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ABSTRACT

Automatic identification of plants from natural images is a challenging problem that is relevant

to both the disciplines of Botany and Computer Science. The classification of plant images at the

species level is a computer vision task called fine-grained categorization. This categorization prob-

lem is particularly complicated due to a large number of plant species, the inter-species similarity,

the large-scale variation in appearance, and the lack of annotated data. Despite the availability of

dozens of plant identification mobile applications, categorizing plant species from natural images

remains an unsolved problem – e.g., most of the existing applications do not address the multi-

scale nature of this type of image. Furthermore, an automated system capable of addressing the

complexity of this computer vision problem has important implications for society at large, not

only in preserving ecosystem biodiversity and public education but also in numerous agricultural

activities such as detecting abnormalities in plants and analyzing food crops.

In this dissertation, I present a new approach to the problem of automatically categorizing

plant species using photos taken in nature. Essentially, this approach assembles a collection of

Convolutional Neural Networks (CNN-based) to create a plant categorization system that I named

WTPlant (What’s That Plant? ). One of the novelties of this system is a preprocessing method that

extracts multi-scale samples from natural images, making the classification models more robust to

variations in the scale of the plant. A comprehensive experimental evaluation of this new prepro-

cessing method compares its performance with frequently used data augmentation techniques over

different classification models of the system. WTPlant also enables the categorization of multiple

plant components simultaneously by employing distinct classification pipelines for plants (leaves,

branches, bushes, and trees) and flowers. The combination of these multi-organ analyses ensures

a broader categorization process. It can be further extended by adding pipelines for fruits, barks,

roots, etc., depending on the availability of annotated images. In summary, this new approach lo-

cates multiple plant organs in a natural image and guides the extraction of representative samples

at various scales used to train and test state-of-the-art CNN classification models.

To apply the WTPlant system in a real-world environment, I implement a scale-up process that

adapts the classification models. In this process, models have their top classification layers replaced

to accommodate a more significant number of plant species. But due to a lack of training data, these

models have to be pre-trained to achieve satisfactory performance. As a result, I also implement

the integration of domain-specific knowledge to create plant and flower expert classification models.

Initially focusing on the University of Hawai‘i Mānoa campus plants, this research aims to produce

the most accurate system for classifying Hawaiian plants and make it available to botanists, tourists,

and the entire community to use. As a case study, I create a mobile version of the WTPlant system

to categorize plant species from the Harold L. Lyon Arboretum, a University of Hawai‘i Research

Unit located at the upper end of the Mānoa Valley.
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CHAPTER 1
INTRODUCTION

Traditionally, botanists analyze different aspects of a plant to identify its species. Focusing only

on visible characteristics, the correct categorization of plants requires considerable knowledge [72].

Unsurprisingly, some species have specific traits that need to be considered for the correct plant

categorization. As an example, some plants can be distinguished from very similar species only

based on their seeds or pods. Due to particular characteristics like these, it is almost impossible

for the general public and challenging even for botanists to identify a plant species from a single

image correctly.

Knowledge of plant species is essential to protect the biodiversity of any flora, and an automated

system to identify plants has important applications ranging from conservation to agriculture.

For conservation purposes, an automated system can capture different phenomena throughout

the plant’s life cycles like germination, budding, and flowering. Previous methods to extract this

information from natural images are incredibly tedious. For agriculture, most applications are

related to automatic food crop analysis, especially the identification of pests, diseases, and invasive

species. The improvement in these agricultural efforts can, in turn, lead to better crop control and

management, higher-yielding food production, and possibly a reduction in pesticide use.

Over the last few years, Machine Learning (ML) approaches have shown promising results in

many computer vision problems, including plant identification. Previous efforts have used hand-

designed features of leaves, flowers, and fruits [6, 10, 18, 37, 72], and most of them are restricted to

the analysis of fairly controlled images with clean backgrounds. However, categorizing plant species

relying on morphological characteristics extracted from well-controlled images is quite different from

the noisy natural images found in real-world classification problems.

The categorization of natural images can be extremely challenging due to complex backgrounds,

different illumination sources, occlusions, shadows, and objects appearing in any scale. Because

of these factors, the automated analysis of natural scenes is a complex task for computer vision

systems. This problem is further exacerbated by the necessity of using unconstrained images,

varying in size, resolution, scale, and focus. While the human visual processing system navigates

those factors with ease, an equivalent computational model for plant identification using natural

images is still an open problem.

More recently, Deep Learning (DL) methods have been introduced to this task [1, 5, 38, 41, 52,

63, 67, 70] driven by the success of Convolutional Neural Networks (CNNs). These deep convolu-

tional approaches have been a growing trend in the computer vision field, demonstrating impressive

results in various tasks involving natural images. The plant categorization system (WTPlant) de-

scribed in this dissertation utilizes these DL methods, further extending it with the use of multiple

stages and making different CNN models work together in a single framework.
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1.1 Problem Statement

A real-world plant identification application has to deal with natural images, which is a major

challenge for computer vision systems. In this dissertation, the plant categorization problem is

stated as the analysis of an unconstrained natural image of a plant to identify its species, and is

defined as: given a natural image of a plant;

• Identify the presence and location of multiple plant organs;

• Define the most representative areas of the image for this categorization task;

• Analyze plants independent of position, occlusion, scale, or background;

• Improve the training process of cutting edge computer vision methods for best categorization

accuracy.

I address these issues by:

• Segmenting the plant organs from a complex background with scene parsing approaches;

• Calculating bounding boxes over the segmented areas;

• Extracting guided multi-scale representative samples for analysis at various scales, avoiding

partial occlusions, and eliminating non-plant background objects;

• Implementing a new multi-scale classification process that, combined with the guided multi-

scale data augmentation, makes the WTPlant system more robust to scale variations;

• Integrating knowledge from domain-specific datasets to create expert CNN models and im-

prove categorization accuracy.

As a brief overview, this novel approach to categorize plants using natural images implements

multiple classification pipelines (e.g., plants and flowers) and different CNN models working together

to guide the extraction of discriminatory scale-invariant features. Each pipeline uses different areas

of the query image identified as plant or flower by the initial scene parsing method. WTPlant

processes these regions of interest into samples of different scales and classifies them using state-

of-the-art CNN models. Then I combine the results from each of these classification pipelines to

obtain more accurate predictions in a process reminiscent of ensemble techniques, outputting the

final predicted plant species.

In contrast to current plant identification methods that use hand-designed features or simple

CNN models, WTPlant is carefully designed to handle natural images and perform a multi-scale

classification of different organs of the analyzed plant. Moreover, I developed this plant categoriza-

tion system focusing on the following research questions:

2



[Question 1] Where are the most representative areas in the image for the plant categorization?

To address this first question, I explore scene parsing approaches that implement CNNs to

locate multiple objects in the image. These models are previously trained using annotated scenes

with the most common indoor and outdoor objects. In this way, the initial scene parsing analysis

delimits regions of interest for each of the detected objects, including plants and flowers. This

dissertation describes how these segmented regions are determined and defines square bounding

boxes delimiting these areas for the plant categorization task. The difficulty of correctly defining

the specific region of a plant or flower (especially when other plants are also present in the image)

makes the guided bounding boxes a good strategy to collect samples for the classification models.

This approach showed satisfactory initial results and is incorporated into the WTPlant system,

creating the first contribution of this dissertation. In a short answer, I take advantage of a pre-

trained CNN for the scene parsing of a natural image to locate plant and flower regions and use

this information to delimit the most representative areas for this task.

[Question 2] How to classify plants and flowers at different scales?

After defining the bounding boxes of the located plants and flowers, the WTPlant system

implements a preprocessing method to provide a multi-scale analysis of the selected areas. The

largest connected plant and flower areas guide the extraction of samples at various scales from the

dominant plant species in the image. Implementing this approach, I create a new guided multi-

scale data augmentation process. This new data augmentation process is the second contribution

of this dissertation, and I developed it to make the system capable of classifying plants and flowers

at different scales. It is a novel approach to the multi-scale analysis of plants and aims to make

the classification models of the WTPlant system more robust to scale variations. Experiments

detailed in this dissertation support this hypothesis and show how CNNs trained using this new

data augmentation approach outperform similar models trained by commonly used methods such

as resizing and random crop.

