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ABSTRACT 

 This dissertation investigated the taxonomy of Plumeria, a popular ornamental 

plant in the Apocynaceae.  A brief introduction to the plant and its current taxonomy is 

provided in Chapter 1 along with a proposal for research to identify Plumeria spp. by 

morphological and molecular approaches.  The overall goal of this research was to 

evaluate morphological and molecular characters that are useful for identifying Plumeria 

spp. so that we can delineate species boundaries, verify our taxonomic understanding 

of Plumeria, and begin to understand their evolutionary history.  The use of qualitative 

and quantitative morphology to diagnose Plumeria spp. from the literature is difficult 

because of the multitude of descriptions given by various authors, even for the same 

species.  Furthermore, the criteria for delineating currently recognized Plumeria spp. is 

unclear.  Hence, in Chapter 2 the use of descriptive morphology is evaluated to 

determine its effectiveness at identifying Plumeria spp.  Using iterative principal 

component analyses, it was found that a combination of descriptive vegetative 

characters was useful for identifying most Plumeria spp.  However, other species could 

not be identified based solely on descriptive morphology, due to morphological variation 

of descriptors used.  Instead, it would require the use of quantitative measurements and 

the use of other morphological characters, such as fruits and flowers, to properly 

diagnose these species.  Chapter 3 explores molecular approach to delineating species 

and investigates the phylogenetic utility of five candidate loci.  Some regions were able 

to identify operational taxonomic units as true species, but no single region could be 

used to identify all the putative species in our sampling.  In fact, not all species could be 

recovered as distinct clusters even with a data set that combined four molecular 

regions.  On the other hand, it did result in a well resolved phylogeny that agrees with 
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prior findings, notably that most Plumeria are distinguishable by molecular means and 

that some Plumeria form a species complex comprised of morphologically variable 

members that share very similar molecular characters.  Chapter 4 concludes with a 

synthesis of morphological and molecular findings and future directions in the realm of 

disentangling the taxonomy of Plumeria spp.    
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CHAPTER 1 

INTRODUCTION TO PLUMERIA 

Horticultural Importance of Plumeria 

The genus Plumeria L., otherwise known as frangipani or temple tree (Woodson, 

1938a), is a plant that holds great significance in many parts of the world.  In tropical 

Asia plumerias are grown as ornamentals for their color and fragrance, and also for 

offerings and religious purposes (Staples and Herbst, 2005).  In other parts of the world, 

Plumeria has ethnobotanical uses to which various medicinal qualities have been 

ascribed (Eggenberger and Eggenberger, 2005; Choudhary et al., 2014).  In the United 

States, plumerias are valued as ornamentals for landscaping and hobby collectors 

(Little, 2006), and are also utilized in perfumery (Tohar et al., 2006; Joulain, 2008).  

Specifically in Hawaii, plumerias are commonly used in landscaping and commercially 

grown for their flowers which are used in lei making (Criley, 2009) and hair adornments. 

In short, Plumeria is widely used in many parts of the world. 

The vast majority of cultivated plumeria varieties belong to two species, P. rubra 

and P. obtusa.  Varieties of P. rubra predominate over P. obtusa varieties in most 

cases.  However, many of the former varieties are susceptible to Plumeria rust 

(Coleosporium plumeriae) and the Plumeria stem borer (Lagocheirus undatus) (Criley, 

2005).  Other Plumeria species are gaining popularity and show great potential for use 

in breeding programs to generate cultivars with pest and disease resistance (Little, 

2006).  In addition, other traits such as non-deciduous leaves (evergreen), dwarfing, 

variable leaf shapes, and different flower forms can be produced using these new 

species (Eggenberger and Eggenberger, 2005) (Figure 1.1 A).         

The plants under study in this research include those collected by horticulturists 

from local and national botanical gardens (see Appendices 2.1 and 3.1).  Prior to their 

placement in botanical gardens, a majority of the species were collected from the wild in 

Central America, Costa Rica, Cuba, and the Caribbean (R. Criley, personal 

communication).  The chief collection criterion has been ornamental value, and 

consequently, most accessions are currently identified as P. rubra, which appears to 

have the best source of genetic variation in petal number and purple, red, or pink petal 
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colors on white or yellow backgrounds (Fig. 1.1 A).  However, these colorful variants are 

susceptible to rust and stem borer damage, limiting their overall value.  On the other 

hand, other Plumeria spp. appear to exhibit notable differences in disease resistance to 

Plumeria rust (Coleosporium plumeriae) and the Plumeria stem borer (Lagocheirus 

undatus) (Criley, 2009; Nelson, 2009) (Fig. 1.1 B).  

 

The Taxonomic Issue with Plumeria  

The taxonomy of Plumeria is problematic because many invalid or unverified 

species names are used among collectors (Criley, 2009), and unconfirmed or 

mislabeled specimens exist in botanical gardens, including those in Hawaii.  This has 

led to the accumulation and perpetuation of misnomers (i.e. botanical gardens using 

incorrect or synonymous names for different specimens) in Plumeria collections.  

Morphological and molecular investigations are two powerful tools that can aid in 

verifying species names in these collections.  Thus, evidence to support or refute the 

Figure 1.1.  Potentially useful characters to incorporate into new Plumeria hybrids.  
A: Color forms and petal number variants of P. rubra cultivars.  B: The evergreen 
trait and unusual leaf shape of P. pudica, which is also resistant to Plumeria leaf rust 
disease, can be harnessed to generate novel plumeria cultivars that have interesting 
leaf shape, are rust-resistant, and do not shed leaves as most current Plumeria 
cultivars do.  

A B 
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taxonomic status of existing species names will be beneficial to botanical gardens, 

horticulturists and growers, and the greater scientific community.  A combination of 

morphological and molecular data analyses will provide a comprehensive verification of 

Plumeria accessions. 

A collection that is referenced by accurate morphological descriptions and 

molecular determinations of ancestry will also be more accessible and likely generate 

more interest for research, landscape, breeding, and educational purposes.  The short-

term benefit of the proposed research will be to allow for better documentation of 

Plumeria accessions in public gardens.  In turn this will produce long term benefits in 

greater utilization of the genetic resources for public gardens, development of new 

ornamental cultivars, and training of horticulturists and geneticists.  Furthermore, the 

proposed research will provide a phylogenetic foundation for more in-depth 

investigations and contribute to evolutionary understanding within the Apocynaceae.  

Current Taxonomy of Plumeria 

The family Apocynaceae is comprised of over 5,500 species within 410 genera 

(The Plant List, 2013).  Genera are grouped within one of five subfamilies, 25 tribes, 

and 49 subtribes (Endress et al., 2014).  The family includes taxa that are mostly 

distributed throughout the tropics, but with a few from temperate regions (Endress and 

Bruyns, 2000; Sennblad and Bremer, 2002; Endress et al., 2007a).  Nearly all taxa are 

poisonous, due to the presence of indole alkaloids and cardenolides, and many have 

ethnobotanical or ornamental uses (Judd et al., 2008).  Taxa within the family are 

characterized by the presence of milky latex, a highly-modified gynoecium with separate 

ovaries, a differentiated stigmatic head, and unique combinations of molecular 

sequences (Leeuwenberg, 1994; Soltis et al., 2005; Judd et al., 2008; Nazar et al., 

2013; Selvaraj et al., 2015).  Rauvolfioideae is the most basal subfamily of the 

Apocynaceae and is comprised of genera with simple flowers, anthers detached from 

the style head, and seeds that lack hairs (Endress and Bruyns, 2000; Simões et al., 

2007; Nazar et al., 2013).  

The genus Plumeria L. is a member of subfamily Rauvolfioideae (Simões et al., 

2007) and is characterized by thick, succulent branches, corky bark, showy flowers with 
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a waxy corolla and a narrow base, and linear fruits (follicles) with dehiscent pods 

containing winged seeds (Staples and Herbst, 2005).  Woodson (1938a) who did the 

last taxonomic study of the genus, recognized seven species and several subspecies or 

varieties that are native to the New World tropics.   

The Need for (Macro) Morphological Investigations 

Woodson’s proposed species descriptions were based on morphological 

characters including leaf shape, surface, venation, perianth features, and provenance.  

Although Woodson’s study was thorough, it was limited by availability of material as his 

studies were conducted solely on herbarium specimens from European and American 

sources.  As such, some morphological features of leaves and flowers, which are 

readily visible in live specimens, may have been lost during pressing and drying of 

herbarium material.  He also admittedly ignored subtle morphological features, including 

slight variations in leaf outline, which may have led him to mistakenly subsume some 

Plumeria taxa into one of the seven species he recognized, including taxa that 

comprised the P. obtusa complex (i.e. P. bahamensis, P. cubensis, etc.).  Aguoru et al. 

(2015) have recently proposed the use of epidermal cell shape, leaf size, and stomata 

index to distinguish among the three Plumeria species P. rubra, P. obtusa, and P. lutea 

that occur in Nigeria.  However, their study was limited to only these three Plumeria spp. 

in this region so the utility of these three characters to distinguish other Plumeria spp. 

remains unknown.  Furthermore, the other morphological characters that Aguoru et al. 

(2015) used were either present in all three species or applied to only one of the three 

species and may not be sufficient for distinguishing among other extant Plumeria taxa.  

Quick and accurate identification of species in the field based on morphological 

characters that are easy to score is critical to many areas of biology besides 

systematics (i.e. ecology, physiology, etc.) (Wiens, 2004).  Hence, a taxonomic update 

using novel morphological characters to distinguish species in this genus is warranted.  

Therefore, as one component of this dissertation, descriptive foliar morphological 

characters that can accurately discriminate among Plumeria spp. will be explored.  
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The Need for Molecular Investigations 

Using morphology to identify species can be difficult due to variation in the 

environment as well as the innate natural variation within any given taxon.  In addition, 

under cultivation random somatic mutations do arise during clonal propagation altering 

the morphology of a plant and sometimes limiting the use of morphology to diagnose a 

species.  Developmental stage also affects morphology, for example seedlings of 

Plumeria spp. can be so variable as to make floral and foliar morphology useless due to 

character state overlap which may lead to misidentification.  Since morphology alone 

may not be dependable for species distinctions, using molecular markers to verify 

Plumeria (species) in collections will be an extremely valuable tool. 

Molecular data can support the monophyly of taxa that were originally recognized 

on the basis of morphology and place taxa whose relationships were once problematic 

or unknown (Judd et al., 2008).  Molecular markers have been used in the identification 

of plant material in germplasm as well as in native plants (Ford-Lloyd, 2001).  This can 

increase targeting of plant material for collection and aid in the exchange of germplasm 

material at local, national, and international botanical gardens.  It can also help in 

identifying duplicates in plant collections, especially in instances where duplicated 

specimens are not morphologically identical.  Furthermore, by identifying molecular 

markers that can distinguish species, genetic relationships among taxa can be 

determined (Ford-Lloyd, 2001), which can then be used to answer evolutionary and 

ecological questions. 

Studies have shown that the utility of different coding and noncoding chloroplast 

DNA (cpDNA) and nuclear DNA (nrDNA) regions within a taxonomic group can be 

tremendously variable (Kress et al., 2005; Qiu et al., 2013; Tripathi et al., 2013; Cantley 

et al., 2014; Hochbach et al., 2015).  Thus, Shaw et al. (2005; 2007; 2014) argue that 

choosing the appropriate molecular marker region to carry out investigations at a given 

taxonomic level is dependent on the taxa under study.  Indeed, many studies in the 

Apocynaceae aimed at characterizing genetic relationships have reported success 

using different molecular regions (chloroplast or nuclear) and in combination with 

morphology (Potgieter and Albert, 2001; Simões et al., 2004; Simões et al., 2007; 
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Simões et al., 2010; Fishbein et al., 2011; Selvaraj et al., 2015).  The basic criteria for 

determining the suitability of molecular markers for genetic analyses include:  

1) a bifurcating tree—with minimal polytomies—is produced; 

2) outgroup taxa are distinctly separate from ingroup taxa; 

3) multiple accessions of a species cluster together; 

4) clades are well supported by bootstrap values of 70% or more; 

5) individual regions surveyed are characterized by high interspecific (between 

species) DNA sequence variation and relatively low intraspecific (within 

species) DNA sequence variation (Table 1.1). 

 

 

 

In preliminary work using morphologically distinct Plumeria spp., only two out of 

seven non-coding chloroplast markers were able to accurately distinguish these species 

using the aforementioned criteria (Fig. 1.2).  Moreover, genetically distinct taxa were 

also morphologically distinct.  In addition, some regions revealed insertion/deletions 

(indels) that in some cases indicated mislabeled accession (Fig. 1.3).  This confirms the 

argument by Shaw et al. (2005) that molecular marker regions must first be tested 

before a full-blown taxonomic study is undertaken.  Additionally, Shaw et al. (2014) 

recommend using at least three genetic regions, from the chloroplast and/or nucleus, to 

achieve better discriminatory power from regions of the plant genome.  

  DNA Region 

  psbJ-petA IGS rpl32-trnL IGS 

Taxon Within Between Within Between 

P. ekmanii 0.000 0.002 0.005 0.014 

P. pudica 0.000 0.001 0.001 0.006 

P. caracasana 0.000 0.001 0.001 0.006 

P. obtusa var. sericifolia 0.000 0.004 0.006 0.047 

P. alba 0.001 0.004 0.005 0.009 

Table 1.1.  Preliminary intergenic spacer (IGS) region results demonstrating that 
intraspecific (within species) DNA sequence variation is lower than interspecific 
(between species) sequence variation. Such regions are candidate markers for 
detecting species.  
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Figure 1.2.  Preliminary testing of intergenic spacer regions with morphologically 
distinct Plumeria.  A: Morphologically distinct Plumeria spp. used to evaluate molecular 
regions psbJ-petA and rpl32-trnL.  B: A combined neighbor-joining tree of the psbJ-petA 
and rpl32-trnL intergenic spacer regions, verifying their potential use as molecular 
markers using criteria for evaluating genetic regions to determine genetic relationships. 

A B 
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Many molecular markers have been tested for their taxonomic utility.  However, 

certain markers are gaining popularity because of their applicability across a wide range 

of plant taxa.  Within the chloroplast genome, Simões et al. (2007) have shown that the 

matK gene was useful in resolving genetic relationships within the subfamily 

Rauvolfioideae.  Shaw et al. (2005) have also demonstrated that cpDNA regions psbJ-

petA and rpl32-trnL possess many potentially informative characters across a wide 

range of plant taxa.  The plastid intergenic spacer region trnH-psbA and the nuclear 

ribosomal internal transcribed spacers (ITS) are two loci that are also commonly used 

as supplemental genetic regions for delineating species (Fazekas et al., 2012; Fišer 

Pečnikar and Buzan, 2014).  However, Selvaraj et al. (2015) have shown that using a 

subset of the ribosomal cassette (ITS2) can also discriminate species within the 

Apocynaceae.  Therefore, these five regions will be used as molecular markers to 

assess their utility in identifying species and genetic relationships within the genus 

Plumeria.   

Figure 1.3.  A potentially informative molecular marker.  An intergenic spacer region is 
informative if it contains genetic regions that are unique to distinct Plumeria spp.  Such 
an informative region will be able to authenticate Plumeria spp. in a collection.  In this 
example, P. alba 1-11 contains an insertion, whereas the other accessions of P. alba do 
not, indicating that P. alba 1-11 is not a P. alba.  However, it could be closely related to 
P. ekmanii.  
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The overarching goal of this dissertation is to provide a means to accurately 

identify Plumeria spp.  As a necessary first step, morphological and molecular data 

must be evaluated for their ability to species.  Once species are identified, it will then be 

possible to understand the genetic relationships among the species.  Identifying genetic 

relationships among the taxa included in this proposed research will then provide a 

framework for taxonomic separation.  Furthermore, the linkage between genetic and 

morphological characters can then be compared as to whether they are good indicators 

of relationships as reflected in results obtained from these data sources.  

The Research Plan 

Research Goal:  To evaluate the utility of descriptive morphology and molecular 

regions to delineate species of Plumeria. 

 

Overall Hypothesis:  Morphological and molecular analyses of Plumeria accessions 

will allow clear recognition and verification of species, establish genetic relationships 

and provide criteria for the delimitation of currently unrecognized ones. 

 

Morphological and molecular analyses of Plumeria accessions will characterize genetic 

relationships and allow for the verification of extant species, and delimitation of 

unrecognized ones. 

Objectives 

1) To identify Plumeria spp. using descriptive morphological characters that are 

easy to score. 

2) To identify DNA loci that can delineate species and resolve genetic relationships 

in Plumeria by examining separate and combined molecular regions. 

Research Questions 

1) What qualitative foliar characters can be used to distinguish Plumeria spp.? 

2) What individual molecular markers (chloroplast and/or nuclear) can be used to 

distinguish Plumeria spp.? 
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3) Does some combination of chloroplast and/or nuclear DNA markers better 

distinguish among taxa? 

4) Are these regions phylogenetically informative? 

5) How well does the molecular data reflect the morphological data regarding the 

identification of Plumeria spp.? 

 

Objective 1: To identify Plumeria spp. using descriptive morphological characters 

that are easy to score. 

 

Research Question 1:  What qualitative foliar characters can be used to distinguish 

Plumeria spp.? 

 

Hypothesis:  No one character will be sufficient to distinguish species, but rather it will 

require a combination of characters. 

 

Methodology:  

1. Leaf samples of Plumeria accessions will be collected from local botanical 

gardens on Oahu, Kauai and Waimanalo Research Station, and morphological 

features of specimens from more distantly located Plumeria collections (i.e. 

Florida Colors Nursery, Naples Botanical Garden, Miami USDA, Fairchild 

Tropical Botanic Garden) will be photographed.  

 

2. Fresh and photographed specimens will be assessed for potentially useful foliar 

characters. 

 

3. A morphological data matrix of presence/absence characters and binary 

character states will be developed and analyzed using principal component 

analysis (PCA) to assess how the different taxa under study cluster with one 

another given the morphological characters used.   

 

4. Results will be discussed and conclusions on the efficacy of these descriptive 

morphological characters to identify species will be discussed. 
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Objective 2:  To identify DNA loci that can delineate species and resolve genetic 

relationships in Plumeria by examining separate and combined molecular 

regions. 

 

Research Question 2:  What individual molecular markers (chloroplast and/or nuclear) 

can be used to distinguish Plumeria spp.? 

 

Research Question 3:  Does some combination of chloroplast and/or nuclear DNA 

markers better distinguish among taxa?  

 

Research Question 4:  Are these regions phylogenetically informative? 

 

Hypothesis: No single region will be sufficient to distinguish species, but rather it will 

require a combination of molecular regions. 

 

Methodology:  

1. DNA extraction kits will be used to extract genomic DNA (gDNA) from leaf 

samples of Plumeria accessions that were collected from the UH Waimanalo 

Research Station, National Tropical Botanical Garden—Allerton Garden, Florida 

Colors Nursery, Naples Botanical Garden, Miami USDA, and Fairchild Botanical 

Garden. 

 

2. For each accession (sample), nuclear ITS2, partial chloroplast matK gene, and 

intergenic spacer regions trnH-psbA, rpl32-trnL, and psbJ-petA will be amplified 

via polymerase chain reaction (PCR) with primers that have been optimized for 

each genetic region, and using established primers and thermocycler conditions 

from Shaw et al. (2005), Simões et al. (2007), and Selvaraj et al. (2015) to 

amplify these regions.  PCR products will be verified via gel electrophoresis prior 

to preparation for sequencing. 

 

3. Unincorporated dNTPs and primers will be removed from PCR products 

(amplicons) using ExoSap-IT (USB), and purified products will be used as 
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template for sequencing at The Advanced Studies in Genomics, Proteomics and 

Bioinformatics (ASGPB) lab on UH Manoa campus.  Both forward and reverse 

DNA strands of amplicons will be sequenced. 

 

4. Sequence traces will be checked for base call quality, edited manually as the 

need arises, and contigs assembled using Geneious Prime, v.1.1 (Kearse et al., 

2012).  Multiple alignments will also be done using Geneious.  Maximum 

Likelihood [ML] and Bayesian Inference [BI] Analyses will be carried out using 

RaxML and MrBayes, respectively, as implemented on the CIPRES Science 

Gateway (Miller et al., 2010; Ronquist et al., 2012; Stamatakis, 2014). 

 

5. Summary statistics for each region (total length in final alignments, nucleotide 

ranges and average PCR product lengths will be calculated as implemented in 

Geneious for each region.  Interspecific and intraspecific sequence divergences 

for each region will be calculated for each molecular region using MEGA X 

(Knyaz et al., 2018). 

 

6. Molecular regions will be analyzed separately and in combination (concatenated) 

with one another, if individual regions yield similar tree topologies.  Regions that 

do not yield similar tree topologies will not be concatenated. 

 

7. Results will be discussed on the efficacy of my proposed molecular regions to 

characterize relationships and identify species. 

 

 

Synthesis Question:  How well does the molecular data reflect the morphological data 

regarding the identification of Plumeria spp.? 
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CHAPTER 2 

USING DESCRIPTIVE MORPHOLOGY TO IDENTIFY PLUMERIA SPECIES  

IN LIVING COLLECTIONS 

ABSTRACT 

Species of the genus Plumeria in the plant family Apocynaceae are used for 

ornamental, cosmetic, and ethnomedicinal purposes.  However, only a few of the 

species, specifically P. rubra, P. obtusa, and their cultivated varieties, find their way into 

commercial purposes, while other potentially useful species remain untapped sources of 

horticultural, medicinal, and cosmetic value.  One of the major reasons for this is that 

there is much disagreement among collectors and taxonomists as to the number of 

recognized Plumeria species.  Thus, the number of species in the genus Plumeria 

remains unknown.  Moreover, numerous synonyms apply to taxa within this genus, 

many of them misused or unconfirmed.  Here, we evaluate whether a combination of 

descriptive morphological characters is good enough to identify groups of taxa as 

species within this genus.  Fifty-seven Plumeria specimens from a variety of available 

germplasm collections were scored for 43 qualitative morphological characters, 

including foliar, stem, and reproductive characters.  Principal component analysis (PCA) 

was used to determine informative characters that characterized a Plumeria species.  

PCA revealed that some specimens formed distinct clusters, suggesting that certain 

taxa should be recognized as legitimate species, and verified that descriptive 

morphological characters will suffice for eight out of the 11 Plumeria species and 

putative species examined.  However, not all taxa were identified by distinct clusters, 

especially those belonging to the P. obtusa complex, thus indicating that other 

characters are needed to sort these taxa.  Instead, the use of quantitative, reproductive, 

and anatomical characters is likely required for proper diagnosis.  In conclusion, the use 

of qualitative morphological characters has merit for identifying Plumeria species in 

most cases. 
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INTRODUCTION 

The family Apocynaceae is comprised of over 5,500 species within 410 genera 

(The Plant List, 2013).  Genera are grouped within one of five subfamilies, 25 tribes, 

and 49 subtribes (Endress et al., 2014). The family includes taxa that are mostly 

distributed throughout the tropics, but with a few from temperate regions (Endress and 

Bruyns, 2000; Sennblad and Bremer, 2002; Endress et al., 2007a).  All members from 

this family are potentially poisonous due to the presence of cardiac glycosides and 

various alkaloids (Judd et al., 2008).  However, many have medicinal uses, such as 

treating leukemia, hypertension, heart stimulation, and tranquilizers (Staples and 

Herbst, 2005; Judd et al., 2008).  Moreover, many members of this family are economic 

ornamentals, including Adenium (desert rose), Allamanda (trumpet vine), Asclepias 

(milkweed), Carrisa (Natal plum), Catharanthus (Madagascar periwinkle), Nerium 

(oleander), Vinca (periwinkle), and Plumeria (frangipani) (Judd et al., 2008).    

Named by Tourneforte in tribute to the botanist Charles Plumier (Woodson, 

1938a), the genus Plumeria Tourn. ex L. is comprised of culturally important taxa in 

many parts of the world (Seth, 2003).  It has become the city flower in Palermo (Italy) 

since its arrival in the early 1800s (Criley, 2009).  In tropical Asia and West Indies, 

plumerias find use as ornamentals for their color and fragrance, and also for offerings 

and religious purposes (Brussell, 2004; Staples and Herbst, 2005).  In Sri Lanka and 

India, plumerias are considered sacred and are planted near temples.  In other parts of 

the world, Plumeria has ethnobotanical uses to which various pharmacological and 

medicinal qualities have been ascribed (Rahman et al., 2014; Shinde et al., 2014).  

Decoctions of leaves, bark, and flowers are used to treat skin ailments, venereal 

disease, diarrhea, and are also used as a purgative (Brundu and Camarda, 2004; 

Brussell, 2004; Eggenberger and Eggenberger, 2005; Staples and Herbst, 2005; Gupta 

et al., 2006; Wu-Yang et al., 2007; Choudhary et al., 2014).  In the United States, 

plumerias are valued as ornamentals for landscaping and hobby collectors (Little, 2006; 

Criley, 2009), but are also utilized in perfumery (Knudsen et al., 2006; Tohar et al., 

2006; Joulain, 2008).  In Hawaii and Polynesia, plumerias commonly find use in 

landscaping, especially in xeriscapes, and are cultivated for lei making and hair 

adornments (Whistler, 1988; Criley, 1992; Wong, 2008).   
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As popular as this group of plants may be, only a few of the species find their 

way into commercial production.  The vast majority of plumeria cultivated varieties 

(cultivars) are hybrids that belong to two species, P. rubra and P. obtusa.  Plumeria 

rubra cultivars predominate over those of P. obtusa, since P. rubra appears to have the 

best source of genetic variation in petal number and purple, red, or pink petal colors on 

white or yellow backgrounds (Watson et al., 1965; Chinn and Criley, 1982).  However, 

many of these varieties are susceptible to scale insects, whiteflies, mealybugs, 

leafhoppers, Plumeria rust (Coleosporium plumeriae), and Plumeria stem borers 

(Lagocheirus undatus) (Criley, 2005; Hodel et al., 2017).  On the other hand, other 

Plumeria species (spp.) are gaining popularity and show great potential for use in 

breeding programs to generate cultivars with improved horticultural traits, including pest 

and disease resistance, evergreeness, dwarfing, interesting leaf shapes, early and late 

blooming, and different flower forms, fragrances, and colors (Woodson, 1938a; Watson 

et al., 1965; Chinn and Criley, 1982; Eggenberger and Eggenberger, 2005; Little, 2006).  

