Academia.eduAcademia.edu
Quim. Nova, Vol. XY, No. 00, 1-17, 200_ http://dx.doi.org/10.21577/0100-4042.20170897 Janderson Barbosa Leite de Albuquerquea, Camila Macaúbas da Silvaa, Diégina Araújo Fernandesa, Pedro Isaac Vanderlei de Souzab and Maria de Fátima Vanderlei de Souzaa,*, a Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, 58051-900 João Pessoa – PB, Brasil b Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, 79070-900 Campo Grande – MS, Brasil Recebido em 17/12/2021; aceito em 17/03/2022; publicado na web em 19/04/2022 Revisão Pavonia Cav. SPECIES (MALVACEAE SENSU LATO) AS SOURCE OF NEW DRUGS: A REVIEW Pavonia Cav., is a genus in the Malvaceae sensu lato family, containing 271 species with worldwide distribution, although with a higher diversity in America and Asia. Species from this genus are traditionally used in folk medicine with several biological activities, arousing scientific interest on the search for the substances responsible for such activities. This review aimed to provide and expand the scientific interest through phytochemical and pharmacological studies and the utilization of those plants in folk medicine. Species P. odorata and P. zeylanica are described in literature, specially at India, following the traditional medicine system Ayuverda, while the other species are studied mostly at Africa and America. There have been around 169 compounds isolated and characterized for such genus, most of them from the metabolic classes fat acids, terpenoids, flavonoids and phenolic compounds. Those species have shown in vivo, in vitro and in silico significant pharmacological activities, which include anti-inflammatory, analgesic, antimicrobial, cytotoxic, antitumoral, antidiabetic and antioxidant properties. Based on those informations, the search for new sources of plant based biologic prototypes with potential for the treatment of several diseases is of major scientific, economical and medicinal interest. Keywords: Pavonia Cav.; ethnopharmacological relevance; natural products; biological studies. INTRODUCTION Medicinal plants constitute the main therapeutic source of folk medicine. Traditional knowledges are passed through generations due to the stark believes that come since primitive folks and healers. Previous ethno-pharmaceutical-botanical studies form the foundation to the development of new drugs from medicinal herbs.1 Plants provide an essential economic role as they are used as a drug source.2 This fact rises in developing countries due to lesser side effects and easy access that low-income populations have to those plants, making them an almost inexhaustible source of remedies for those people.3 Several chemical compounds that act as potential therapeutic agents have been isolated from plant species.4 Studies about those compounds are based on ethnobotanical, chemical and pharmacological knowledges, aiming to find out new bioactive molecules. On this context, species from Malvaceae sensu lato family arouse major interests of the scientific community due to the fact that those species are important economic sources in agriculture, decorations, manufacturing, food and medicine.5 Among several genus belonging to Malvaceae sensu lato, we highlight Pavonia Cav., which has several biological and pharmacological activities described in literature about folk medicine. Those activities have been confirmed through the isolation, identification and characterization of secondary metabolites, as well as several pharmacological activities described for those compounds.6 The genus Pavonia Cav. includes approximately 271 species distributed worldwide, being more diverse in America and Africa, with only two species being recorded for Asia. A lot of chemical and pharmacological studies with species P. odorata and P. zeylanica are described in literature, mostly for India, due to the traditional medicine system Ayuverda.7 Approximately 224 species can be found in America, ranging from USA to Uruguay, including the Antilles and excluding Chile. *e-mail: mfvanderlei@ltf.ufpb.br In Africa, approximately 46 species can be found.8 In Brazil, 136 species of Pavonia can be found, ranging from Amazon rainforest, Caatinga, Cerrado, Atlantic Forest, Pampas and Pantanal wetlands.9 Based on presented data, this review aims to accomplish a bibliographical survey about traditional uses of Pavonia species and evaluate the chemical and pharmacological potential of this genus in order to drive future researches based on natural products as a source of new drugs. METHODOLOGY Information about the use of plants by folk medicine, phytochemical studies, botanic characteristics and pharmacological activities of genus Pavonia have been based and collected from scientific data banks such as: ‘Web of Science’, ‘Scifinder’, ‘Pubmed’ and ‘Scholar Google’, using papers, books, dissertation and thesis from the year 1918 until April 2021 and searching for the keyword ‘Pavonia’. Following this methodology, we consulted 156 scientific articles, having, as inclusion criteria, the presence of information regarding the use of Pavonia genus in traditional medicine, phytochemical studies, pharmacological and/or biological activities. The exclusion criteria of the articles involved repetition of those in different databases, review articles that contained references used in the manuscript, information with the keyword ‘Pavonia’ that do not concerns the genus, articles with only botanical data or articles not available for access on the platforms used. A single patent referring to the species P. schiedeana (JP 2001181172A (2001)) was found as part of a cosmetic composition. The development of this revision paper aimed the study of this genus in order to expand the scientific interest through knowledge of isolated compounds with several biological activities, as those are the candidates to new drugs isolated from Pavonia species. The present study and data have been extracted by the author (JBLA) and confirmed by other (DAF, CMS, PIVS, MFVS). All data are resumed in tables and their descriptions have been resumed as updated information. de Albuquerque et al. 2 RESULTS AND DISCUSSION Botanical description Pavonia comprises species of herbs, shrubs and bushes. Its flowers are, generally, solitary, composed by four epicalyxes, several free bracteoles, a tubulous and cupuliform calyx composed by five petals, carpels uniovulate and stigma capitate (Figure 1). The fruits are schizocarp, formed by five mericarps with a nervous-reticulate dorsal face, smooth lateral faces and smooth or striated obovoid or reniform seeds.10 Some species of Pavonia possess floral nectaries formed by multicellular glandular trichomes, providing a thick area located near the internal base of calyx. This characteristic attracts hummingbirds, which are pollinators of tubulous flowers, such as P. glazioviana11 and P. multiflora. Species that possesses flowers with twisted corolla and short staminal tube formed by free stamens, such as P. malacophylla, P. varians, P. zeylanica and P. distinguenda, are pollinated by bees.12 Ethnopharmacological relevance Different species of Pavonia Cav. are related in folk medicine as a treatment for several diseases. Among the most used parts of those plants used by some tribes in therapeutics are