[Question 3] How to improve the classification process of the plant categorization system?

To answer this question, I present an empirical analysis of the multi-scale methodology. First,

the multi-scale analysis is implemented during the classification process of all unseen images. Dif-

ferent from other methods, WTPlant creates this multi-scale analysis of new images during their

categorization process. This process aims to analyze various scales of plant and flower areas from

the same target image. It combines the classification results of different organs of the plant in

multiple scales to a better categorization of a single image. Secondly, the WTPlant system has its

performance improved by pre-selecting scales and using their mirrored images. Both approaches

address this third research question and improve the classification process of state-of-the-art CNNs.

Consequently, I answer this question by implementing a multi-scale classification process for the

analysis of the same image at various scales, and a pre-selecting process to use the most appropriate

scales for different classification problems (plants and flowers).

3



[Question 4] How to expand the plant categorization scope while maintaining high accuracy?

For the deployment of the WTPlant system in larger scenarios, I expand its initial scope by replacing

the top layers of previously trained classification models to accommodate the number of plant

species from the new environment. This scope expanding process requires the retraining of both

plant and flower classification models of the system. So gathering together a representative group

of plant images from the target plant species is necessary to expand the categorization scope.

Furthermore, the collection and revision of a representative dataset is a necessary step to assure that

the classification models learn the discriminative features existing between the plant species. During

this procedure, it is important to consider the presence of plant species that may be impossible to

distinguish using only visual features. Consequently, I recommend the assistance of a botanist to the

creation and correct annotation of new datasets. Taking into account the unique characteristics of

each plant species in different regions of the world, I prepare the newly collected dataset and adapt

classification models to this new scope, expanding the plant categorization system to a broader

environment.

An adaptation on the top classification layers enables previously trained CNNs to work on a

significantly larger number of species but does not guarantee a high categorization accuracy. To

assist in the training of CNNs over the dataset with an expanded scope, I create plant and flower

expert models to help the fine-tuning of the WTPlant classification models. This is a problem-

atic step, mostly due to the demanding computational effort required to train these models over

multiple and massive datasets. Therefore, I utilize the integration of domain-specific knowledge

from different plant-related datasets to keep a high accuracy when expanding the plant catego-

rization scope. Also called fine-tuning, these repeated training processes cluster domain-specific

knowledge starting from general well-trained models to create plant and flower expert ones. The

fine-tuned CNNs take much longer to be trained but present more accurate results throughout the

experiments.

1.2 Contributions

The contributions of this dissertation are:

1. A localization method using a pre-trained CNN for the scene parsing of a natural image and

the definition of the most representative areas of the image for the plant categorization task;

2. A guided multi-scale data augmentation process implemented to make CNNs more robust to

scale variations when analyzing plants in natural images;

3. The WTPlant system with an expandable framework to a broader analysis of multiple plant

organs;
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4. A multi-scale classification process customizable to different organs of the plant and with

distinct CNN models for comparative analysis;

5. Comprehensive experimental validation and evaluation of the designed system on different

datasets containing natural images, resulting in a considerable improvement in accuracy when

multi-scale approaches are used;

6. A suitable approach to expand the scope of the WTPlant and cover all the species from a

specific environment;

7. The integration of domain-specific knowledge to create plant and flower expert models;

8. The publication of pre-trained weights1 from plant and flower expert CNNs to assist other

plant categorization methods on the training of their classification models;

9. A mobile application version of the WTPlant system that can be adapted to multiple envi-

ronments and help spread knowledge of Hawaiian flora and culture;

1.3 Publications

The following publications are related to this research. I present them chronologically, showing the

evolution of the WTPlant system and improvements performed in the guided multi-scale approach

throughout the past years.

• Jonas Krause, Gavin Sugita, Kyungim Baek, and Lipyeow Lim. WTPlant (What’s That

Plant?): A Deep Learning System for Identifying Plants in Natural Images. In Proceedings of

the International Conference on Multimedia Retrieval (ICMR 2018). ACM Press, 2018.

• Jonas Krause, Gavin Sugita, Kyungim Baek, and Lipyeow Lim. What’s That Plant? WTPlant

is a Deep Learning System to Identify Plants in Natural Images. In BMVC Workshop on

Computer Vision Problems in Plant Phenotyping (CVPPP 2018). BMVA Press, 2018.

• Jonas Krause, Kyungim Baek, and Lipyeow Lim. A Guided Multi-Scale Categorization of

Plant Species in Natural Images. In CVPR Workshop on Computer Vision Problems in Plant

Phenotyping (CVPPP 2019). IEEE Press, 2019.

1https://github.com/jonaskrause/Plant Flower-Expert CNN Models
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1.4 Dissertation Outline

The structure of the dissertation is organized as follows. In Chapter 2, I briefly introduce the

existing approaches and applications designed for the plant categorization problem listing them

according to their feature extraction approach (hand-designed features in Section 2.1.1 and deep

learning in Section 2.1.2). The most used deep learning models (CNN) and its variations are pre-

sented in Section 2.2. Chapter 3 presents the initial steps of a plant categorization system by

describing how to define the most representative areas of a natural image for this task. Addressing

the multi-scale issue, Chapter 4 presents an overview of the WTPlant system describing its frame-

work (Section 4.1), the guided multi-scale approach implemented as preprocessing stage (Section

4.2), the improvement of plant and flower classification processes (Section 4.3), the addition of

new and pre-trained CNN models (Section 4.4), and the Graphical User Interface (Section 4.5).

Chapter 5 extends the classification models of the WTPlant by increasing the number of analyzed

plant species and using massive datasets to create domain-specific models. In Chapter 6, I com-

bine plant and flower predictions and improve the confidence analysis of the system to output the

final categorized species. Chapter 7 presents a case study, where I deploy the WTPlant system to

categorize plant species present at the Harold L. Lyon Arboretum. The last chapter describes the

conclusions of this dissertation, future work, and possible real-world applications of the developed

system in botany and agriculture.
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CHAPTER 2
RELATED WORK

In this section, I survey previous works relevant to the identification of plants in the field of

computer vision. I begin by briefly introducing the different existing applications and how some of

them have used DL approaches to solve this problem.

2.1 The Plant World

Biodiversity Informatics appeared in the 1990s as a multi-disciplinary field on the frontier of Com-

puter Science and Taxonomy [27]. Since then, numerous approaches have been used in the attempt

to automatically handle these taxa by organizing, accessing, visualizing, and analyzing biodiversity

data. Particularly for plants, researchers have been using hand-designed feature methods since the

beginning. These methods consist of manually extracting discriminative information from sample

images. As an example, in a grayscale image, a simple edge detection algorithm works by finding

areas of the image that suddenly change in intensity. A large number of hand-designed features

have been used for plant identification [10, 26, 37, 39], such as edge features, shape properties,

Kernel Descriptors (KDES), Scale-Invariant Feature Transform (SIFT), and others.

Recently, Wäldchen and Mäder [72] presented a systematic review to analyze published papers

that produce an automated plant identification system. This review focuses on the image acquisition

and the feature extraction steps of a generic image-based plant classification method. They list

120 papers that use only hand-designed features, showing the relationship between each extracted

feature and the identification factor analyzed in the plants. Not surprisingly, almost 90% of the

reviewed papers consider only leaves on their methods and rely mainly on shape identification

factors to classify the plant species correctly. As a result, datasets are created by posing each leaf

in plain background and taking an individual picture. Morphological features of leaves have been

used for the past decades and yielded functional applications such as the LeafSnap [37]. However,

they are not suitable for the analysis of natural images and require particular leaf samples to work

correctly.