Furthermore, these species remain an untapped and potentially useful source of 

medicinal and cosmetic qualities.  Yet, one of the biggest questions about this genus 

that remains unanswered is: How many species of Plumeria are there? 

Plumeria Distribution and Taxonomy 

Plumeria are naturally distributed in southern Mexico, Central America, northern 

South America from Panama to southern Brazil, and the Greater and Lesser Antilles 

(West Indies), which includes The Bahamas, Jamaica, Cuba, Puerto Rico and Virgin 

Islands (Woodson and Seibert, 1938; Duke, 1965; Woodson et al., 1970; Haber, 1984; 

Sloan et al., 2007).  Taxa of this genus can be found growing in diverse habitats 

including topographically rugged terrain, dry coastal areas, rocky cliffs, dry hillsides, and 

moist coastal and limestone forests (Harshberger, 1903; Britton, 1915; Gleason and 

Killip, 1939; Seifriz, 1943; Duke, 1965; Sánchez-Sánchez and Islebe, 2002; Brussell, 

2004; Boal et al., 2006).   

However, Plumeria have been anthropogenically distributed to other tropical 

regions of the world, such as Polynesia, Australia, Malaysia, India, and Africa (Merrill, 

1937; Watson et al., 1965; Whistler, 1988; Seth, 2003; Brundu and Camarda, 2004).  

The fact that it is easily propagated by cuttings or seeds (Watson et al., 1965; Little, 
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2006) and produces fragrant and showy flowers (Woodson et al., 1970) nicely explain 

the wide dispersal and cultural adoption of these taxa in areas where they were 

introduced and cultivated. 

The genus Plumeria (syn. Plumiera, Plumieria) (The Missouri Botanical Garden, 

1938) belongs to the subfamily Rauvolfioideae of Apocynaceae (Britton, 1915; Simões 

et al., 2007), and are characterized by thick, succulent branchlets with pronounced leaf 

scars, spiral to alternate phyllotaxis, waxy and salverform or infundibuliform corollas 

with narrow bases and sinistrorse aestivation, stamens deeply included and adnate to 

the corolla tube, subinferior ovaries that are bicarpellate and apocarpous, bifollicular 

dehiscent fruit that are basally united, and basally winged seeds with a thin endosperm 

(Woodson, 1938a; Woodson et al., 1970; Leeuwenberg, 1994).   

According to The Plant List (2013), the genus is currently comprised of 12 

species.  However, various Plumeria spp. Have also been described from expeditions 

throughout the Antilles (West Indies) and Central America (Britton, 1910; Johnston, 

1912; Britton, 1915; Britton and Millspaugh, 1920; Hollick, 1922; Britton, 1923; 

Woodson, 1938a; Woodson et al., 1970; Williams, 1996; Acevedo-Rodríguez and 

Strong, 2012).  In addition, there are disparities among authors regarding legitimacy of 

described species. For instance, Goaverts et al. (2003) do not recognize Plumeria 

clusioides Griseb. as a legitimate species, whereas Acevedo-Rodríguez and Strong 

(2012) do.  In fact, one can find many examples of such disparities by simply comparing 

the species recognized within these two sources.  Yet, many more discordances exist 

within the Plumeria literature, especially in the treatment of synonymous names for 

Plumeria spp.  Furthermore, numerous appellations have been applied to taxa within 

this genus, many of which are misused or unconfirmed among collectors (Criley, 2009), 

thereby exacerbating the problem of species nomenclature within this genus.  Clarifying 

such disparities have become the motivating force for this present study.    

The only formal taxonomic treatment of the genus comes from Robert Woodson, 

Jr. (1938a), according to his survey of exsiccatae (herbarium specimens) from 

American and European herbaria.  Woodson recognized seven species and several 

botanical varieties, primarily sorting species on floral shape, and secondarily on leaf 

characters.  Prior to Woodson’s work, various species had been described (Britton, 
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1910; Johnston, 1912; Britton, 1915; Britton and Millspaugh, 1920; Hollick, 1922; 

Britton, 1923), mostly based on leaf characters.  Woodson (1938a), however, attempted 

to synthesize these previously described taxa, recognizing seven Plumeria spp.  As a 

result of this “lumping,” many previously described species (i.e. P. bahamensis, P. 

clusioides, P. cubensis) fell under one of two varieties of P. obtusa—var. typica or var. 

sericifolia.  Woodson also acknowledged the difficulty of separating taxa of the P. 

obtusa L. complex (Obtusa complex), stating that the variability of P. obtusa specimens 

from numerous collections renders the use of leaf characters imperfect.  Additionally, he 

included other morphologically distinct taxa like P. caracasana, P. stenophylla, and P. 

stenopetala within P. pudica, P. filifolia, and P. rubra x P. subsessilis, respectively.  The 

limitation to Woodson’s work was that he was not able to view live specimens, which 

can have a dramatically different appearance as compared to their pressed and dried 

counterparts in herbaria. 

The Search for Persistent Morphological Characters 

Currently, the use of DNA polymorphism is the preferred tool of choice to delimit 

species (Kress et al., 2005; Shaw et al., 2005; Shaw et al., 2007; Steele and Pires, 

2011; Shaw et al., 2014).  However, finding useful DNA sequences can be expensive 

and time-consuming as different molecular regions are only effective at delimiting 

species in certain genera and plant families (Shaw et al., 2005; Shaw et al., 2007; Judd 

et al., 2008; Calonje et al., 2009; Pang et al., 2012; Shaw et al., 2014).  Instead, the use 

of morphological characters to identify species can provide a more affordable option, 

especially in the era of digitized herbarium collections, and still has proven its utility in 

delimiting species relationships in a number of taxonomically distinct genera and 

families (Allred and Gould, 1983; García-Lara et al., 2015; da Silva, 2017).   

Flowering of Plumeria is seasonal (Murashige, 1966; Lawton and Akpan, 1968; 

Sloan et al., 2007), and in my observations many of the live specimens examined 

produced leaves prior to flowering.  This inhibits the use of floral characters for 

diagnosing species when specimens are collected out of season.  Furthermore, floral 

descriptions in the literature (Britton, 1910; Johnston, 1912; Britton, 1915; Britton and 

Millspaugh, 1920; Hollick, 1922; Britton, 1923; Woodson, 1938a; Woodson et al., 1970), 

when they can be found, can be variable even for one species, and flowers may look 
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quite different as compared to their descriptions when examining live specimens.  

Clearly, there is a need for finding other characters that persist when flowers are not 

present, even in exsiccatae.  Moreover, some morphological characters, such as 

midvein pubescence and leaf margin color, may have been overlooked or ignored by 

earlier taxonomists studying this genus.  Hence, we examined the utility of leaf 

characters as an aid to identifying taxa in this genus.     

Therefore, the objective of this study is to evaluate vegetative morphological 

characters for their effectiveness in identifying Plumeria taxa.  The question we aim to 

answer is: What vegetative morphological characters can be used to distinguish 

Plumeria species?  The expectation is that no single character will be enough to 

distinguish species, but rather it will require a combination of characters.  The over-

arching goal of this study is to find descriptive morphological characters that are easy to 

score, which can then be incorporated into an existing dichotomous key (Woodson, 

1938a) to expedite identification of Plumeria species.  To my knowledge, this is the 

most recent investigation since Woodson that evaluates descriptive morphology specific 

to the genus Plumeria. 

MATERIALS AND METHODS 

Taxon sampling 

Fifty-seven accessions, representing species and botanical varieties considered 

in Woodson’s (1938) manuscript, were collected from Plumeria collections at Florida 

Colors Nursery, Fairchild Tropical Botanic Garden (Florida), Naples Botanical Garden 

(Florida), McBryde Garden (Kaua’i), and University of Hawaii’s Waimanalo Research 

Station (O’ahu).  Accession data can be found in Appendix A.  Provenance data indicate 

that most of the specimens were originally collected from the wild in Central America 

and the Antilles.  Since many of the specimens in these collections were small, either 

because of recent plantings or because conditions were not fit for collecting whole 

branches, a minimally destructive sampling procedure was used in which only leaves 

were harvested for subsequent morphological analyses.  In addition, close-up pictures 

were taken of leaves, branches, and trunks to analyze the presence or absence of 
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certain characters, such as tubercles on branches and trunks, which are difficult 

to score when taken at a distance.  

Each taxon was scored for 43 qualitative morphological characters having binary 

character states based on presence or absence of the character.  These characters are 

defined in Appendix B, and are based in part on characters that have been previously 

used to differentiate or describe species of Plumeria (Britton, 1910, 1915; Britton and 

Millspaugh, 1920; Hollick, 1922; Britton, 1923; Woodson, 1938a).  To define characters, 

the morphological character descriptions of Harris and Harris (2011) and Staples and 

Herbst (2005) were used.  The morphological matrix included leaf characters (shape, 

apex, base, margin, surface, and venation) in addition to trunk, growth, and reproductive 

characters.  Binary characters and presence/absence character states were used for 

easier interpretation of results.  In some instances, certain leaf character states were 

difficult to score immediately (i.e. venation, leaf bases, etc.), due to variability in such 

character states on a leaf or plant.  In these cases, the more prevalent character state 

was selected after close examination among many leaves of a given plant from images.  

After constructing the morphological matrix, the entire matrix was scanned by eye to 

eliminate any invariant morphological characters.  That is, any character which all taxa 

had in common or lacked were deleted from the data set as these characters were 

deemed uninformative. 

Principal Component Analyses 

Principal component analysis (PCA) on morphological data sets, used here, has 

been employed in other studies to characterize the taxonomic status of species in such 

plant families as Arecaceae, Fabaceae, Oleaceae, Passifloraceae, and Poaceae 

(Henderson, 2006; Jin-Yong et al., 2009; Marr et al., 2011; Nagahama et al., 2014; 

Robbiati et al., 2014; García-Lara et al., 2015; Espinoza et al., 2018).  PCA is a 

multivariate statistical technique that aids in data reduction, allowing for the use of only 

a few principal components (PCs) to explain variation in a data set (Mead et al., 2003).  

However, PCA can also be used to identify variables that contribute little information to 

underlying relationships (Iezzoni and Pritts, 1991).  Such characters can be omitted, 

yielding a more refined data set and more meaningful results.  The data matrix 

consisting of 57 taxa and 43 morphological characters was subjected to multiple 
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iterations of PCA using R Software Version 1.1.456 (R Core Team, 2013) with the 

‘FactoMineR’ package (Le et al., 2008).  Data were also visualized using a combination 

of ‘factoextra’ and ‘ggplot2’ packages to aid in interpretation of results (Wickham, 2016; 

Kassambara and Mundt, 2017).   

Following the methods of Marr et al. (2011) and Viera Barreto et al. (2018), 

multiple rounds of PCA were employed, and the data set was refined after each 

iteration.  An initial round of PCA was conducted to determine the most informative 

morphological characters, resulting in a refined data set.  Thereafter, successive rounds 

of PCA were employed to identify taxa clusters, each of which were representative of a 

species.  

An initial round of PCA was done to identify morphological characters that were 

informative and those that could be dropped from further analyses (Iezzoni and Pritts, 

1991).  This was done by examining the loadings of characters on components and 

contributions to the construction of these components.  Furthermore, to interpret the 

value to each PC loading (PCL), contributions to PC1 and PC2 were visualized using 

the fviz_pca_var function as implemented in the ‘factoextra’ package.  

Since the first several principal components (PCs) usually explain the most 

variation in the data set (Iezzoni and Pritts, 1991; Mead et al., 2003), only the first three 

PCs were inspected after the initial PCA.  However, to do an initial reduction in the data 

set, only the top 20 contributions of characters to the construction of PC1 and PC2 were 

examined, all other characters were dropped from further analyses, resulting in a data 

set containing a reduced number of characters.   

Following the methods of Marr et al. (2011) and Viera Barreto et al. (2018), 

subsequent iterations of PCA was conducted on refined data sets.  After each iteration, 

individuals were plotted on the axes of the first two PCs according to their coordinates 

to identify clusters that were clearly separated from the remaining taxa.  Other PC 

dimensions up to PC4 were also explored to look for alternative clustering of taxa.  Taxa 

that grouped together and were distinct from other taxa in the plot were removed from 

subsequent PCA iterations.  By doing this, we hoped to enhance resolution of other 

species on the PCA plots.  In addition, if a single specimen’s position on the PCA plot 

differed greatly from others of the same species cluster, it was re-examined for errors in 
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scoring of morphological characters.  Prior to running subsequent iterations of PCA, the 

data set was sequentially refined to exclude taxa that formed distinct clusters, as 

mentioned above.  Morphological characters that were found only among those clusters 

of taxa were also removed, as were characters that were present or absent among all 

the remaining taxa in the data set.  A total of four rounds of PCA were carried out. 

Limitations 

 All samples were collected from specimens within botanical gardens, the 

Plumeria collection at the University of Hawaii Waimanalo Experiment Station, or from 

private collections.  So, there may be some concern that none of my specimens were 

collected from the wild.  However, at some point in time these specimens were still 

collected from the wild, including accessions at the Honolulu Botanical Garden and 

Waimea Arboretum, and their provenance is documented.  Moreover, particular 

accessions may no longer exist in the wild or are currently difficult to collect.  Another 

limitation with doing research on specimens collected from live collections in 

gardens/nurseries is that growth habit of such specimens may be different as compared 

to their native habitat, as cultivated specimens may have more optimum conditions in 

which to develop. 

RESULTS 

Iterative PCA: Step one 

Using PCA, informative morphological characters were identified and this 

confirmed the discrimination of 8 out of 11 Plumeria spp. featured in this study.  In 

comparison with the initial PCA, the inclusion of only the top 20 characters that were 

important to the construction of PCs 1 and 2 in successive rounds of PCA resulted in a 

refined data set of morphological characters and enhanced resolution of certain clusters 

of taxa.  Resolution of other species was further enhanced by successive removal of 

clusters of the more distinct species in successive rounds of PCA.   

After the initial round of PCA, approximately 14.5% of the variation in the data 

was explained by PC1, whereas 14.3% and 9.5% of the variation was explained by PC2 

and PC3, respectively.  These components also had relatively high eigenvalues of 6.24, 

6.14, and 4.10 for PC1, PC2, and PC3 (Table 2.1).  Since there was a marked decrease 
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in the amount of variation explained by PC3 in comparison to PC1 and PC2, only the 

first two components were reviewed for the characters that contributed to the 

construction of the respective PCs (Figs. 2.1 & 2.2).   A review of the top 20 contributing 

characters to the first two PCs showed that lanceolate, oblong, and elliptical leaf 

shapes, acute and mucronate leaf apices, equilateral leaf bases, and decurrent or direct  

secondary venation characters did not contribute significantly to the construction of 

these components (Table 2.1, Figs. 2.1 & 2.2) and were dropped from subsequent 

analyses. 

 

Table 2.1.  Summary of the first three principal components (PCs) and loadings 
(p<0.05) of characters that contributed to the construction of these three PCs in the 
preliminary PCA.  The primary variables on which taxa are separated on each 
component are in boldface.  “--” denotes that a variable did not contribute to the 
construction of the corresponding PC.  

 PC 1 PC 2 PC 3 

Eigenvalue: 6.24 6.14 4.10 

Variation explained (%): 14.50 14.27 9.53 

Characters    
Glabrous_or_CoriaceousAB 0.69 0.48 -- 

Sunken_or_RaisedABv 0.69 -0.65 0.31 

Connivent 0.65 -0.43 -- 

Tomentose_Midvein 0.64 -0.52 0.49 

Puckering 0.49 0.32 -- 

Mucronulate 0.45 0.39 -- 

Oblique 0.41 -- -- 

Recurved_Lf 0.39 -0.29 0.39 

Revolute_Margin 0.34 0.34 -- 

Glabrous_or_ScabrousAD 0.32 -- -- 

Follicle_Occurrence 0.31 -- -0.69 

Retuse 0.30 0.29 -- 

Prominent_MargVein 0.29 0.27 -- 

Emarginate 0.27 -- -- 

Tubercles_Trunk 0.26 0.28 -- 

Opposite_or_AlternateSV -0.33 -0.35 -- 

Cuneate -0.35 0.47 0.40 

Spatulate -0.36 -- -- 

Obtuse -0.46 0.40 -- 

Flat_Orientation -0.60 0.47 -- 
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Table 2.1.  (Continued) Summary of the first three principal components (PCs)  
 

 PC 1 PC 2 PC 3 

Characters    
Sunken_or_RaisedAD -0.65 0.52 -- 

InconspicuousABv -0.66 0.43 -- 

Pink_Midvein -0.67 0.48 0.45 

Pink_Margin -0.67 0.48 0.45 

Angular_or_PerpendicularSV -- 0.66 -- 

Leaf_Attachment -- 0.54 -0.69 

Leaf_Margin -- 0.45 -0.35 

Tubercles_Branch -- 0.44 -- 

Obelliptic -- 0.43 -- 

Recurved_Margin -- 0.29 -0.33 

Growth_Habit -- -0.53 0.54 

Cordate_Acuminate -- -0.53 0.54 

Acuminate -- -0.53 -- 

Oblanceolate -- -0.54 -0.47 

Attenuate -- -0.61 -0.50 

Conduplicate_Ptyxis -- -0.83 -- 

Lanceolate -- -- 0.42 

Mucronate -- -- -0.44 
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Figure 2.1.  First iteration PCA: Top 20 variables that contributed to the construction of PC1.  The red dashed line 
on the graphs above indicate the expected average contribution of variables to the construction of the components.  
Variables with a contribution larger than this cutoff are considered as important in contributing to the components. 

Top 20 Variable Contributions to PC1 
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Figure 2.2.  First iteration PCA: Top 20 variables that contributed to the construction of PC2.  The red dashed line on the 
graphs above indicate the expected average contribution of variables to the construction of the components.  Variables 
with a contribution larger than this cutoff are considered as important in contributing to the components. 

Top 20 Variable Contributions to PC2 
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Iterative PCA: Step two 

 A second round of PCA was carried out on the refined data set containing 36 

morphological characters to identify taxa that formed separate and distinct clusters from 

other samples.  The first component accounted for 17.1% of the variation (see above for 

list of component characters), whereas 16.4% and 10.3% of the variation was 

accounted for by components two and three, respectively.  Taxa were predominantly 

separated on PC1 according to characters for connivent leaf bases, inconspicuous 

abaxial venation, flat leaf orientation, sunken or raised abaxial venation, pink leaf 

margins and midveins, and sunken or raised adaxial venation, whereas conduplicate 

leaf ptyxis, glabrous or coriaceous abaxial leaf surfaces, angular or perpendicular 

secondary venation, and leaf attachment characterized PC2 (Fig. 2.3A).   

Biplots containing individuals and morphological characters were constructed 

using the first two PCs according to their coordinates, and distinct clusters of P. 

clusioides and P. pudica were identified (Fig. 2.3B).  Clu_FCN, Clu_WES, and 

Clu_NBG are representative of P. clusioides.  These specimens formed the most 

distinctive cluster and shared the same data points, indicating homogeneity of 

morphological characters for the species.  Specifically, these taxa possessed 

inconspicuous abaxial venation, flat leaf orientation, pink midveins and margins, raised 

adaxial secondary venation, obtuse leaf tips, and cuneate leaf bases.   

Representatives of P. pudica (Pud_NBG, Pud_CG NBG, and Pud_WESa & b) 

also formed a cluster of individuals (Fig. 2.3B).  Like P. clusioides, these taxa also 

shared a common point, indicating the stability of the morphological characters that 

unite them.  These were clustered on the combination of characters most closely 

associated with PC2, namely conduplicate leaf ptyxis, angular secondary venation, 

cordate-acuminate leaf apices, subsessile leaf attachment, and columnar growth habit.   

Since these taxa formed distinct clusters from others, these were removed from 

the data set prior to running a third iteration of PCA.  Columnar growth habit and 

cordate-acuminate leaf apices were only unique to P. pudica.  Therefore, these 

characters were also removed prior to a third iteration of PCA. 
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Figure 2.3.  Second iteration PCA.  A: Factor map showing the top 20 characters that contributed to the construction 
of PC1 and PC2.  Proximity of arrow points to the perimeter of the circle indicate the strength of correlation and colors 
represent the importance of each character to the construction of PC1 and PC2.  B: Biplot of individuals and 
associated variables of PC1 and PC2.  Taxa represent 11 putative Plumeria species, with only P. clusioides (Clu) and 
P. pudica (Pud) colorized to highlight placement of these taxa into distinct clusters.   
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Iterative PCA: Step three 

 The third iteration of PCA contained 34 characters and 50 taxa.  In the third 

iteration of PCA, the first two PCs explained approximately 31% of the total variation 

(PC1, 17.1%; PC2 13.6%).  However, examination into PC3 and PC4, which 

respectively accounted for 10.8% and 8.2% of variation, allowed for the identification of 

another distinct cluster of taxa.  Conduplicate ptyxis, glabrous or coriaceous abaxial 

surfaces, oblanceolate leaf shape, and angular or perpendicular secondary venation 

characters were more strongly associated with PC1.  Tomentose midvein, pink margin 

and midvein, sunken or raised abaxial venation, leaf attachment and follicle occurrence 

were more strongly associated with PC2.    

Taxa were plotted according to their coordinates for the first two PCs (Fig. 2.4A).  

The taxa Sub_FCBGa, Sub_NBG, and Sub_WES represent P. subsessilis.  Apart from 

Sub_WES, these taxa shared a similar morphology as indicated by a single shared 

point.  These taxa possessed pink margin and midvein, subsessile leaf attachment, 

conduplicate leaf ptyxis, and acuminate leaf apex characters.  Sub_WES, on the other 

hand, lacked these four characters.  Moreover, it clustered with other P. obtusa taxa, 

which suggests that this specimen is not a P. subsessilis but could be a member of P. 

obtusa.  Prior to its placement in the Waimanalo Experiment Station, this specimen was 

accessioned in Nong Nooch Tropical Botanical Garden as P. subsessilis, but further 

collection data is missing.  Therefore, this specimen should be re-examined for potential 

reclassification as a P. obtusa or at least a member of the P. obtusa complex.   

Taxa of P. stenophylla (Sph_WESa,b,c) also formed a distinct cluster (Fig. 2.4A).  

These taxa were united by such characters as oblanceolate leaf shape, attenuate leaf 

bases, sunken abaxial venation, lack of tomentose midveins, and glabrous abaxial 

surfaces.  Although the character for mucronate leaf apex does not appear in the PCA, 

these accessions are the only taxa in the data set that possessed this character.   

Observations into PC3 and PC4 showed a cluster of P. alba (Fig. 2.4 B).  P. alba 

taxa (Alb_NBGa, Alb_WESa & b) were united by characters for recurved leaves, 

puckering of the laminal surface, oblique leaf bases, and revolute leaf margins.  These 

taxa, too, share common coordinates thus indicating homogeneity in characters of 

which they share.  One accession of P. obtusa (Obt_PR_NBG) clustered closely with P. 
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alba taxa due to the characters that they share (i.e., puckering, oblique leaf bases, 

recurved leaves, and revolute leaf margins).  However, this clustering only occurred 

when analyzing PC3 and PC4.       

Prior to a fourth iteration of PCA, these taxa were removed from the data set.  

The characters for pink midvein, pink margin, leaf attachment, and sunken or raised 

adaxial secondary venation were also removed since these were not found in the 

remaining taxa.  The final data set for the fourth iteration of PCA contained 41 taxa and 

30 morphological variables.  
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Figure 2.4.  Third iteration PCA.  A: Biplot of individuals and characters associated with PC1 and PC2.  Taxa of P. 
stenophylla (Sph) and P. subsessilis (Sub) are colorized to highlight placement of these taxa into clusters.  B: Biplot of 
individuals and characters associated with PC3 and PC4.  Taxa of P. alba (Alb) colorized to show their placement. 
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Iterative PCA: Step four 

PC1 explained 17.9% of the variation, whereas roughly 14.6% of the variation 

was explained by PC2.  Taxa were primarily sorted on PC1 based on glabrous or 

coriaceous abaxial surface, acuminate leaf tips, conduplicate ptyxis, and oblanceolate 

leaf shape.  On PC2, taxa were sorted primarily on presence or absence of 

inconspicuous abaxial venation, sunken or raised abaxial venation, and presence or 

absence of tomentose midveins.   

Accessions of P. caracasana, P. stenopetala, and P. rubra formed a complex 

cluster based on the shared presence of conduplicate ptyxis, oblanceolate leaf shape, 

and acuminate leaf apices (Fig. 2.5).  However, this complex cluster could be further 

subdivided into smaller clusters consisting of P. caracasana, P. rubra, and P. 

stenopetala.   

Aside from the presence of oblanceolate leaf shape, acuminate leaf apex, 

attenuate leaf bases, and conduplicate leaf ptyxis, specimens of P. caracasana 

(Car_NBGa, Car_WESa, and MB06) could be further distinguished by the presence of 

recurved leaves and undulate leaf margins (Fig. 2.5, see also Appendix A).  MB06 and 

Car_WESa share the same point, indicating that both taxa share the same 

morphological features.  Car_NBGa differs slightly from the other two taxa in that it 

appeared to have noticeable tubercles developing on branches.  The other two 

specimens that were observed did not appear to have tubercles developing on 

branches.  In addition, MB06 was an accession from the Allerton Garden (National 

Tropical Botanical Garden, Kaua’i Island, Hawaii), and was previously identified as P. 

pudica.  However, it did not demonstrate the columnar growth that is typical of P. 

pudica, nor did it have the subsessile petioles that taxa of P. pudica possess.  Thus, this 

specimen was included to verify its designation as a P. caracasana, which is reflected in 

its clustering with the other taxa of P. caracasana. 

P. rubra clusters (Ped_WES, Rub_Cel_WES, and Rub_Die_FCBG) are also 

grouped on acuminate leaf tip, conduplicate leaf ptyxis, and oblanceolate leaf shape 

characters (Fig. 2.5).  However, their distinguishing features are entire leaf margins and 

absence of tomentose midribs.  There is some dispersion among the clusters due to  
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Figure 2.5.  Fourth iteration PCA.  A biplot of individuals and variables associated with PC1 and PC2.  Taxa of P. 
caracasana (Car), P. rubra (Rub & Ped), and P. stenopetala (Ste) are colorized to highlight placement of these taxa into 
clusters. 
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differences in angular or perpendicular secondary venation and follicle occurrence 

characters among the three accessions.   