flowers, bark, roots, rhizomes and flowers (Table 1). Juice of P. odorata leaves is used by traditional medicine Ayuverda as a treatment for dysentery, gonorrhea and halitosis, whereas leaves macerate as a paste are used as a treatment for rheumatism, foot infections and antipyretic.13-18 Powder from seeds of P. senegalensis is used as a contraceptive.19 Decoct of P. urens roots is largely used as a treatment for toothache.20,21 Brewing of roots and leaves of P. zeylanica, as well as decocts, powder and pastes are largely used by eastern communities as a treatment for osteoarthritis, joint pain, bone fractures, cough with discharge and Quim. Nova healing of wounds.22-26 Leaves’ juice and the entire plant prepared as infusion are also used for its vermifuge and purgative properties.27-30 Several ethnopharmacological studies regarding Pavonia species have been described in literature, which give us basis for deepening the chemical and pharmacological knowledge of those herbs, since many of the pharmacological activities are related to traditional use of medicinal plants, therefore providing essential information to the development of new drugs. Chemical composition Based on literature data, 29 references in the area of phytochemistry have been find to species of the genus Pavonia: 10 papers referred to species P. odorata (06) and P. zeylanica (04); 9 papers referred to species P. malacophyla (03), P. glazioviana (03) and P. sepium (03), and; 2 papers referred to P. cancelatta. Besides, several other papers have been related in this field with the species P. varians, P. xanthogloea, P. sepioides, P. distinguenda, P. multiflora, P. hastata, P. lasiopetala, P. schiedeana and P. alnifolia. 169 compounds have been isolated and/or identified in the genus Pavonia (Table 2), comprehending the most diverse classes of secondary metabolites ever related. Fat acids, terpenoids, steroids, flavonoids, phenolics and other compounds such as pheophytins, hydrocarbons and volatile oils are some of the substances that can be found in the genus Pavonia. A broad profile of such compounds within has been detected in a study of the chemical composition of oils in the aerial parts of the species Pavonia odorata through hyphenated gas chromatography techniques coupled with mass spectrometry.105 All compounds and their chemical structures are related in Table 2 and Figure 2, respectively. Fatty acids Fatty acids are molecule that consists of the most diverse lipids and, by enzymatic action, become free fatty acids, presenting powerful biological activities.122 Figure 1. Pavonia plants. A) P. alnifolia, B) P. multiflora, C) P. fruticosa, D) P. malacophylla, E) P. hastata, F) P. varians, G) P. procumbens, H) P. urens, I) P. odorata, J) P. spinifex Table 1. Species of Pavonia genus and their uses in folk medicine Scientific name/ Popular name Pavonia cancellata/Malvarasteira Used plant part Traditional Use Therapeutic Properties References LV Poultice Boils 31 Pavonia distinguenda AP * Antitumor and antibacterial 32 Pavonia fruticosa/Anamu WP Decoction Antipyretic and common cold 33 Pavonia lasiopetala/ Pavonia rosa LV * Breaks and disintegrates kidney and urinary stones; Diuretic 34 Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review Vol. XY, No. 00 3 Table 1. Species of Pavonia genus and their uses in folk medicine (cont.) 35,36 * Antipyretic, stomachic, dysentery and antiurolytic 37,38 * Antipyretic, stomachic, dysentery; Rheumatism; Antiemetic; Anti-hemorrhagic; Demulcent, carminative, diaphoretic, diuretic, anti-inflammatory, spasmolytic and astringent 29,39-45 * RH and LV WP Pavonia odorata/ Sugandhibala Dysentery, anti-inflammatory, anti-hemorrhagic; Antipyretic, digestive and astringent RH ST and RT * Antipyretic 7 ST * Bone fractures 46 AP * Colds, diaphoretic, diuretic, demulcent; Antipyretic, antiinflammatory and anti-hemorrhagic 47-49 * * Antipyretic, stomachic, dysentery; Anti-hemorrhagic; Skin diseases, anti-inflammatory, spasmolytic; Nervous weakness 3,50-54 Leaf juice Dysentery; Gonorrhea; Anti-halitosis 12-15 Paste Rheumatism; Foot infection, and antipyretic 16,17 * Stomachache, anti-inflammatory, anti-hemorrhagic; Antipyretic, diuretic; Carminative, diaphoretic, polydipsia, burning when urinating, demulcent astringent, stomachic, haemorrhages from intestines; bleeding disorders, dysentery and antiulcerogenic; appetizer 4,29,52,55-58 Paste Athlete’s foot 1,59 LV RT Powder Dislocations of bone joints; Osteoarthritis 21,22 Decoction Dysentery and carminative 60,61 Pavonia procumbens * * Antiulcerogenic, fumigation, vermifuge, analgesic and skin infections 2,51,62-64 RT Decoction Retained placenta and prevention of miscarriage 65 Pavonia schiedeana/ Cadillo RT and WP Poultice Antipyretic 66 LV Infusion Hypoglycemic; retained placenta and prevention of miscarriage 65,67 LV Aqueous extract Bone and soft tissue infections 68,69 RT Inhalation and infusion Diarrhea and induce labour 70,71 Pavonia senegalensis Pavonia spinifex SD Powder Contraceptive 18 FL Infusion Analgesic and skin problems 72,73 LV and TW Infusion Stomach problems, gallstones and liver pain LV * Hepatoprotection, antioxidant, anticancer, antifungal and antibacterial 74 AP Inhalation and decoction Antipyretic 75 RT Pavonia urens LV * Pneumonia and stomachic 76,77 Decoction Toothache 19,20 * Boils 78 Smoke Repellent for mosquitoes and house flies 79-81 Pavonia varians/ Malva-peluda * * Infections of the digestive system, and anti-inflammatory 82 Pavonia xanthogloea/ Erva-de-ovelha * * Antimicrobial and antitumor 83,84 * Eczema; Eye diseases; Antipyretic, Anthelmintic, antiinflammatory, analgesic, toothache; Dysentery, antihemorrhagic and emollient 43,85-91 LV Pavonia zeylanica/ Citramutti * Decoction Cough with phlegm 23 Ground Constipation in animals 92 Paste Bone fractures; Healing of acute and chronic wounds 24,25 * Skin diseases, anthelmintic, leprosy, scabies, ringworm, dermatitis, acne, wounds and antiulcerogenic; Blood circulation 3,93 de Albuquerque et al. 4 Quim. Nova Table 1. Species of Pavonia genus and their uses in folk medicine (cont.) Scientific name/ Popular name Medicinal Parts Traditional Use References Inhalation Wound dressing 94 * Antipyretic and anthelmintic; Paralysis; Joint pain 4,95,96 Infusion and leaf juice Vermifuge and purgative 26-29 * Demulcent, carminative, diaphoretic, diuretic, astringent, tonic, anti-hemorrhagic and anti-inflammatory; Antiulcerogenic 88,97 Powder Dislocations of bone joints; Osteoarthritis 21,22 WP Pavonia zeylanica/ Citramutti Therapeutic Properties RT * not reported in the literature. AP: Aerial Parts; FL: Flowers; FR: Fruits; LV: Leaves; RH: Rhizomes; RT: Roots; SD: Seeds; ST: Stems; TW: Twigs; WP: Whole Plant. Table 2. Isolated compounds from Pavonia genus Nº Name Source Reference Fatty acids 1 Malvalic acid 2 Sterculic acid 3 Palmitic acid 4 Stearic acid 5 Oleic acid 6 Linoleic acid 7 Dihydrosterculic acid 8 (9Z,12Z,15Z)-9,12,15Octadecatrienoic acid 2,3-bis(trimethylsilyloxy) propyl-ester SD of P.sepiu. and P.z. SD of P.z., RT and AP of P.o. SD of P.z. RT of P.o. 98-101 48,101-105 101 48,102104,106 Nº Name 32 Cedran-diol,8S,13 33 Cedrol 34 S-guaiazulene 35 Pinocarveol 36 α-terpinene 37 Pavonenol* 38 β-pinene 39 p-cymene 40 1,8-cineole 41 (Z)-linalooloxide 42 (E)-linalooloxide 43 Linalool 9 Isovaleric acid 44 (E)-pinocarveol 10 Caproic acid 45 Borneol 11 Dodecanoic acid 46 Menthol 12 Methyl tetradecanoate 47 Terpinen-4-ol 13 Tetradecanoic acid 48 p-cymen-8-ol 14 Methyl-(2E,6E)-farnesate 49 α-terpineol 50 Carvone AP of P.o. 105 15 Pentadecanoic acid 16 Methyl palmitate 51 Geraniol 17 Methyl linoleate 52 Thymol 18 Methyl oleate 53 Eugenol Terpenoids 19 α-amirine 20 β-amirine 21 Lupeol AP of P.mal. 107 AP of P.mal. and P.d. 31,108 54 β-damascenone 55 β-caryophyllene 56 β-eudesmol 57 Muurolane 58 Farnesyl acetone 22 Blumenol C 59 Phytol 23 Vomifoliol 60 β-caryophyllene oxide 24 4,5-dihydroblumenol A 61 Guaiol LV of P.mul. 109 25 3-oxo-α-ionol 62 γ-eudesmol 26 Loliolide 63 α-eudesmol 27 Taraxerol p-methoxybenzoate 64 α-pinene 28 Cycloart-23Z-en-3β, 25-diol 65 Sitosterol-3-O-β-Dglucopyranoside 66 Stigmasterol-3-O-β-Dglucopyranoside 29 Cycloart-25Z-en-3β, 24-diol 30 Taraxerol 31 Germanicol Source Reference RT of P.o. 48,102104,106 AP of P.o. 105 RT and AP of P.o. 48,102-105 AP of P.c., P.mal. and P.g. 107,110-112 Steroids AP of P.g. AP of P.d. 110 31 Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review Vol. XY, No. 00 5 Table 2. Isolated compounds from Pavonia genus (cont.) Nº 67 Name Source β-sitosterol AP of P.c., P.mal. and P.d.; RT of P.o. Reference 31,106, 107,111, 112 Nº Name 100 2‐[(1E)‐prop‐1‐en‐1‐yl] benzoic acid 101 3‐[(1E)‐prop‐1‐en‐1‐yl] benzoic acid 68 Stigmasterol AP of P.c. 111,112 102 Syringic acid 69 Ethyl iso-allocholate RT of P.o. 106 103 Protocatechuic acid 70 Kaempferol 3-O-(6’’-Op-coumaroyl glucoside (Tiliroside) AP of P.c., P.x., P.mal., P.v., P.g., P.d. 11,31,83, 107, 111-114 104 17 -ethoxy-phaeophorbide a 105 Phaeophytin b 71 3,7-di-O-methylkaempferol AP of P.c. 111,112 106 72 Quercetin 132-S-hydroxyphaeophytin a FL of P.h. and P.l.; AP of P.x., P.mal., P.g. 11,83, 107,115 107 132-S-hydroxy-173-ethoxyphaeophorbide a 73 2-(3,4-dihydroxyphenyl) chromane-3,5,7-triol (Cyanidin) 108 Triacontanol 74 Rutin AP of P.a. and P.x. 83,116 109 cis-p-coumaric acid ethyl ester 75 Quercitrin AP of P.x. 83 110 Pavophylline 111 Methyl-19-ketotetracosanoate 112 12-Methyl-tetracosan-9-one Flavonoids 76 Kaempferol 77 5,8-dihydroxy-7,4’dimethoxyflavone AP of P.mal. 78 5,7-dihydroxy-4′methoxyflavone (Acacetin) 79 5,7-dihydroxy-3,8,4’trimethoxyflavone 80 5-hydroxy-3,7,8,4’tetramethoxyflavone 81 11,107 108 Phenyl-alcohol 114 Benzoic acid-2-hydroxyethyl-ester 115 5aH-3a,12-methano1H-cyclopropa [5’,6’] cyclodeca[1’,2’,1,5] cyclopenta [1,2-d] [1,3] dioxal-13-one 5,7,4’-trihydroxy-3,8dimethoxyflavone 116 2,7-diphenyl-1,6 dioxopyridazino[4,5,2’,3’] pyrrolo[4’,5’-d]pyridazine 82 5,7,4’-trihydroxy-3methoxyflavone 117 Bicyclo [4, 3, 0] nonan-7one,1-(2-methoxyvinyl) 83 Kaempferol-3-glucoside (Astragalin) 118 1,5-bis (3-cyclopentylpropoxy)-1, 13,3,5,5-hexamethyltrisiloxane 85 Aromadendrene 86 Gossypol 87 Gallic acid AP of P.g. AP of P.d. RT of P.o. 11,110, 117 31 48,102-104 Compounds Phenolics 88 Catechin 89 Chlorogenic acid 90 Caffeic acid 91 Vanillic acid 92 Ferulic acid 93 p-Hydroxybenzoic acid 94 p-coumaric acid 95 LV of P.sepio. 119 3 113 Dihydrokaempferol (Aromadendrin) Reference Other compounds AP of P.mal., P.g. 84 Source SD of P.sch. AP of P.x. 118 83 AP of P.x.; LV of P.sepio. 83,119 LV of P.mul. and P.sepio. 109,119 119 Pavonene* 120 Isovaleraldehyde 121 Azulene 122 Hexahydrofarnesyl-acetone 123 6-methyl-5-hepten-2-one 124 Isopentyl alcohol 125 Pentanol 126 Hexanol 127 Benzyl alcohol 128 Phenylethyl alcohol 129 2-methoxy-p-cresol 130 2-methoxy-4-vinylphenol Salicylic acid 131 2,4-bis(1,1-dimethyethyl)phenol 96 Cinnamic acid 132 Acetophenone 97 p-Hydroxyphenylacetic acid 133 2-nonanone 98 Gentisic acid 99 4‐[(1E)‐prop‐1‐en‐1‐yl] benzoic acid LV of P.mul. LV of P.sepio. 109 119 134 Isophorone 135 4-keto-isophorone 136 p-menth-4-en-3-one AP of P.mal. 107,108 AP of P.g. and P.mal. 110 ST of P.z. 26,120 FL of P.z. 121 RT of P.o. 48,102104,106 RT and AP of P.o. 48,102-105 AP of P.o. 105 de Albuquerque et al. 6 Quim. Nova Table 2. Isolated compounds from Pavonia genus (cont.) Nº Name 137 Dihydro-5-pentyl-2-(3H)furanone 138 Hexahydropseudoionone 139 Source Nº Name 156 1,3,4-trimethyl3-cyclohexene-1carboxyaldehyde α-ionone 157 2-methyl-3-phenyl-propanal 140 Dihydro-β-ionone 158 2-hydroxy-4-methoxybenzaldehyde 141 Dihydropseudoionone 159 Pentadecanal 142 β-ionone 160 p-ethoxy-ethyl-benzoate 143 4,8,12-trimethyltridecan-4olide 161 Isobutyl-phthalate Phthalic acid 162 Naphthalene 144 145 2-pentyl-furan 146 3-butyl-pyridine 147 p-allyl-anisole 148 3-phenylpyridine 149 Dihydroactinolide 150 AP of P.o. Reference 105 163 Dodecane 164 2-methyl-naphthalene 165 Tetradecane 166 2,3,6-trimethyl-naphthalene 167 3-(2-methyl-propenyl)-1Hindene Ageratochromene 168 γ-cadinene 151 Hexadecanolactone 169 Hexadecane 152 Hexanal 153 Benzaldehyde 154 Phenylacetaldehyde 155 (2E)-nonen-1-al Studies described in literature review that activities of those compounds depend on the level of unsaturation and the size of hydrocarbons chain, resulting antibacterial, antifungal and antimycobacterial activities.123,124 A recent study has shown that P. malacophylla and P. cancellata have palmitic, oleic and linoleic acids as majoritarian fatty acids.125 Eighteen fatty acids have been isolated and identified in species P. sepium, P. odorata and P. zeylanica (Table 2). Palmitic (3) and caproic (10) fatty acids showed significant activities in preparatory in silico studies as having inhibitory properties for the activities of glycerolkinase enzyme from the fungus Epidermophyton floccosum104 and inhibitory properties for the alcohol-dehydrogenase enzyme from the protozoan Entamoeba histolytica.53 Terpenoids and steroids Terpenoids can be find in several groups of organisms. In plants, they are present under distinct aspects such as volatile molecules or adhered to resins. Their oxygenated, hydrogenated and dehydrogenated derivates have hydrocarbons as a base-structure, being widely distributed among plant species.126 Forty-six terpenoids have been isolated and identified in P. odorata, P. multiflora, P. malacophylla, P. glazioviana and P. distinguenda, being the last one of the most common of Pavonia species. Terpenoids α-amirine (19) and β-amirine (20) showed in vitro antibacterial activities against Escherichia coli.107 The terpenoid cicloart-23Z-en-3β-25-diol (28) also presented in vitro antimicrobial activities against Escherichia coli, Pseudomonas aeruginosa, Candida tropicalis, Candida parapsilopsis e Aspergillus fumigatus.110 Compounds loliolide (26) and the taraxerol p-metoxybenzoate (27) have demonstrated significant in vitro activities on the inhibition of electrons flux in photosystem II of plants, therefore allowing those molecules to become future candidates to herbicides as they prevent photosynthesis.127 Source Reference AP of P.o. 105 P.a.: P. alnifolia; P.c.: P.cancellata; P.d.: P.distinguenda; P.g.: P.glazioviana; P.h.: P.hastata; P.l.: P.lasiopetala; P.mal.: P.malacophylla.; P.mul.: P.multiflora; P.o.: P.odorata; P.sch.: P.schiedeana; P.sepio.: P.sepioides; P.sepiu.: P.sepium; P.v.: P.varians; P.x.: P.xanthogloea; P.z.: P.zeylanica. AP: Aerial Parts; FL: Flowers; LV: Leaves; SD: Seeds; ST: Stems; RT: Roots. *chemical structures not reported in the literature. Steroids