Other reviewed papers focused on flower image classification, redirecting the feature extraction

from morphological features to textural ones. Approaches that rely only on flower images to identify

plant species are not very common due to their seasonality. This process also indicates how hard

it is to hand-design these manually extracted features when using multiple plant organs. Still,

it suggests that a framework combining individual leaf and flower analyses may result in a more

robust approach for the plant species categorization problem. The following sections detail the

existing methods for categorizing a plant image, dividing them into DL and non-DL approaches.
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2.1.1 Non-Deep Learning Approaches

Two of the most famous plant identification applications use hand-designed features. LeafSnap

works as described above, by using images of leaves on a plain background. And the other one

(Folia) works by implementing segmentation methods on natural leaf images and then extracting

hand-designed features.

LeafSnap

LeafSnap is a famous (if not the most popular) mobile application for leaf image classification. It

all started in 2003 with computer science professors from Columbia University and the University

of Maryland who wanted to apply facial recognition software to the natural world. However, facing

the difficulty of analyzing natural images, they introduced the idea of taking a photo of a leaf

isolated on a solid light-colored background to facilitate shape discrimination. Figure 2.1 shows an

example of such leaf images photographed in laboratory [37].

Figure 2.1: Halesia tetraptera leaf photographed in laboratory, source: http://www.leafsnap.com/.
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Presented by Kumar et al. [37] in a more recent paper, LeafSnap is described as the first frame-

work created to classify plant species using automatic vision recognition methods. The description

of this end-to-end application details the process of classifying new leaf images among 185 tree

species. This system relies mainly on hand-designed features for classification, but other computer

vision techniques are also applied. For example, in the first stage of the framework, spatial envelope

properties and Support Vector Machine (SVM) are used to determine what is leaf and what is not.

After that, saturation-based segmentation methods are implemented, and curvature-based shape

features of the leaf’s contour over multiple scales are extracted from the segmented area. The final

classification is done by the k-nearest neighbors (k-NN) algorithm using the set of features called

Histograms of Curvature over Scale (HoCS). An impressive characteristic of this application is that

it saves the Global Positioning System (GPS) coordinates and timestamp of each photo taken,

hoping to be able to map the biodiversity of a region over space and time. The limitation, however,

is that this system requires a single leaf specimen to be photographed and, even using field images

on their training datasets, LeafSnap is not designed to analyze natural images.

Folia

This application focuses on extracting hand-designed features to segment and classify leaves using

natural images. Cerutti et al. [10] present this interesting framework called Folia aiming to

analyze the same leaf features that botanists use to classify tree species. They include leaf size,

global shape, venation, basal and apical shapes, type of margins, number of lobes, and others.

For this application, the authors focused on non-compound simple leaf images with several lobes

centered and vertically-oriented. Only 50 different species are researched, which may account for

their excellent results when compared with other non-DL methods. They also exclude the analysis

of compound leaves, restricting their method to simple, centered, vertically oriented, and palmately

lobed leaf images. As an example, Figure 2.2 presents two natural images from the Folia application

interface. Even with all these restrictions, Folia may be the framework that best targets a leaf in

natural images. Nonetheless, segmenting plants and their leaves from natural images is, by itself,

a big challenge. Therefore, new methods such as DL models trained for segmentation are also

yielding satisfactory results.

2.1.2 Deep Learning Approaches

Historically, the concept of DL originated from artificial neural network research. In 2006, an

efficient learning algorithm to train deep networks was introduced [23, 22] and DL became one of

the key research areas in ML. The essential quality of DL models is the presence of several processing

layers in their neural networks. These layers are hierarchically organized to learn deep sophisticated

features by progressively following simpler ones. Different techniques on how to process these layers

create different DL models. But a shared property in all models is that each step into their deep
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Figure 2.2: Two natural images (simple and palmately lobed leaves) from Folia [10] application.

architecture creates a more abstract representation of the data. Thereby, DL models create features

based upon the training data and discover hierarchical dependencies in the analyzed dataset. The

novelty of data-driven features is the main strength of DL methods and is revolutionizing the ML

field.

Currently, different DL models are being used to address the plant identification problem, and

they are listed below. Most of them are well-known CNN models adapted to work with plant

images. However, few of them present new approaches designed to address specific aspects of the

plant identification problem using natural images.

Pl@ntNet

Pl@ntNet is a world-scale participatory platform and information system dedicated to the monitor-

ing of plant biodiversity through image-based plant identification [18] and has recently migrated its

classification approach from hand-designed features classifiers to DL methods. This project started

in 2010 and has evolved with iterative developments based on multimedia information retrieval,

data aggregation, and integration by a growing community of volunteers [28, 29]. Nevertheless, a

considerable improvement in the plant recognition performance was only observed in 2015 when a

CNN was introduced in their classification process [1].
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Using the GoogLeNet [65] CNN architecture, Pl@ntNet fine-tunes its model periodically using

new observations with verified annotated species. This CNN model implements inception modules

to improve the multi-scale analysis. These modules are described in detail in section 2.2.2. The

main advantage of this application is that it collects 2.5 millions of images from around the world

to train its classification models. Pl@ntNet is still expanding to cover all North American plant

species.

LeafNet

Lab produced leaf images (as presented in Figure 2.1) are also used in DL frameworks to classify

plants. Implementing a simple CNN model, Barré et al. [5] present the application called LeafNet

and compare their results with LeafSnap performance. They used three datasets (LeafSnap, Flavia,

and Foliage) to train and test their CNN-based plant identification system. However, their method

is restricted to 185 plant species listed by LeafSnap dataset and the plant has to be manually

prepared to be photographed on a white background, similar to LeafSnap. LeafNet also downscale

all images to a fixed size of 256x256 pixels with no segmentation to train their CNN model, which

makes the train and test images to lose important discriminative information.

Even so, satisfactory results are reported on all three datasets. By comparing CNN models

with hand-designed feature methods such as the LeafSnap system, Barré et al. [5] showed that

learning features by using a CNN provides a better representation of leaves and consequently

better discrimination. An interesting point of the LeafNet system is that it is entirely available

online1 and released under a free software license. Therefore, other researchers can download it and

train the LeafNet framework on different datasets or even collaborate with this ongoing research.

Deconvolutional AlexNet

Adapting a CNN model called AlexNet [36] and using a dataset of 44 plant species, Lee et al. [41]

focus on the classification of preprocessed leaf images. From these lab-produced images, leaves are

segmented by extracting the foreground pixels using the HSV (Hue, Saturation, and Lightness)

color space information. Their first experiment uses a pre-trained CNN and fine-tunes it using the

segmented leaves. Initial results are not as expected, so they decided to create a deconvolutional

structure to verify what features the CNN learned visually. During this process, they noticed that

the trained model is focusing almost exclusively on the contour and shape of leaves. Due to low

accuracy results, they conclude that leaf shape is not a good choice to identify plants, which is

not necessarily true. Morphological features of leaves have been heavily and successfully used for

plant species categorization. In this case, non-satisfactory results may be a consequence of a poor

segmentation process that creates misleading training data for the CNN to learn.

1https://leafnet.pbarre.de/
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In a second attempt, each leaf image is manually cropped into samples within the area of the

leaf. Fine-tuning the same pre-trained CNN with these new samples and using the deconvolutional

structure to observe the transformation of the features layer by layer, they are able to correctly

classify most of the test images based on the venation of the leaves. Producing good results over

a limited dataset, Lee et al. [41] present an excellent alternative to the initial approach of taking

photos of leaves with controlled backgrounds. Using these manually segmented samples, they forced

their method to discover other discriminative features, in this case, the structures of leaf veins.

Hourglass CNN

There is a particular demand to quantify images of food crops accurately. Analyses of these type

of images generally focus on one species to produce higher-yielding plants. For cereal plants, this

analysis is measured in terms of grains present on spikes at the tip of the plant. Using their dataset

of wheat plant images, Pound et al. [52] implement a CNN in an hourglass architecture to count

wheat grains. The presented model is very similar to the previous one, where a deconvolutional

structure is used to decode the extracted features and, in this case, pinpoint the location of the

grains. The difference is that the hourglass CNN model has more connections between the layers,

which improves the deconvolutional functionality.