Not all taxa of P. stenopetala (Ste_WESa,b,c,d, Ste_NBG, and Ste_Dol_NBG) 

formed a distinct cluster, as evidenced by their dispersion along the negative axis of 

PC1 but tended to cluster near one another (Fig. 2.5).  Aside from the presence of 

oblanceolate leaf shape, acuminate leaf apex, conduplicate leaf ptyxis, and attenuate 

leaf bases, these taxa also possessed tomentose midveins and mucronulate leaf 

apices.  However, due to variability in leaf apex characters, leaf bases, leaf margins, 

abaxial surface, secondary venation, tubercles, and follicle production, the clustering 

among these taxa were more dispersed (see Appendix A). 

The remaining samples represent members of the P. obtusa complex (Fig. 2.5).  

Taxa of P. bahamensis (Bah), P. cubensis (Cub), P. obtusa (Obt), P. obtusa var. obtusa 

(OVO), P. obtusa var. sericifolia (OVS) do not show any noticeable clustering, even 

when other PCs were explored.  Their dispersion among PC1 and PC2 alone is 

indicative of the morphological variability both between and within these named species.  

They are simply too morphologically variable, given the current set of characters 

analyzed. 

 

DISCUSSION 

The over-arching goal of this study was to identify descriptive morphological 

characters that were easy to score, which could then be used to update an existing 

dichotomous key to expedite on-site identification of Plumeria species.  To my 

knowledge, this was the first investigation since Woodson (1938a) to evaluate 

descriptive morphology with a specific focus on this genus.  The objective was to 

determine combinations of morphological characters that would aid in identifying 

Plumeria taxa.  The distinguishing characters and their relevance to prior classification 

for the species identified in this study are discussed below for each taxon.  

 
P. clusioides Griseb. 

Woodson (1938a) subsumed this species under P. obtusa var. typica, and 

Govaerts et al. (2003) also regard this as a synonym of P. obtusa.  Although both 
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species are naturally found in Cuba (Britton, 1915; Leon and Alain, 1957), individuals 

identified as P. clusioides were clearly distinguishable from other P. obtusa taxa in this 

study (Fig. 2.3 B).  In contrast to Woodson (1938a) and Govaerts et al. (2003), Britton 

(1915) recognized P. clusioides as a distinct species and described it has having short 

petioles, glabrous leaves, obovate or oblanceolate leaf shape, and obscure lateral 

venation, which is in agreement with the findings of this study.  

Characters such as inconspicuous abaxial venation, flat leaf orientation, raised 

adaxial secondary venation, obtuse leaf tips, cuneate leaf bases, and pink leaf margins 

and midveins are useful in distinguishing taxa of P. clusioides (Fig. 2.6 A-C).  Pink 

midveins and accompanied pink leaf margins are one of the most diagnostic features of 

live specimens of P. clusioides, and these characters are most noticeable in newly 

developing leaves.   

 
P. stenophylla Urb. 

Taxa of P. stenophylla can be identified by the presence of oblanceolate leaf 

shape, attenuate leaf bases, sunken abaxial venation, lack of tomentose midveins, and 

glabrous abaxial surfaces (Fig. 2.6 D-F), which has been confirmed via PCA analysis.  

In addition, mucronate leaf apices and frequently produced follicles can also distinguish 

P. stenophylla (Appendix A).  Alain and Leon (1957) describe leaves of this particular 

species as having lanceolate-linear to sublinear shape, acuminate apices, attenuate leaf 

bases, and ascending secondary venation.  A similar description of this species is 

provided by Urban (1924).  However, P. stenophylla was considered to be a synonym of 

P. filifolia Griseb. by Woodson (1938a), Govaerts et al. (2003), and Acevedo-Rodríguez 

and Strong (2012).  In addition, the latter authors did not consider the distinct filiform 

leaves of P. filifolia, which P. stenophylla clearly lacks as well as other details that are 

distinct in the morphologies of the two species when both live specimens and 

exsiccatae are considered.  In lieu of the fact that both species are naturally distributed 

in Cuba (Urban, 1924) and can look morphologically similar, it seems reasonable that 

botanists would regard both species as synonymous.  However, P. stenophylla  should 

be recognized as a species on the basis of characters that place accessions of this 

species into its own cluster in the PCA, although additional work will be needed to 
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assess characters that distinguish it from P. filifolia as direct comparisons could not be 

made in this study. 

 
P. subsessilis A. DC. 

This species is endemic to Hispaniola, present-day Haiti and Dominican Republic 

(Woodson, 1938b; Moscoso, 1943), is clearly distinguishable from most other species in 

this study, and is also recognized as a legitimate species (Govaerts et al., 2003; 

Acevedo-Rodríguez and Strong, 2012).  PCA analyses showed that P. subsessilis is 

characterized by acuminate leaf apices, pink midveins and margins, conduplicate leaf 

ptyxis, and subsessile leaf attachment (Fig. 2.4 A).  In addition, although loadings for 

decurrent secondary venation was not highly correlated with the first two PCs, this 

additional feature can be used to identify P. subsessilis.  In live specimens, these 

characters are noticeable, whereas pink midveins and pink margins are more prominent 

on younger foliage (Fig. 2.6 G-J).  In his recognition of this species, Woodson (1938a; 

1938b) also noted the presence of subsessile petioles, secondary venation entering the 

midrib at decurrent angles, and pronounced venation on both leaf surfaces.  Similar 

foliar descriptions are also given by De Candolle (1844).  Hence, a combination of these 

characters is sufficient to identify specimens of P. subsessilis.   
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Figure 2.6.  Morphological characters that distinguish P. clusioides, P. stenophylla, and 
P. subsessilis.  A: Flat leaf deflection and raised adaxial secondary venation of P. 
clusioides.  B: Adaxial surface of a young P. clusioides leaf showing pink midveins, 
obtuse leaf tip, and cuneate leaf bases.  C: Inconspicuous abaxial venation of a  
P. clusioides leaf.  D: Oblanceolate leaf shape with attenuate leaf bases of  
P. stenophylla.  E: Glabrous abaxial leaf surface, mucronate leaf tip and sunken abaxial 
venation of P. stenophylla.  F:  Adaxial surface of a P. stenophylla leaf showing 
alternate secondary venation.  G: Acuminate leaf apex and pink leaf margins of  
P. subsessilis.  H: Abaxial leaf surface of P. subsessilis, showing a pink midvein.   
I: Adaxial view of P. subsessilis showing secondary venation entering the midrib at 
decurrent angles.  J: Subsessile leaf attachment of P. subsessilis.  Photos by Kauahi 
Perez. 
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P. pudica Jacq. 

This species is recognized by Jacquin (1763), Woodson (1938a), Gleason and 

Killip (1939), Govaerts et al. (2003), and Acevedo-Rodríguez and Strong (2012), and is 

naturally distributed from Panama to northern Venezuela and extends as far as 

Martinique in the Lesser Antilles (Woodson, 1938a; Govaerts et al., 2003).  Jacquin 

(1763) first described this species in Curaçao, making note of its erect growth habit, 

which is referred to as “columnar” in this chapter.  Woodson (1938b) described this 

species as having scarcely manifested (subsessile) petioles, cochleate or pandurate 

leaf shape, obtuse to shortly acuminate leaf apices, cuneate bases, glabrous adaxial 

surfaces, and pilose to glabrate abaxial leaf surfaces.  My observations of these 

characters are similar (see Appendix A).  PCA showed that conduplicate ptyxis, 

cordate-acuminate leaf apices, columnar growth habit, angular secondary venation, and 

subsessile leaf attachment provided distinguishable characters that identify specimens 

of P. pudica (Fig. 2.5).  These features were easily scoreable in live specimens that 

were assessed (Fig. 2.7 A-D).  During personal observations, many live specimens of P. 

pudica also possessed a distinctive leaf shape.  The  overall leaf shape is referred to as 

spatulate, but Woodson (1938b) described the leaf shape as cochleate or pandurate.  

Thus, pandurate leaf shape should be the preferred leaf shape descriptor of this species 

since it is more accurate.  Included as part of the overall pandurate leaf shape is a 

distinctive leaf apex that is referred to as cordate-acuminate (heart-shaped) leaf tip.  In 

short, these findings agree with those of previous workers.   

 

P. caracasana J.R. Jhonst. 

Plumeria caracasana was first described in Johnston’s collections from La 

Guaira, Venezuela (Johnston, 1912).  Named as “Plumiera caracasana” in his 

description, Johnston described this taxon as having spatulate or oblanceolate leaf 

shape, acute or obtuse at the apex, glabrous above, either glabrous or pilose at the 

main veins below, and blades with entire margins.  Woodson (1938a) and Govaerts et 

al. (2003), however, considered this taxon as a synonym of P. pudica.  This is 

understandable as both species share similar morphological characters.  Even in review 

of online herbarium specimens, P. caracasana and P. pudica show a similar gross 
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morphology of leaves.  In this study, taxa of P. caracasana clustered close to those of 

P. pudica (Fig. 2.3 B), which indicated some degree of morphological similarity.  

However, P. caracasana remained distinct from P. pudica primarily based on 

oblanceolate leaf shape and acuminate leaf apices (Fig. 2.5).  Moreover, the live 

specimens examined typically had recurved leaves with undulate leaf margins and 

pronounced petioles, but lacked the columnar growth, pandurate leaf shape, and 

subsessile petioles that were diagnostic of P. pudica (Fig. 2.7 E-G).  Furthermore, P. 

caracasana readily sets seed in Hawaii’s environment whereas seed set is rare in P. 

pudica.  Based on these lines of evidence, it is suggested that the name P. caracasana 

be considered valid.   

 

P. alba L. 

Plumeria alba is naturally distributed from Puerto Rico to the Windward Islands of 

the Lesser Antilles (Govaerts et al., 2003; Acevedo-Rodríguez and Strong, 2012).  

Among all of the descriptions of this species, the lanceolate leaf shape and revolute leaf 

margins stand out (Linné and Salvius, 1753; Jacquin, 1763; Grisebach, 1864; Standley, 

1924; Stahl, 1937; Howard, 1989).  Woodson (1938a) and De Candolle (1844) also 

noted coriaceous abaxial leaf surfaces, and Stahl (1937) noticed the perpendicular 

secondary venation on the abaxial surface of leaves.  These easy-to-score characters 

were also apparent in P. alba accessions that were sampled (Fig. 2.7 H-K).  Results of 

PC3 and PC4 showed that P. alba is recognizable by recurved leaves, puckering of the 

laminal surface, oblique leaf bases, and revolute leaf margins (Fig. 2.4 B).  In addition, 

although clustering of these taxa was not distinct from other taxa that assembled on 

PC1 and PC2, taxa of P. alba also assembled on the characters for coriaceous abaxial 

leaf surfaces and perpendicular secondary venation (Fig. 2.4 A).  Thus, results of this 

study confirm that these morphological characters are useful for identifying live 

specimens of P. alba.   
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Figure 2.7.  Morphological characters that distinguish P. pudica, P. caracasana, and  
P. alba.  A: Columnar (erect) growth habit of P. pudica.  B: Cordate-acuminate leaf tips 
of P. pudica.  C: Conduplicate leaf ptyxis of P. pudica.  D: Pandurate leaf shape of  
P. pudica.  E: Recurved leaves, conduplicate ptyxis, and acuminate leaf apices of  
P. caracasana.  F: Oblanceolate leaf shape of P. caracasana.  G: Petiolate leaf 
attachment of P. caracasana.  H: Revolute leaf margins of P. alba.  I: Coriaceous 
abaxial leaf surface and perpendicular venation of P. alba.  J: Oblique leaf bases of  
P. alba.  K: Puckered laminar surface of P. alba (photo by R. Criley). Photos A-G, I by 
Kauahi Perez and H, K by Richard Criley. 
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P. rubra L. 

The natural distribution of P. rubra is from Mexico to Venezuela and the Greater 

Antilles (Liogier and Martorell, 1982; Govaerts et al., 2003).  This is the most highly 

cultivated species of the genus and is now found worldwide in tropical locations (Criley, 

2009; Acevedo-Rodríguez and Strong, 2012).  Numerous authors have provided 

descriptions of the leaves of P. rubra, many of which have little in common (Jacquin, 

1763; De Candolle, 1844; Grisebach et al., 1863; Britton and Millspaugh, 1920; 

Standley, 1924; Stahl, 1937; Woodson et al., 1970; Howard, 1989).  Due to the 

extensive variation found among these descriptions it has made it impossible to 

accurately identify this species based on leaf characters alone.  On the other hand, 

there is general agreement upon petiolate leaf attachment, glabrous adaxial and abaxial 

leaf surfaces, acuminate leaf apex, and attenuate leaf bases as defining characters, 

which agree with my own observations of live specimens of P. rubra (Fig. 2.8 A-E).  

PCA showed that P. rubra representatives formed a cluster based on acuminate leaf 

tips, conduplicate leaf ptyxis, oblanceolate leaf shape, and attenuate leaf bases (Fig. 

2.5).  Thus, findings of this study corroborate with previous descriptions of this species.   

P. stenopetala Urb. 

The original description of this taxon was based on a late 19th century collection 

from Haiti (Urban, 1902).  Urban (1902) provided the first Latin description of this 

species.  Leaves were described as having petiolate leaf attachment, oblong-elliptic to 

oblong-spatulate (oblanceolate) leaf shape, rounded (obtuse) to shortly acuminate leaf 

apices, acute leaf bases, lamina that is often folded longitudinally (conduplicate ptyxis), 

glabrous on the adaxial surface with fine pubescence on the abaxial surface.  The 

morphological leaf descriptors used in this study are similar, and these characters have 

been observed on live specimens of P. stenopetala as well as on dried specimens (Fig. 

2.8 F-I).  However, Woodson (1938a) regarded P. stenopetala as a potential hybrid 

between P. rubra and P. subsessilis, attributing anthropogenic influences as a source of 

hybridization between these two species.  Govaerts et al. (2003) and Acevedo-

Rodríguez and Strong (2012) also recognize this as a hybrid and regard the name 

Plumeria x stenopetala as acceptable.  Taxa of putative P. stenopetala in PCA analyses 

did not group together tightly in a distinct cluster but did group near one another (Fig. 
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2.5).  Clustering was based on the presence of oblanceolate leaf shape, acuminate leaf 

apex, conduplicate leaf ptyxis, and attenuate leaf bases, tomentose midveins, and 

mucronulate leaf apices. 

However, the extensive morphological variation in other characters provide a 

reasonable explanation for greater dispersion on the PCA plot than found in most other 

taxa.  It is interesting to note, though, that these taxa share morphological characters 

with both P. rubra and P. subsessilis, such as acuminate leaf apices and attenuated leaf 

bases (Appendix 2).  Furthermore, the fact that P. stenopetala taxa were positioned in 

between P. rubra and P. subsessilis in the third iteration of PCA (Fig. 2.5) could 

substantiate that P. stenopetala is indeed a hybrid.  On the other hand, the growth habit 

of P. stenopetala and branch thickness are quite distinct from P. rubra.  It is difficult to 

make a definitive statement as to the potential hybrid origin of this taxon at this time due 

to the variability shown in this study. 

   

Remaining Taxa of the P. obtusa Complex 

Numerous descriptions of P. obtusa (originally collected from the Antilles) can be 

found in the literature (Linné and Salvius, 1753; De Candolle, 1844; Grisebach et al., 

1863; Britton and Millspaugh, 1920; Stahl, 1937; Woodson, 1938b; Leon and Alain, 

1957).  Among these are multiple differing descriptions of leaf size, shape, and texture.  

These reflect what can easily be seen simply by looking at leaf shape alone, for 

instance, as leaves range from obovate or oblong-obovate to lanceolate or oblong-

oblanceolate (Fig. 2.9 A).  Along with P. obtusa, Britton and Millspaugh (1920) mention 

a species known as P. bahamensis, and describe it as having lanceolate or linear-

lanceolate leaf shape, glabrous with acute or acuminate leaf apices, attenuated bases, 

and lateral veins straight ascending.  Additionally, Urban (1925) recognized a species 

he called P. cubensis that shares many of the characters of both P. obtusa and P. 

bahamensis.  On the other hand, Woodson (1938a) recognized only two types of P. 

obtusa—var. typica and var. sericifolia—using abaxial pubescence as the defining 

character of taxa belonging to P. obtusa var. sericifolia.  Discounting the minor 

subtleties of leaf shapes, he placed eleven previously described species under P. 

obtusa var. sericifolia and subsumed over 20 previously described species under P. 
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obtusa var. typica, including P. bahamensis and P. cubensis.  Ironically, many of the P. 

bahamensis and some of the P. cubensis that were examined have pubescence on the 

lower leaf surface (Appendix A).   

Taxa of the P. obtusa complex, which included specimens of P. cubensis,  

P. bahamensis, P. obtusa and several named varieties of this species, were the 

most challenging specimens to analyze.  Even with refining the data set through 

multiple iterations of PCA, these taxa did not form any distinct clusters.  One reasonable 

explanation for this dispersion is the inherent morphological variation of individual 

specimens (Fig. 2.9 A-F).  For example, even among specimens of P. bahamensis 

there is noticeable variation in leaf, branch, and trunk characters (Appendix A).  When 

such variation was noticed on a specimen, multiple leaves were examined to determine 

the most common character states on each specimen.  Even with great effort, however, 

such variation made it difficult to score some specimens of this complex, which 

eventually made it difficult to verify species.  Given that these taxa fail to form distinct 

clusters indicates that a more intensive study is required to determine whether these are 

separate species or not.  Other growth habit characters, follicle size and shape, branch 

thickness, and flower size are all distinguishing characters that were not weighed in this 

determination.   

Further, there is some evidence that the P. obtusa commonly grown in Hawaii 

and across the Pacific may be a hybrid as the infrequent seedling offspring vary in leaf 

characters.  These P. obtusa differ in subtle ways from the Caribbean P. obtusa 

observed at NBG and FTBG collections.  Hence, it is difficult to determine whether P. 

cubensis, P. bahamensis, and P. obtusa are valid species because the current 

descriptive morphology used in this study, especially presence or absence states, is 

simply not enough.  
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Figure 2.8.  Morphological characters that distinguish P. rubra and P. stenopetala.   
A: Glabrous adaxial leaf surface and acuminate leaf tip of P. rubra.  B: Glabrous abaxial 
leaf surfaces of P. rubra.  C: Attenuate leaf base of P. rubra.  D: Conduplicate leaf ptyxis 
of P. rubra.  E: Oblanceolate leaf shape of P. rubra.  F: Oblanceolate leaf shape of  
P. stenopetala.  G: Acuminate leaf apex (abaxial view) of P. stenopetala.  H: Attenuate 
leaf bases of P. stenopetala.  I: Conduplicate leaf ptyxis of P. stenopetala.  Photos by 
Kauahi Perez. 
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Figure 2.9.  The diversity of morphological characters of taxa within the P. obtusa 
complex.  A: Marked differences in leaf shape.  B: Differences in leaf apices and 
surface textures.  C: Angled and perpendicular secondary venation.  D: Glabrous or 
coriaceous abaxial leaf surfaces.  E: Decurrent or direct secondary venation entering 
the midrib.  F: Specimens of P. obtusa showing trunks with and without tubercles.  
Photos by Kauahi Perez. 
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Utility and Limitations of Descriptive Foliar Characters 

 Overall, this study highlights the merits and limitations of using descriptive 

morphology to identify species of Plumeria.  While these  characters are not necessarily 

novel they do provide alternative means to evaluate vegetative characters as historically 

applied (Jacquin, 1763; De Candolle, 1844; Urban, 1898, 1902, 1920, 1924; Woodson, 

1938a; Woodson et al., 1970).  

Pink midveins and margins are novel characters included in this study as a result 

of including live specimens.  These two characters, used in combination with other 

morphological characters, can be used to visually identify species in the field.  Pink 

midveins and pink leaf margins, in addition to inconspicuous abaxial venation, flat leaf 

orientation, raised adaxial secondary venation, obtuse leaf tips, and cuneate leaf bases 

are characteristic features of P. clusioides.  On the other hand, pink midveins and leaf 

margins in combination with acuminate leaf apices, pink midveins and margins, 

conduplicate leaf ptyxis, and subsessile leaf attachment visually characterize P. 

subsessilis, and allowed for the detection of a possibly misidentified specimen (Fig. 2.4 

A). 

Columnar growth habit is a character that distinguishes P. pudica from other 

species as only P. pudica showed this character.  Given a complex of informative 

characters in analyses, P. pudica also remained separate from P. caracasana.  Thus, 

this provides evidence that P. caracasana should not be considered a synonym of P. 

pudica.  Instead, P. caracasana should be given its own status as a species.   

Other characters that are valuable in the overall identification of Plumeria spp. 

include leaf attachment (subsessile or petiolate) and inconspicuous abaxial venation.  

Subsessile leaf attachment is a character that can be used to distinguish P. pudica and 

P. subsessilis from other species of Plumeria.  Additionally, inconspicuous abaxial 

venation was a character that Grisebach et al. (1863) used to describe P. obtusa. 

However, this character is consistent in all specimens of P. clusioides that were 

observed, as well.  As inconspicuous venation is known to occur in other species of this 

genus (De Candolle, 1844; Grisebach et al., 1863; Leon and Alain, 1957), it is 

recommended to use this character as a supplement in combination with more robust 

characters that define P. clusioides.  
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 Other characters of use include sunken or raised secondary venation of both leaf 

surfaces.  On one hand, raised venation on the upper surface of leaves is only present 

on P. clusioides and P. stenophylla.  On the other hand, sunken venation was found on 

lower leaf surfaces of P. clusioides, P. stenophylla, and on some specimens of P. 

cubensis and P. obtusa.  Hence, sunken or raised secondary venation on leaf surfaces 

should be used in combination with other characters.  Similarly, decurrent secondary 

venation was used by Woodson to describe the way in which secondary venation 

entered the midrib in leaves of P. subsessilis and P. rubra.  This character is consistent 

for both species. However, this character was also occasionally observed in leaves of P. 

obtusa and P. stenopetala.  Thus, sunken or raised secondary venation can be used to 

identify taxa of P. subsessilis and P. rubra, but only in combination with other characters 

that are unique to either species.     

Of questionable utility in distinguishing species, however, are the angle of the 

secondary veins.  De Candolle (1844) and Urban (1898, 1925) report angles to describe 

the secondary venation in relation to the midveins, varying from acute to oblique.  

Perpendicular secondary venation was also noted in various descriptions of Plumeria 

(Grisebach, 1864; Britton, 1910, 1915; Britton and Millspaugh, 1920; Stahl, 1937).  This 

character is most prominent in P. alba, as verified in this study.  Beyond this one 

species, though, the reliability of either perpendicular or angled secondary venation is 

questionable because it is highly variable, especially when live specimens are 

examined.  

Leaf orientation was another character of limited value.  In live collections 

sampled, leaf orientation on some plants was planar—what is termed “flat leaf 

orientation” in this study.  On other plants, leaves were in an orientation such that the 

upper surfaces on a leaf were facing each other.  This character is known as 

conduplicate leaf ptyxis, and this was a novel character found in this study.  This 

character is stable in P. caracasana, P. pudica, P. stenopetala, P. stenophylla, P. 

subsessilis, and P. rubra, which suggests that it is useful in diagnosing live specimens 

of these species.  However, this was also found in live specimens of P. obtusa, which 

suggests that this is not a reliable character for diagnosing specimens of P. obtusa.     
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Presence of tubercles (cicatrices), formed from fallen leaves, was a character 

that De Candolle (1844) and Urban (1924) used to describe branches of various 

Plumeria specimens.  In my observations, however, the presence of tubercles on 

branches is not a reliable character as multiple species possessed this character and 

this character was sometimes difficult to score.  The occurrence of tubercles on the 

main trunk of certain accessions of P. obtusa was also noticed.  However, this character 

was also difficult to score due to variability in presence or absence of tubercles even 

among the same named accessions.  Therefore, it is not recommended to use either of 

these characters to diagnose live specimens. 

        Other characters that were also highly variable and difficult to reliably assess 

include leaf shape, leaf apices and bases, leaf margin characters, follicle occurrence, 

and arrangement of secondary venation along the midrib (alternate vs. opposite).  The 

variability of these characters is at the heart of conflicting descriptions of many botanists 

who have attempted to accurately describe the species within Plumeria (Linné and 

Salvius, 1753; Jacquin, 1763; De Candolle, 1844; Urban, 1902; Britton and Millspaugh, 

1920; Standley, 1924; Leon and Alain, 1957; Woodson et al., 1970).  

Prospects 

        Studies have shown that a combination of quantitative and qualitative 

measurements on both vegetative and reproductive traits have proven useful at 

answering taxonomic questions in various plant groups (Lens et al., 2008; Smitha et al., 

2018; Viera Barreto et al., 2018).  Other characters that have been used to evaluate 

taxa within Apocynaceae include exocarp color and number of seeds per follicle 

(Alvarado-Cárdenas, 2007), pubescence on petioles and inflorescences (Woodson, 

1938a), presence of extrafloral nectaries (Grisebach, 1864; Woodson and Moore, 

1938), and aestivation or contortion of floral buds (Endress et al., 2007b; Livshultz et al., 

2007).  In addition, studies have shown that a combined approach using morphological 

data and molecular data helped in resolving species relationships (Ronblom and 

Anderberg, 2002; Endress et al., 2007b; Simões et al., 2010; Pettengill and Neel, 2011; 

Steele and Pires, 2011).  Therefore, the inclusion of such characters and approaches to 

studies of Plumeria shows promise for verifying and delineating species boundaries. 
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CONCLUSION 

Although not all the taxa included in this study could be verified, based on 

descriptive morphology, it has been shown that it is possible to recognize most species 

based solely on a combination of descriptive morphological characters that I feel are 

diagnostic of these species.  Furthermore, though a sampling of species in this genus 

was not comprehensive, this study represents a modern study of the genus since its last 

taxonomic revision by Woodson.  More work is needed to reach a definitive answer of 

how many species of Plumeria exist in the world today. 