are a minority class in Pavonia genus, with only five isolated compounds (65-69). Phytosteroids share as common structure ciclopentanoperidrofenaterne as carbonic skeleton, being β-sitosterol and stigmasterol the most common steroids of this genus and commonly encountered attached to sugar monomers.128 Flavonoids and phenolic compounds Flavonoids are the most important and diversified class of phenolic compounds among natural products, being relatively abundant secondary metabolites and responsible for several functions in plants’ organisms.129 Seventeen flavonoids have been isolated from Pavonia species, being sixteen of those members of subclass flavone (70-84) and one, to flavanonol subclass (85). Many isolated flavonoids have glycosids attached to their structures. Among the isolated compounds, flavonoid 5,7-dihydroxy-3,8,4’trimethoxyflavone (79) has demonstrated in vitro antimicrobial, in silico anticancer, in vitro antineoplasic, in vitro antiprotozoal and in vito photoprotective activities.130,131 The compound tiliroside (70) has demonstrated in vitro and in vivo antihypertensive activities, leading to reduction of peripheric vascular and vasorelaxant resistances by blocking the Calcium channels dependent of voltage (CaV) in cells of vascular smooth muscle (VSMCs);132 in vitro antimicrobial activity;31,107 in silico antidiabetic activity through interaction with human pancreatic α-amylase enzyme;114 in vitro anticancer and anticolinesterasic activities.31 Nineteen phenolic compounds (87-105) have been identified and isolated from the species P. xanthogloea, P. sepioides, P. multiflora and P. schiedeana. Studies demonstrated that those compounds presented different activities. Gross ethanolic extract and fractions of ethyl acetated from extractive process of P. sepioides leaves have shown a large quantity of phenolic compounds present on the samples, which Vol. XY, No. 00 Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review Figure 2. Compounds isolated from Pavonia species 7 8 Figure 2. Compounds isolated from Pavonia species (cont.) de Albuquerque et al. Quim. Nova Vol. XY, No. 00 Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review Figure 2. Compounds isolated from Pavonia species (cont.) 9 10 Figure 2. Compounds isolated from Pavonia species (cont.) de Albuquerque et al. Quim. Nova Vol. XY, No. 00 Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review Figure 2. Compounds isolated from Pavonia species (cont.) 11 de Albuquerque et al. 12 explains the antioxidant activity of those substances against free radicals inhibitions tests through the methods of DPPH and ABTS.119 Besides that species, other studies have shown a large potential of antioxidant activity as a primordial activity of those phenolic compounds such as described for P. xanthogloea, P. zeylanica, P. odorata, P. distinguenda, P. varians, P. glazioviana and P. procumbens.31,44,82,83,90,105,117,133-135 Other compounds Differently from previously mentioned compounds, other classes of secondary metabolites have been isolated and identified in a lesser frequency on Pavonia species. Among those compounds, we can list alcohols, aldehydes, ketones, pheophytins and hydrocarbons (106-171) (Table 2, Figure 2). Chaves107 has conducted a phytochemical study of P. malacophylla, isolating and identifying the compound 173-ethoxy-phaeophorbide A (104), which has presented in vitro antibacterial activity against Staphylococcus aureus and Escherichia coli. Quim. Nova Pharmacological study Several pharmacological activities involving Pavonia species have been arousing interest of scientific community hence there is a large collection of reports of their use in folk medicine. Researches have been developed to confirm the anti-inflammatory, analgesic, antioxidant, cytotoxic, antitumoral, antidiabetic, antimicrobial and antiviral potential of Pavonia species through scientific analysis (Table 3). Anti-inflammatory and analgesic activities Plants constitute a vast and precious source of natural products, which are essential to human health as they play several biological roles such as anti-inflammatory and analgesic activities, as it has been demonstrated by some studies over extracts and isolated compounds.106 Alcoholic extract of P. zeylanica leaves has shown in vivo antiinflammatory activity in rat foot edema induced by carrageenan and Table 3. In vitro, in vivo, and in silico biological studies reported from Pavonia genus Species Material used Experimental model Reference Anti-inflammatory and Analgesic Activity In vitro - anti-inflammatory and antinociceptive by inhibition the arachidonic acid pathway 88 Leaves and stems aqueous extract In vitro - anti-inflammatory and analgesic 136 Leaves ethanolic extract In vitro – anti-inflammatory activity by inhibition protein denaturation 90 P.o. Roots extract Anti-inflammatory activity 137 P.o. Roots methanolic, chloroform and ethyl acetate extract In vitro - anti-inflammatory 106 P.x. Aerial parts hexane fractions, dichloromethane, ethyl acetate, n-butanol, and water ethanolic extract In vitro – inhibition of DPPH, H2O2 and sodium nitroprusside radicals (SNP) P.v. Aerial parts hydroalcoholic extract In vitro - stabilization of radicals free DPPH 82 Aerial parts ethanolic extract In vitro – inhibition of DPPH radicals 117,134 P.z. Leaves alcoholic extract P.z. P.z. Antioxidant Activity P.gla. 83 Leaves methanolic extract In vitro – inhibition of ABTS radicals 135 P.d. Aerial parts methanolic extract and hexane fraction In vitro - inhibition of DPPH radicals 31 P.sep. Leaves ethanolic extract, hexane fraction, dichloromethane fraction, ethyl acetate fraction and aqueous fraction In vitro – inhibition of DPPH and ABTS radicals 119 P.z. Leaves ethanolic extract In vitro – inhibition of radicals free 90 P.o. Whole plant methanolic extract, hydroalcoholic fractions and ethyl acetate In vivo – inhibition of lipoperoxidation 44 P.o. Aerial parts essencial oils In vitro – inhibition of ORAC radicals 105 P.o. Leaves aqueous extract In vitro – inhibition of FRAP, NO radicals and reduction of phosphomolybdenum 133 P.pro. Antitumor and Cytotoxic Activity P.gla. 5,7-dihydroxy-3,8,4’-trimethoxy flavone In silico - uterine and ovarian anticancer; In vitro - antineoplastic activity against sarcoma, carcinoma, melanoma and squamous cells 130,131 In vitro – anticancer activity against leukemia, ovary, colon, prostate, kidney, breast, resistant breast, lung and melanoma; cytotoxic for Artemia salina larvae 31 In vitro – Erlich’s ascites carcinoma (EAC) and cytotoxic 44 In vitro – lung and human breast cancers 138 Methanolic extract P.d. Hexane fraction Dichloromethane fraction Tiliroside P.o. Whole plant methanolic extract, hydroalcoholic and ethyl acetate fractions P.o. Whole plant methanolic extract Antidiabetic Activity P.v. Tiliroside In silico – interaction by the human pancreatic α-amylase enzyme 114 Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review Vol. XY, No. 00 13 Table 3. In vitro, in vivo, and in silico biological studies reported from Pavonia genus (cont.) Species P.z. P.o. Material used Leaves aqueous extract Leaves and stems aqueous extract Roots extract Experimental model Reference In vitro – reduced blood sugar levels 86,136 In vitro – reduced blood sugar levels 139 Antimicrobial and Antiviral Activity Mixture of α-amirine and β-amirine 173-ethoxy-pheoforbide A Tiliroside Acetate Fraction P.mal. Hexane:Acetate (9:1) fraction In vitro – Staphylococcus aureus, Escherichia coli and Candida albicans 107 In vitro – Escherichia coli, Pseudomonas aeruginosa, Candida tropicalis, Candida parapsilopsis, Aspergillus flavus and Aspergillus fumigatus 131 Hexane:Acetate (1:1) fraction Acetate:Methanol (9:1) fraction Acetate:Methanol (1:1) fraction Aerial parts Crude Ethanolic Extract P.gla. 5,7-dihydroxy-3,8,4’-trimethoxy flavone Cicloart-23Z-en-3β, 25-diol P.pro. Leaves methanolic extract In vitro – Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis 63 P.u. Roots methanolic extract In vitro – Candida albicans, Aspergillus fumigatus, Fusarium culmorum, Staphylococcus aureus, Pseudomonas syringae and Erwinia amylovora. 