The proposed method seems to be very effective, reporting high accuracy results on the grains

counting process. However, the dataset used is called ACID (Annotated Crop Image Dataset),

which contains a limited number of 520 images. Because of that, they had to implement several

data augmentation strategies and test multiple CNNs with different input image resolutions to

obtain satisfactory results. The main limitation of this method is this dataset, which is also using

lab prepared images with dark backgrounds. Therefore, this approach needs classification models

trained to work with natural images. Despite that, the approach of preprocessing training images

by cropping the spike areas and resizing these samples to be inputted in different hourglass CNNs

works very well. As a result, their CNNs can concentrate on discriminative features specific to the

localization of the grains.

Customized Residual Network

Sun et al. [63] present one of the few papers that address the classification of natural images of

entire plants and trees. The proposed plant classification problem includes 100 plant species with

high-resolution images of individual bushes and trees. These images are collected from the Beijing

Forestry University campus, and they are available online in the BJFU1002 dataset. Figure 2.3

presents some of them. In these images, it is more evident how challenging the classification of

natural images is. They present a variety of backgrounds, different illumination focuses, shadows,

and it is not always possible to identify a leaf of the plant.

2https://pan.baidu.com/s/1jILsypS
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Figure 2.3: Example images of trees and bushes of the BJFU100 [63] dataset.

Knowing these obstacles, they implement a modified version of the Residual Network [20]

(ResNet) to classify these images. The implemented residual blocks aim to extract even deeper

discriminative features by adding the previous input layer with the last extracted features. In

their model, a pre-trained ResNet works as a bottleneck structure between an initial convolutional

block and the last layers of the network. Like this, they adapted the ResNet architecture to their

needs, customizing this successful CNN model and fine-tuning it with their dataset. Nevertheless,

the poor preprocessing of the high-resolution images probably impacted their method negatively.

Their preprocess consists only of the downsizing of the original 3120x4208 pixel resolution images

to fit the first convolutional layer of their CNN that receives a 224x224 area as the input image. So,

drastically reducing the size of an image will inevitably make it lose a lot of relevant information

and, in this case, also change the plant aspect ratio.

2.2 Convolutional Neural Networks

Nowadays, many computer vision tasks rely heavily on using Convolutional Neural Networks

(CNNs). While the shape of the data is often ignored in the traditional neural networks by flat-

tening the input image into a 1-dimensional array, CNNs keep the structure of the data by using

3-dimensional activations. It is one of the reasons why CNNs are more suitable for tasks in com-

puter vision since neighboring pixels in an image tend to have similar values, and the values in

RGB (Red, Green, and Blue) channels of a pixel are closely related. In this way, these biologically-

inspired computational models try to emulate human vision behavior by detecting local features

such as edges, curves, and shapes. The idea of neuronal cells in the visual cortex recognizing specific

characteristics is the basis behind CNNs.
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A simple version of a CNN consists of a sequence of convolutional blocks. For each block,

the first layer is a convolutional one, which can be understood as a scanning layer. During the

training process, this layer learns a predefined number of filters, which produce the discriminative

feature maps. The second layer is an activation one, generally implemented using the rectified linear

unit (ReLU) function and responsible for adding non-linearity to the model. The last layer of a

convolutional block is a pooling layer, a simple subsampling discretization process for dimensionality

reduction. The final block of a CNN is composed of fully connected layers, where all neurons of the

next layer are connected to every neuron of the previous layer. The last layer of this block and the

entire network is the output, containing one neuron for each class of the classification problem. This

last layer is also fully connected to the previous one and generally implements a softmax function.

Figure 2.4 illustrates a general CNN architecture.

Figure 2.4: A common CNN architecture.

One of the most famous CNN architectures is the AlexNet [36]. This network has been widely

cited since its creation in 2012, and it can be considered as one of the most influential publications

in the field. Presented in Figure 2.5, this CNN architecture receives a 224x224 pixel color image as

input data. It extracts features through five convolutional blocks with pre-designed widths, heights,

depths, convolutional windows sizes, and other specific parameters. The last convolutional block

passes the extracted features to the fully connected layers, which classifies them among the 1000

output classes. AlexNet is a well-studied CNN architecture and is designed for large-scale general

datasets. As a result, this CNN model commonly outperforms hand-designed methods presenting

impressive results in several visual challenge campaigns.

2.2.1 Residual Networks

In 2015, a new concept called residual blocks (or Residual Neural Networks - ResNets) was pre-

sented by He et al. [20], which allows training of much deeper CNNs. They are designed to

address the degradation problem that appears when very deep models’ accuracy gets saturated.

To overcome this issue, residual blocks allow a deeper exploration of features by introducing skip
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Figure 2.5: Simplified view of the AlexNet architecture [36].

or shortcut connections – the input passes through the convolutional blocks, and it is added to

the output after two layers. A ResNet with over 100 layers won the ImageNet challenge in 2015

[58]. The intuition that deeper networks extract even more discriminating features makes ResNet

models good candidates for dealing with fine-grained categorization problems. Figure 2.6 shows

the implementation of the residual block.

Figure 2.6: Residual block architecture introduced by He et al. [20].

As an example, Figure 2.7 presents one of the implemented ResNets with 18 layers. The inputted

image goes through an initial convolutional block of 64 filters that reduces its dimensionality by

half during the pooling process. After this initial process, it enters on two identical residual blocks

and again is reduced by half (dotted lines) on the next residual structure with 128 filters per

convolutional block. This process is repeated extracting more and more feature maps and finishes

with a fully connected layer that will perform the classification among the 1000 classes.
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Figure 2.7: Simplified view of the ResNet18 architecture [20].

2.2.2 Inception Module Networks

The latest CNN models have been exploring the concept of Inception Modules. Introduced by

Szegedy et al. [65], inception modules address the multi-scale issue by implementing multiple

convolutional filters of various sizes in parallel. The objective of these multiple filters is to identify

the object’s salient parts, even with a significant variation in size. It also uses 1x1 convolutional

filters to reduce dimensionality before expensive convolution operations. As a simplified example,

Figure 2.8 shows an inception module with three different filter sizes (5x5, 3x3, and 1x1) as well as

the dimensionality reduction performed by an average pooling and a 1x1 convolutional filter.

Figure 2.8: Inception Module introduced by Szegedy et al. [65].

The use of inception modules seeks to create a wider network instead of a deeper one, making it

easier to train. As an example, Figure 2.9 shows the architecture of an inception module network

called GoogLeNet where each highlighted dotted red box represents an inception module. This is

one of the first CNNs that moved away from the common approach of stacking convolutional and

pooling layers on top of each other in a sequential architecture. This model won the ImageNet

competition in 2014 [58] and has proved to be a very efficient DL strategy.
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Presenting top accuracy results on numerous computer vision challenges, GoogLeNet supports

the idea that approximated sparse structures may efficiently represent dense building blocks and

improve the architectures of CNNs. By reducing the computational effort when dealing with sparse

structures and implementing different filter sizes for the multi-scale issue presented in most com-

puter vision problems, inception networks indicate that switching to more scattered models may

be a useful idea in general.

Figure 2.9: Overview of the GoogLeNet architecture [65].

Different inception module approaches have been implemented and the three most famous

models are: Inception-v3 [66], Inception-ResNet-v2 [64], and Xception [13]. Inception-v3 explores

different filter sizes and combinations to create a purely inception module-based network. Inception-

ResNet-v2, as the name indicates, incorporates residual blocks into its architecture. Consequently,

this is the wider and deeper CNN architecture used in this research. Finally, the Xception network

is a refinement of the Inception-ResNet models where, instead of residual blocks being forwarded

into the network architecture, individual and convolutional filters with small transformations act

as residual blocks. Nevertheless, both ResNets and inception models require a large amount of

annotated training data [3], which is very scarce in most fine-grained categorization problems.

