2) up to 2-pinnate; (3) up to 3-pinnate; (4) up to 4-pinnate; (5) up to 5-pinnate. Leaf buds. (0) Absent; (1) present. Epipetiolar buds. (0) Absent; (1) present. Abaxial indusium. (0) Absent; (1) present. Adaxial indusium. (0) Absent; (1) present. Rachis-costa wing. (0) Absent; (1) present. Appendix 3. Voucher information for specimens used in palynological analysis. Species, country, collector and collection number (herbarium). Dennstaedtia arborescens, Costa Rica, Mickel 2045 (LP), 2589 (LP), 3111 (LP); Testo 1841 (FLA). Dennstaedtia auriculata, Colombia, Grubb P-87 (COL); Costa Rica, Mickel 2535 (LP); Panama, M.A. Cornman 860 (VT). Dennstaedtia coronata, Colombia, Triana-Moreno 1033 (COL). Dennstaedtia dissecta, Argentina, Palacios 1296 (LP). Dennstaedtia distenta, Mexico, Mickel 4163 (LP); Rzedowski 21106 (LP). Dennstaedtia glabrata, Papua New Guinea, James & Sundue 1593 (VT); Sundue & al. 3776 (VT). Dennstaedtia kalbreyeri, Colombia, Croat 51798 (COL). Dennstaedtia macrosora, Colombia, Rodríguez 3567 (COL); Triana-Moreno 990 (COL). Dennstaedtia mathewsii, Colombia, Jaramillo 3557 (COL); Triana-Moreno 991 (COL), 1031 (COL). Dennstaedtia samoensis, Solomon Islands; Cheng-Wei Chen & al. SITW07662 (VT). Dennstaedtia scandens, Papua New Guinea, James & Sundue 1690 (VT); Philippines, Elmer 11516 (VT). Dennstaedtia sprucei, Colombia, Acosta-Arteaga 1042 (COL). Dennstaedtia vagans, Colombia, Franco 4790 (COL); Triana-Moreno 1019 Version of Record 45 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License TAXON 72 (1) • February 2023: 20–46 TAXON 72 (1) • February 2023: 20–46 Appendix 3. Continued. (COL). Microlepia speluncae, Paraguay, Rojas 4878 (MO). Mucura bipinnata, Bolivia, Krukoff 10331 (LP); Colombia, Echeverry 149A (COL); Costa Rica, Mickel 2697 (LP), 3505 (LP); De la Sota 5226 (LP). Mucura globulifera, Argentina, Yañez & Marquez 86 (LP). Patania werckleana, Costa Rica, Testo & al. 1237 (VT). Sitobolium hirsutum, China, Rothfels & al. 5282 (VT); Japan, Togasi 1637 (VT). Sitobolium punctilobulum, United States, Cook 352 (VT); McQueen 1570 (VT); Seymour 27739 (VT). Sitobolium wilfordii, Japan, Unknown, s.n. (VT-192144); Science College, Imperial University s.n. (VT-192145). Sitobolium zeylanicum, China, Rothfels 5308 (VT); Japan, Boufford 20014 (VT); Nepal, Cronin F1052 (VT). 46 Version of Record 19968175, 2023, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1002/tax.12858, Wiley Online Library on [28/08/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License Triana-Moreno & al. • Phylogenetic relationships of Dennstaedtioideae