76,77 Whole plant ethanolic extract In vitro – Staphylococcus aureus and Klebsiella pneumoniae 140 P.d. Aerial parts methanolic extract, hexane, dichloromethane, ethyl acetate and nbutanolic fractions In vitro – Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtillis, Klebsiela pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella setubal 31 P.z. Leaves dichloromethane extract In vitro – Escherichia coli and Klebsiella aerogenes 85 Leaves ethyl acetate extract In vitro – Escherichia coli P.spi. Tiliroside Leaves diethyl ether extract In vitro – Staphylococcus aureus Leaves methanolic extract In vitro – Bacillus subtilis, Escherichia coli and Klebsiella aerogenes In vitro – Staphylococcus aureus, Bacillus subtilis, Bacillus mycoides, Diplococcus pneumonia,Salmonella typhi H, Salmonella paratyphi A., Shigella flexneri, Vibrio cholerae Ogawa,Escherichia coli, Klebsiella sp.; Helminthosporium sp., Fusarium 35,141-143 solani, Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, Aspergillus fumigatus, Botrydiplodia sp., Alternaria sp., Rhizophus nodosus, Colletotrichum capsici, Trichophyton mentagrophytes, Chrysosporium indicum and Rhizoctonia sp. P.o. Rhizomes essential oil P.o. Roots methanolic, chloroform and ethyl acetate extracts In vitro – Staphylococcus aureus and Candida albicans 106 P.o. Caproic and palmitic acids In silico – inhibition of the activity of the glycerol kinase enzyme of Epidermophyton floccosum 104 Other Activities P.c. P.gle. P.l. In vitro e in vivo – antihypertensive activity by reducing resistance peripheral vascular and vasorelaxing by blocking voltage-gated calcium channels (CaV) in vascular smooth muscle cells (VSMCs) 132 Leaves aqueous extract In vitro – phytopesticidal activity against termites 144 Leaves aqueous extract In vitro - antiurolytic activity (inhibition of calcium oxalate nucleation by disintegrating into smaller particles with increasing fraction concentrations) 34 Tiliroside P.pra. Leaves ethanolic extract In vitro – inhibition of tyrosinase enzyme 145 P.sch. Aerial parts methanolic extract In vitro - Antiretroviral activity (reverse transcriptase inhibition) 146,147 P.sch. Aqueous extract Promoter of peripheral vascular blood flow; improves dryness and roughness of the skin and stimulates hair growth 148 P.sen. Leaves aqueous ethanolic extracts It does not present acute toxicity, however after 28 days the extract becomes nephrotoxic and slightly hepatotoxic 68 Stems hydroethanolic extract In vivo e in vitro - dose-dependent hypotensive and ACE inhibitor 116 P.a. P.a. Stems ethanolic extract In vivo - gastroprotective activity 149 P.mul. Leaves ethanolic extract In vitro - inhibitor of cathepsins K and V 109 de Albuquerque et al. 14 Quim. Nova Table 3. In vitro, in vivo, and in silico biological studies reported from Pavonia genus (cont.) Species Material used Experimental model Reference P.mul. Loliolide In vitro - inhibition of electron flow in photosystem II 127 Taraxerol p-methoxybenzoate P.gla. 5,7-dihydroxy-3,8,4’-trimethoxy flavone In vitro – antiprotozoan (Trichomonas vaginalis) In vitro - photoprotective activity with a high level of protection (25.01 FPS) 130,131 P.d. Tiliroside In vitro - inhibition of acetylcholinesterase (AChE) activity 31 P.z. Leaves methanolic extract In vitro - larvicide against Culex quinquefasciatus 150 P.z. Leaves methanolic, hexanic, chloroformic, ethyl acetate and acetonic In vitro - larvicide against Anopheles stephensi and Culex quinquefasciatus 151 P.z. Leaves and stems ethanolic extract In vitro – laxative activity 136 P.z. Leaves ethanolic extract In vitro - inhibition of denaturation of albumin, stabilization of the erythrocyte membrane and protection against hemolysis 90 P.o. Rhizomes essential oil In vitro – anthelmintic against tapeworms and roundworms 35,141-143 P.o. Rhizomes essential oil In vitro - Hypotensive, antispasmogenic and intestinal relaxant 36 P.o. Whole plant extract Antirheumatic, antiasthmatic/antibronchial activities 137 P.o. Roots aqueous and alcoholic extracts In vitro – anthelmintic against Pheretima postuma 152 P.o. Leaves methanolic extract In vitro – larvicidal and repellent activity against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus 153 P.o. Caproic, palmitic acids and hexahydropharnesyl-acetone In silico – inhibition of the activity of the enzyme alcohol dehydrogenase of Entamoeba histolytica 53 P.o. Whole plant aqueous extract In vitro – inhibits the formation of minerals in urine samples 154 P.o. Whole plant aqueous extract In vitro – controls human urinary calculogenesis 155 P.o. Whole plant extract Antiparasitic activity against Entamoeba histolytica 29 P.a.: P. alnifolia; P.c.: P.cancellata; P.d.: P.distinguenda; P.gla.: P.glazioviana; P.gle.: P.glechomifolia P.l.: P.lasiopetala; P.mal.: P.malacophylla; P.mul.: P. multiflora; P.o.: P.odorata; P.pra.: P.praemorsa; P.pro.: P.procumbens; P.sch.: P.schiedeana; P.sen.: P.senegalensis; P.sep.: P.sepioides; P.spi.: P.spinifex; P.u.: P.urens; P.v.: P.varians; P.x.: P.xanthogloea; P.z.: P.zeylanica. in vivo antinociceptive activity by inhibition of arachidonic acid formation.88 Methanolic, chloroformic and ethyl acetate extracts of P. odorata roots have also demonstrated in vivo anti-inflammatory activity in albino rat foot edema induced by carrageenan.106 (Table 3). Antioxidant activity Antioxidants are substances that control the action of free radicals, minimizing the risk of diseases, specially those related to oxidative damage on nervous system. Naturally, some enzymes are responsible for the protection of harmful effects of free radicals, such as catalasis and dismutasis superoxide, as well as natural products with antioxidant action such as ascorbic acid, tocopherol, phenolics and flavonoids.133 The evaluation of antioxidant activity of extracts from the aerial parts of Pavonia species has shown the presence of phenolics and flavonoids as its constituents, having those compounds demonstrated a huge antioxidant potential in tests through the methods DPPH (1,1-diphenil-2-picril-hidrazil), H2O2 (hydrogen peroxide), NO (nitric oxide), ABTS (2,2’-azino-bis(3-etilbenzotiazoline-6-sulphonic) acid), FRAP (Ferric Reduction Antioxidant Power), SNP (Sodium Nitroprussiate radicals), phosphomolybdenium reduction, ORAC (Oxygen Radical Absorbance Capacity) and TBARS (Thiobarbituric Acid Reactive Substances) (Table 3). Cytotoxic and anticancer activities