2.2.3 Data Augmentation and Fine-Tuning

Fine-grained categorization tasks suffer from the lack of training data, and therefore data augmen-

tation techniques have been intensively used to train CNNs [9, 12, 24, 25, 30, 46, 68]. However,

most approaches are limited to downsampling methods, resizing the original image or randomly

extracted samples to fit into the first layer of the network. Some of the reviewed methods do not

consider the aspect ratio of the original image and squeeze non-square samples to small square

areas (generally 224x224 or 299x299 pixels). Furthermore, downsizing an image usually leads to

information loss. To avoid losing information and to keep the original aspect ratio, different data

augmentation approaches have been implemented. For example, extracting samples by cropping

representative square areas from the center of the image has yielded good results when used to

train CNNs [19, 24, 30, 46, 68, 69].
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The most commonly used data augmentation method for training CNNs with insufficient data

is random cropping [11, 69], which collects small representative areas randomly, aiming to select

pieces of the object of interest. Extracting samples of different sizes from an image can also be

used for data augmentation. The extracted samples can help improve the capability of CNNs to

classify images in various scales correctly. A commonly used strategy is to feed these sampled areas

to similar CNNs with different input layers [9, 12, 46] or with different depths [24, 68, 82].

Data augmentation has been further improved by two approaches: part-based patch extraction

and segmentation. The part-based extraction of representative samples generally relies on manually

annotated parts [8, 25, 44, 71, 80]. Consequently, most part-based extraction techniques are limited

to part annotated datasets such as the CUB-200 [73], a dataset of 200 bird species and their

annotated parts. As proposed by [4, 34, 32, 33, 59, 60], segmentation methods can assist in preparing

images to train CNNs. These papers use segmentation to define the object’s area, which is resized

to fit in the first layer of the CNN. Considering that it is extremely difficult to define the parts

of plants in natural images, patch extraction based on segmentation would be a more suitable

approach for fine-grained categorization of plant species.

Another approach often used for training CNNs with insufficient data is transfer learning and

fine-tuning. Transfer learning uses pre-trained CNN models with parameters learned through an ex-

haustive training process using millions of images [14]. The learned parameters are then transferred

to a new CNN network and used to classify a specific dataset. Fine-tuning also uses pre-trained

CNNs, but previously learned parameters are used as initial weights for a new training process.

Hence, pre-trained CNNs are fine-tuned over the target dataset, starting their training process with

previously learned parameters rather than random values. This approach has been widely used in

fine-grained categorization problems that lack annotated training data.

2.2.4 Multi-Scale Approaches

Focusing on multi-scale approaches that handle the analysis of objects in natural images, I survey

previous work and organize them as per their implemented method to address the scale issue.

Human-in-the-loop

The identification of plant species through flower image categorization is the objective of Cui et

al. [16]. The multi-scale issue is addressed by normalizing all the extracted features to eliminate

scale differences and correctly compute the distances in the designed feature space. However, this

approach is not enough to handle the scale problem. For that reason, they implement a visual

analysis (human-in-the-loop) with a botanist reviewing the final predictions. In this way, they

re-integrate the incorrectly classified images into the dataset after this laboring classification.

Another approach using human-in-the-loop is implemented by Wah et al. [71] and is designed

for the fine-grained categorization of birds. Their visual recognition system is composed of a

18



machine and a human user, who provides additional information by clicking on the object parts

and answering binary questions. Using the CUB-200 dataset, Wah et al. [71] tackle the bird

classification problem by analyzing specific areas of the image with the assistance of a user, who

can easily indicate the bird parts (head, beak, body, wing, and tail) independent of the image scale.

Multi-scale fusion

Back to plant species categorization, Hu et al. [24] propose a multi-scale fusion CNN designed

for leaf recognition. Using the MK Leaf [40] and the LeafSnap Plant Leaf [37] datasets, a custom

CNN is trained by slowly infusing multiple resolution images with the list of bilinear interpolation

operations used to sample them. In this way, downsized images are progressively fed to the CNN,

concatenating extracted features at each level of the model to perform a multi-scale analysis.

Nevertheless, their method is designed to work with leaf images taken in controlled backgrounds,

limiting its application.

Implementing a classic approach called pyramid representation, Yoo et al. [77] create a pyramid

multi-scale representation of the image to be analyzed by a pre-trained CNN. This analysis extracts

dense activation vectors that are normalized and averaged by a pooling layer for the final classi-

fication. By creating pyramid representations of the analyzed images, this framework is able to

perform a multi-scale fusion of features and outperform previously proposed methods on different

datasets, including the Oxford 102 Flowers [49] and the MIT67 [74] for general indoor scenes.

Part-based image representation

In more recent work, Zhang et al. [80] present a supervised fine-grained categorization of bird

species with part-based image representation. Basically, instead of collecting central samples, they

propose to generate multi-scale part samples from random object parts, select the most useful ones,

and use them to compute a global image representation for categorization. To select useful parts

of the object (random cropping images that have pieces of the examined birds on them), they

clustered all the part samples and explored useful information by computing an importance score

that indicates how vital each cluster is for this fine-grained categorization task. Selecting samples

from the most important clusters, they created a multi-scale CNN model for the categorization of

bird species. However, during the random part selection process, samples of any sizes are considered

to be rescaled and fit the first layer of the CNN. Therefore, these clusters also contain samples that

do not respect the birds’ aspect ratio, which probably impacts the model’s performance.

Branson et al. [8] also propose a bird species categorization using pose normalized CNNs, and

a graph-based clustering algorithm is used to learn a compact pose normalization space. In this

case, cropped images of the bird’s head, body, and the entire image pass through individual CNN

streams. In both approaches [8, 80], the multi-scale issue is addressed by the extraction of random

cropped images at various sizes, enabling CNNs to learn multi-scale invariant features randomly.
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Nevertheless, they simply resize the cropped areas to small samples, changing the birds’ aspect

ratio. Paying attention to this detail, Liu et al. [44] present a similar multi-scale approach with the

addition of “attention networks”. These auxiliary models are independent CNNs implemented to

identify sample areas at two different scale levels, combining the extracted multi-scale features for

classification. As a result, this approach focuses on three different scales to extract and classify the

bird’s head, its body, and the entire scene, outperforming previously described methods in the fine-

grained categorization of birds. However, their method relies on annotated object parts to construct

the match between parts and classes, which makes it challenging to apply it to the categorization

of plant species. To the best of my knowledge, there is no available dataset with plant images and

their respective annotated parts (leaf, flower, fruit, etc.). Therefore, alternative methods to extract

representative samples for fine-grained categorization of plants have to be designed.

Different feature representations

Multiple computer vision techniques have been proposed to solve the multi-scale issue, and some

of these unconventional ideas can be adapted to the fine-grained categorization of plant species.

As an example, Buyssens et al. [9] present a multi-scale CNN for the classification of cell images

inspired by the different retina sizes of the human visual system. In their approach, each cell

image is rescaled n times to fit the “retina” (or input layers) of the CNNs, and the same model is

trained four different times with downsized samples of the input images. In this way, the multi-scale

problem in the analysis of human cell images is addressed on a limited scale range.

Yuan et al. [78] also present a different feature representation. They develop a multi-scale

and multi-depth CNN using a custom architecture designed for the remote sensing imagery pan-

sharpening problem. The multi-scale capability of their model is designed by creating multiple

convolutional filters inside each residual block. These filters have three different sizes and aim to

extract multi-scale discriminative features. To a certain extent, this customized implementation is

a simple version of the inception modules [65], which have mini-models inside of a bigger model.

In conclusion, Yuan et al. [78] point out the importance of the multi-scale feature extraction

implementing different sized filters for the pan-sharpening problem.