The hypothesis that a combination of characters is needed to distinguish a 

species has been verified, thereby substantiating the use of qualitative morphological 

characters for identifying distinct morphological species.  An additional data set using 

quantitative measurements, including image analyses, and molecular characters would 

make a nice accompaniment to this existing data set.  This would provide more 

evidence as to how the species boundaries of Plumeria are defined and enhance our 

understanding of this genus.   
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CHAPTER 3 

EVALUATING NUCLEAR AND PLASTID REGIONS  

TO DELIMIT PLUMERIA SPECIES 

ABSTRACT 

The genus Plumeria is comprised of taxa known for their cultural, ornamental, cosmetic, 

and ethnomedicinal uses.  However, disagreement among collectors and taxonomists 

over species designations, combined with lack of unambiguous morphological 

descriptors or molecular markers, has made it difficult to identify species.  Therefore, 

five molecular regions (ITS2, partial matK, psbJ-petA, trnH-psbA, and rpl32-trnL) were 

evaluated to determine their efficacy in identifying groups of taxa as true species within 

this genus.  Maximum likelihood (ML) and Bayesian inference (BI) methods were 

employed on separate and combined molecular data to determine the phylogenetic 

utility and species discriminatory abilities of these markers.  Molecular analyses 

revealed that rpl32-trnL provided the best phylogenetic signal and ability to discriminate 

species but was still not able to identify all the species that were tested.  In addition, the 

rpl32-trnL and trnH-psbA regions contained indels that were unique to different species, 

and suitable for distinguishing most Plumeria species.  Concatenating rpl32-trnL with 

ITS2, trnH-psbA, and psbJ-petA enhanced phylogenetic signal resulting in a well 

resolved tree topology.  Although some of the molecular regions can be used as 

markers to distinguish certain Plumeria species, no single marker can distinguish all 

species, and further study may reveal other molecular regions with greater resolving 

power for phylogenetic studies of this genus.  Furthermore, the use of quantitative 

morphological, reproductive, and perhaps anatomical characters will likely enhance 

proper diagnosis of species.  In conclusion, the molecular markers used in this study 

can identify the majority of distinct species. 
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INTRODUCTION 

The family Apocynaceae (dogbane family) is one of the largest angiosperm 

families and is comprised of over 5,500 species within 410 genera (The Plant List, 2013; 

Fishbein et al., 2018).  Genera are grouped within one of five subfamilies, 25 tribes, and 

49 subtribes (Endress et al., 2014). Most taxa within Apocynaceae are distributed 

throughout the tropics with a few found in temperate regions (Endress and Bruyns, 

2000; Sennblad and Bremer, 2002; Endress et al., 2007a).  Although members of this 

family produce poisonous cardiac glycosides and various alkaloids, many are used for 

medicinal purposes (Staples and Herbst, 2005; Judd et al., 2008).  Furthermore, many 

members of this family find use as widespread ornamentals, including Adenium (desert 

rose), Alyxia (maile), Asclepias (milkweed), Carissa (Natal plum), Nerium (oleander), 

Vinca (periwinkle), and Plumeria (frangipani) (Judd et al., 2008).    

The genus Plumeria (syn. Plumiera, Plumieria) (Woodson, 1938a) belongs to the 

subfamily Rauvolfioideae (Britton, 1915; Simões et al., 2007) and is comprised of taxa 

known for their cultural, ornamental, cosmetic, and ethnomedicinal uses.  They are 

morphologically distinguishable from other Rauvolfioids by thick, succulent branchlets 

with pronounced leaf scars, spiral to alternate phyllotaxis, waxy and salverform or 

infundibuliform corollas with narrow bases and sinistrorse aestivation, stamens deeply 

included and adnate to the corolla tube, subinferior ovaries that are bicarpellate and 

apocarpous, bifollicular dehiscent fruit that are basally united, and basally winged seeds 

with a thin endosperm (Woodson, 1938a; Woodson et al., 1970; Leeuwenberg, 1994).  

However, there is no accurate count of the number of species in this genus due to 

ambiguous species diagnoses and disagreement among specialists in the field. 

Although 12 species are currently recognized in the genus (The Plant List, 2013), 

disagreements exist among authors regarding legitimacy of these species (Table 3.1; 

see also Appendix F for additional references therein).  For instance, Acevedo-

Rodríguez and Strong (2012) recognize P. clusioides Griseb. as a legitimate species, 

whereas Govaerts et al. (2003) do not.  These disagreements are further compounded 

by the many disparities in species descriptions within numerous sources of literature, 

especially in the treatment of synonymous names for Plumeria spp. (Urban, 1898, 1902; 

Britton, 1910; Johnston, 1912; Britton, 1915; Britton and Millspaugh, 1920; Urban, 1920; 
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Hollick, 1922; Britton, 1923; Urban, 1924; Woodson, 1938a; Woodson et al., 1970; 

Williams, 1996), many of which are misused or unconfirmed among collectors (Criley, 

2009).  The poor state of knowledge of species delineations and a need for a clear 

taxonomy are the impetus for this study.   

To date the only taxonomic treatment of the genus comes from Woodson 

(1938a), and is based solely on his morphological analyses of exsiccatae from 

American and European herbaria.  Woodson recognized seven species and several 

botanical varieties, primarily based on floral shape and secondarily on leaf characters.  

He synthesized the prior work by Grisebach et al. (1863), Grisebach (1864, 1866), 

Urban (1898, 1902, 1920, 1924), Britton (1910, 1915, 1923), Britton and Millspaugh 

(1920), Johnston (1912), and Hollick (1922), in which numerous species were described 

primarily on the basis of leaf characters.  Many previously described species (i.e., P. 

bahamensis, P. clusioides, P. cubensis) were placed under one of two varieties of P. 

obtusa—var. typica or var. sericifolia.  Woodson’s justification for combining these 

previously described species into a “P. obtusa complex” was due to the difficulty of 

further separating these taxa from each other and the type species, arguing that even 

the morphological variability of specimens representing P. obtusa rendered the use of 

leaf characters alone as inadequate.  In addition, he sank other morphologically distinct 

taxa such as P. caracasana, P. stenophylla, and P. stenopetala within the species P. 

pudica, P. filifolia, and P. rubra x P. subsessilis, respectively.  A serious limitation of 

Woodson’s work was that he was not able to view live specimens which can take on a 

dramatically different appearance compared to counterparts in herbaria. 

 

The Search for Informative Molecular Characters 

Using morphological characters to identify Plumeria spp. is difficult as evidenced 

by the disagreements in prior treatments as described above.  This can be compounded 

by variability at the individual plant level due to a number of factors such as phenotypic 

plasticity, genetic variation, somatic mutations, and genotype-by-environment 

interactions (Schlichting, 1986).  Furthermore, seedlings of Plumeria spp. can be so 

morphologically variable that reliable species recognition is impossible.   
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Table 3.1. Taxonomic status and natural geographic distribution data of Plumeria taxa, as recognized by the World 
Checklist of Selected Plant Families (WCSP) and other sources of literature.  Column one is considered the synonym or 
the invalid name while the name in column three is the accepted name in the literature you surveyed (column four).   
   

Taxon Reference Accepted By Not Accepted By Natural Distribution 

P. pudica Jacq. 
Enum. Syst. Pl.: 
13 (1760) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

 Panama to N. Venezuela 

P. caracasana J.R. 
Johnst. 

Contr. U.S. Natl. 
Herb. 12: 108 
(1908) 

synonym of P. pudica. 
Woodson, R.E. (1938a) 
Govaerts, R. (2003) 

Venezuela (Caracas to La Guaira) 

P. alba L. 
Sp. Pl.: 209 
(1753) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

 Puerto Rico to Windward Is. 

P. obtusa L. 
Sp. Pl.: 210 
(1753) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

 Florida Keys, Caribbean, SE. 
Mexico to Guatemala 

P. bahamensis Urb. 
Symb. Antill. 1: 
387 (1899) 

synonym of P. obtusa. 
Woodson, R.E. (1938a) 
Govaerts, R. (2003) 

Bahamas Acklins Island 

P. clusioides Griseb. 
Cat. Pl. Cub.: 171 
(1866) 

Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 

Cuba 

P. cubensis Urb. 
Repert. Spec. 
Nov. Regni Veg. 
21: 2019 (1925) 

Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 

Cuba 

  



 

 

   

5
5

 

Table 3.1. (Continued) Taxonomic status and natural geographic distribution data among Plumeria taxa, as recognized by 
the World Checklist of Selected Plant Families (WCSP) and other sources of literature. 
 

Taxon Reference Accepted By Not Accepted By Natural Distribution 

P. ekmanii Urb. 
Symb. Antill. 9: 
239 (1924) 

Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 

Cuba 

P. filifolia Griseb. 
 Pl. Wright. 2: 519 
(1862) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

 E. Cuba 

P. montana Britton & 
P. Wilson 

Bull. Torrey Bot. 
Club 50: 46 (1923) 

Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 

Cuba 

P. rubra L. 
Sp. Pl.: 209 
(1753) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

 Mexico to Venezuela 

P. stenophylla Urb. 
Symb. Antill. 9: 
237 (1924) 

synonym of P. filifolia. 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

Cuban (Palmarito de Cauto) 

P. tuberculata G. 
Lodd. 

Bot. Cab. 7: t. 681 
(1823) 

Woodson, R.E. (1938a) 
Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

Govaerts, R. (2003) Bahamas to Hispaniola 

P. subsessilis A.DC. 
 Prodr. 8: 393 
(1844) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

 Hispaniola 

P. x stenopetala Urb.* 
(P. obtusa x P. 
subsessilis) 

 Symb. Antill. 3: 
335 (1902) 

Woodson, R.E. (1938a) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. & M.T. 
Strong (2012) 

 Hispaniola 

*Named as P. stenopetala in this study.
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Additionally, since many clones are relatively infertile when selfed or crossed in Hawaii, 

hybrids may be formed rendering species barriers unclear at best.   

While morphology is difficult to use in identifying Plumeria species molecular 

markers show promise and have been the popular tool of choice more recently for 

identifying plant species, characterizing germplasm, and answering various evolutionary 

and ecological questions (Meerow, 2005; Keeley et al., 2007; Korotkova et al., 2011; 

Cantley et al., 2014; Yang et al., 2019).  Such markers can also aid in the exchange of 

germplasm material at local, national, and international botanical gardens, 

authenticating specimens, identifying duplicates, and uncovering cryptic species (Ford-

Lloyd, 2001; Bickford et al., 2007).  However, identifying suitable molecular gene and 

non-coding regions is requisite before any of these applications can occur. 

Recent studies have shed light on the phylogenetic utility of different coding and 

noncoding chloroplast DNA (cpDNA) and nuclear DNA (nrDNA) regions at various 

taxonomic levels (Sennblad and Bremer, 1996; Shaw et al., 2005; Shaw et al., 2007; 

Simões et al., 2007; Fishbein et al., 2011; Qiu et al., 2013).  Chloroplast intergenic 

spacer regions, namely psbJ-petA and rpl32-trnL, consistently appear to have 

“potentially informative characters” that may be useful for low-level taxonomic studies 

(Shaw et al., 2007; Shaw et al., 2014).  The matK region has also proven useful at 

resolving phylogenetic relationships among various plant groups (Soltis et al., 2001; Hilu 

et al., 2003; Qiu et al., 2013), including within the Apocynaceae (Endress et al., 2007b; 

Livshultz et al., 2007; Simões et al., 2007).    

The most popular regions for distinguishing among taxa are rbcL, matK, and 

trnH-psbA of the chloroplast and the nuclear internal transcribed spacer (ITS) (Fišer 

Pečnikar and Buzan, 2014).  The matK region has received mixed reviews as a 

molecular marker to identify taxa within plant groups because it contains informative 

nucleotide regions in certain plant groups, but not in others (CBOL Plant Working 

Group, 2009; Wong et al., 2013; Ma et al., 2014; Hosein et al., 2017).  In Apocynaceae, 

Mahadani et al. (2013), Tripathi et al. (2013), and Cabelin and Alejandro (2016) 

reported that matK could discriminate among species, but Selvaraj et al. (2015) have 

found otherwise.   
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For some groups, on the other hand, trnH-psbA has been shown to have high 

discriminatory power (Tripathi et al., 2013; Wu et al., 2019; Yang et al., 2019), whereas 

studies in other angiosperm groups show that it does not (Kim et al., 1999; Selvaraj et 

al., 2015; Cabelin and Alejandro, 2016).  Of all the most commonly used regions the 

nuclear non-coding ITS region appears to be the most effective in identifying genera 

and species when used on its own and in conjunction with other molecular regions 

(Cheng et al., 2016; Liu et al., 2016; Wu et al., 2019).  Additionally, it was found that 

using only partial regions of the matK gene (Sivalingam et al., 2016) plus the ITS [ITS2] 

(Chen et al., 2010; Yao et al., 2010; Pang et al., 2012) allowed successful identification 

of a number of plant species.  Given the disparities in effectiveness among these 

regions, I chose to evaluate the following regions for their ability to distinguish Plumeria 

species and their utility in constructing a phylogeny: partial matK, intergenic spacer 

regions trnH-psbA, psbJ-petA, rpl32-trnL, and nuclear ITS2.  

There is a distinction between recognizing species by particular gene/spacer 

regions (commonly referred to as DNA barcoding) and phylogenetic analyses.  Whereas 

DNA barcoding aims to identify species using relatively short segments of DNA 

(Fazekas et al., 2012), phylogenetic analyses aim to understand and resolve 

evolutionary relationships between and among taxa at various taxonomic levels (Judd et 

al., 2008).  Korotkova et al. (2011) have shown that the ability of a marker to 

discriminate species does not necessarily correlate with phylogenetic utility.  

Conversely, although a molecular marker may not identify closely related species, it 

may still provide phylogenetic insight toward an understanding of Plumeria taxonomy.   

The taxonomic problem with distinguishing species in the genus Plumeria is two-

fold.  First, it is difficult to determine species boundaries based on morphology because 

of overlapping morphological character states and the differences inherent in the 

appearance of dried and fresh material of individual species (Fig. 3.1), and it is not clear 

how more recent taxonomists delineate these species.  Second, molecular 

characterization of Plumeria spp. is hampered by limited sampling of species and 

scarcity of comparable DNA sequences in public databases coupled with the fact that 

different DNA regions were surveyed. 
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3 cm 

Figure 3.1.  Leaf morphologies of Plumeria accessions from the University of Hawaii 
Waimanalo Research Station.  Accessions used in this study are indicated in boldface.  
Accession names and location (row number-plot number) are as follows:  Left column— 
P. stenophylla (1-28), P. bahamensis (1-17), P. alba (1-30), P. pudica (10-14),  
P. stenophylla ‘Cuba’ (1-26), P. caracasana (9-11), P. sp. ‘Isabella’ (1-21),  
P. stenophylla (1-27), P. bahamensis (10-21), P. cubensis (1-25).  Middle column— 
P. rubra ‘Pedasi’ (10-20), P. obtusa (1-11), P. sp. (1-16), P. obtusa (1-24), P. alba  
(1-1), P. obtusa (1-2), P. obtusa var. obtusa (1-5).  Right column— P. sp. (10-24),  
P. sp. seedling from Yucatan (1-19), P. obtusa (1-15), Narrow leaf P. sp. from Cuba (1-
20), P. stenopetala (1-10), P. stenopetala (1-9), P. stenopetala (1-8), P. stenopetala 
(1-7), P. stenophylla (1-22), P. montana (1-29).   
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This makes direct sequence comparisons among taxa virtually impossible (Table 3.2).  

Tripathi et al. (2013) reported similar limitations in that barcode loci for their taxonomic 

groups in India were poorly represented in popular databases, such as the Barcode of 

Life Database (BOLD) and National Center for Biotechnology Information (NCBI).  

Clearly, an enhanced sampling of taxa and use of the same molecular regions for 

comparisons will be necessary to elucidate species limits and phylogenetic relationships 

of members in Plumeria.  

 

Table 3.2.  Publicly available Plumeria sequences within BOLD and NCBI Databases 
(Ratnasingham and Hebert, 2007; Benson et al., 2016).  
 

Database Taxon Molecular Regions 

BOLD  
Systems  
v4 

P. alba matK, rbcL, trnH-psbA 

P. cubensis matK, rbcL 

P. inodora rbcL 

P. obtusa matK, rbcL, trnH-psbA 

P. pudica rbcL 

P. rubra matK, rbcL, rpoC1, ITS2 

NCBI 
GenBank  
Database 

P. alba trnL, trnL-trnF, ITS1, 5.8S, ITS2, matK, rbcL, 5.8S, 18S, 28S, trnH-psbA 

P. cubensis trnL, trnL-trnF, rbcL, rpl16, rps16, trnK, matK 

P. inodora rbcL 

P. obtusa atpB, trnL-trnF, trnL intron, matK, rbcL, trnH-psbA 

P. pudica matK, rbcL, 16S, hrcR, hrcT, ITS1, 5.8S, ITS2 

P. rubra ITS1, 5.8S, ITS2, CytP450, rbcL, matK, rpoC1, trnL-trnF, trnH-psbA 

 
 

Therefore, the objective of this study is to evaluate DNA sequences for their 

effectiveness in distinguishing Plumeria taxa and for their phylogenetic utility.  The aim 

is to answer the following questions: 1) What individual molecular markers (chloroplast 

and/or nuclear) can be used to distinguish Plumeria species?  2) Does some 

combination of chloroplast and/or nuclear DNA markers better distinguish among taxa?  

3) Are these regions phylogenetically informative?  It is hypothesized that no single 

region will be sufficient to distinguish species, but rather a combination of molecular 

regions will be required.  Further, some of these molecular regions may be useful when 

applied in a phylogenetic context. 
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MATERIALS AND METHODS 

Sample Collection, DNA Extraction, and Purification 

A total of 92 taxa representing accepted and synonymized Plumeria spp. were 

sampled from collections at two sites in Hawaii (University of Hawaii Waimanalo 

Research Station on O’ahu, National Tropical Botanical Garden [PTBG] on Kaua’i), and 

four sites in Florida (Florida Colors Nursery, Naples Botanical Garden, Miami USDA-

ARS-SHRS National Germplasm Repository, and Fairchild Tropical Botanic Garden).  

Total genomic DNA was extracted from fresh or silica gel-dried leaf materials (Chase 

and Hills, 1991) using Isolate II Plant DNA Kits (Bioline, Taunton, Massachusetts, USA).  

Voucher and accession data are given in Appendix D.  For material from which DNA 

was difficult to extract, a CTAB protocol (Doyle and Doyle, 1987), DNeasy Plant Mini Kit 

(Qiagen, Valencia, California, USA), or E.Z.N.A. HP Plant DNA Mini Kit (Omega Bio-tek, 

Norcross, Georgia, USA) was used following the manufacturers’ protocols but with 

extended incubation time at 65°C for 70 minutes.  DNA quality was verified by gel 

electrophoresis and quantified using a NanoDrop spectrophotometer (Thermo Fisher 

Scientific, Waltham, Massachusetts, USA).  For some samples that yielded poor quality 

genomic DNA, due to degraded leaf tissues, the Isolate Fecal DNA Kit (Bioline) was 

used following the manufacturer’s protocol.  In cases where the final DNA elution step 

yielded opaque or light-brown solutions, additional purification using the QIAquick PCR 

Purification Kit (Qiagen) or Monarch PCR & DNA Cleanup Kit (New England Biolabs, 

Ipswich, Massachusetts, USA) was used.   

Outgroup taxa included those that were basal to Plumeria but still within the 

subfamily Rauvolfioideae sensu lato Simões et al. (2007).  Accession data for outgroup 

taxa that were sequenced in this study and GenBank accession numbers for sequences 

that were downloaded are also given in Appendix D. 

 
DNA Amplification, Sequencing, and Alignment 

 Molecular regions were amplified via polymerase chain reaction (PCR) in 25-μL 

reaction volumes containing 12.5 μL of MyTaq 2X Red Master Mix (Bioline, Taunton, 

Massachusetts, USA), 9.5 μL of nuclease-free water, 1.0 μL of 10 μM forward or 
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reverse primer, and 1-2.5 μL of template DNA.  DNA templates were not standardized 

to specific concentrations prior to PCR, so the amount of template DNA was adjusted, 

as necessary, to generate enough PCR products for sequencing.   

Primer sequences for rpl32-trnL and psbJ-petA regions were adapted from Shaw 

et al. (2007).  Primers for PCR and sequencing of trnH-psbA, partial matK, and nuclear 

ITS2 regions were designed using the PrimerQuest Tool (Integrated DNA Technologies, 

www.idtdna.com) on primer design templates consisting of Plumeria sequences 

available on GenBank (Clark et al., 2016).  Primer sequences and respective PCR 

protocols are given in Table 3.3.  Amplifications were carried out on an iCycler v.4.006 

(BIO-RAD, Hercules, California, USA). PCR products were verified via gel 

electrophoresis to confirm successful PCR reactions. 

Unincorporated dNTPs and primers were removed from PCR products using 

ExoSap-IT (Applied Biosystems, Foster City, California, USA) following the 

manufacturer’s protocol.  Sequencing reactions of 3.0 μL of purified PCR product, 2μL 

(each) of 1.6 μM forward- or reverse-primer, and 2.0 μL nuclease-free water were then 

submitted to the Advanced Studies in Genomics, Proteomics and Bioinformatics 

(ASGPB) Lab at the University of Hawaii at Mānoa campus for bidirectional Sanger 

sequencing using BigDye terminator chemistry on an Applied Biosystems 3730XL DNA 

Analyzer.  

Sequences were checked and edited manually as needed by comparing forward 

and reverse electropherograms, and contigs were assembled using Geneious Prime 

v.1.1 (Biomatters, Auckland, NZ).  Multiple sequence alignments for each region were 

done using the Geneious Alignment algorithm as implemented in Geneious Prime and 

were also scanned by eye to manually exclude regions of ambiguity.  Review of 

alignments from individual regions resulted in the identification of potentially diagnostic 

(polymorphic) characters (Appendix E).  These were scored as transition, transversion, 

insertion, and deletion (gap) characters.  Summary statistics were calculated for each 

region in MEGA X (Knyaz et al., 2018). 

  

http://www.idtdna.com/
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Table 3.3.  Forward (F) and reverse (R) primer sequences of nuclear and chloroplast 
regions tested and their associated PCR protocols. 
 

Region Forward and reverse sequence 

ITS2 
ITS2-F: 5’ – TTG CGC CCA AAG CCA TTA – 3’ 

ITS2-R:  5’ – GCT TAA ACT CAG CGG GTA GTC – 3’  

matK 
matK-F: 5’ – CTT CGG AAG AAC GTA AAG – 3’ 

matK-R: 5’ – CAC AAG AAA GTC GAA GTA T – 3’ 

rpl32-trnL 

(Shaw et al., 2007) 

rpl32-F: 5’ – CAG TTC CAA AAA AAC GTA CTT C – 3’ 

trnLUAG-R:  5’ – CTG CTT CCT AAG AGC AGC GT – 3’  

psbJ-petA 

(Shaw et al., 2007) 

psbJ-F: 5’ – ATA GGT ACT GTA RCY GGT ATT – 3’ 

petA-R:  5’ – AAC ART TYG ARA AGG TTC AAT T – 3’  

trnH-psbA 
trnH-F: 5’ – CTG CTG TAG AAG CTC CAT CTA TC – 3’ 

psbA-R:  5’ – CCT TGA TCC ACT TGG CTA CAT – 3’  

  

 PCR Protocol 

 Initial denaturation at 95°C for 5 min. 

ITS2 30 cycles of: 95°C, 30 sec; 58°C, 30 sec; 72°C 30 sec 

matK 35 cycles of: 95°C, 45 sec; 48°C, 45 sec; 72°C 45 sec 

trnH-psbA 30 cycles of: 95°C, 30 sec; 56°C, 30 sec; 72°C 30 sec 

psbJ-petA 35 cycles of: 95°C, 45 sec; 55°C, 45 sec; 72°C 45 sec 

rpl32-trnL 35 cycles of: 95°C, 45 sec; 58°C, 30 sec; 72°C 30 sec 

 Final extension at 72°C for 10 min. 
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Maximum Likelihood and Bayesian Analyses 

The resulting alignments were analyzed using phylogenetics programs available 

on the CIPRES Science Gateway v.3.3 (Miller et al., 2010).  Evolutionary models and 

parameters were selected based on the Bayesian Information Criterion (BIC) in 

jModelTest2 on XSEDE 2.1.6 (Darriba et al., 2012).  PartitionFinder2 on XSEDE 2.1.1 

(Guindon et al., 2010; Lanfear et al., 2012; Lanfear et al., 2016) was used to determine 

if a partitioning scheme was also needed within individual regions.  The best-fit models 

as determined by jModelTest2 for separate and combined (partitioned) data sets were: 

ITS2, HKY+G; matK, TPM1uf+G; rpl32-trnL, TVM+G; trnH-psbA, F81+G; psbJ-petA, 

TPM1uf+G.  Molecular regions were analyzed separately and in combination 

(concatenated), if individual regions yielded similar tree topologies.  Loci that did not 

yield similar tree topologies were excluded from the concatenated data set. 

Maximum Likelihood (ML) analyses were conducted using RaxML-HPC2 v.8 on 

XSEDE (Stamatakis, 2014), applying models indicated above to corresponding regions.  

Robustness of nodes was assessed by non-parametric bootstrapping with 1,000 

replications.  Branches with bootstrap support (BS) values ≥ 95% were considered 

highly supported, ≥ 70% as well-supported, and anything less than that was considered 

moderately to less supported.  ML trees were imported into MEGA X and consensus 

trees were constructed.  Branch support values less than 50% were considered to have 

poor support for a given relationship between taxa and were collapsed at their 

corresponding nodes. 

Bayesian Inference (BI) analyses were performed using MrBayes on XSEDE 

(3.2.6) (Ronquist et al., 2012).  Analyses consisted of two independent runs using the 

Markov Chain Monte Carlo analysis with four chains sampled every 100 generations.  