Cancer is one of the most lethal diseases that affects humankind. Some phytochemical studies have demonstrated anticancer potentials in several plants due to their chemoprotective and antioxidant properties, which make plants an option to minimize the adverse effects of conventional cancer treatments.156 Extracts and isolated compounds from P. glazioviana, P. distinguenda and P. odorata have demonstrated anticancer activities. The tiliroside flavonoid isolated from P. distinguenda has shown in vitro anticancer activity against leukemic, ovarian, colon, prostate, kidney, breast, resistant breast and melanoma cells, besides being cytotoxic to Artemia salina larvae.31 Other flavonoid isolated from P. glazioviana (5,7-dihydroxy3,8,4’-trimethoxyflavone) (79) has shown in silico anticancer activity against carcinogen uterine and ovarian cells, while having in vitro antineoplastic activity against sarcoma, carcinoma, melanoma and squamous cell carcinoma.130,131 Extracts from the whole plant of P. odorata has shown in vitro anticancer activity against Ehrlich Ascites Carcinoma (EAC), lung and breast cancer.44,138 Antidiabetics activity Several plants are used by folk medicine worldwide against diabetes.86 Some of the species quoted in literature are P. zeylanica and P. odorata. Extracts from their leaves, stems and roots have been evaluated regarding their in vitro antidiabetic activity, being constated a significant reduction of glycose levels in bloodstream.86,136,139 In silico hypoglycemic activity of the tiliroside flavonoid isolated from P. varians through the interaction of this compound with human pancreatic α-amylase enzyme presented a lesser linking energy of -9.4 kcal/mol, being more stable in its active site when compared to the standard drug acarbose, that presented an energy of -7.6 kcal/mol.114 Antimicrobial activity Bacterial resistance has been increasing significatively in the last years, which leads to high mortalities caused by generalized infections. This fact is a consequence of ungovernable use of Vol. XY, No. 00 Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review antibiotics. For those reasons, the search for new natural compounds with antimicrobial activity and new action mechanisms if necessary for the control of such micro-organisms.140 Extracts, fractions and compounds isolated from Pavonia species have shown a great antimicrobial potential that has already been described in literature. Among the compounds that were tested against several fungal and bacterial lineages, we have α-amirine (19), β-amirine (20), 173-ethoxy-phaeophorbide A (104)107 isolated from P. malacophylla, cycloart-23Z-en-3β,25-diol (28), 5,7-dihydroxy3,8,4’-trimethoxyflavone (79) 110 isolated from P. glazioviana, tiliroside (70)31,107 isolated from P. malacophylla e P. distinguenda and caproic (10) and palmitic (3)104 acids identified in P. odorata (Table 3). Other activities Other activities have been related for Pavonia species. Methanolic extract from P. odorata leaves has shown in vitro larvicide and repellent activities against Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus.153 Researches have shown anti-hypertensive,36,116,132 anti-helminthic,35,141-143,152 anti-urolithic,34 gastroprotective,149 laxative,136 photoprotective,131 antiretroviral146,147 and several other kinds of activities. Furthermore, a study on P. senegalensis has showed that fresh liquid ethanolic extract of leaves has not a very strong toxicity, becoming nephrotoxic and slightly hepatotoxic after 28 days.68 CONCLUSIONS Pavonia Cav. is one of the largest genus on Malvaceae sensu lato family and has showed different biologic activities amongst its species, which have already been mentioned in literature and scientific proved. Studies have shown that fatty acids, terpenoids, flavonoids and phenolics are the most common classes of secondary metabolites on this genus. Pharmacological in vivo, in vitro and in silico tests have given the researches promissory results due to the presence of those compounds, both isolated and present on the extracts, corroborating the reports of use of those herbs in folk medicine. Nonetheless, there is a major need of keep exploring chemical and biological potentials of Pavonia species, both already and never studied, since medicinal plants are almost inexhaustible sources of bioactive molecules that can help the treatment and cure of several diseases that affect human populations worldwide. This paper is a database with very relevant information from both phytochemical and biological studies of Pavonia species that can be further explored, aiming to understand the use of Pavonia by traditional medicine in various diseases, becoming alternatives for therapies by the use of these natural products with emphasis on the benefit of the world population. ACKNOWLEDGMENTS We thank Coordenação de Aperfeiçoamento do Ensino Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for all the support to our researches. REFERENCES 1. Mohammed, F.; Shifa, S. P.; J. Pharmacogn. Phytochem. 2019, 8, 1887. 2. Vijayashalini, P.; Jayanthi, G.; Abirami, P.; Journal of Medicinal Plants Studies 2017, 5, 331. 3. Reddy, A. M.; Suresh Babu, M. V.; Rao, R. R.; Herba Pol., 2019; 65, 40 [Crossref]. 4. Sterlin Raj, T.; Edal Kuvin, J.; Asha, K. R. T.; Mohammed, A. A.; Puspharaj, A.; Raubbin, R. S.; World J. Pharm. Sci. 2016, 4, 518. 15 5. Vadivel, V.; Sriram, S.; Brindha, P.; Int. J. Green Pharm. 2016, 10, 33 [Crossref]. 6. Fernandes, D. A.; Assis, E. B.; Souza, M. S. R.; Souza, P. I. V.; Souza, M. F. V.; Quim. Nova 2020, 43, 787 [Crossref]. 7. Johnson, M.; Maharajan, M.; Janakiraman, N.; Journal of Medicinal Herbs and Ethnomedicine 2015, 1, 125 [Crossref]. 8. Grings, M.; Boldrini, I. I.; Revista Brasileira de Biociências 2013, 11, 352. 9. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB9118, acessada em abril 2022. 10. Esteves, G. L.; Krapovickas, A.; Boletim de Botânica da Universidade de São Paulo, 2009, 27, 63 [Crossref]. 11. Mazzotti, M. R. R. M.; Dissertação de Mestrado, Universidade do Estado da Bahia, Brasil, 2015. 12. Pando, A. M. S. C.; Dissertação de Mestrado, Instituto de Botânica da Secretaria do Meio Ambiente, Brasil, 2009. 13. Behera, K. K.; Mandal, P.; Mahapatra, D.; Ethnobotanical Leaflets 2006, 10, 305. 14. Madhu, V.; Naik, D. S. R.; Ethnobotanical Leaflets, 2009, 13, 1337. 15. Mishra, R. K.; Patel, S. P.; Srivastava, A.; Vashistha, R. K.; Singh, A.; Puskar, A. K.; Nature and Science 2012; 10, 22. 16. Singh, P. S.; Kumar, P. P.; Srinivasulu, D.; Nat. Oral Care Dent. Ther. 2020, 407 [Crossref]. 17. Kingston, C.; Nisha, B. S.; Kiruba, S.; Jeeva, S.; Ethnobotanical Leaflets 2007, 11, 32. 18. Ranjithkumar, A.; Chittibabu, C. V.; Renu. G.; Indian Journal of Medicine and Healthcare 2014, 3, 322. 19. Adebisi, I. M.; Alebiosu, O. C.; Int. J. Curr. Res. Chem. Pharm. Sci. 2014, 1, 81. 20. Tadesse, M.; Hunde, D.; Getachew, Y.; Ethiopian Journal of Health Sciences 2005, 15, 89. 21. Megersa, M.; Jima, T. T.; Goro, K. K.; J. Evidence-Based Complementary Altern. Med. 2019, 1 [Crossref]. 22. Babu, N. V. J.; Murty, P. P.; Rao, G. M. N.; International Journal of Botany and Research 2020, 10, 55. 23. Babu, N. V. J.; Murty, P. P.; Rao, G. M. N.; IOSR J. Pharm. Biol. Sci. 2020, 15, 44 [Crossref] 24. Kumar, R. B.; Suryanarayana, B.; Ethnobotanical Leaflets 2008, 12, 896. 