Segmentation-based approaches

Using segmentation approaches, Krause et al. [34] present an interesting idea for the fine-grained

categorization of birds. They use annotated bounding boxes for training, but part annotations are

not required during the classification process. Instead, they generate part samples using segmenta-

tion and alignment methods and combine them to represent the entire bird. Nevertheless, the use

of annotated bounding boxes for training limits its application to datasets such as the CUB-200

[73] and the Cars-196 [35]. Nevertheless, the idea of segmenting the object to extract representative

samples can be adapted for fine-grained categorization of plants.
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With similar segmentation approaches, Angelova and Zhu [4] present a systematic object de-

tection for fine-grained categorization of flowers. Their method first detects low-level regions that

could potentially belong to the object of interest and then performs a full-object segmentation

within those regions. They also zoom-in on the object, center it, and normalize its size to a single

scale discounting the effects of the background. To understand the benefits of the segmentation

step for fine-grained categorization tasks, Angelova and Zhu compare their approach with a baseline

model. The baseline model does not use segmentation and is outperformed by their model in all

tested datasets. Still, segmentation may be imperfect for most of the plant examples, and a robust

approach should not depend entirely on this process.

2.2.5 Useful Insights

For plants in natural images, it is arduous to correctly identify all the details of a plant, distinguish-

ing it from a complex background and other plants that may be in the same image. Approaches

detailed in this chapter do not provide a final solution for the plant categorization problem when

using natural images. Promising methods use part-based approaches to classify specific areas of the

object of interest, but they rely mainly on part-annotated datasets that are not available for plants.

The use of a human-in-the-loop (as a botanist) may also present impressive results but makes the

plant categorization system less automated. Different feature representations and multi-scale fusion

approaches generally seek the implementation of a customized CNN architecture with no pre-trained

weights available, making these models harder to train over fine-grained categorization datasets.

As an insight from this survey, a viable contribution to the plant categorization problem would

be a guiding system indicating where are the most representative areas in the image for the classifi-

cation task. The plant categorization problem can also take advantage of the simultaneous analysis

of different plant organs, combining their classification results to predict the plant species. In

this dissertation, I explore existing segmentation approaches to create a plant localization system

and carefully extract representative samples of plants and flowers. This process allows the clas-

sification methods to focus on the most important areas of the image individually. Furthermore,

new strategies on how to use pre-trained CNNs for classifying unseen images at various scales

could also present a valid contribution. In general, methods described in this chapter evaluate

their approaches by classifying images only once during their classification processes. To provide

a multi-scale analysis of a new image, I implement a novel classification process that explores the

most representative areas of the query image and classifies them using CNN models fine-tuned to

be more robust to scale variance. In this way, a single plant in a natural image can be analyzed

from different perspectives, making the categorization system (WTPlant) more robust to variations

in plant appearance at different scales.
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CHAPTER 3
PLANT LOCALIZATION IN NATURAL IMAGES

In this chapter, I explore scene parsing approaches to locate different plant organs in natural

images. By locating multiple plant parts, I address the first research question of this dissertation

and identify the most representative areas for the fine-grained categorization of plant species. With

the recent success of the CNNs, scene parsing approaches [43, 79, 81] are achieving excellent results

when implementing convolutional blocks in their models. In particular, Zhou et al. [81] stack

multiple convolutional blocks to create a new CNN model. In this way, they developed a cascade

segmentation approach for the scene parsing problem (henceforth referred to as MIT Scene Parsing).

This scene parsing approach segments a natural image into common semantic categories, including

plants and flowers. Due to the highly accurate results reported on the segmentation of plants, this

CNN model is the scene parsing method of choice for the WTPlant system.

3.1 Scene Parsing and Plant Segmentation

The MIT Scene Parsing, designed by Zhou et al. [81], implements a three-level CNN as cascade

segmentation modules to parse a natural image into three main streams (stuff, object, and object

parts). They trained this CNN model using ADE20K dataset [81] to segment 150 everyday objects,

detecting general stuff (sky, road, building, etc.), objects (plant, car, people, etc.), and object parts

(flowers, car wheels, people’s heads and torso, etc.). Figure 3.1 shows this parsing model as being

composed of three stacked convolutional blocks. In this CNN architecture, the first block is called

Stuff Stream, for the background. The second convolutional block is the Object Stream, segmenting

the foreground objects and adding them to the background ones. Finally, the combination of back-

ground and foreground generates the entire segmented scene. The third block, called Part Stream,

is an optional one since not all objects have their parts annotated in the training dataset. When

they do, this block takes the previously segmented foreground objects and adds the segmentation

of their parts.

3.1.1 Pre-Segmentation of Flowers

Parsing a natural image brings the challenge of detecting small object parts, such as tiny flowers in

a plant. The MIT Scene Parsing does not always capture them, and aggregating pre-segmentation

approaches to assist in the detection of foreground objects can improve this process. Hence, I

incorporate two pre-segmentation methods into the WTPlant system to assist the scene parsing on

the detection of flowers. Called the Watershed Transform [56] and the GrabCut [57] algorithms,

both methods separate the background from the foreground before the scene parsing and help on

separate flowers.
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Figure 3.1: Cascade segmentation module of the MIT Scene Parsing CNN architecture [81].

Watershed Transform Algorithm

Meyer and Beucher [45] first introduced the Watershed Transform algorithm in the 1990s. This

transformation is a morphological gradient-based segmentation process defined at a grayscale level.

It segments the image as a topographic surface, by virtually flooding it from its minima while

preventing the merging of the waters coming from different areas. For the flooding process, the

gradient map of the image is considered as a relief map in which different gradient values corre-

spond to different heights. Like this, the Watershed Transform algorithm partitions the image into

watershed lines that separate the background from the foreground.

GrabCut Algorithm

Rother et al. [57] designed the GrabCut algorithm. This algorithm implements graphing repre-

sentation to describe the boundaries of objects. The graph feeds an energy function that produces

a proper segmentation when minimized. To perform the minimization, they built a graph where

nodes represent pixels in the image and edges represent the difference in pixel color from one node

to another. Using the Min-Cut/Max-Flow algorithm (which is a graph cut technique [7]), the re-

sulted graph represents the segmented areas of the image and divides them into the foreground and

background. As an example, Figure 3.2 presents a natural image of a Mimosa pudica plant and

shows how these pre-segmentation methods assist the scene parsing process on detecting flowers.

To better understand the benefits of using pre-segmentation methods before the scene parsing,

Figure 3.3 shows how the segmentation is performed using a natural image of the Tabebuia berteroi

plant species. In this Figure, (a) presents the scene parsing results without any pre-segmentation

methods applied. The MIT Scene Parsing successfully detects the plant and delineates the plant

area (green) and flower area (red). These areas are called Regions of Interest (RoIs), and they

guide the WTPlant system during the plant localization process. However, the scene parsing fails
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(a) (b) (c)

Figure 3.2: (a) Example of a natural image of a Mimosa pudica and the results of pre-segmentation
by (b) Watershed and (c) GrabCut.

to detect the flower in this image, identifying it as part of the plant. However, (b) shows that a pre-

segmentation method (in this case, the Watershed Transformation) can assist the scene parsing by

emphasizing the presence of flowers not detected previously. As a result, (c) presents a combination

of the initial scene parsing and the Watershed pre-segmentation process locating plant and flower

areas. If more than one RoI is detected, the largest areas are chosen to represent the plant and

flower in the image. Furthermore, both RoI (plant and flower) have to be connected to guarantee

that the largest flower belongs to the detected plant. If any RoI is collected, meaning the potential

presence of plants or flowers in the image, the RoI is assumed to contain the most representative

information of the plant and is further processed to predict the plant species. If no RoI is identified

during the segmentation process, the image is considered as “No Plant Image”.