The first 25% of trees were discarded as burn-in, each analysis running for ten million 

generations.  Excluding burn-in, all trees from independent runs were saved to construct 

50% majority-rule consensus trees.  Branches with posterior probabilities (PP) ≥ 0.95 

were considered strongly supported, ≥ 0.70 as well-supported, and anything less than 

that was considered less supported.  Trees were first imported to iTOL (Letunic and 

Bork, 2016), converted to Newick format, and imported into MEGA X where branches 

supported by posterior probabilities less than 0.50 were collapsed at their nodes. 
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DNA Barcoding Gap Analysis 

As a method of assessing the value of individual regions as DNA barcodes to 

identify species of Plumeria, regions were analyzed for barcoding gaps.  Uncorrected p-

distances were calculated using the partial deletion option in MEGA X, which then 

allowed us to find maximum intraspecific and minimum interspecific (nearest neighbour) 

sequence divergences to determine the presence of a barcoding gap (Meier et al., 

2008; Srivathsan and Meier, 2012).  Discontinuity between levels of intra- and 

interspecific p-distances were indicative of a barcode gap. 

 

Operational Taxonomic Units as Species Clusters 

 The concept of operational taxonomic units (OTUs) is used in this study as a 

basis for calculations of intraspecific and interspecific variability and species 

identification potential of markers since species limits within Plumeria are unclear.  

There are several taxa that have been described as species but have later been 

regarded as a synonym or reduced to a botanical variety or vice versa.  Consequently, 

we did not assume that all presently accepted species names reflect true species.  

Hence, clusters of taxa that are identified in analyses are referred to as OTUs. 

 

Limitations 

 All samples were collected from specimens within botanical gardens, the 

Plumeria collection at the University of Hawaii Waimanalo Experiment Station, or from 

nurseries.  Thus, there may be some concern from reviewers because none of the 

specimens were collected from the wild.  However, at some point in time these 

specimens were still collected from the wild and may currently be harder to collect from 

the wild.  Additionally, although most samples were not vouchered, many are still 

maintained at their respective institutions.  
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RESULTS 

Sequence Characteristics 

 Summary statistics for each region are shown in Table 3.4.  Sequences of the 

ITS2, psbJ-petA, and matK regions were straightforward and contained relatively few 

gaps.  The trnH-psbA region contained short ambiguous alignments and 

mononucleotide repeats of varying lengths among the same taxa, rendering it difficult to 

align.  This is a commonly reported problem in the DNA barcoding literature for this 

region, but is circumvented by excluding these nucleotides prior to analysis (Fazekas et 

al., 2012).  The rpl32-trnL region was the longest and most problematic region to align, 

sometimes requiring re-sequencing of samples.  Multiple alignment algorithms 

(Geneious, MUSCLE, ClustalW, MAFFT) were compared to resolve ambiguous regions.  

There was also a low percentage of missing data for individual regions, mostly for the 

outgroup taxa that were downloaded from GenBank, when they were concatenated with 

other regions for which sequences for a region were not available.  Sampling of the 

matK region was also discontinued prior to formal ML and BI analyses because there 

was little sequence variation in existing samples, resulting in only 68 samples being 

analyzed.    

The most useful diagnostic characters were found in the trnH-psbA and rpl32-

trnL regions (Appendix E).  For these regions, some characters were unique to a 

species, whereas other characters were found to be shared among only a few species.  

The polymorphic molecular characters identified from these regions were adequate and 

sufficient to distinguish at least 8 OTUs of Plumeria. 

 

DNA Barcode Gap Analysis 

 To determine if a barcoding gap was present, the maximum intraspecific (within 

species) sequence divergence was compared to the minimum interspecific (between 

species) sequence divergence for each region (Table 3.5).  A barcode gap was 

considered to exist if the maximum sequence variation within an OTU was less than the 

minimum variation between OTUs.  Among all five regions, maximum intraspecific 

sequence divergences ranged from 0.00000 – 0.04846, while minimum interspecific 

sequence divergences ranged from 0.00000 – 0.030370 among all OTUs.  Although 
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barcode gaps existed within each region, as indicated in boldface (Table 3.5), these 

were not found among all OTUs.  TrnH-psbA and rpl32-trnL were the regions within 

which the most informative barcoding gaps were found, rendering these regions 

potentially useful as barcodes for Plumeria.  Even a comparison of average maximum 

intraspecific and minimum interspecific sequence divergences for each region showed 

that the ITS2, matK, and psbJ-petA regions had more variation within OTUs as 

compared to the variation between them, indicating limited utility for determining species 

(Fig. 3.2).  In contrast, the trnH-psbA and rpl32-trnL regions had less variation within 

each OTU as compared to the variation between them, again highlighting their potential 

to identify Plumeria OTUs.    
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Table 3.4.  Summary statistics of individual and combined molecular regions of Plumeria taxa.  Numbers represent base 
pairs, unless indicated as a percent (%). The number of conserved, variable, and singleton sites correspond to base 
positions in alignments of each region. 
 

Parameter ITS2 matK trnH-psbA psbJ-petA rpl32-trnL Combined 

Range of sequence length 208 – 316 829 – 914 362 – 393 919 – 935 839 – 1,006 1,442 – 2,542 

Average length (excluding gaps) 230 829 374 927 987 2,425 

Aligned length (gaps included) 232 836 422 942 1,007 2,603 

No. of conserved sites 199 (86%) 816 (98%) 388 (92%) 922 (98%) 965 (96%) 2479 (89%) 

No. of variable sites 33 (14%) 14 (2%) 27 (6%) 20 (2%) 41 (4%) 116 (4%) 

No. of singleton sites 3 (1%) 0 (0%) 4 (1%) 4 (0.4%) 8 (1%) 19 (1%) 

No. of taxa sampled 93 64 90 86 83 82 
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Table 3.5.  Maximum intraspecific (Within) and minimum interspecific (Between) sequence divergences (p-distances) of 
molecular regions analyzed.  Numbers in boldface denote instances wherein the maximum intraspecific sequence 
variation is less than the minimum interspecific sequence variation.  

 
*P. subsessilis samples were either deliberately omitted from PCR sampling, as is the case for the matK region, or failed to yield PCR product, as 
is the case for the psbJ-petA region due to low quality DNA.

Taxon ITS2 matK trnH-psbA psbJ-petA rpl32-trnL 

 Within Between Within Between Within Between Within Between Within Between 

P. alba 0.00000 0.03070 0.00000 0.00000 0.00000 0.00541 0.00109 0.00109 0.00200 0.00699 

P. bahamensis 0.00441 0.00000 0.00000 0.00000 0.00000 0.00000 0.00108 0.00000 0.00407 0.00000 

P. caracasana 0.00439 0.00000 0.00000 0.00241 0.00000 0.00831 0.00324 0.00000 0.00000 0.00500 

P. clusioides 0.00000 0.00000 0.00000 0.00000 0.00261 0.00000 0.00000 0.00000 0.00000 0.00000 

P. cubensis 0.02203 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00100 0.00000 

P. ekmanii 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 

P. filifolia 0.00881 0.00000 0.00000 0.00000 0.00000 0.00000 0.00108 0.00000 0.00000 0.00000 

P. sp. ‘Isabella’ 0.00439 0.00000 0.00000 0.00120 0.00000 0.00806 0.00000 0.00108 0.00000 0.00799 

P. montana 0.00000 0.00000 0.00000 0.00000 0.00538 0.00000 0.00000 0.00000 0.00000 0.00000 

P. obtusa 0.04846 0.00000 0.00241 0.00000 0.01639 0.00000 0.00217 0.00000 0.00908 0.00000 

P. pudica 0.00000 0.00000 0.00000 0.00241 0.00265 0.00831 0.00216 0.00000 0.00000 0.00500 

P. rubra 0.01754 0.01316 0.00483 0.00000 0.00000 0.00850 0.00856 0.00000 0.00800 0.00813 

P. obtusa var. 
sericifolia 

0.00441 0.00441 0.00121 0.00120 0.00000 0.00272 0.00216 0.00000 0.00000 0.00476 

P. stenopetala 0.01310 0.00881 0.00483 0.00000 0.01344 0.00000 0.00324 0.00000 0.00476 0.00000 

P. stenophylla 0.02203 0.00441 0.00241 0.00000 0.00543 0.00538 0.00539 0.00000 0.00238 0.00000 

P. subsessilis* 0.00000 0.00873 N/A N/A 0.00000 0.00000 N/A N/A 0.00000 0.00000 
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Figure 3.2.  Average sequence divergences among the five molecular regions tested.  
Averages were obtained from pooling maximum intraspecific (within) p-distances and 
minimum interspecific (between) p-distances among all taxa from each region (see 
Table 3.5).  

-0.00200

0.00000

0.00200

0.00400

0.00600

0.00800

0.01000

0.01200

ITS2 matK trnH-psbA psbJ-petA rpl32-trnL

A
v
g
. 

p
-d

is
ta

n
c
e

DNA region

Average maximum intraspecific and minimum interspecific 
divergence of individual molecular regions

Within Between



 

70 
 

Analysis of ITS2 

The ITS2 region in members of Apocynaceae ranges from 210–300 bp and has 

been reported to correctly identify 89–100% of genera and 78–98% of species within 

Apocynaceae (Selvaraj et al., 2015).  In Plumeria, PCR amplicons ranged from 208-316 

bp (Table 3.4) with an average length of 263 bp.  In proportion to its size, this region 

contained the most variable sites.  The final alignment of this region resulted in 232 

positions.  Only P. alba could be identified by five unique ITS2 sequences (Appendix E).  

All other taxa lacked any unique genetic signatures for this region. 

ML and BI analyses distinguished a highly supported branch for taxa of P. alba 

(BS=98%, PP=0.99).  Taxa of P. pudica, P. caracasana, and P. sp. ‘Isabella’ all form a 

highly supported grouping of OTUs in both ML (BS=96%) and BI (PP=1.00) analyses.  

Plumeria stenopetala OTUs form a well-supported Stenopetala grouping in the ML 

analysis (BS=79%), and a highly supported grouping in the BI analysis (PP=0.94).  

Plumeria subsessilis also forms a well-supported relationship with these taxa in both ML 

and BI analyses (BS=79%, PP=0.84) indicating that P. subsessilis and P. stenopetala 

share a high degree of sequence similarity.  Taxa of P. obtusa var. sericifolia, P. 

tuberculata, and P. obtusa WES1-24 form a moderately supported grouping as the 

Sericifolia cluster in the ML consensus tree (BS=63%), and this is echoed in the BI 

consensus tree with high branch support (PP=0.99), which provides support that P. 

tuberculata and P. obtusa var. sericifolia are synonymous.  The Rubra cluster is not 

clearly identified in the ML analysis, but its placement as sister to most other taxa is 

suggested (BS=53%).  On the other hand, a well-supported (PP=0.71) cluster of Rubra 

was recovered in the BI analysis, and as in the ML analysis was placed as sister to 

most other taxa.  ML analysis showed that samples of P. cubensis, P. clusioides, P. 

ekmanii, P. montana, P. filifolia, P. stenophylla, P. obtusa, and P. obtusa var. sericifolia 

formed a complex but well-supported Obtusa grouping (BS=78%).  This species 

complex (Obtusa complex) was also recovered with high branch support in the BI 

analysis (PP=1.00).  Unfortunately, not all taxa could be grouped into clusters.  These 

taxa include samples of P. bahamensis, P. cubensis, P. obtusa, and P. stenophylla.  

This disconnect with the Obtusa complex can be attributed to high intraspecific 

sequence variation (Table 3.5).  
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ITS2 ML ITS2 BI 

Figure 3.3.  Topology-only cladograms of majority rule consensus trees based on 
maximum likelihood (ML) and Bayesian inference (BI) analyses of the ITS2 region.  
Bootstraps (BS) of the ML tree and posterior probabilities (PP) of the BI tree (lnL = -
1746.54) are indicated above the branches.  Branch support values <50% are collapsed 
to corresponding nodes.  Colorized branches denote OTU groupings and are also 
denoted by brackets and boldface text. 
 



 

72 

 

Analysis of matK 

 The entire matK region is ~1500 bp (Simões et al., 2007), but Mahadani et al. 

(2013) found that using an internal portion of the matK gene was sufficient for 

distinguishing most species within Apocynaceae.  Primers were developed to amplify an 

internal portion of the matK gene within Plumeria.  PCR products for this region yielded 

sequences ranging from 829 to 914 bp long with an average of 866 bp.  Relative to the 

other sequenced loci, the matK region contained one of the highest percentages of 

conserved sites (Table 3.4), fewest gaps, and the lowest amount of intraspecific 

sequence variation (Table 3.5 and Fig. 3.2).  Nevertheless, diagnostic characters were 

found for P. obtusa var. sericifolia (syn. P. tuberculata), P. caracasana, P. pudica, and 

P. sp. ‘Isabella’ (Appendix E).  The final alignment including gaps resulted in 836 

positions.   

In the ML tree, five OTUs were recovered (Fig. 3.4).  Taxa of P. rubra form a 

clade that is moderately supported (BS=70%) as sister to all other taxa.  P. tuberculata 

and P. obtusa var. sericifolia form the Sericifolia cluster that also includes one 

accession of P. stenophylla, which is moderately supported (BS=64%).  P. caracasana 

and P. pudica form a weakly supported clade (BS=66%) that is further subdivided into 

the Pudica and Caracasana clusters with higher branch support.  P. sp. ‘Isabella’ taxa 

also form a distinct cluster, albeit with weak support (BS=61%).  The BI consensus tree 

of the matK region also supports the findings of 5 clusters.  The Rubra clade is 

maintained as sister to all other taxa (PP=0.69), and the same taxa are recovered in the 

Sericifolia clade with higher branch support (PP=0.97).  However, resolution is slightly 

enhanced as multiple taxa are grouped to form a moderately supported Obtusa species 

complex (PP=0.70).  On the other hand, P. caracasana and P. pudica form a highly 

supported grouping (PP=0.99), but P. pudica is nested within P. caracasana. Different 

from the ML analysis is the inclusion of P. sp. ‘Isabella’ grouping (PP=0.99) within a 

highly supported Stenopetala cluster (PP=0.91).  Still, internal relationships among 

species groupings that are sister to P. rubra could not be determined as evidenced by 

the internal polytomies.  
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Figure 3.4.  Topology-only cladograms of majority rule consensus trees based on 
maximum likelihood (ML) and Bayesian inference (BI) analyses of the matK region.  
Bootstraps (BS) of the ML tree and posterior probabilities (PP) of the BI tree (lnL = -
1659.92) are indicated above the branches.  Branch support values <50% are collapsed 
to corresponding nodes.  Colorized branches denote OTU groupings and are also 
denoted by brackets and boldface text. 

matK BI matK ML 
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Analysis of trnH-psbA 

The size of the trnH-psbA region varies in Apocynaceae from 280-467 bp 

(Selvaraj et al., 2015).  In Plumeria, sequences ranged from 362-393 bp with an 

average length of 374 bp (Table 3.4).  The final alignment contained 422 positions.  A 

portion of this region also contained a variable number of poly-A/T nucleotide repeats, 

sometimes among accessions of the same species, resulting in ambiguous regions that 

were later excluded from analysis since they were difficult to align.  To the exclusion of 

other taxa, a DNA barcoding gap was found for six species, thus highlighting this 

region’s value as a DNA barcode for the genus (Table 3.5).  Moreover, this region 

contained one of the most potentially informative diagnostic characters, consisting of 

single nucleotide polymorphisms (SNPs), gaps and inserts, by which nine OTUs could 

be identified (Appendix E).    

Maximum likelihood and Bayesian analyses of this region allowed for the 

detection of seven and six species clusters, respectively (Fig. 3.5).  Topologies of ML 

and BI consensus trees were similar, in that nearly the same groupings of taxa were 

recovered.  P. sp. ‘Isabella’ OTUs formed a moderately-supported clade in the ML tree 

(BS=72%) whereas the BI consensus tree showed them as part of an internal polytomy.   

Plumeria alba formed a well- to highly supported grouping in the ML (BS=90%) and BI 

(PP=0.99) trees, respectively.  Plumeria stenopetala formed a group with one member 

of P. stenophylla, but this relationship is only weakly supported in both ML and BI trees.  

The ML analysis showed that the Sericifolia grouping, which also includes taxa of P. 

subsessilis and P. stenophylla within this cluster, is moderately supported (BS=77%).  

These relationships are highly supported in the BI analysis (PP=1.00).  Taxa of P. 

pudica and P. caracasana form a weakly supported branch (BS=54%) as sister OTUs, 

and this relationship is maintained in the BI tree with higher branch support (PP=0.87).  

Most taxa of P. rubra are recovered in the Rubra grouping in the ML tree (BS=69%), 

whereas all the P. rubra taxa are grouped together to form the highly supported Rubra 

cluster in in the BI tree (PP=97%).  All the other taxa, especially P. obtusa, failed to 

cluster into any distinct clade in either ML or BI analysis.  
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trnH-psbA BI 

Figure 3.5.  Topology-only cladograms of majority rule consensus trees based on 
maximum likelihood (ML) and Bayesian inference (BI) analyses of the trnH-psbA region.  
Bootstraps (BS) of the ML tree and posterior probabilities (PP) of the BI tree  
(lnL = -1607.34) are indicated above the branches.  Branch support values <50% are 
collapsed to corresponding nodes.  Colorized branches denote OTU groupings and are 
also denoted by brackets and boldface text. 

trnH-psbA ML 
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Analysis of psbJ-petA 

 The psbJ-petA intergenic spacer is located in the large single copy region of the 

chloroplast genome (Shaw et al., 2007) and is reported to have an average length of 

1,040 bp.  Within the genus Plumeria, sequence length ranged from 919-935 bp with an 

average length of 927 bp (Table 3.4).  The final alignment resulted in 942 positions, of 

which 20 sites were variable.  Although average maximum intraspecific sequence 

divergences were greater than average minimum interspecific sequence divergences 

(Fig. 3.2), some diagnostic characters were found for at least three OTUs (Appendix E). 

The ML analysis of this region resulted in a large polytomy and allowed only four 

clusters of Plumeria taxa to be identified, two of which were lumped as one (Fig. 3.6).  

Plumeria pudica and P. caracasana form a well-supported Pudica/Caracasana group 

(BS=82%).  As in other analyses, the Sericifolia cluster is comprised of P. tuberculata 

and P. obtusa var. sericifolia and is highly supported (BS=94%).  Plumeria sp. ‘Isabella’ 

forms a weakly supported (BS=63%), but distinct cluster.  Except for one accession, all 

other taxa of P. rubra form the Rubra cluster (BS=93%).  The BI analysis resulted in 

better resolution of an Obtusa species complex (PP=0.84) that is comprised of 

accessions of P. bahamensis, P. clusioides, P. cubensis, P. ekmanii, P. filifolia, P. 

montana, P. stenophylla, P. obtusa, and P. obtusa var. obtusa.  However, this gain of 

resolution among the Obtusa grouping came with an associated loss of resolution in 

other parts of the tree.  A relationship comprised of P. alba with P. tuberculata and P. 

obtusa var. sericifolia is moderately supported (PP=0.78), but the Sericifolia grouping is 

still maintained (PP=1.00).  Additionally, the Rubra cluster found in ML analysis was 

recovered in the BI analysis, albeit with less branch support (PP=0.78).  Unlike findings 

in the ML analysis, the BI analysis places taxa of the Isabella cluster with taxa that form 

the Pudica/Caracasana cluster (PP=0.91), but the Isabella cluster is still maintained as 

distinct (PP=0.99) from the Pudica/Caracasana grouping (PP=1.00).  Unlike analyses of 

previous regions, neither ML nor BI analysis of psbJ-petA produced a P. stenopetala 

cluster.  
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psbJ-petA ML psbJ-petA BI 

Figure 3.6.  Topology-only cladograms of majority rule consensus trees based on 
maximum likelihood (ML) and Bayesian inference (BI) analyses of the psbJ-petA region.  
Bootstraps (BS) of the ML tree and posterior probabilities (PP) of the BI tree  
(lnL = -2852.92) are indicated above the branches.  Branch support values <50% are 
collapsed to corresponding nodes.  Colorized branches denote OTU groupings and are 
also denoted by brackets and boldface text. 



 

78 

 

Analysis of rpl32-trnL 

 The rpl32-trnL region is in the small single copy region of the chloroplast genome 

and is an average of 1,018 bp in length (Shaw et al., 2007).  In Plumeria, sequences 

ranged from 839-1,006 bp, with an average of 987 bp (Table 3.4).  The final alignment 

of this region resulted in 1,007 positions.  Similar to the trnH-psbA region, this region 

demonstrated relatively low maximum intraspecific sequence variation in comparison 

with minimum interspecific variation for at least six OTUs (Table 3.5, Fig. 3.2).  Initial 

inspection of nucleotide sequences resulted in the identification of 41 diagnostic 

characters that could distinguish seven species (Appendix E).       

This region provided the greatest separation of species clusters of all sequence 

regions tested.  Although the internal relationships were still poorly resolved—as 

indicated by internal polytomies—both ML and BI analyses showed clustering of eight 

OTUs (Fig. 3.7), and all but two accessions fell into an OTU grouping.  Plumeria rubra 

accessions were moderately supported as a cluster in the ML analysis (BS=67%).  This 

relationship was also well-supported in the BI analysis (PP=0.91) but was located as a 

sister group to all other OTUs.  Other highly supported OTUs in both ML and BI 

analyses include the Stenopetala, Alba, Pudica, Caracasana, and Isabella clusters.  As 

in other analyses, the Sericifolia grouping contained P. subsessilis and an accession of 

P. stenophylla (BS=63%, PP=0.96).  The remaining taxa mostly fell into the Obtusa 

species complex, with low to moderate branch support in the ML and BI analyses, 

respectively (BS=54%, PP=0.82).  
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Figure 3.7.  Topology-only cladograms of majority rule consensus trees based on 
maximum likelihood (ML) and Bayesian inference (BI) analyses of the rpl32-trnL region.  
Bootstraps (BS) of the ML tree and posterior probabilities (PP) of the BI tree (lnL = -
3799.25) are indicated above the branches.  Branch support values <50% are 
collapsed to corresponding nodes.  Colorized branches denote OTU groupings and are 
also denoted by brackets and boldface text. 

rpl32-trnL ML rpl32-trnL BI 
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Analysis of Combined Data 

 No single region could fully resolve the genetic relationships among the Plumeria 

taxa sampled as shown by the presence of large internal polytomies (Figs. 3.2-3.6).  Of 

the five regions surveyed, the following regions were concatenated: ITS2, trnH-psbA, 

psbJ-petA, and rpl32-trnL.  The matK region was excluded from concatenation due to a 

lower number of sampled taxa.  Although data sets were subjected  to a partition 

homogeneity test (i.e. Incongruence Length Difference Test), the following rationale for 

combining data sets is provided: 1) similar groupings of taxa were recovered among the 

different regions and analyses, 2) similar branch support values for those recovered 

groupings were given between ML and BI analyses, and 3) attempts were made to 

resolve the internal polytomies by finding a suitable combination of regions.  

Furthermore, preliminary analyses of 2- and 3-region concatenated sets still yielded 

hard polytomies, so only the 4-region data set was subjected to further analyses.  The 

combined data set resulted in 2,603 positions, 2,479 of which were conserved, 116 of 

which were variable, and a total of 74 sampled Plumeria taxa (Table 3.4).    

 The species clusters found in the analyses of the rpl32-trnL region were 

recovered in the analysis of the combined data set (Figs. 3.8 & 3.9).  In comparison with 

tree topologies obtained from the rpl32-trnL region (Fig. 3.7), the ML tree of the 

combined regions showed a loss of resolution in the Obtusa grouping as all the taxa 

that were previously recovered into the P. obtusa species complex were now collapsed 

into polytomies.  In comparison with findings from other regions, the Rubra, Alba, and 

Stenopetala accessions formed distinct groupings that are highly supported (for Rubra 

BS=94%, for Stenopetala BS=99%, and for Alba BS=100%).  There is also moderate 

support (BS=89%) for a sister relationship between Sericifolia and Subsessilis taxa, 

which was previously recovered in analyses of rpl32-trnL and trnH-psbA regions.  

Groupings of Pudica and Caracasana taxa are placed in a highly supported sister 

relationship to each other (BS=100%), and the Isabella cluster was placed as sister to 

Pudica and Caracasana (BS=96%) thereby indicating strong support for the relatedness 

among these three OTUs.  Unfortunately, the concatenated loci did not fully resolve the 

internal relationships among OTUs as evidenced by the large internal polytomy. 
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Figure 3.8.  Majority rule consensus tree (cladogram) based on maximum likelihood 
(ML) analysis of the 4-region concatenated data set.  Bootstraps (BS) are indicated 
above the branches.  Branch support values <50% are collapsed to corresponding 
nodes.  Colorized branches denote OTU groupings and are also denoted by brackets 
and boldface text. 
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However, concatenation resulted in a more resolved tree topology in the BI 

analysis (Fig. 3.9).  Rubra OTUs were placed as sister to all other taxa and comprised a 

well-resolved monophyletic clade (PP=0.99).    Pudica, Caracasana, and Isabella were 

again recovered as a monophyletic clade (PP=1.00) that is basal to the remaining 

OTUs.  Moreover, the association of Isabella with Caracasana and Pudica groupings is 

highly supported in the BI analysis (PP=1.00), as it was in the ML analysis.  Alba formed 

a distinct and highly supported clade (PP=1.00) that is also basal to the remaining 

OTUs (PP=0.99).  Stenopetala taxa are highly supported as a distinct OTU, but their 

placement in relation to the remaining OTUs is only moderately supported (PP=0.66).  

Similarly, Sericifolia and Subsessilis OTUs comprised a highly supported clade 

(PP=1.00), but their relationship to the Obtusa species complex is only moderately 

supported (PP=0.60).  OTUs that form the Obtusa species complex were well-supported 

(PP=0.99).  Beyond this grouping, it is difficult to make any further claims regarding the 

relationships among the taxa within this complex as several taxa failed to group with 

their conspecifics.  This could be a result of high sequence variation among these taxa 

(Table 3.5) or potential misidentification. 
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Figure 3.9.  Majority rule consensus tree based on Bayesian analysis of the 4-region 
concatenated data set (lnL = -8244.16).  Posterior probabilities (PP) are indicated above 
the branches.  Branch support values <0.50 are collapsed to corresponding nodes.  
Colorized branches denote OTU groupings and are also denoted by brackets and 
boldface text. 
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DISCUSSION 

Phylogenetic utility of regions 

While no single region was able to fully resolve the relationship of these 

congeneric species, the rpl32-trnL region provided the best phylogenetic signal from a 

single region (Fig. 3.7).  Combining four out of the five regions provided enough 

phylogenetic resolution to indicate likely species relationships within this genus.  As a 

result, an initial phylogenetic framework was established from which we can begin to 

understand evolutionary relationships among Plumeria species.  