25. Somashekhara Achar, K. G.; Boosanur, V.; Shivanna, M. B.; Indian Journal of Traditional Knowledge 2015, 1, 147. 26. Kannan, M.; Kumar, T. S.; Rao, M. V.; Global Journal Research Medicinal Plants & Indigenous Medicine 2016, 5, 203. 27. Tiwari, K. P.; Minocha, P. K.; Phytochemistry 1980, 19, 701 [Crossref]. 28. Anand, R. M.; Nandakumar, N.; Karunakaran, L.; Ragunathan, M.; Murugan, V.; Natural Product Radiance 2005, 5, 139. 29. Daddam, J. R.; Kotha, P.; Katike, U.; Basha, S.; Dowlathabad, M. R.; Research Square 2020, 1 [Crossref]. 30. Khare, C. P.; Indian Medicinal Plants – An Illustrated Dictionary, New Delhi, 2007. 31. Agra, M. F.; Freitas, P. F.; Barbosa-Filho, J. M.; Rev. Bras. Farmacogn. 2007, 17, 114 [Crossref]. 32. Garcia, C. M.; Tese de Doutorado, Universidade de Santa Maria, Brasil, 2007. 33. Caballero-George, C.; Gupta, M. P.; Planta Med. 2011, 77, 1189 [Crossref]. 34. Ramprasad, R.; Anil, N.; Hameed, S. S.; Shifama, J. M. R.; Venkateshan, N.; J. Drug Delivery Ther. 2019, 9, 102 [Crossref]. 35. Nakhare, S.; Garg, S. C.; Ancient Science of Life 1992, 12, 227. 36. Nakhare, S.; Garg, S. C.; Bhagwat, A. W.; Ancient Science of Life 1997, 17, 23. 37. Waghmare, S. D.; International Research Journal on Advanced Science Hub 2020, 2, 268 [Crossref]. 16 de Albuquerque et al. 38. Jamil, M.; Mansoor, M.; Latif, N.; Muhammad, S.; Gull, J.; Shoab, M.; Khan, A.; Pak. J. Sci. Ind. Res., Ser. B 2019, 62, 61 [Crossref]. 39. Chitme, H. R.; Alok, S.; Jain, S. K.; Sabharwal, M.; Int. J. Pharm. Sci. Res., 2010, 1, 24 [Crossref]. 40. Panda, S. P.; Sahoo, H. K.; Subudhi, H. N.; Sahu, A. K.; American Journal of Ethnomedicine 2014, 1, 260. 41. Ahmed, S.; Hasan, M. M.; Ahmed, S. W.; Mahmood, Z. A.; Azhar, I.; Habtemariam, S.; Phytopharmacology 2013, 4, 390. 42. Ahmed, S.; Hasan, M. M.; Ahmed, S. W.; Pak. J. Pharm. Sci. 2014, 27, 1583. 43. Premamalini, P.; Sharmila, S.; International Journal of Advanced Herbal Science and Technology 2017, 3, 67 [Crossref]. 44. Selvan, V. T.; Kakoti, B. B.; Gomathi, P.; Kumar, D. A.; Islam, A.; Gupta, M.; Mazumder, U. K.; Pharmacologyonline 2007, 2, 453. 45. Murty, P. P.; Rao, G. M. N.; Rao, D. S.; Journal of Science 2015, 5, 385. 46. Jenifer, S. P.; Lekha, K.; Journal of Medicinal Plants Studies 2019, 7, 196. 47. Shukla, V. S.; Nigam, I. C.; Proc. Inst. Chem. (India) 1961, 33, 229. 48. Baslas, K. K.; Perfum. Essent. Oil Rec. 1959, 50, 896. 49. Kirtikar, K. R.; Basu, B. D.; Pâninî office, Bahadurganj, 1918. 50. Gritto, M. J.; Nanadagopalan, V.; Doss, A.; Adv. Appl. Sci. Res. 2015, 6, 157. 51. Nandagopalan, V.; Doss, A.; Anand, S. P.; The International Journal Of Science & Technoledge 2014, 2, 1. 52. Bensy, D.; Gamble, A; Kaptchuk, T.; Chinese Herbal Medicine – Materia medica, 1993, 331. 53. Nayak, J. K.; Sahu, S. K.; Barik, E.; Bhattacharyay, D.; Pandey, M.; Plant Cell Biotechnol. Mol. Biol. 2020, 21, 166 [Crossref]. 54. Lakshmanan, R.; Thiruvalluvar, M.; Subramanian, M. P. S.; Ganthi, A. S.; Eur. J. Biomed. Pharm. Sci. 2018, 5, 294. 55. Randive, K. R.; Hatekar, S.; Eastern Geographer 2010, 15, 79. 56. Sharma, J. P.; Srivastava, A.; Thakur, S. P.; Barpete, P. K.; Singh, S.; Int. J. Pharm. Life Sci. 2010, 1, 18. 57. Iswarya, P.; Lakshmikantham, T.; Mohan, S.; International Journal of Ayurveda and Pharma Research 2019, 7, 45. 58. Jayaprasad, B.; Thamayandhi, D.; Sharavanan, P. S.; International Journal of Research in Pharmaceutical and Biosciences 2012, 2, 1. 59. Deepthy, R.; Remashree, A. B.; International Journal of Herbal Medicine 2014, 2, 92. 60. Soudahmini, E.; Ganesh, M. S.; Panayappan, L.; Madhu, C. D.; Natural Product Radiance 2005, 4, 492. 61. Shanmugam, S.; Annadurai, M.; Rajendran, K.; J. Appl. Pharm. Sci. 2011, 1, 94. 62. Karthiyayini, R.; Int. J. Pharm. Sci. Res. 2012, 3, 1829 [Crossref]. 63. Manoranjitham, M.; Premalatha, S.; Int. J. Adv. Res. Biol. Sci., 2015, 2, 256. 64. Kumar, P. P.; Ayannar, M.; Ignacimuthu, S.; Indian Journal of Traditional Knowledge 2007, 6, 579. 65. Ticktin, T.; Dalle, S. P.; J. Ethnopharmacol., 2005, 96, 233. [10.1016/j. jep.2004.09.015] 66. Suryanarayana, S. N.; Seetharami, R. T. V. V.; Medicinal Plant Research 2017, 7, 1. [Crossref]. 67. Andrade-Cetto, A.; Heinrich, M.; J. Ethnopharmacol. 2005, 99, 325. [Crossref]. 68. Shehu, U. F.; Aliyu, I. M.; Ilyas, N.; Ibrahim, G.; Trop. J. Nat. Prod. Res. 2020, 4, 21. [Crossref]. 69. Abdulhamid, Z.; Interviewer, Kaduna, 2016. 70. Neuwinger, H.; Medpharm Scientific, Stuttgart, 2000. 71. Burkill, H. M.; Royal Botanic Gardens Kew, United Kingdom, 1997. 72. Francis, J. K.; Gen. Tech. Rep. IITF-GTR-26, San Juan, 2004. 73. Liogier, H. A.; Iberoamericana de Ediciones, Inc., San Juan, 1990. 74. Michael, M.; Dissertação de Mestrado, Universidade do Cairo, Egito, 2018. Quim. Nova 75. Rasoanaivo, P.; Petitjean, A.; Ratsimamanga-Urverg, S.; RakotoRatsimamanga, A.; J. Ethnopharmacol. 1992, 37, 117 [Crossref]. 76. De Boer, H. J.; Kool, A.; Broberg, A.; Mziray, W. R.; Hedberg, I.; Levenfors, J. J.; J. Ethnopharmacol., 2005, 96, 461 [Crossref]. 77. Dayal, B.; Purohit, R. M.; Flavour Industry 1971, 2, 484. 78. Rabearivony, A. D.; Kuhlman, A. R.; Razafiarison, Z. L.; Raharimalala, F.; Rakotoarivony, F.; Randrianarivony, T.; Rakotoarivelo, N.; Randrianasolo, A.; Bussmann, R. W.; Ethnobotany Research & Applications 2015, 14, 123 [Crossref]. 79. Pavela, R.; Benelli, G.; Exp. Parasitol. 2016, 167, 103. [Crossref]. 80. Karunamoorthi, K.; Hailu, T.; Journal of Ethnobiology and Ethnomedicine 2014, 10, 1 [Crossref]. 81. Degu, S.; Berihun, A.; Muluye, R.; Gemeda, H.; Debebe, E.; Amano, A.; Abebe, A.; Woldkidan, S.; Tadele, A.; Pharmacy & Pharmacology International Journal 2020, 8, 274 [Crossref]. 82. Leal, R. S.; Maciel, M. A. M.; Dantas, T. N. C.; Melo, M. D.; Pissinate, K.; Echevarria, A.; Rev. Fitos 2007, 3, 26. 83. Mostardeiro, C. P.; Mostardeiro, M. A.; Morel, A. F.; Oliveira, R. M.; Machado, A. K.; Ledur, P.; Cadoná, F. C.; Silva, U. F.; Cruz, I. B. M.; Pharmacognosy Magazine 2014, 10, 630 [Crossref]. 84. Grochowski, D. M.; Locatelli, M.; Granica, S.; Cacciagrano, F.; Tomczyk, M.; Compr. Rev. Food Sci. Food Saf. 2018, 17, 1395 [Crossref]. 85. Samy, R. P.; Ignacimuthu, S.; J. Ethnopharmacol. 2000, 69, 63 [Crossref]. 86. Kalarani, D. H.; Venkatesh, P.; Dinakar, A.; Res. J. Pharm. Technol. 2009, 2, 789. 87. Basu, S. K.; Rupeshkumar, M.; Kavitha, K.; Pharmacologyonline 2009, 1, 1144. 88. Kumari, A.; Lalitha, K. G.; Venkatachalam, T.; Kalaiselvi, P.; Sethuraman, M. G.; Asian Journal of Research in Pharmaceutical Science 2011, 1, 113. 89. Chavan, S.; Singh, A.; Daniel, M.; International Journal of Pharmaceutical Development & Technology 2014, 4, 157. 90. Kumar, M. P.; Sivasankar; Senthilvel, G.; Prabhu, L. R.; World J. Pharm. Pharm. Sci. 2018, 7, 644 [Crossref]. 91. Sathishkumar; Anbarasu; Int. J. Plant, Anim. Environ. Sci. 2019, 9, 6. 92. Bhuvaneswari, R.; Ramanathan, R.; Mathumathi, T. K.; Madheswaran, A.; Dhandapani, R.; Journal of Medicinal Plants Studies 2015, 3, 33. 93. Muthuraja, R.; Nandagopalan, V.; Thomas, B.; Marimuthu, C.; European Journal of Environmental Ecology 2014, 1, 33. 94. Murty, P. P.; Rao, G. M. N.; J. Phytol. 2010, 2, 17. 95. Madhava, C. K.; Sivaji, K.; Tulasi, R.; Students offset printers, Tirupati, 2008. 