(a) (b) (c)

Figure 3.3: Example (Tabebuia berteroi) of plant (green) and flower (red) segmentation. (a) Scene
parsing without pre-segmentation, (b) scene parsing using the Watershed Transformation, and (c)
combination of the largest plant and flower (using pre-segmentation approaches) areas.
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3.2 Bounding Boxes of Segmented Areas

Defining bounding boxes is a necessary step implemented over the segmented areas so they can be

inputted into the classification models. To make them fit, I rescale these bounding boxes to the

size of the first layer of the models. CNN input layers generally receive square-shaped patches,

which leads to the creating of square bounding boxes. Some of the reviewed approaches [5, 63, 70]

suggest that simply downsizing the entire image is a good practice. But a drastic downscale of an

image inevitably results in the loss of valuable information. Therefore, rather than using the input

image as a whole, I implement a preparation method to collect the most representative samples

out of the identified RoIs (plant and flower).

This preparation method starts by defining square bounding boxes to cover the RoIs, based

on their minimum and maximum x and y coordinate values. Using the difference between these

coordinates, I calculate the width and height of the plant and flower RoIs. The larger value between

the width and height of each RoI defines the size of the bounding box. To ensure that all bounding

boxes are inside the image, the size of these boxes has to be less than or equal to the minimum

between the width and height of the input image. An essential aspect of this method is that all

the bounding boxes are square-shaped. In this way, extracted samples will keep the aspect ratio of

the image, without stretching or squeezing the plant sample when resized to fit the first layers of

the classification CNNs.

Figure 3.4 shows plants in natural images, their RoIs segmented by the scene parsing stage, and

the bounding boxes delimiting the most representative areas of the image for the plant categoriza-

tion problem. More specifically, Figure 3.4 (b) shows the positioning of bounding boxes for plant

and flower. In this example, plant width is greater than the height of the image, so the bounding

box is limited to the size of the image and guided by the centroid (blue dot).

3.3 Initial Experiments

The initial experiments aim to compare the accuracy of a CNN model when trained using different

approaches, with (Bounding Box) and without (Resize and Central Crop) plant localization. Using

the ResNet models, I train CNNs with different depths by simply resizing the images (approach

implemented by [5, 63, 70]), using central cropped samples (implemented by [30, 46, 24, 68]), and

samples extracted using the bounding boxes. The objective of these initial experiments is to verify

if the selected square bounding boxes are the most representative areas of the image for the plant

categorization problem. If they are, the CNNs should present more accurate results when trained

using these areas. Experiments described in this dissertation used MATLAB R2015b, Python 3.6,

and Keras 2.2.4 API. The testbed is Ubuntu 16.04 operating system with a NVIDIA GeForce GTX

1080 GPU used to train the CNNs.
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(a) (b)

Figure 3.4: Example of Bounding Square-Shaped Boxes. (a) Koelreuteria formosana plant selected
area (blue), and (b) Tabebuia berteroi plant (blue) and flower (yellow) selected areas.

3.3.1 UHManoa100 Dataset

Focusing on plants present in the University of Hawai’i at Mānoa (UHM) campus, I collect a

dataset named UHManoa100 with a total of 4,778 natural images of 100 plant species. The Botany

Department of the UHM kindly shared most of these annotated images, and species with fewer

images have more added after scraping new ones from the bing.com search engine website. Appendix

A presents the complete list of the plant species selected for this dataset.

For each image in the UHManoa100 dataset, the annotated plant species indicates the dominant

plant present in the image. Different plants may appear in the background or even in front of the

dominant plant, but each annotated plant species covers the largest area of the image. Another

important characteristic of this dataset is that images have different resolutions (ranging from

300x300 to 6000x4000 pixels) with varying orientations and locations of the plants. As shown in

Figure 3.5, these images contain plants at various scales ranging from the leaf or flower to the entire

bush or tree. Using the UHManoa100, I create a balanced training set by selecting 4,500 of these

images, 45 images per each of the 100 plant species. For each plant species, a test set of visually

challenging images for this categorization problem is put aside for performance evaluation. Testing

images also have plants at various scales and showing multiple organs (leaf, flower, fruit, bush, and

tree). They comprise a testing set of 278 images unseen by trained models.

3.3.2 Metrics and Initial Results

To better understand the initial experiments, Figure 3.6 shows how the three preparation ap-

proaches extract representative samples from images of the UHManoa100 dataset. I extract differ-

ent samples by resizing the entire image (Resized) to fit the first layer of the classification CNN, by
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Figure 3.5: Plant images from the UHManoa100 dataset.

cropping and then resizing the central area of the image (Central Crop), and by extracting guided

samples around the area determined by the plant localization (Bounding Box).

Initial experiments start by extracting samples from the training images of the UHManoa100

dataset and randomly dividing them into 80% for training and 20% for validation. I train all the

ResNet models selected for these experiments for 100 epochs with hyperparameters set as suggested

by He et al. [20]. I use the backpropagation algorithm to propagate the error backward throughout

the CNN and update its parameter values (weights and biases). This process is performed for each

training sample while using the corresponding validation data to calculate the training accuracy

at each epoch. During the training process, ResNet models are not overfitting after 100 epochs. I

observe this behavior by monitoring performance on the validation set and stop the training at 100

epochs because I am limited by computation. The final trained model is the one with the smallest

validation error after completing the training process.

I evaluate the trained CNNs using the testing set of images unseen by the trained models,

containing at least one sample of each plant species. Respective samples (Resized, Random Crop,
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Figure 3.6: Preparation approaches with and without plant (Koelreuteria formosana) localization.

and Bounding Box) are extracted from the test images to perform the evaluation. As a metric, I

use the prediction accuracy, e.g., the percentage of images correctly categorized in the testing set.

And I consider the image correctly categorized when the Top-1 prediction matches the annotated

species of the plant. Initial experiments categorize only plants, the analysis of flowers is added

later. Table 3.1 presents the accuracy results of ResNet models with 18, 34, and 50 layers. In the

initial experiments, I train the CNN models using three different areas of the images to compare the

representativeness of the plants in the extracted samples. After 100 training epochs, ResNet18 is

the CNN that learns more discriminative features when trained using the bounding boxes. Deeper

models generally require more epochs to be fully trained, especially with no pre-trained knowledge.

The lack of training data also impacts the generalization capability of these models.

For the three sample collecting methods (Resized, Central Crop, and Bonding Boxes), initial

results show the bounding boxes as the best approach to extract samples for the training of plant

classification models. The central crop approach presents similar results, but this method would

likely collect irrelevant information for the plant categorization task when extracting samples from

the UHManoa100 images. Furthermore, this comparison shows that the most valuable information

is not necessarily in the central portion of the images. Therefore, a guiding process to the specific

location of the plant can improve the extraction of better training samples. The resized preparation

method is commonly used for the training of numerous classification models, but it does not take

into consideration the aspect ratio of the plants. In this case, it is outperformed by methods that

better handle training images varying in size, orientation, and resolution, such as the images from

the UHManoa100.
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Table 3.1: Initial accuracy percentage of correctly categorized UHManoa100 testing images.

CNN Model Resized Central Crop Bounding Boxes

ResNet18 39.21% 44.24% 45.32%
ResNet34 40.29% 42.81% 43.17%
ResNet50 28.42% 39.21% 40.65%

3.4 Pseudocode I

The following pseudocode (Algorithm 1) details the plant and flower localization process designed

to identify the most representative areas in an image for the plant species categorization problem.

Receiving a query image (I ), the “PlantFlowerLocalization” algorithm uses a scene parsing ap-

proach to create the plant and flower segmented areas (IPlant and IFlower). It also calculates the

respective bounding boxes (BBPlant and BBFlower) defining the most representative areas for

this categorization task.

3.5 Observations and Discussions

In this chapter, I extract the most representative areas of an image for the plant species catego-

rization by defining bounding boxes around the detected plant organs. This approach has shown

promising results, and it is the first contribution of this dissertation. The implemented method

locates plants and their flowers using a scene parsing approach to guide the delimitation of the

most representative areas in the image for the classification of plants. This method also quali-

tatively improves the segmentation of flowers (Figure 3.3) by implementing two pre-segmentation

approaches.