    
DNA Barcodes for Plumeria 

 DNA barcoding is an attractive tool that has found utility in identifying species in 

various plant groups including Apocynaceae (Pettengill and Neel, 2010; Wong et al., 

2013; Selvaraj et al., 2015).  The minimum requirement for a DNA region to be deemed 

useful for barcoding is that there be a barcoding gap by which all members of one 

species can be clearly distinguished from members of other species [interspecific 

variation], while allowing for some variation among members within the same species 

[intraspecific variation] (Fišer Pečnikar and Buzan, 2014).  What constitutes a suitable 

barcode gap is not well defined.  However, the distance analysis criteria of Meier et al. 

(2008) was followed by comparing the maximum sequence variation within a species 

(intraspecific variation) to the minimum sequence variation between species 

(interspecific variation) and assessed whether a local barcode gap existed for each 

region.  Although no single region could identify all the species we sampled, DNA 

barcoding gaps were identified that were unique to each species within each region 

(Table 3.5).  Furthermore, diagnostic characters that were able to identify OTUs were 

discovered (Appendix E).  At best, the rpl32-trnL or trnH-psbA regions provide enough 

variation to identify at least eight OTUs (Fig. 3.10).  

Reports on the various successes or failures of to identify species using a single 

region are well documented in the literature (Mahadani et al., 2013; Wu et al., 2019; 

Yang et al., 2019).  Moreover, no single region can be applied to all plant groups and be 

expected to perform the same (Kelchner, 2000).  The context in which these regions are 

used is especially important.  For instance, Selvaraj et al. (2015) report on the 
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exceptional ability of the ITS2 region to discriminate genera and species of 

Apocynaceae.  However, their sampling was done at the generic level.  At this level, it 

seems reasonable that enough genetic variation would exist to distinguish among 

genera.  Likewise, given the inherent genetic diversity of species in such a large family 

as the Apocynaceae, it is expected that they would find a high species discriminating 

ability among such a diverse sampling of taxa.  In my study, however, only six OTUs 

were identified using the ITS2 region (Fig. 3.3), and at best only eight out of the 16 

putative species were identified using the rpl32-trnL region.       

 

  

Figure 3.10.  A portion of the trnH-psbA region showing examples of potentially 
diagnostic nucleotides among several closely related taxa.  P. caracasana is missing a 
region that is present among its sister taxa, P. pudica and P. sp. ‘Isabella’.  Plumeria sp. 
‘Isabella’ accessions contain indels not present in either P. caracasana or P. pudica.  
Plumeria clusioides can also be distinguished from other taxa of the Obtusa complex by 
the presence of an 11-bp insertion not found in other members of this complex.  The full 
suite of diagnostic characters is available in Appendix E. 
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For the most part, molecular findings support the traditional taxonomy of 

Plumeria spp. based on morphological evidence.  Findings of this study also provide 

evidence that certain taxa, currently considered synonymous, are in fact distinct from 

one another.  The discussion that follows elaborates on these points. 

 

P. rubra L. 

P. rubra was one of the most consistently identified OTUs in all five regions 

surveyed, and their relationships were highly supported in ML and/or BI analyses, 

unequivocally validating their uniqueness as a legitimate species.  The placement of this 

group was initially unclear from analyses of individual regions.  Rubra groupings were 

placed as basal in analyses of ITS2, matK, and rpl32-trnL regions, but not in others.  

However, BI analysis of the combined data suggests that this clade is basal to all other 

OTUs (Fig. 3.9).  If this is true, then this could have potential evolutionary implications 

regarding the loss of petal color and scent as all other Plumeria species have flowers 

that are white-petaled with relatively little fragrance.  

  
P. alba L. 

 P. alba taxa were identified as an OTU in the analyses of the ITS2, trnH-psbA, 

and rpl32-trnL regions (Figs. 3.3, 3.5, and 3.7).  They could also be characterized using 

these three regions due to the presence of a barcode gap (Table 3.5).  Coincidentally, 

this species can also be identified morphologically by the presence of lanceolate leaves 

and “puckered-revolute” leaf margins (Woodson, 1938a).  From analyses of single 

regions, its relationship to other OTUs was unclear.  However, in the combined data set 

(Fig. 3.9) it appears closely related to the Stenopetala, Isabella, Caracasana, and 

Pudica OTUs.  

 

P. subsessilis A. DC. and P. stenopetala Urb. 

P. subsessilis is clearly distinguishable from most other species in this study and 

has also been recognized as a legitimate species by Acevedo-Rodríguez and Strong 

(2012) and Govaerts et al. (2003).  Urban (1902) provided the first Latin description of 

P. stenopetala, based on a specimen collected in Haiti.  However, P. stenopetala was 
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later considered by Woodson (1938b) as a “doubtful species” and was instead 

subsumed under P. subsessilis as a supposed hybrid between P. subsessilis and P. 

rubra, P. obtusa or P. obtusa var. sericifolia, based upon other specimens collected 

from Haiti.  In analyses of the ITS2 region, there is some support for the relationship 

between P. stenopetala and P. subsessilis (Fig. 3.3).  On the other hand, analyses from 

the trnH-psbA and rpl32-trnL regions placed taxa of P. stenopetala in their own OTU 

group (Figs. 3.5 and 3.7) and this is further substantiated in the combined analyses 

(Figs. 3.8 and 3.9).  More importantly, in the analyses of the trnH-psbA and rpl32-trnL 

regions there is strong support for a relationship between P. subsessilis and P. obtusa 

var. sericifolia.  What is interesting here is the highly supported relationship between 

these OTUs even though they have drastically different morphologies.  Thus, at this 

time it is unclear how P. subsessilis, P. obtusa var. sericifolia, and P. stenopetala are 

related to one another, and more research will need to be conducted to verify 

Woodson’s claim of the hybrid origin of P. stenopetala. 

 

The P. obtusa Complex and the Sericifolia Group 

 In his treatment of P. obtusa, Woodson (1938a) collapsed many previously 

described Plumeria spp. under P. obtusa, including several of the taxa sampled in this 

study: P. clusioides, P. bahamensis, P. montana, P. ekmanii, and P. cubensis.  

Woodson also mentioned the existence of a P. obtusa species complex, alluding to the 

morphological variation in leaves among type specimens of P. obtusa.  I concur with this 

interpretation as it seems especially likely given the wide geographic distribution of P. 

obtusa—Bahamas, Cuba, Hispaniola (Haiti and Dominican Republic), Jamaica, Puerto 

Rico, Yucatan, and British Honduras (Belize)—and overlapping collection sites of the 

taxa that Woodson included in his work.      

There are consistent lines of evidence from analyses of multiple regions that 

verify the occurrence of a complex of taxa that form the P. obtusa complex, many of 

which are accepted by Acevedo-Rodríguez and Strong (2012) but treated as synonyms 

of P. obtusa by Govaerts et al. (2003) and Woodson (1938a).  What is interesting is that 

some of these taxa are morphologically distinct but share high sequence similarity with 

many other species that fall into the species complex.  For instance, P. ekmanii has 
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noticeably thicker and rounder leaves as compared with P. obtusa, yet consistently falls 

into the P. obtusa complex in molecular analyses.  This phenotypic variation highlights 

the difficulty of using foliar morphology to identify species limits, which can be 

exceptionally challenging when dealing with a species complex as is the case with this 

study. 

The relationship between P. filifolia and P. stenophylla is equivocal, based on 

findings from this study.  According to the World Checklist of Plants (WCSP, 2019), P. 

filifolia is an accepted plant name.  P. stenophylla, first described by Urban (1924), is 

considered a synonym of P. filifolia (Govaerts et al., 2003; Acevedo-Rodríguez and 

Strong, 2012) likely due to a high degree of morphological similarity and geographical 

distribution.  Analyses of the ITS2 region (Fig. 3.3) show a highly supported relationship 

between these two species, suggesting P. stenophylla could be a synonym of P. filifolia.  

However, this relationship was not recovered in analyses from other regions.  On the 

other hand, samples of both species fall into the P. obtusa complex, suggesting a 

relationship between these two species, but this remains unresolved.  In a similar vein, 

the tendency of P. filifolia and P. stenophylla to group with taxa in the P. obtusa 

complex is difficult to understand in the analyses of the ITS2, matK, psbJ-petA, and 

rpl32-trnL regions.  A possible explanation for this is lack of interspecific variation within 

these regions (Table 3.5).  

Another interesting finding regarding taxa of the P. obtusa var. sericifolia is their 

grouping with respect to the P. obtusa complex.  Given their propensity to form their 

own cluster in analyses of multiple data sets, the pre-existing notion among collectors 

that P. tuberculata and P. obtusa var. sericifolia are synonyms has been verified.  

Moreover, given that it does not group with the P. obtusa complex, it may be worth 

reconsidering the taxonomic status of Sericifolia taxa.  It is currently accepted as a 

synonym of P. obtusa (Govaerts et al., 2003), while Woodson (1938a) treated this as a 

botanical variety of P. obtusa.  There is evidence from four out of the five regions 

evaluated to suggest that this OTU should be reconsidered as a separate species from 

P. obtusa, or at least considered a botanical variety (ssp.) of P. obtusa as opposed to a 

synonym.  Given its placement within a polytomy next to the Obtusa grouping, more 

analyses are needed to determine the taxonomic status of the Sericifolia taxa.  



 

89 

 

P. pudica Jacq., P. caracasana J.R. Jhonst., and P. sp. ‘Isabella’ 

 From this study, it is unclear whether P. pudica, P. caracasana, and P. sp. 

‘Isabella’ are synonymous or if they are cryptic species (Kress et al., 2015).  Plumeria 

pudica and P. caracasana were considered synonymous by Woodson (1938a), 

Acevedo-Rodríguez and Strong (2012), and Govaerts et al. (2003) on the basis of 

morphology and geographic distribution.  On the other hand, evidence from this study 

shows that these two taxa are distinguishable by molecular analyses.  It is reasonable, 

however, to regard P. pudica and P. caracasana as synonymous given their overlapping 

morphological characters and geographical distribution (northern Venezuela) (Johnston, 

1912; Gleason and Killip, 1939).  Regardless of this possibility, molecular analyses of 

the matK (Fig. 3.4), trnH-psbA (Fig. 3.5), rpl32-trnL (Fig. 3.7), and combined regions 

(Figs. 3.8 and 3.9) point to a sister group relationship, as evidenced by high bootstrap 

support and posterior probabilities.  Evidence is also provided that P. sp. ‘Isabella,’ 

which is not formally described in the scientific literature deserves potential recognition 

as a species because of the highly supported relationship as a sister taxon to P. pudica 

and P. caracasana.  Furthermore, all three taxa contain unique genetic signatures that 

allow them to be distinguished from one another (Appendix E).  Hence, a focused study 

that incorporates molecular, morphological, and ecological data should be conducted to 

establish the separate species nature of P. caracasana, P. pudica, and P. sp. ‘Isabella’. 

 

Future Directions 

Although not all the taxa included in this study could be verified, I have shown 

that it is possible to recognize most species and have established a basis for which 

evolutionary relationships can be studied based on a combination of molecular 

characters that I feel are diagnostic of these species.  Furthermore, though I did not 

include a complete sampling of species in this genus, this study represents a modern 

study of the genus since its last taxonomic revision by Woodson.  A more 

comprehensive geographic sampling along with the use of more vouchered specimens 

(Funk et al., 2018) would be needed for each species to determine the full utility of 

regions, such as trnH-psbA and rpl32-trnL, and finally determine species boundaries 

and phylogenetic relationships of Plumeria.  
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CONCLUSION 

The objective of this study was to evaluate molecular regions for their 

effectiveness in distinguishing Plumeria taxa and their phylogenetic utility.  No single 

region was adequate to distinguish species, but the rpl32-trnL region followed by the 

trnH-psbA region provided the best ability to discriminate species.  A combination of 

molecular regions was required to sort out the maximum amount of species.  Yet, the 

identity of all sampled taxa could not be verified to accepted species, especially those 

belonging to the P. obtusa complex.  Rather, the species within this complex will require 

other molecular regions to identify them.  Nevertheless, the regions evaluated have 

allowed for the ability to distinguish most of the species and their concomitant diagnostic 

molecular characters, indicating the differential abilities of each region to sort out 

different species.  To this end, the hypothesis is confirmed that no single region was 

able to distinguish all species.  However, given the level of success in this study 

additional molecular data is expected to provide more information to define species 

boundaries and enhance our understanding of phylogenetic relationships within the 

genus Plumeria. 
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CHAPTER 4 

SYNTHESIS, PROSPECTS, AND CONCLUSION 

INTRODUCTION 

Plumeria L. is a genus within the family Apocynaceae, subfamily Rauvolfioideae, 

and is comprised of taxa that have been valued for ornamental, cultural, and 

ethnomedicinal purposes (Judd et al., 2008; Criley, 2009; Shinde et al., 2014).  

Although twelve species are currently recognized in the genus (The Plant List, 2013), 

disagreements exist regarding legitimacy of these species, the number of valid species 

and their delimitation.  These disagreements are further compounded by the many 

disparities in species descriptions, especially in the treatment of synonymous names for 

Plumeria spp. (Urban, 1898, 1902; Britton, 1910; Johnston, 1912; Britton, 1915; Britton 

and Millspaugh, 1920; Urban, 1920; Hollick, 1922; Britton, 1923; Urban, 1924; 

Woodson, 1938a; Woodson et al., 1970; Williams, 1996), many of which are misused or 

unconfirmed among collectors (Criley, 2009).  For instance, Acevedo-Rodríguez and 

Strong (2012) recognize P. clusioides Griseb. as a legitimate species, whereas 

Govaerts et al. (2003) do not.  The poor state of knowledge of species delineations and 

a need for a clearer taxonomy were the impetus for this study.   

SYNOPSES OF CHAPTERS 

Chapter 1 

Chapter 1 introduces the current issues associated with the taxonomy of 

Plumeria and proposes two approaches to address these problems, morphological and 

molecular studies.  The overall hypothesis was that morphological and molecular 

analyses of Plumeria accessions would allow clear recognition and verification of 

species, establish genetic relationships and provide criteria for the delimitation of 

currently unrecognized ones.   
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Chapter 2 

In Chapter 2, the objective was to identify Plumeria spp. using qualitative 

morphological characters that were easy to score using the following question:  

What qualitative foliar characters can be used to distinguish Plumeria spp.?   

 
To answer this question, Plumeria accessions from botanical gardens were 

assessed for the presence or absence of 43 descriptive foliar (morphological) 

characters.  An iterative approach to principal component analysis (PCA) showed that a 

combination of leaf shape, margin, midvein, apex, base, ptyxis, secondary venation, 

and surface characters were useful for distinguishing most species.  Some specimens 

formed distinct clusters, suggesting that certain taxa, such as P. caracasana should be 

recognized as legitimate species, and verified that descriptive morphological characters 

will suffice for most of the recognized Plumeria spp. and putative species examined.  

However, not all taxa were identified by distinct (unique) clustering, especially those 

belonging to the P. obtusa complex.  While the hypothesis that a combination of 

morphological characters can provide species identification was confirmed for most 

species (eight out of the 11 putative species sampled), other characters (quantitative, 

reproductive, and anatomical) will be needed to sort out taxa, especially in a species 

complex. 

Chapter 3 

In Chapter 3, the objective was to identify DNA loci that could delineate species 

and resolve genetic relationships in Plumeria by examining separate and combined 

molecular regions.  The questions posed were: 

1) What individual molecular markers (chloroplast and/or nuclear) can be used to 

distinguish Plumeria spp.? 

2) Does some combination of chloroplast and/or nuclear DNA markers better 

distinguish among taxa? 

3) Are these regions phylogenetically informative?  

 

To answer these questions, accessions were sampled and five molecular regions 

comprising nuclear and chloroplast loci were evaluated for their suitability in 
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distinguishing species and their utility in revealing phylogenetic relationships.  Results 

showed that although a single region could be used to differentiate most species 

through a DNA barcoding approach, the combined data of four regions was required to 

generate enough phylogenetic signal to elucidate the internal genetic relationships 

among species.  The rpl32-trnL region followed by the trnH-psbA region could 

discriminate most species, but the polytomy of the P. obtusa species complex made it 

difficult to separate taxa within this group.  Even when four loci were combined this 

species complex remained intact.  On the other hand, it was possible to draft a 

phylogenetic reconstruction of species and build a case for recognizing currently 

subsumed taxa such as P. caracasana, P. sp. ‘Isabella’, and P. obtusa var. sericifolia 

(syn. P. tuberculata).  However, no single region was able to distinguish all species.  

Given the level of success in this study it is likely that adding additional gene regions will 

provide the needed resolving power to separate these taxa and enhance our 

understanding of phylogenetic relationships within this genus. 

SYNTHESIS 

From this research, the following question can be addressed: 

How well does the molecular data reflect the morphological data regarding the 

identification of Plumeria spp.? 

Descriptive morphology, as traditionally applied, serves as a basis for species’ 

identifications and provides the first level of documentation to verify the identity of 

species (De Candolle, 1844; Grisebach, 1864; Urban, 1898; Woodson, 1938a).  Here, I 

set out to evaluate characters based upon descriptions in literature and empirical 

observation.  Characters from literature references, such as leaf shape, revolute 

margins, and leaf surface texture were found to be informative.  However, it was also 

found that novel characters such as conduplicate leaf ptyxis, recurved leaves, and 

secondary venation characters were also useful for discriminating among species.  This 

resulted in the discovery of the value of employing (unique) combinations of old and 

new foliar characters to correctly identify species.  The value of these characters would 

no doubt increase when combined with additional sources of data such as quantitative 
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and geographic data from the literature, beyond the scope of this study (Grisebach, 

1864; Woodson and Moore, 1938; Woodson, 1938a; Leon and Alain, 1957). 

 The use of chloroplast regions is merited for its ability to identify accessions in 

botanical gardens, authenticate plants in medicinal products, and identify units of 

conservation in ecology-based applications (Ford-Lloyd, 2001; Chen et al., 2010; 

Muscarella et al., 2014; Kress et al., 2015).  Five commonly cited DNA regions were 

evaluated for their efficacy at delimiting species and phylogenetic utility (Kress et al., 

2005; Bieniek et al., 2015; Selvaraj et al., 2015).  When used alone, none of the five loci 

were sufficient to identify all accessions we surveyed.  However, their resolving power 

was greatly increased when they were combined allowing clear recognition of most of 

the commonly accepted species and also the identification of new taxa that should be 

recognized as genetically distinct and separate species. 

 There is considerable agreement in species recognition in the morphological and 

molecular analyses, although they do not coincide exactly in some cases.  This 

agreement was clear for P. subsessilis, P. stenopetala, P. alba, P. pudica, P. 

caracasana, and P. rubra.  However, the identification of P. clusioides and P. 

stenophylla in the morphological analyses did not coincide with the molecular data and 

the identification of P. obtusa var. sericifolia accessions in molecular analyses were 

incongruent with morphological data.  This supports the need to incorporate quantitative 

data, at the very least, in combination with the use of other loci, and will help build a 

better case for taxonomic revision for this genus.  

PROSPECTS 

Morphological and molecular data have proven useful at resolving species and 

phylogenetic relationships among plants at various levels.  Studies have shown that a 

combination of quantitative and qualitative morphological characters of both vegetative 

and reproductive traits have proven useful to clarify taxonomic questions in a variety of 

plant families and genera (Lens et al., 2008; Smitha et al., 2018; Viera Barreto et al., 

2018), even within the Apocynaceae  (Grisebach, 1864; Woodson and Moore, 1938; 

Woodson, 1938a; Alvarado-Cárdenas, 2007; Endress et al., 2007b; Livshultz et al., 

2007).   
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Additionally, studies have shown that combining morphological data with molecular data 

helped in resolving taxonomic and phylogenetic relationships among closely related 

taxa (Ronblom and Anderberg, 2002; Endress et al., 2007b; Simões et al., 2010; 

Pettengill and Neel, 2011; Steele and Pires, 2011).  Even more, with the powerful tool of 

whole genome sequencing becoming more commonplace, it is now possible to scan 

entire genomes between taxa to identify regions with potential species discriminating 

abilities and phylogenetic resolving power to the extent that individuals within 

populations can be identified (Coissac et al., 2016).  Therefore, the inclusion of such 

characters and approaches to studies of Plumeria shows promise for further verifying 

and delineating species boundaries, and allowing for more in-depth studies on 

evolutionary histories of taxa within this genus. 

CONCLUSION 

 The current taxonomy of the genus Plumeria is in need of clarification given the 

conflicting delimitations and extensive elevation and demotion of species as unique.  

The current study has shed light on the validity and limitations of both morphological 

and molecular approaches shown to be effective in disentangling the taxonomy of 

Plumeria spp.  Two main conclusions were reached:  First, descriptive leaf morphology 

is useful in discerning most of the currently recognized species of Plumeria but should 

be supplemented with quantitative measurements and other data, such as reproductive, 

physiological, and ecological characters, to solidify species boundaries.  Second, 

combining molecular regions is not only useful in verifying most of the currently 

recognized Plumeria species but is also useful in understanding the phylogenetic 

relationships among these species.  However, other molecular regions in the chloroplast 

or nuclear genome may exist that may be more informative for identifying species and 

understanding evolutionary relationships in this genus.  To this end, a total evidence 

approach that incorporates foliar and floral characters (qualitative and quantitative), 

physiological, ecological, and geographic data, and other molecular regions is bound to 

enhance the current findings and elucidate the taxonomic boundaries and phylogenetic 

relationships among extant Plumeria species.     
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APPENDICES 

Appendix A.  Accession data for morphological analyses, including collector, propagule, and voucher (institution) information.  Locality 
abbreviations are as follows: NBG – Naples Botanical Garden, WES – Waimanalo Experiment Station (University of Hawaii), PTBG – Pacific 
Tropical Botanical Garden, FCN – Florida Colors Nursery, FTBG – Fairchild Tropical Botanic Garden.  Abbreviated Name column corresponds to 
taxa names on principal component analysis graphs.   
  

Taxon Locality 
Institutional 

Accession Number 
Abbreviated Name Provenance 

P. alba NBG 201001479*A Alb_NBG Roatan, Honduras 

P. alba WES WES1-1 Alb_WESa Oka Nursery, Waimanalo, HI 

P. alba WES WES1-30 Alb_WESb Santa Barbara, CA 

P. bahamensis NBG 201101141*A Bah_NBGa Unknown  

P. bahamensis NBG 201101141*B Bah_NBGb Unknown  

P. bahamensis NBG 201101141*C Bah_NBGc Unknown  

P. bahamensis WES WES1-17 Bah_WESa Haleiwa, HI 

P. bahamensis WES WES10-21 Bah_WESb Haleiwa, HI 

P. caracasana NBG 201001474*A Car_NBG Unknown  

P. caracasana WES WES9-11 Car_WES Unknown  

P. caracasana PTBG MB06 MB06 Unknown  

P. clusioides FCN FCN002 Clu_FCN Honduras 

P. clusioides NBG 201100361*A Clu_NBG Honduras 

P. clusioides WES WESMK4 Clu_WES Antilles 

P. cubensis FTBG 95615 D Cub_FCBGa Havana, Cuba 

P. cubensis FTBG 95615 E Cub_FCBGb Havana, Cuba 

P. cubensis FCN FCN003A Cub_FCN3 Honduras 

P. cubensis NBG 201001473*A Cub_NBGa Honduras 

P. cubensis NBG 201100984*A Cub_NBGb Mt. Coot-tha Botanical Garden, Australia 

P. cubensis WES WES1-25 Cub_WES Mt. Coot-tha Botanical Garden, Australia 
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Appendix A. (Continued) Accession data for morphological analyses. 

Taxon Locality 
Institutional 

Accession Number 
Abbreviated Name Provenance 

P. obtusa FCN FCN005A Obt_FCN Unknown 

P. obtusa NBG 201101183*A Obt_NBGb Unknown 

P. obtusa NBG 201101185*A Obt_NBGc Unknown 

P. obtusa NBG 201101185*D Obt_NBGd Unknown 

P. obtusa NBG 201101185*E Obt_NBGe Unknown 

P. obtusa NBG 201101185*F Obt_NBGf Unknown 

P. obtusa NBG 201301419*A Obt_NBGg Unknown 

P. obtusa WES WES1-2 Obt_WESa Hong Kong, China 

P. obtusa WES WES1-11 Obt_WESb Nong Nooch Tropical Garden, Thailand 

P. obtusa WES WES1-15 Obt_WESc  Unknown 

P. obtusa ‘Kukulkan’ FCN FCN010A Obt_Kuk_FCN Progreso (Merida), Yucatan 

P. obtusa ‘Kukulkan’ NBG 201400022*B Obt_Kuk_NBG Progreso (Merida), Yucatan 

P. obtusa ‘Marathon’ NBG 201100760*A Obt_Mar_NBG Unknown  

P. obtusa ‘Puerto Rico’ NBG 201100761*A Obt_PR_NBG Puerto Rico  

P. obtusa ‘Yucatan 3’ NBG 201001476*A Obt_Yuc_NBG Merida, Mexico 

P. obtusa var. obtusa FTBG 57356C OVO_FCBG Veradero, Cuba 

P. obtusa var. obtusa WES WES1-5 OVO_WES Nong Nooch Tropical Garden, Thailand 

P. obtusa var. sericifolia NBG 201401048*A OVS_NBG Unknown  

P. pudica NBG 200802035*B Pud_NBG  Unknown  

P. pudica WES WES1-12 Pud_WESa Puerto Rico 

P. pudica WES WES10-14 Pud_WESb Puerto Rico 

P. pudica 
‘Carambola Gardens’ 

NBG 201101417*A Pud_CG_NBG Honduras 

P. rubra ‘Celadine’ WES WES7-14 Rub_Cel_WES Unknown  

P. rubra ‘Dieudonne’ FTBG 2006-0776A Rub_Die_FCBG Unknown 
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Appendix A. (Continued) Accession data for morphological analyses. 