96. Wilson, E.; Rajamanickam, G. V.; Vyas, N.; Agarwal, A.; Dubey, G. P.; Indian Journal of Traditional Knowledge 2007, 6, 678. 97. Rao, D. M.; Rao, U. V. U. B.; Sudharshanam, G.; Ethnobotanical Leaflets 2006, 10, 198. 98. Madrigal, R. V.; Smith Jr., C. R.; Lipids 1973, 8, 407. 99. Bohannon, M. B.; Kleiman, R.; Lipids 1977, 13, 270. 100. Harwood, J. L. In The Biochemistry of Plants; Stumpf, P. K., ed.; Davis, 1980, cap. 1. 101. Rao, K. S.; Lakshminarayana, G.; J. Am. Oil Chem. Soc. 1985, 62, 714. 102. Rayar, A.; Aeganathan, R.; Ilayaraja, S.; Prabakaran, K.; Manivannan, R.; Am. J. Phytomed. Clin. Ther. 2015, 3, 79. 103. Kumar, A.; Pande, C. S.; Kaul, R. K.; Indian J. Appl. Chem. 1965, 28, 190. 104. Dube, P.; Purohit, R. M.; Riechst., Aromen, Koerperpflegem. 1973, 23, 149. 105. Sahu, S. K.; Nayak, J. K.; Prakash, K. V. D.; Bhattacharyay, D.; Plant Cell Biotechnol. Mol. Biol. 2020, 21, 149. 106. Kashima, Y.; Nakaya, S.; Miyazawa, M.; J. Oleo Sci. 2014, 63, 149 [Crossref]. Vol. XY, No. 00 Pavonia Cav. species (Malvaceae sensu lato) as source of new drugs: a review 107. Chaves, O. S.; Tese de Doutorado, Universidade Federal da Paraíba, Brasil, 2016. 108. Albuquerque, J. B. L.; trabalho não publicado. 109. Lopes, L. G.; Dissertação de Mestrado, Universidade Federal do Espírito Santo, Brasil, 2014. 110. Oliveira, M. S.; Tese de Doutorado, Universidade Federal da Paraíba, Brasil, 2019. 111. Casimiro-Júnior, F.; Chaves, O. S.; Fernandes, M. M. M. S.; Agra, M. F.; Teles, Y. C. F.; Souza, M. F. V.; 36ª Reunião Anual da Sociedade Brasileira de Química, São Paulo, Brasil, 2013. 112. Fernandes, M. M. M. S.; Dissertação de Mestrado, Universidade Federal da Paraíba, Brasil, 2013. 113. Gualberto, F. T. A.; Trabalho de Conclusão de Curso, Universidade Federal da Paraíba, Brasil, 2013. 114. Fernando, L. M.; Lima, A. A.; Dias, W. S.; Moura-Júnior, R. T.; Teles, Y. C. F.; Souza, M. F. V. In Processos Químicos e Biotecnológicos; Andrade, D. F., Souza, A. A., Andrade, D. E., Oliveira, E. J., Santos, F., Lopes, J. E. F., Neves, O. F.,Lima, L. C., Ferreira Filho, N., Oliveira, V. A., eds.; Editora Poisson: Belo Horizonte, 2020, cap. 3. 115. Puckhaber, L. S.; Stipanovic, R. D.; Bost, G. A.; Herbs, Medicinals, and Aromatics 2002, 556. 116. Andrade, T. U.; Ewald, B. T.; Freitas, P. R.; Lenz, D.; Endringer, D. C.; Int. J. Pharm. Pharm. Sci. 2012, 4, 124. 117. Silva, C. M.; Trabalho de Conclusão de Curso, Universidade Federal da Paraíba, Brasil, 2018. 118. Sotelo, A.; Villavicencio, H.; Montalvo, I.; Gonzalez-Garza, M. T.; Afr. J. Tradit., Complementary Altern. Med. 2005, 1, 4 [Crossref]. 119. Gasca, C. A.; Cabezas, F. A.; Torras, L.; Bastida, J.; Codina, C.; Free Radicals and Antioxidants, 2013, 3, 55 [Crossref]. 120. Tiwari, K. P.; Minocha, P. K.; Masood, M., Proc. Natl. Acad. Sci., India, Sect. A 1978, 48, 158. 121. Tiwari, K. P.; Choudhary, R. N.; Acta Cienc. Indica, Chem. 1980, 6, 36. 122. Desbois, A. P.; Smith, V. J.; Appl. Microbiol. Biotechnol., 2010, 85, 1629 [Crossref]. 123. Mandey, J. S.; Wolayan, F. R.; Pontoh, C. J.; Kowel, Y. H. S.; Scientific Papers, Series D, Animal Science 2020, 63, 214. 124. Seidel, V.; Taylor, P. W.; Int. J. Antimicrob. Agents 2004, 23, 613 [Crossref]. 125. Fernandes, D. A.; Chaves, O. S.; Teles, Y. C. F.; Agra, M. F.; Vieira, M. A. R.; Silva, P. S. S.; Marques, M. O. M.; Souza, M. F. V.; Quim. Nova 2021, 44, 137 [Crossref]. 126. Yadav, N.; Yadav, R.; Goyal, A.; Int. J. Pharm. Sci. Rev. Res. 2014, 27, 272. 127. Lopes, L. G.; Tavares, G. L.; Thomaz, L. D.; Sabino, J. R.; Borges, K. B.; Vieira, P. C.; Veiga, T. A. M.; Borges, W. S.; Chem. Biodiversity 2016, 13, 284 [Crossref]. 128. Santos, R. A. F.; Dissertação de Mestrado, Universidade Federal da Bahia, Brasil, 2010. 129. Santos, D. S.; Rodrigues, M. M. F.; Estação Científica (UNIFAP) 2017, 7, 29 [Crossref]. 130. Sousa, A. P.; Oliveira, M. S.; Fernandes, D. A.; Ferreira, M. D. L.; Cordeiro, L. V.; Souza, H. D. S.; Souza, M. F. V.; Pessoa, H. L. F.; Oliveira-Filho, A. A.; Silveira e Sá, R. C.; Scientific Electronic Archives 2021, 13, 120 [Crossref]. 17 131. Sousa, A. P.; Nunes, M. K. S.; Oliveira, M. S.; Fernandes, D. A.; Ferreira, M. D. L.; Cordeiro, L. V.; Souza, H. D. S.; Souza, M. F. V.; Pessoa, H. L. F.; Oliveira Filho, A. A.; Silveira e Sá, R. C.; Sci. Plena 2020, 16, 1 [Crossref]. 132. Silva, G. C.; Pereira, A. C.; Rezende, B. A.; Silva, J. F. P.; Cruz, J. S.; Souza, M. F. V.; Gomes, R. A.; Teles, Y. C. F.; Cortes, S. F.; Lemos, V. S.; Planta Med. 2013, 79, 1003. [Crossref]. 133. Rajalakshmi, P.; Vadivel, V.; Subashini, G.; Pugalenthi, M.; Int. J. Adv. Res. 2016, 4, 1751 [Crossref]. 134. Silva, C. M.; Félix, M. D.; Aquino, A. K.; Oliveira, M. S.; Teles, Y. C. F.; Souza, M. F. V.; Mol2Net 2016, 2, 1 [Crossref]. 135. Badami, S.; Channabasavaraj, K. P.; Pharm. Biol. 2007, 45, 392 [Crossref]. 136. Kalarani, D. H.; Dinakar, A.; Senthilkumar, N.; Int. J. Drug Dev. Res. 2012, 4, 298. 137. Kirtikar, K. R.; Basu, B. D.; Indian Medicinal Plants, International Book Distributors Book Sellers and Publishers: Deheradun, 1999. 138. Girish, H. V.; Vinod, A. B.; Dhananjaya, B. L. Satish Kumar, D.; Duraisamy, S.; Pharmacogn. J. 2016, 8, 28 [Crossref]. 139. Rayar, A.; Manivannan, R.; Int. J. Pharm. Sci. Invent. 2015, 4, 46 [Crossref]. 140. Lozano, C. M.; Vasquez-Tineo, M. A.; Ramirez, M.; Infante, M. I.; Pharmacogn. Commun. 2021, 11, 52 [Crossref]. 141. Garg, S. C.; Anthelmintic activity of some medicinal plant products, Research Periodicals and Book Publishing House, Houston, 2003, 207. 142. Garg, S. C.; Natural Product Radiance 2005, 4, 18. 143. Bhavani, S.; J. Pharm. Sci. Res. 2015, 7, 812. 144. Singh, D.; Singh, B.; Dutta, B. K.; International Journal of Science 2012, 4, 3 [Crossref]. 145. Mapunya, M. B.; Dissertação de Mestrado, Universidade de Pretória, África do Sul, 2009. 146. Matsuse, I. T.; Lim, Y. A.; Hattori, M.; Correa, M.; Gupta, M. P.; J. Ethnopharmacol. 1999, 64, 15 [Crossref]. 147. Dan, G.; Castellar, A.; Alumni – Revista Discente da UNIABEU 2015, 3, 8. 148. Shaku, M.; Yamamoto, T.; Shishido, M.; Takashi, T.; Yoshitani, S.; Yoshimi, F., Jpn. Kokai Tokkyo Koho 2001. (JP 2001181172). 149. Ewald, B. T.; Loyolla, C. M.; Pereira, A. C. H.; Lenz, D.; Medeiros, A. R. S; Andrade, T. U.; Nogueira, B. V.; Pereira, T. M. C.; Endringer, D. C.; Rev. Bras. Plantas Med. 2015, 17, 392 [Crossref]. 150. Vahitha, R.; Venkatachalam, M. R.; Murugan, K.; Jebanesan, A.; Bioresour. Technol. 2002, 82, 2 [Crossref]. 151. Kamaraj, C.; Abdul Rahuman, A.; Bagavan, A.; Abduz Zahir, A.; Elango, G.; Kandan, P.; Rajakumar, G.; Marimuthu, S.; Santhoshkumar, T.; Tropical Biomedicine 2010, 27, 211. 152. Singhai, A.; Singour, P. K.; Garg, G.; Pawar, R. S.; Patil, U. K.; Research Journal of Pharmacology and Pharmacodynamics 2009, 1, 82. 153. Selvakumar, B.; Gokulakrishnan, J.; Elanchezhiyan, K.; Deepa, J.; International Journal of Current Advanced Research 2015, 4, 221. 154. Mago, N.; Sofat, I. B.; Jethi, R. K.; Indian J. Med. Res. 1989, 90, 77. 155. Jethi, R. K.; Duggal, B.; Sahota, R. S.; Gupta, M.; Sofat, I. B.; Indian J. Med. Res. 1983, 78, 422. 156. Jeeva Gladys, R.; Kalai Arasi, R.; Elangovan, S.; Mubarak, H.; J. Appl. Pharm. Sci. 2013, 3, 176 [Crossref]. This is an open-access article distributed under the terms of the Creative Commons Attribution License.