Taxon Locality Accession Number Abbreviated Name Provenance 

P. rubra ‘Pedasi’ WES WES10-20 Rub_Ped_WES Panama 

P. stenopetala NBG 201000924*A Ste_NBG Bangkok, Thailand (purchased) 

P. stenopetala WES WES1-10 Ste_WESd Dominican Republic 

P. stenopetala WES WES1-7 Ste_WESa Queen Kapiolani Garden, Honolulu, HI 

P. stenopetala WES WES1-8 Ste_WESb Ho’omaluhia Botanical Garden, Kaneohe, HI 

P. stenopetala WES WES1-9 Ste_WESc Ho’omaluhia Botanical Garden, Kaneohe, HI 

P. stenopetala ‘Dolores’ NBG 201001478*A Ste_Dol_NBG Dominican Republic 

P. stenophylla WES WES1-22 Sph_WESa Nong Nooch Tropical Garden, Thailand 

P. stenophylla WES WES1-26 Sph_WESb Nong Nooch Tropical Garden, Thailand 

P. stenophylla WES WES1-27 Sph_WESc Nong Nooch Tropical Garden, Thailand 

P. subsessilis FTBG 2012-1993 Sub_FCBGa La Vega, Dominican Republic 

P. subsessilis NBG 201301343*A Sub_NBG La Vega, Dominican Republic 

P. subsessilis WES WES1-24 Sub_WES Nong Nooch Tropical Garden, Thailand 

 

Appendix A. (Continued) Collector, propagule, and voucher (institution) information. 

Taxon & Accession No. Collector Propagule Voucher No. & Institution 

P. alba 201001479*A L. Vannoorbeeck Graft No voucher 

P. alba WES1-1 Staples, G.W. (1062) Cutting 645803 (Bishop Museum) 

P. alba WES1-30 J. Thielmann Cutting No voucher 

P. bahamensis 201101141*A Unknown Seedling No voucher 

P. bahamensis 201101141*B Unknown Seedling No voucher 

P. bahamensis 201101141*C Unknown Seedling No voucher 

P. bahamensis WES1-17 J. Little Seedling 774055 (Bishop Museum) 

P. bahamensis WES10-21 J. Little Seedling No voucher 

P. caracasana 201001474*A Unknown Graft No voucher 
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Appendix A. (Continued) Collector, propagule, and voucher (institution) information. 

Taxon & Accession No. Collector Propagule Voucher No. & Institution 

P. caracasana WES9-11 Unknown Cutting No voucher 

P. caracasana MB06 Unknown Unknown No voucher 

P. clusioides FCN002 M. Ferrero Cutting No voucher 

P. clusioides 201100361*A M. Ferrero Cutting No voucher 

P. clusioides WESMK4 M. Ferrero Cutting 775446 (Bishop Museum) 

P. cubensis 95615 D S. Zona Cutting No voucher 

P. cubensis 95615 E S. Zona Cutting No voucher 

P. cubensis FCN003A M. Ferrero Cutting No voucher 

P. cubensis 201001473*A M. Ferrero Graft No voucher 

P. cubensis 201100984*A R. Criley Seed No voucher 

P. cubensis WES1-25 R. Criley Graft 774048 (Bishop Museum) 

P. obtusa FCN005A Unknown Unknown No voucher 

P. obtusa 201101183*A Unknown Unknown No voucher 

P. obtusa 201101185*A Unknown Seedling No voucher 

P. obtusa 201101185*D Unknown Seedling No voucher 

P. obtusa 201101185*E Unknown Seedling No voucher 

P. obtusa 201101185*F Unknown Seedling No voucher 

P. obtusa 201301419*A H. Ford Cutting No voucher 

P. obtusa WES1-2 J. Little Cutting 774063 (Bishop Museum) 

P. obtusa WES1-11 R. Eggenberger Cutting 774057 (Bishop Museum) 

P. obtusa WES1-15 R. Criley Seedling No voucher 

P. obtusa ‘Kukulkan’ FCN010A L. Vannoorbeeck Cutting No voucher 

P. obtusa ‘Kukulkan’ 201400022*B L. Vannoorbeeck Cutting No voucher 

P. obtusa ‘Marathon’ 201100760*A H. Ford Seedling No voucher 

P. obtusa ‘Puerto Rico’ 201100761*A L. Vanoorbeeck Seedling No voucher 



 

 

 

1
0
0

 

Appendix A. (Continued) Collector, propagule, and voucher (institution) information. 

Taxon & Accession No. Collector Propagule Voucher No. & Institution 

P. obtusa ‘Yucatan 3’ 201001476*A L. Vannoorbeeck Cutting No voucher 

P. obtusa var. obtusa 57356C D. Seibert Cutting No voucher 

P. obtusa var. obtusa WES1-5 R. Criley Cutting 774062 (Bishop Museum) 

P. obtusa var. sericifolia 201401048*A Unknown Graft No voucher 

P. pudica 200802035*B Unknown Graft No voucher 

P. pudica 201001478*A H. Lazinger Cutting No voucher 

P. pudica 201301343*A H. Lazinger Cutting No voucher 

P. pudica ‘Carambola Gardens’ 201101417*A L. Vannoorbeeck Graft No voucher 

P. rubra ‘Celadine’ WES7-14 R. Criley Cutting No voucher 

P. rubra ‘Dieudonne’ 2006-0776A L. Vannoorbeeck Cutting No voucher 

P. rubra ‘Pedasi’ WES10-20 G. Hawkins Cutting 774043 (Bishop Museum) 

P. stenopetala 201000924*A M. Ferrero Graft No voucher 

P. stenopetala WES1-10 J. Lau Seedling 774058 (Bishop Museum) 

P. stenopetala WES1-7 R. Criley Seedling 774061 (Bishop Museum) 

P. stenopetala WES1-8 R. Criley Seedling 774060 (Bishop Museum) 

P. stenopetala WES1-9 R. Criley Seedling 774059 (Bishop Museum) 

P. stenopetala ‘Dolores’ 201001478*A J. Fondeur Cutting No voucher 

P. stenophylla WES1-22 K. Leonhardt Cutting 774050 (Bishop Museum) 

P. stenophylla WES1-26 M. Ferrero Cutting 774047 (Bishop Museum) 

P. stenophylla WES1-27 R. Criley Graft 774046 (Bishop Museum) 

P. subsessilis 2012-1993 J. Lopez Cutting No voucher 

P. subsessilis 201301343*A J. Lopez Cutting No voucher 

P. subsessilis WES1-24 R. Criley Graft 774049 (Bishop Museum) 
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Appendix B.  Morphological matrix of taxa and characters used in principal component analyses.  Character numbers are defined in Appendix C. 

 

Taxa Accession Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

P. alba 201001479*A 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 

P. alba WES1-1 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 

P. alba WES1-30 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 

P. bahamensis 201101141*A 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 

P. bahamensis 201101141*B 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 1 0 

P. bahamensis 201101141*C 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 

P. bahamensis WES10-21 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 

P. bahamensis WES1-17 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 

P. caracasana 201001474*A 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 

P. caracasana WES9-11 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 

P. caracasana MB06 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 

P. clusioides 201100361*A 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 

P. clusioides WESMK4 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 

P. clusioides FCN002 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 

P. cubensis 95615 D 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 

P. cubensis 95615 E 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 

P. cubensis FCN003A 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 

P. cubensis 201001473*A 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 

P. cubensis 201100984*A 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 

P. cubensis WES1-25 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

P. obtusa FCN005A 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 

P. obtusa 201101183*A 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 

P. obtusa 201101185*A 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 
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Appendix B. (Continued) Morphological matrix of taxa and characters used in principal component analyses. 

Taxa Accession Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

P. obtusa 201101185*D 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 

P. obtusa 201101185*E 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 

P. obtusa 201101185*F 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 

P. obtusa 201301419*A 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 

P. obtusa WES1-11 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 

P. obtusa WES1-15 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

P. obtusa WES1-2 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 

P. obtusa 
var. obtusa 

57356C 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 

P. obtusa 
var. obtusa 

WES1-5 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 

P. obtusa 
var. sericifolia 

201401048*A 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 

P. obtusa 
‘Puerto Rico’ 

201100761*A 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 

P. obtusa 
‘Yucatan3’ 

201001476*A 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 

P. obtusa 
‘Kukulkan’ 

FCN010A 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 

P. obtusa 
‘Kukulkan’ 

201400022*B 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 

P. obtusa 
‘Marathon’ 

201100760*A 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 1 1 

P. pudica 200802035*B 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 

P. pudica WES10-14 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 

P. pudica WES1-12 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 
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Appendix B. (Continued) Morphological matrix of taxa and characters used in principal component analyses. 

 

Taxa Accession Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

P. pudica 
‘Carambola 
Gardens’ 

201101417*A 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 

P. rubra 
‘Celadine’ 

WES7-14 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

P. rubra 
‘Dieudonne’ 

2006-0776 A 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

P. rubra 
‘Pedasi’ 

WES10-20 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

P. stenopetala 201000924*A 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 

P. stenopetala WES1-10 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 

P. stenopetala WES1-7 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 0 

P. stenopetala WES1-8 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 

P. stenopetala WES1-9 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 

P. stenopetala 
‘Dolores’ 

201001478*A 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 

P. stenophylla WES1-26 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 

P. stenophylla WES1-22 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 

P. stenophylla WES1-27 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 

P. subsessilis 2012-1993 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

P. subsessilis 201301343*A 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 

P. subsessilis WES1-24 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 
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Appendix B. (Continued) Morphological matrix of taxa and characters used in principal component analyses. 

 

Taxa Accession Number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

P. alba  201001479*A 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 

P. alba  WES1-1 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 

P. alba  WES1-30 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 1 0 

P. bahamensis  201101141*A 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 

P. bahamensis  201101141*B 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 

P. bahamensis  201101141*C 1 1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 

P. bahamensis  WES10-21 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 

P. bahamensis  WES1-17 1 1 0 1 0 1 0 0 1 1 1 1 0 1 1 1 0 

P. caracasana 201001474*A 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. caracasana WES9-11 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. caracasana MB06 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. clusioides 201100361*A 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 

P. clusioides WESMK4 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 

P. clusioides FCN002 0 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 

P. cubensis 95615 D 1 1 0 1 0 0 1 0 0 0 0 0 0 1 1 1 0 

P. cubensis 95615 E 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 

P. cubensis FCN003A 0 1 0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 

P. cubensis 201001473*A 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 

P. cubensis 201100984*A 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 

P. cubensis WES1-25 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 

P. obtusa  FCN005A 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 0 0 

P. obtusa 201101183*A 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 

P. obtusa 201101185*A 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 1 0 
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Appendix B. (Continued) Morphological matrix of taxa and characters used in principal component analyses. 

 

Taxa Accession Number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

P. obtusa 201101185*D 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 1 0 

P. obtusa 201101185*E 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 

P. obtusa 201101185*F 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 

P. obtusa 201301419*A 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 

P. obtusa WES1-11 1 1 0 1 0 0 1 0 0 1 0 1 0 1 1 1 0 

P. obtusa WES1-15 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

P. obtusa WES1-2 1 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 

P. obtusa 
var. obtusa 

57356C 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 

P. obtusa 
var. obtusa 

WES1-5 0 1 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 

P. obtusa 
var. sericifolia 

201401048*A 1 1 0 0 0 1 0 0 0 1 0 1 0 1 1 0 0 

P. obtusa 
‘Kukulkan’ 

FCN010A 1 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 

P. obtusa 
‘Kukulkan’ 

201400022*B 1 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 

P. obtusa 
‘Marathon’ 

201100760*A 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 0 0 

P. obtusa  
‘Puerto Rico’ 

201100761*A 1 1 0 1 0 0 1 0 0 1 1 1 0 1 1 0 0 

P. obtusa 
‘Yucatan3’ 

201001476*A 1 1 0 1 0 0 1 0 0 1 0 1 0 1 0 1 0 
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Appendix B. (Continued) Morphological matrix of taxa and characters used in principal component analyses. 

 

Taxa Accession Number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

P. pudica 200802035*B 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. pudica WES10-14 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. pudica WES1-12 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. pudica 
‘Carambola 
Gardens’ 

201101417*A 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. rubra 
‘Celadine’ 

WES7-14 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 

P. rubra 
‘Dieudonne’ 

2006-0776 A 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 

P. rubra 
‘Pedasi’ 

WES10-20 1 1 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 

P. stenopetala 201000924*A 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. stenopetala WES1-10 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 

P. stenopetala WES1-7 1 1 0 1 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. stenopetala WES1-8 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 

P. stenopetala WES1-9 1 1 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 

P. stenopetala 
‘Dolores’ 

201001478*A 1 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 

P. stenophylla WES1-26 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 

P. stenophylla WES1-22 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 

P. stenophylla WES1-27 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 1 

P. subsessilis 2012-1993 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 

P. subsessilis 201301343*A 1 0 1 0 0 0 0 1 0 0 0 1 1 0 0 1 0 

P. subsessilis WES1-24 1 1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 
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Appendix B. (Continued) Morphological matrix of taxa and characters used in principal component analyses. 

 
  Taxa Accession Number 37 38 39 40 41 42 43 

P. alba  201001479*A 1 0 0 0 0 0 1 

P. alba  WES1-1 1 0 0 0 0 0 1 

P. alba  WES1-30 1 0 0 0 0 0 1 

P. bahamensis  201101141*A 1 0 0 0 0 0 1 

P. bahamensis  201101141*B 1 0 0 0 0 0 1 

P. bahamensis  201101141*C 1 0 0 0 0 0 1 

P. bahamensis  WES10-21 1 0 0 0 0 0 1 

P. bahamensis  WES1-17 1 0 1 0 1 0 1 

P. caracasana 201001474*A 1 0 0 0 1 0 0 

P. caracasana WES9-11 1 0 0 0 0 0 1 

P. caracasana MB06 1 0 0 0 0 0 1 

P. clusioides 201100361*A 0 1 0 0 1 0 0 

P. clusioides WESMK4 0 1 0 0 1 0 0 

P. clusioides FCN002 0 1 0 0 1 0 0 

P. cubensis 95615 D 1 1 0 0 0 0 0 

P. cubensis 95615 E 1 0 0 0 1 0 0 

P. cubensis FCN003A 0 1 0 0 0 0 1 

P. cubensis 201001473*A 0 1 0 0 0 0 1 

P. cubensis 201100984*A 1 0 0 0 1 0 1 

P. cubensis WES1-25 0 1 0 0 0 0 1 

P. obtusa FCN005A 1 0 0 0 1 0 1 

P. obtusa 201101183*A 1 0 0 0 1 0 1 

P. obtusa WES1-11 1 0 1 1 1 0 1 
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Appendix B. (Continued) Morphological matrix of taxa and characters used in principal component analyses. 

 
  Taxa Accession Number 37 38 39 40 41 42 43 

P. obtusa WES1-15 1 0 1 0 0 0 0 

P. obtusa WES1-2 1 0 1 1 1 0 0 

P. obtusa 201101185*A 1 0 0 0 1 0 1 

P. obtusa 201101185*D 0 1 0 0 1 0 1 

P. obtusa 201101185*E 1 0 0 0 0 0 1 

P. obtusa 201101185*F 0 1 0 0 1 0 1 

P. obtusa 201301419*A 0 0 0 0 1 0 1 

P. obtusa var. obtusa 57356C 1 0 0 0 0 0 1 

P. obtusa var. obtusa WES1-5 1 0 0 0 0 0 1 

P. obtusa var. sericifolia 201401048*A 1 0 1 1 1 0 0 

P. obtusa ‘Kukulkan’ FCN010A 1 0 0 0 0 0 1 

P. obtusa ‘Kukulkan’ 201400022*B 1 0 1 0 1 0 1 

P. obtusa ‘Marathon’ 201100760*A 1 0 0 0 1 0 1 

P. obtusa ‘Puerto Rico’ 201100761*A 1 0 0 1 1 0 1 

P. obtusa ‘Yucatan3’ 201001476*A 1 0 0 0 0 0 0 

P. pudica 200802035*B 1 0 0 0 0 1 0 

P. pudica WES10-14 1 0 0 0 0 1 0 

P. pudica WES1-12 1 0 0 0 0 1 0 

P. pudica ‘Carambola Gardens’ 201101417*A 1 0 0 0 0 1 0 

P. rubra ‘Celadine’ WES7-14 1 0 0 0 0 0 1 

P. rubra ‘Dieudonne’ 2006-0776 A 1 0 0 0 0 0 0 

P. rubra ‘Pedasi’ WES10-20 1 0 0 0 0 0 1 

P. stenopetala 201000924*A 1 0 0 0 1 0 1 
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Appendix B. (Continued) Morphological matrix of taxa and characters used in principal component analyses. 

 
 

 

Taxa Accession Number 37 38 39 40 41 42 43 

P. stenopetala WES1-10 1 0 0 0 1 0 1 

P. stenopetala WES1-7 1 0 0 0 1 0 1 

P. stenopetala WES1-8 1 0 0 0 0 0 1 

P. stenopetala WES1-9 1 0 0 0 0 0 1 

P. stenopetala ‘Dolores’ 201001478*A 1 0 0 0 0 0 0 

P. stenophylla WES1-26 0 0 0 0 0 0 1 

P. stenophylla WES1-22 0 0 0 0 0 0 1 

P. stenophylla WES1-27 0 0 0 0 0 0 1 

P. subsessilis 2012-1993 1 0 0 0 0 0 0 

P. subsessilis 201301343*A 1 0 0 0 0 0 0 

P. subsessilis WES1-24 1 0 0 1 1 0 1 
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Appendix C.  Morphological characters, character states, and definitions of terminology used, based on 
Harris and Harris (2011) and Staples and Herbst (2005).  Numbers and abbreviations in parentheses 
correspond to how characters are named in the morphological matrix (Appendix B). 
 
Leaf Shape Characters 

(1) Obelliptic leaf shape (Obelliptic): 0=absence, 1=presence 
Almost in the shape of a narrow oval, but with the distal end somewhat larger than the proximal 
end.  

(2) Lanceolate leaf shape (Lanceolate): 0=absence, 1=presence 
Lance-shaped, but much longer than wide, with the widest point below the middle of the leaf near 
the proximal end (near the petiole). 

(3) Oblanceolate leaf shape (Oblanceolate): 0=absence, 1=presence 
Inversely lanceolate, with the attachment at the narrower end. 

(4) Oblong leaf shape (Oblong): 0=absence, 1=presence 
Leaves two to four times longer than broad with nearly parallel sides. 

(5) Elliptical leaf shape (Elliptical): 0=absence, 1=presence 
In the shape of an ellipse or narrow oval; broadest at the middle and narrower at the two equal 
ends. 

(6) Spatulate leaf shape (Spatulate): 0=absence, 1=presence 
Leaves shaped like a spatula with a rounded blade above gradually tapering to the base. 

(7) Recurved leaves (Recurved_Lf): 0=absence, 1=presence 
Entire leaves curved downward.   

 
Leaf Apex Characters 
(8) Acute leaf apex (Acute): 0=absence, 1=presence 

Leaf tips that taper to a pointed apex with more or less straight sides. 
(9) Acuminate leaf apex (Acuminate): 0=absence, 1=presence  

Gradually tapering to a sharp point and forming concave sides along the tip. 
(10) Obtuse leaf apex (Obtuse): 0=absence, 1=presence 

Blunt or rounded at the apex, with the sides coming together at the apex at an angle greater than 
90 degrees.  

(11) Emarginate leaf apex (Emarginate): 0=absence, 1=presence 
Leaf apex with a notch at the tip. 

(12) Retuse leaf apex (Retuse): 0=absence, 1=presence 
Leaf apex with a shallow notch in a round or blunt apex. 

(13) Cordate-acuminate leaf apex (Cordate-acuminate): 0=absence, 1=presence 
A special condition of Plumeria leaves, specifically of P. pudica, in which the outline of leaf apices 
resemble an inverted heart-shaped in appearance, but with elongated points. A vast majority of P. 
pudica specimens that were examined appear to have cordate leaf apices, yet in some herbarium 
specimens leaf apices are more acuminate than cordate. 

(14) Mucronate leaf apex (Mucronate): 0=absence, 1=presence 
A protrusion at the leaf apex, straight and stiff, and sharply pointy to the touch. 

(15) Mucronulate leaf apex (Mucronulate): 0=absence, 1=presence 
A protrusion at the leaf apex, broader than long; straight and blunt to the touch. 

 
Leaf Base Characters 
(16) Equilateral leaf bases (Equilateral): 0=absence, 1=presence 

Leaf bases that are equal-sided. 
(17) Oblique leaf bases (Oblique): 0=absence, 1=presence 

Leaf bases with unequal sides, somewhat slanting. 
(18) Attenuate leaf bases (Attenuate): 0=absence, 1=presence  

Leaf bases tapering gradually to a narrow base. 
(19) Cuneate leaf bases (Cuneate): 0=absence, 1=presence 

Wedge-shaped, triangular and tapering to a point at the base.   
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Appendix C. (Continued) Morphological characters, character states, and definitions of terminology used. 
 
(20) Connivent at leaf base (Connivent): 0=absence, 1=presence 

Adaxial lamina appearing to almost touch (converge) at the petiole juncture.  Johnston (1912) 
describes this character state as decurrent into the petiole. 

(21) Leaf attachment (Leaf_Attachment): 0=subsessile, 1=petiolate 

Some Plumeria taxa possess petioles that are almost sessile (subsessile), while other taxa have 

petiolate leaf attachment.  In his descriptions of Plumeria spp., De Candolle (1844) uses this 

character to describe the leaf attachment of P. subsessilis.  Woodson (1938a) used this character 

to describe P. pudica. 

 

Leaf Margin Characters 
(22) Pink leaf margins (Pink_Margin): 0=absence, 1=presence 

The younger leaves of P. subsessilis and P. clusioides leaves appear to possess this character, 
which fades with over time becoming almost absent at maturity.  Some specimens of P. rubra also 
possess this character. 

(23) Leaf margins (Leaf_Margin): 0=undulate, 1=entire 
Many live specimens that were examined, especially those belonging to Woodson’s “P. obtusa 
complex” appeared to have entire margins, whereas other taxa display leaf margins that are 
shallowly and smoothly indented (undulate) when viewed in a vertical orientation. 

(24) Flat leaf orientation (Flat_Orientation): 0=absence, 1=presence 
Leaf margin is not deflected upwards or downwards. 

(25) Recurved leaf margins (Recurved_Margin): 0=absence, 1=presence 
Sometimes referred to as reduplicate or declined leaf margins.  Portions of the lamina are deflected 
downward, toward the underside of the leaf but not rolled under.  Many of the taxa that Woodson 
(1938) subsumed under his evaluation of P. obtusa show this character, especially toward the apex 
of leaves.  

(26) Revolute leaf margins (Revolute_Margin): 0=absence, 1=presence 
Leaf margin is curled downwards and generally rolled inwards to the midrib of the leaf.  Revolute 
leaf margins are a constant character in descriptions of P. alba, but we have observed this 
character on other species. 

(27) Conduplicate leaf ptyxis (Conduplicate_Ptyxis): 0=absence, 1=presence 
Sometimes referred to as incurved leaf orientation.  Leaf margin is deflected upwards so that 
laminar surfaces on both sides of the midrib are oriented toward each other.  To our knowledge, 
this is the first time this character has been used to evaluate species in the genus Plumeria. 

 
Leaf Surface Characters 
(28) Adaxial leaf texture (Glabrous_or_ScabrousAD): 0=glabrous, 1=scabrous  

Adaxial leaf surfaces are either smooth to the touch (glabrous) or rough to the touch (scabrous). 
(29) Abaxial leaf texture (Glabrous_or_CoriaceousAB): 0=glabrous, 1=coriaceous 

Some taxa have abaxial leaf surfaces that are smooth to the touch (glabrous), devoid of trichomes, 
whereas the abaxial surfaces of other taxa have the texture of leather (coriaceous), due to the 
presence of trichomes.  Many species of Plumeria have been described based on the presence or 
absence of leaf indument (Standley, 1924).  Britton (1915) referred to this character as lanate. 

(30) Puckering of adaxial surface (Puckering): 0=absence, 1=presence 
Puckering is a character used to describe laminal surfaces between secondary veins, giving a 
raised or bubbling appearance to adaxial surfaces of leaves. Woodson (1938) observed this feature 
on P. alba specimens, but we also have observed this feature in taxa of P. obtusa. 
 

Leaf Venation Characters 
(31) Tomentose midvein (Tomentose_Midvein): 0=absence, 1=presence 

Midveins covered with dense, interwoven trichomes occurred on midveins of some taxa.  In his 
description of Plumeria, Woodson (1938b) described this character as pilosulous. 
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Appendix C. (Continued) Morphological characters, character states, and definitions of terminology used. 
 
(32) Midvein pink in coloration (Pink_Midvein): 0=absence, 1=presence 

A character that exists in only P. subsessilis and P. clusioides.  This feature is most prominent in 
younger leaves but fades with maturity, appearing faintly or completely absent in mature leaves. 
 

(33) Secondary venation entry to the midrib (Decurrent_or_DirectSV): 0=decurrent, 1=direct 
Decurrent secondary venation was a character that Woodson (1938a) used to describe the way in 
which secondary veins entered the midrib in leaves of P. subsessilis and P. rubra.  Occasionally, 
this character was also observed in leaves of other taxa. 

(34) Angle of secondary venation to primary vein (Angular_or_PerpendicularSV): 0=angular, 
1=perpendicular 
The angle of secondary venation appeared to be an important feature among species within this 
genus (Grisebach, 1864; Britton, 1910; Britton and Millspaugh, 1920; Stahl, 1937).  We 
acknowledge two types.  Perpendicular venation is a character state in which secondary veins are 
oriented in a perpendicular angle to the midvein.  Venation patterns that were not deemed 
perpendicular were considered as angular secondary venation. 

(35) Arrangement of secondary venation (Opposite_or_AlternateSV): 0=opposite, 1=alternate 
This character describes the secondary venation patterns along the midrib.  Some taxa appear to 
have opposite venation patterns in a manner similar to opposite phyllotaxis, whereas other live 
specimens that we examined appear to have an alternating secondary venation pattern. 

(36) Sunken vs. raised adaxial venation (Sunken_or_RaisedADv): 0=sunken, 1=raised 
Secondary venation of certain taxa appears to have a sunken or appressed appearance of veins on 
the adaxial surface.  Other specimens appear to have raised adaxial venation.   

(37) Sunken vs. raised abaxial venation (Sunken_or_RaisedABv): 0=sunken, 1=raised 
A similar occurrence of raised or sunken venation on the abaxial surfaces were observed. It should 
be noted that the character for sunken vs. raised venation on the upper (adaxial) surface was not 
correlated with sunken vs. raised venation on the lower (abaxial) surface.  That is, secondary 
venation can appear to be sunken or appressed on both laminal surfaces on some taxa. 

(38) Inconspicuous abaxial venation (InconspicuousABv): 0=absence, 1=presence 
Some leaves of Plumeria taxa, such as P. clusioides, do not show definitive raised or sunken 
venation (Grisebach et al., 1863; Leon and Alain, 1957) on the abaxial surface of leaves, but still 
show venation that is translucent.  Other accessions, as in some samples of P. cubensis, show 
secondary venation that is appears appressed, and not as definitively raised as the venation of P. 
obtusa and P. rubra. We collectively refer to these venation characters as inconspicuous abaxial 
venation.   

(39) Prominent marginal vein on abaxial surface (Prominent_MargVein): 0=absence, 1=presence 
Certain taxa of the P. obtusa complex appear to possess this character in which secondary veins 
anastamose to a common marginal vein that is very prominent on the underside of leaves. 

 
Trunk and Growth Characters 
(40) Prominent tubercles on main trunk axis (Tubercles_Trunk): 0=absence, 1=presence 

Tubercles are formed from leaf scars (cicatrices), which give many species of this genus a knobbed 

appearance to branches.  However, only a few taxa in this genus possess tuberculous protrusions, 

giving trunks a densely studded appearance. 

(41) Prominent tubercles on branches (Tubercles_Branch): 0=absence, 1=presence 
Tubercle-like projections can also occur on the stems/branches of certain Plumeria taxa. 

(42) Growth habit (Growth_Habit): 0=open, 1=columnar 
Most taxa in this genus tend to exhibit a sprawling growth pattern, resulting from lateral branching, 
which produces a spreading growth habit.  On the other hand, taxa of P. pudica appear to have a 
more upright, columnar growth habit. 

(43) Follicle Occurrence (Follicle_Occurrence): 0=rare, 1=frequent 
On certain specimens, developing or dehisced seedpods were rarely observed.  On other 
specimens, multiple seedpods (developing and/or dehisced) were observed to occur on a plant.  
Sometimes multiple seedpods were observed developing from a single inflorescence.  
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Appendix D.  Accession data for molecular analyses, including live plant materials and Genbank accession numbers for downloaded sequences.  
Collection locality abbreviations are as follows: UH = University of Hawaii at Manoa campus; FCN = Florida Colors Nursery (Homestead, FL); 
NTBG = National Tropical Botanical Gardens (PTBG) (Koloa, Kaua’i); WES = Waimanalo Experiment Station (Waimanalo, O’ahu); NBG = Naples 
Botanical Garden (Naples, FL); FTBG = Fairchild Tropical Botanic Garden (Coral Gables, FL); WA = Waimea Arboretum (Pupukea, O’ahu).  
 

Taxon Accession No. Collection Locality Provenance Data 

P. alba CM03 UH Collected by C. Morici in the Canary Islands. 

P. alba FCN001A FCN Collected by L. Vanoorbeeck from Roatan, Honduras. 

P. alba FCN001B FCN Collected by M. Ferrero from the wild. 

P. alba NTBG970401003 NTBG Origin unknown; seedling of Waimea Arboretum (Oahu) accession no. 97s73. 

P. alba WES1-1 WES 
Collected by G.W. Staples & R. Criley (coll. No. 1062) from Waimanalo 
(containerized tree); Voucher 645803 in Bishop Museum. 

P. alba NBG201001479A NBG Collected as grafted plant from Florida Colors Nursery (Florida). 

P. alba WES1-30 WES Collected by G. Thielman in Santa Barbara, CA. 

P. bahamensis NBG201101141B NBG Collector and origin unknown; received on Aug. 30, 2011. 

P. bahamensis NBG201101141C NBG Collector and origin unknown; received on Aug. 30, 2011. 

P. bahamensis WES1-17 WES 
Collected by G. Stokes from Nassau, The Bahamas, given to J. Little, given to R. 
Criley; Voucher 774055 in Bishop Museum. 

P. bahamensis WES10-21 WES   

P. caracasana NTBGMB06 NTBG Unknown 

P. caracasana NBG201001474A NBG 
Collector likely L. Vanoorbeeck from Florida Colors Nursery (Florida); received on 
Aug. 31, 2010. 

P. caracasana UH UH   

P. caracasana WES1-6 WES Most likely collected from J. Little from Nong Nooch Tropical Garden (Thailand). 

P. caracasana WES9-11 WES   

P. caracasana WESMK2 WES 
Collected by R. Criley from Nong Nooch Tropical Garden (Thailand); Voucher 
775447 in Bishop Museum. 

P. clusioides FCN002A FCN Collected by L. Vanoorbeeck likely from Cuba. 

P. clusioides NBG201100361A NBG Received from Florida Colors Nursery on Apr. 19, 2011. 

P. clusioides WESMK4 WES 
Collected as cutting by R. Criley from Florida Colors Nursery (Florida); Voucher 
775446 in Bishop Museum. 

P. cubensis FTBG95615B FTBG Collected by S. Zona from Jardin Botanico Nacional (Cuba) 

P. cubensis FTBG95615D FTBG Collected by S. Zona from Jardin Botanico Nacional (Cuba) 

P. cubensis FTBG95615E FTBG Collected by S. Zona from Jardin Botanico Nacional (Cuba) 

P. cubensis FCN003A FCN Collected by M. Ferrero from Cuba in the wild. 
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Appendix D. (Continued) Accession data for live plant materials. 

Taxon Accession No. Collection Locality Provenance Data 

P. cubensis NBG201001473A NBG 
Received as a grafted plant from Florida Colors Nursery on 
Aug. 31, 2010. 

P. cubensis NBG201100984A NBG Received from University of Hawaii as seed on Aug. 20, 2011. 

P. cubensis WES1-25 WES 

Collected by R. Criley from Mt. Coot-tha Botanic Garden 
(Australia); Duplicate accession at Waimea Arboretum no. 
8255; Voucher 774048 in Bishop Museum. 

P. ekmanii CM08 UH Collected by C. Morici from the Canary Islands. 

P. ekmanii WES1-14 WES 
Collected by C. Morici from Palmetum en Tenerife, originally 
collected from Mt. El Yunque, Cuba. 

P. filifolia CM05 UH Collected by C. Morici from the Canary Islands. 

P. filifolia FCN012A FCN Collected by M. Ferrero from Cuba in the wild. 

P. filifolia MF01 UH Collected by M. Ferrero from the wild. 

P. montana 'Alta' CM09 UH Collected by C. Morici from the Canary Islands. 

P. montana 'Baja' CM10 UH Collected by C. Morici from the Canary Islands. 

P. montana FCN004A FCN Collected by M. Ferrero from Cuba in the wild. 

P. montana WES1-29 WES 
Collected by M. Ferrero from Nong Nooch Tropical Garden 
(Thailand); Voucher 774044 in Bishop Museum. 

P. obtusa FCN005A FCN Unknown 

P. obtusa FCN005B FCN Unknown 

P. obtusa 'Kukulkan' FCN010A FCN Collected by C. Vanoorbeeck from Progresso, Mexico. 

P. obtusa 'Marathon' NBG201100760A NBG Collected as seed by H. Ford on July 13, 2011. 

P. obtusa NBG201100509A NBG Origin unknown; received in 2008. 

P. obtusa NBG201101185A NBG Unknown 

P. obtusa NBG201101185D NBG Unknown 

P. obtusa NBG201101185E NBG Unknown 

P. obtusa NBG201101185F NBG Unknown 

P. obtusa NBG201301419A NBG Collected by H. Ford as a plant on Aug. 13, 2013. 

P. obtusa 'Puerto Rico' NBG201100761A NBG 
Received as a seedling from Florida Colors Nursery (Florida) 
on Jul. 13, 2011. 

P. obtusa var. obtusa FTBG57356B FTBG Collected by Dr. Seibert from Veradero, Cuba  
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Appendix D. (Continued) Accession data for live plant materials. 

Taxon Accession No. Collection Locality Provenance Data 

P. obtusa var. obtusa FTBG57356C FTBG Collected by Dr. Seibert from Veradero, Cuba  

P. obtusa var. obtusa NTBG860059 NTBG Collected in 1986 from Jardin Botanico Nacional (Cuba). 

P. obtusa var. obtusa WES1-5 WES 
Collected by R. Criley from Nong Nooch Tropical Garden 
(Thailand); Voucher 774062 in Bishop Museum. 

P. obtusa var. sericifolia NBG201401048A NBG 
Received as a grafted plant from Florida Colors Nursery 
(Florida) on Mar. 11, 2014. 

P. obtusa var. sericifolia WA75c2132 WA 

Collected by J. Lau from the Dominican Republic; accession 
no. 75c2132 at Waimea Arboretum; Voucher 533676 in Bishop 
Museum. 

P. obtusa var. sericifolia WES1-4 WES 

Collected by C. Morici from seed from Palmetum Tenerife; 
Duplicate accession at Waimea Arboretum no. 76S775. 
Previously named P. tuberculata in WES. 

P. obtusa WES1-2 WES 
Collected by J. Little from a hotel planting in Hong Kong, 
China; Voucher 774063 in Bishop Museum. 

P. obtusa WES1-24 WES 

Collected by M. Ferrero from Nong Nooch Tropical Garden 
(Thailand); accessioned in NNTG as P. subsessilis; Duplicate 
accession at Waimea Arboretum no. 15940 

P. obtusa 'Yucatan' NBG201400022A NBG 
Collected by L. Vannoorbeeck from Progreso, Yucatan; 
received as a plant in 2009. 

P. pudica 'Carambola Gardens' NBG201101417A NBG 
Received as a grafted plant from L. Vannoorbeeck; most likely 
an F1 of P. pudica; received on Dec. 6, 2011. 

P. pudica NBG200802035B NBG Origin unknown; received as a grafted plant in 2006. 

P. pudica NTBG50318002 NTBG 

Collected by D. Orr from Waimea Arboretum (Oahu) accession 
no. 01p82 in Aug. 25, 2005, received at Waimea Arboretum 
from J. Little. 

P. pudica NTBG50318004 NTBG 

Collected by D. Orr from Waimea Arboretum (Oahu) accession 
no. 01p82 in Aug. 25, 2005, received at Waimea Arboretum 
from J. Little. 

P. pudica NTBG50318006 NTBG 

Collected by D. Orr from Waimea Arboretum (Oahu) accession 
no. 01p82 in Aug. 25, 2005, received at Waimea Arboretum 
from J. Little. 

P. pudica UH UH Collected from seed by R. Criley. 
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Appendix D. (Continued) Accession data for live plant materials. 

Taxon Accession No. Collection Locality Provenance Data 

P. pudica WES1-12 WES 
Collected by J. Little from Nong Nooch Tropical Garden 
(Thailand). 

P. pudica WES10-14 WES Collected by H. Lazinger from Puerto Rico. 

P. rubra 'CyndiMoragne' WES2-8 WES   

P. rubra 'JLMoragne' seedling WES2-15 WES Collected as a seedling by R. Criley from J. Little. 

P. rubra 'KimiMoragne' WES4-30 WES   

P. rubra 'MaryMoragne' WES2-3 WES   

P. rubra 'Moragne93' WES2-10 WES   

P. rubra 'Pedasi' WES10-20 WES Collected by J. Thielman, possibly from Panama. 

P. rubra USDA139505-10619 USDAMIA   

P.  sp.  'Isabella' WES1-21 WES 
Collected by R. Criley from Nong Nooch Tropical Garden 
(Thailand). 

P. sp. 'Isabella' seedling WESMU67 WES Seedling of P. sp. 'Isabella' collected by R. Criley (WES1-21). 

P. sp. 'Isabella' seedling WESMU68 WES Seedling of P. sp. 'Isabella' collected by R. Criley (WES1-21). 

P. sp. 'Isabella' seedling WESMU69 WES Seedling of P. sp. 'Isabella' collected by R. Criley (WES1-21). 

P. sp. 'Isabella' seedling WESMU70 WES Seedling of P. sp. 'Isabella' collected by R. Criley (WES1-21). 

P. stenopetala 'Dolores' NBG201001478A NBG 

Received from L. Vanoorbeeck on Aug. 31, 2010; formerly 
from D. Fugina; originally collected by J. Fondeur from the 
Dominican Republic. 

P. stenopetala FCN006A FCN 
Collected by C. Vanoorbeeck purchased from Bangkok, 
Thailand. 

P. stenopetala NBG201000924A NBG 

Received from Florida Colors Nursery as a grafted plant on 
Jun.4, 2010; originally from a cultivated plant in Bangkok, 
Thailand. 

P. stenopetala WES1-7 WES 
Collected by R. Criley from Queen Kapiolani Garden, Waikiki, 
Oahu; Voucher 774061 in Bishop Museum. 
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Appendix D. (Continued) Accession data for live plant materials. 

Taxon Accession No. Collection Locality Provenance Data 

P. stenopetala WES1-8 WES 
Collected as seed by R. Criley from Ho’omaluhia Botanical Garden 
(Oahu); Voucher 774060 in Bishop Museum.  

P. stenopetala WES1-9 WES 
Collected as seed by R. Criley from Ho’omaluhia Botanical Garden 
(Oahu); Voucher 774059 in Bishop Museum.  

P. stenopetala WES1-10 WES 
Collected as seed by R. Criley from Ho’omaluhia Botanical Garden 
(Oahu); Voucher 774058 in Bishop Museum.  

P. stenophylla WES1-27 WES 

Collected by R. Criley from Mt. Coot-tha Botanic Garden (Australia) in 
2007; formerly accessioned as P. filifolia; Duplicate accession at 
Waimea Arboretum no. 15931; Voucher 774046 in Bishop Museum.  

P. stenophylla WES1-28 WES 
Collected by C. Elhardt from Guantanamo, Cuba in 2006; Voucher 
774045 in Bishop Museum. 

P. subsessilis FTBG2012-1993 FTBG 
Collected by J.F. Lopez from La Vega, Dominican Republic in July 
2012; Duplicated in Naples Botanical Garden (Florida). 

P. subsessilis NBG201301343A NBG 
Collected from seed by J. Lopez (Fairchild Tropical Botanic Garden) 
from the wild in Dominican Republic; received on Aug. 6, 2013. 

P. tuberculata FCN007A FCN Unknown 

P. tuberculata WA76s755 WA   

Stemmadenia litoralis UH UH   

Tabernaemontana divaricata UH UH   

Neisosperma oppositifolia NTBG050364007 NTBG 
Collected by D. Orr from Waimea Arboretum (Oahu) accession no. 
01p82 in Aug. 25, 2005, received at Waimea Arboretum from J. Little. 
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Appendix D. (Continued) Genbank accession data for sequences downloaded from NCBI. 
 

  Genbank Accession Numbers 

NCBI Taxon Sampled ITS2 matK rpl32-trnL psbJ-petA trnH-psbA 

Alstonia rostrata KR531723.1         

Alstonia scholaris KR531723.2   MG963247 MG963247   

Neisosperma acuminatum KR531723.3         

Ochrosia borbonica KR531723.4         

Ochrosia oppositifolia KR531723.5         

Plumeria rubra KR531723.10         

Plumeria rubra KR531723.11         

Rauvolfia verticillata KR531723.14         

Rauvolfia densiflora KR531723.12         

Plumeria rubra 
KR531723.9,  
KR531723.10,  
KR531723.11 Z70191       

Rauvolfia verticillata KR531723.13 KT955398       

Plumeria alba   FJ754255     KJ426885 

Plumeria cubensis   
DQ660536,  
MG963231       

Rauvolfia sellowii   DQ660537       

Rauvolfia semperflorens   KT955393       

Rauvolfia viridis   KT955399       

Vinca minor   KX911166       

Tonduzia longifolia   DQ660552       

Craspidospermum verticillatum     MG963267     

Lacmellea panamensis     MG963264     

Aspidosperma cruentum     MG963248 MG963248   

Catharanthus roseus     KC561139 KC561139   

Vinca major     MG963228 MG963228   

Tonduzia stenophylla     MG963272 MG963272   
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Appendix E.  Diagnostic molecular characters of Plumeria taxa, including transition, transversion, and 
insertion/deletion (indel) characters based on nucleotide positions in sequence alignments of individual 
molecular regions.  Data in boldface indicate characters that are unique and thus diagnostic to individual 
species but may also be used in combination with other characters associated with the respective 
species.   

     

Region Taxa 
Diagnostic  
Character Type Position in Alignment* 

ITS2          

 P. alba C Transition 118 

  C Transversion 181 

  A Transversion 213 

  G Transition 214 

    G Transition 221 

matK         

 

P. obtusa  
(syn. P. obtusa var. sericifolia) T Transversion 192, 644 

   A Transition 299 

  P. caracasana T Transversion 732 

 P. pudica C Transition 27 

  T Transition 305 

   T Transversion 732 

  P. sp. ‘Isabella’ T Transition 514 

psbJ-petA       

 P. rubra G Transition 35 

  7 bp gap Deletion 480-486 

    15 bp insert Insertion 818-832 

 P. alba T Transversion 379 

    8 bp gap Deletion 839-846 

  P. sp. ‘Isabella’ A Transversion 498 

trnH-psbA       

 P. alba A Transversion 86 

  T Transversion 264 

    22 bp insert Insertion 369-390 

 P. caracasana T Transition 75 

  gap Deletion 87-117 

    8 bp insert Insertion 438-445 

 
*Relative to position in the alignment used in this study.  Alignments acquired from other data sets using 
comparable regions may not necessarily coincide with the alignment positions featured in this study. 
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Appendix E. (Continued) Diagnostic molecular characters of Plumeria taxa. 

 

 

 

 

 

Region Taxa 
Diagnostic  
Character Type Position in Alignment* 

trnH-psbA     

 P. pudica T Insertion 101 

  gap Deletion 117 

  T Insertion 137 

  G Transition 177 

  G Transition 299 

  T Transversion 391 

    8 bp insert Insertion 438-445 

 P. sp. ‘Isabella’ T Transversion 92 

  A Insertion 101 

  G Transversion 104 

  TT Insertion 106-107 

  T Insertion 137 

    A Transversion 344 

  P. clusioides 11 bp insert Insertion 106-116 

 P. obtusa var. sericifolia C Transversion 205 

    T Transversion 239 

 P. rubra A Transversion 75 

  A Transversion 80 

  C Transversion 117 

    T Transversion 137 

 P. stenopetala T Transversion 392 

    T Transversion 462 

 P. subsessilis A Transversion 84 

  T Transversion 92 

  C Transversion 205 

    T Transversion 239 

rpl32-trnL     

 P. alba G Transition 121 

  C Transversion 258 

  A Transversion 522 

  G Transversion 544 

    T Transversion 688 
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Appendix E. (Continued) Diagnostic molecular characters of Plumeria taxa. 

 
 
  

Region Taxa 
Diagnostic  
Character Type Position in Alignment* 

rpl32-trnL     

 P. caracasana T Transversion 53 

  T Transversion 86 

  A Transversion 374 

  A Transversion 515 

  A Transition 516 

  A Transversion 552 

  G Transversion 634 

  A Transversion 700 

  ATAAAT Insertion 729-734 

  T Transversion 898 

    G Transversion 920 

 P. pudica A Transition 53 

  T Transversion 86 

  A Transversion 374 

  A Transition 516 

  A Transversion 552 

  A Transversion 582 

  A Transversion 700 

    G Transversion 920 

 P. sp. ‘Isabella’ A Transversion 166 

  T Transversion 516 

  A Transversion 522 

  T Transversion 1,003 

    A Transversion 1,052 

 P. obtusa var. sericifolia A Transversion 374 

  G Transversion 624 

  177 bp gap Deletion 645-821 

    T Transversion 1,003 

 P. rubra G Transversion 393 

  T Transversion 498 

  A Transition 686 

    G Transition 809 

 P. stenopetala C Transversion 98 

  A Transversion 166 

  A Transversion 766 

  C Transversion 805 
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Appendix F.  Taxonomic status and natural geographic distribution of Plumeria, as derived from the World Checklist of Selected Plant Families 
(WCSP) and other sources of literature.  This is not a comprehensive list of extant taxa.  More information is available online at: 
http://wcsp.science.kew.org/home.do. 

Taxon Reference Accepted By Not Accepted By Synonyms Natural Distribution 

P. pudica Jacq. 
Enum. Syst. Pl.: 13 
(1760) 

Govaerts, R. (2003) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 
Hokche, O., P.E. Berry, 
& O. Huber (2008) 
Davidse, G. et al. (2009) 
Baksh-Comeau, Y. et al. 
(2016) 

 

P. caracasana J.R.Johnst., 
Contr. U.S. Natl. Herb. 12: 108 
(1908) 
P. cochleata S.F.Blake, Contr. 
Gray Herb., n.s., 53: 47 (1918) 

Panama to N. Venezuela 

P. caracasana J.R. 
Johnst. 

Contr. U.S. Natl. Herb. 
12: 108 (1908) 

 Govaerts, R. 
(2003) 

Accepted as a synonym of P. 
pudica. 

Venezuela  
(Caracas to La Guaira) 

P. alba L. Sp. Pl.: 209 (1753) 

Welsh, S.L. (1998) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 
Baksh-Comeau, Y. et al. 
(2016) 

 

P. revolutifolia Stokes, Bot. Mat. 
Med. 1: 501 (1812) 
P. hypoleuca var. angustifolia 
Gasp., Ann. Civili Regno Due 
Sicilie 1: 122 (1833) 
P. alba var. jacquiniana A.DC. in 
A.P.de Candolle, Prodr. 8: 392 
(1844) 

Puerto Rico to Windward Is. 

P. obtusa L. Sp. Pl.: 210 (1753) 

Cirilo, N. & G.R. Proctor 
(1994) 
Govaerts, R. (2003) 
Nelson Sutherland, C.H. 
(2008) 
Davidse, G. et al. (2009) 
Morales, J.F. (2009) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

 

P. bahamensis Urb., Symb. 
Antill. 1: 387 (1899) 
P. obtusa var. sericifolia 
(C.Wright ex Griseb.) Woodson, 
Ann. Missouri Bot. Gard. 25: 
214 (1938) 

Florida Keys, Caribbean, SE. 
Mexico to Guatemala 

P. bahamensis Urb. 
Symb. Antill. 1: 387 
(1899) 

 Govaerts, R. 
(2003) 

Accepted as a synonym of P. 
obtusa. 

Bahamas Acklins Island 

P. clusioides Griseb. Cat. Pl. Cub.: 171 (1866) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

Govaerts, R. 
(2003) 

 Cuba 

P. cubensis Urb. 
Repert. Spec. Nov. 
Regni Veg. 21: 2019 
(1925) 

Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

Govaerts, R. 
(2003) 

 Cuba 

  

http://wcsp.science.kew.org/home.do
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Appendix F. (continued) Taxonomic status and natural geographic distribution data among Plumeria taxa. 

Taxon Reference Accepted By Not Accepted By Synonyms Natural Distribution 

P. ekmanii Urb. Symb. Antill. 9: 239 (1924) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

Govaerts, R. 
(2003) 

P. obtusa var. parviflora Griseb., 
Pl. Wright. 2: 519 (1862) 
P. clusioides var. parviflora 
(Griseb.) M.Gómez, Anales Soc. 
Esp. Hist. Nat. 23: 273 (1894) 

Cuba 

P. filifolia Griseb.  Pl. Wright. 2: 519 (1862) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

 P. stenophylla Urb., Symb. Antill. 
9: 237 (1924) 

E. Cuba 

P. montana Britton & 
P.Wilson 

Bull. Torrey Bot. Club 50: 
46 (1923) 

Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

Govaerts, R. 
(2003) 

 Cuba 

P. rubra L. Sp. Pl.: 209 (1753) 

Welsh, S.L. (1998) 
Govaerts, R. (2003) 
Nelson Sutherland, C.H. 
(2008) 
Davidse, G. et al. (2009) 
Morales, J.F. (2009) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

 

Plumeria rubra f. typica Woodson, 
Ann. Missouri Bot. Gard. 25: 211 
(1938) 
Heterotypic synonyms can also 
be found online (WCSP). 

Mexico to Venezuela 

P. stenophylla Urb. Symb. Antill. 9: 237 (1924)  

Govaerts, R. 
(2003) 
Acevedo-
Rodríguez, P. & 
M.T. Strong (2012) 

Accepted as a synonym of P. 
filifolia. 

Cuban  
(Palmarito de Cauto) 

P. tuberculata G. Lodd. Bot. Cab. 7: t. 681 (1823) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

Govaerts, R. 
(2003) 

P. domingensis Urb., Symb. Antill. 
3: 338 (1902) 
P. gibbosa Urb., Symb. Antill. 3: 
338 (1902) 

Bahamas to Hispaniola 

P. subsessilis A.DC.  Prodr. 8: 393 (1844) 
Govaerts, R. (2003) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

 

P. berteroi A.DC. in A.P.de 
Candolle, Prodr. 8: 393 (1844) 
P. jaegeri Müll.Arg., Linnaea 30: 
397 (1860) 

Hispaniola 
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Appendix F. (continued) Taxonomic status and natural geographic distribution data among Plumeria taxa. 

Taxon Reference Accepted By Not Accepted By Synonyms Natural Distribution 

P. x stenopetala Urb.* 
(P. obtusa x P. subsessilis) 
 

 

 

 

 

 Symb. Antill. 3: 335 
(1902) 

Govaerts, R. (2003) 
Acevedo-Rodríguez, P. 
& M.T. Strong (2012) 

 

Plumeria × biglandulosa Urb., 
Symb. Antill. 3: 337 (1902) 
Plumeria × pauliniae Urb., Symb. 
Antill. 3: 336 (1902) 
Plumeria × discolor Urb. & 
Ekman, Ark. Bot. 20A (5): 36 
(1926) 
Plumeria × longiflora Urb. & 
Ekman, Ark. Bot. 20A (5): 38 
(1926) 
Plumeria × trouinensis Urb. & 
Ekman, Ark. Bot. 20A (5): 37 
(1926) 

Hispaniola 

* Treated in analyses  as P. stenopetala 
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