The MIT Scene Parsing is further tested on detecting the presence of plants and flowers over all

the 4,778 images of the UHManoa100 dataset. As a result, this scene parsing CNN can recognize

the presence of plants in 99.24% of training and testing images. I credit this highly accurate result

to Zhou et al. [81] and their work on the MIT Scene Parsing. It guides the extraction of more

representative samples on almost all of the training images. For those images in the training set that

do not have their plants detected, I extract the central crop areas and use them as representative

samples. Figure 3.7 presents some of these training images that are initially classified as “No Plant”

but are integrated into the training set using central cropping. They are extreme close-up shots

that may not have the classical plant characteristics (green leaves, bushes, flowers, etc.) and, as a

consequence, MIT Scene Parsing does not detect the presence of plants.

Initial experiments comparing the resized, central crop, and bounding box approaches have

shown interesting results. As presented in Table 3.1, CNNs trained with bounding boxes around

localized plant areas performed better when compared to the other approaches. This is probably

related to the fact that some plants in the UHManoa100 dataset are not necessarily centralized
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Figure 3.7: Natural images classified as “No Plant” by the plant localization process.

in the image. Therefore, a central crop may be excluding important discriminative information in

its process. On the other hand, the resized method uses the entire image to extract the samples

and may contain irrelevant information to the plant categorization task. Besides that, samples

produced by this approach generally do not respect the aspect ratio of the plant and change its

morphological characteristics. As a result, accuracy values reported in Table 3.1 support the idea

that ResNet models’ training process can be improved by feeding only the most representative area

of the image instead of a general central crop or even the entire resized image. Furthermore, I can

exploit these representative areas defined by the bounding boxes in a way that more samples are

extracted to accommodate the lack of data during the training process of deep classification models

such as the ResNets.
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Algorithm 1: PlantFlowerLocalization ( I )

Input: Image I
Output: IPlant , BBPlant , IFlower , BBFlower

/* Scene Parsing with Two Pre-Segmentation Methods for Flowers */

1 IPlant, IFlower1 ← LargestRoI ( SceneParsing ( I ) ) ;
2 IWatershed ← WatershedAlgorithm ( I ) ;
3 IGrabCut ← GrabCutAlgorithm ( I ) ;
4 IFlower2 , IFlower3 ← LargestRoI ( SceneParsing ( IWatershed , IGrabCut ) ) ;
5 IFlower ← LargestRoI ( IFlower1 , IFlower2 , IFlower3 ) ;

/* Define Bounding Box if Region of Interest is Detected */

6 if IPlant 6= 0 then
7 minx , miny ← MinCoordinates ( IPlant ) ;
8 maxx , maxy ← MaxCoordinates ( IPlant ) ;
9 Width← maxx − minx ;

10 Height← maxy − miny ;
11 if Width > Iheight || Height > Iwidth then
12 BBsize ← min ( Width , Height ) ;
13 centerx, centery ← CenterOfMass ( IPlant ) ;

14 else
15 BBsize ← max ( Width , Height ) ;
16 centerx, centery ← GeometricCenter ( IPlant ) ;

17 BBPlantTopLeft ← [ ( centerx −BBsize/2 ) , ( centery −BBsize/2 ) ] ;
18 BBPlantBottomRight ← [ ( centerx + BBsize/2 ) , ( centery + BBsize/2 ) ] ;
19 return ( IPlant , BBPlant )

20 if IFlower 6= 0 then
21 minx , miny ← MinCoordinates ( IFlower ) ;
22 maxx , maxy ← MaxCoordinates ( IFlower ) ;
23 Width← maxx − minx ;
24 Height← maxy − miny ;
25 if Width > Iheight || Height > Iwidth then
26 BBsize ← min ( Width , Height ) ;
27 centerx, centery ← CenterOfMass ( IFlower ) ;

28 else
29 BBsize ← max ( Width , Height ) ;
30 centerx, centery ← GeometricCenter ( IFlower ) ;

31 BBFlowerTopLeft ← [ ( centerx −BBsize/2 ) , ( centery −BBsize/2 ) ] ;
32 BBFlowerBottomRight ← [ ( centerx + BBsize/2 ) , ( centery + BBsize/2 ) ] ;
33 return ( IFlower , BBFlower )

34 if IPlant = 0 and IFlower = 0 then
35 return ( No Plant Detected )
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CHAPTER 4
MULTI-SCALE PLANT CATEGORIZATION SYSTEM

In this chapter, I present a novel plant categorization system named WTPlant (What’s That

Plant? ). This system implements a multi-scale preprocessing method for the classification of plants

in natural images. This method focuses on extracting multiple guided samples at different scales

from plant and flower areas (bounding boxes) to train the classification models. These samples are

square-shaped to maintain the aspect ratio of the plant while fitting the first layer of the CNNs.

More precisely, WTPlant searches for the most representative squared areas over the detected RoIs,

extracts guided multi-scale samples from these areas, and trains its classification models focusing

on different organs of the plant.

Using the bounding boxes (Section 3.2) and the guided multi-scale preprocessing method, I

implement the WTPlant as a collection of CNNs (CNN-based) working together to solve the plant

species categorization problem using natural images. I designed it to handle problems such as:

i) If there is a plant in the picture, locate the most representative areas of the image for this

categorization task; ii) The need for classification models more robust to variations in the scale of

the plant. In particular, the preprocessing method of this system works as guided multi-scale data

augmentation, making CNN models more robust to plant variations when trained with extracted

samples. Experiments performed in this chapter show an improvement in the CNNs accuracy when

using guided multi-scale samples for their training process.

The WTPlant system brings together different CNNs to meet the challenges of identifying

plants in natural images. These challenges consist of localizing the plant in a complex natural

scene, dealing with the multi-scale problem, and implementing a suitable CNN model deep enough

to extract discriminative features among similar plant species. WTPlant addresses these issues by

using stacked convolutional blocks for the localization of plant and flower areas, a preprocessing

method to perform multi-scale analyses, and Residual Blocks [20] and Inception Modules [65] to

extract deeper and more discriminative features.

In Section 4.1, I describe the framework and pipelines of this new plant categorization system,

emphasizing its modular capability. A guided multi-scale data augmentation presented in Section

4.2 trains the CNN models of this system using samples extracted at various scales. Section 4.3

details how the use of multi-scale samples during the categorization of each test image improves

the classification process of each pipeline. Experiments show that the guided multi-scale data

augmentation and the new classification process improve the models’ accuracy. I also investigate

the use of different CNNs (implementing inception modules) in Section 4.4, and the importance of

pre-trained weights during the fine-tuning of these models. Furthermore, in Section 4.5, a Graphical

User Interface (GUI) shows each stage of the WTPlant system (localization, preprocessing, and

classification) during the categorization of a new image.
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4.1 Framework and Pipelines

The WTPlant system consists of separate pipelines and multiple stages of CNN components de-

signed to extract deep discriminatory and scale-invariant features. Figure 4.1 presents the frame-

work of this system and details the workflow during the categorization of the plant in an input

image. This framework has two pipelines for the analysis of plants and flowers simultaneously,

and they start with the segmentation and localization of the most representative areas for each

classification problem. For flowers, two pre-segmentation algorithms assist the main scene parsing

stage. After the scene parsing, the preprocessing method creates scale representative samples of

the largest segmented areas to feed the classification models. Next, CNNs individually trained

for each plant or flower categorization task classify the extracted samples. In the final stage, the

prediction confidence analysis of each plant and flower sample helps predict the plant species. In

summary, WTPlant uses a varied number of multi-scale samples extracted through the guidance

of the scene parsing to classify them individually, combining their predictions over different plant

organs at various scales. Thus, the analysis of the plant in a natural image can be performed over

a wide range of scales, making this system more robust to the scale variance.

Figure 4.1: Overview of the WTPlant system.

In contrast to existing plant identification methods that use hand-designed features or simple

CNN architectures, WTPlant implements a collection of CNNs to classify plants and flowers sep-

arately, and then combine their predictions to achieve a more accurate categorization of the plant

species. By designing two classification pipelines, one for general plants (leaves, branches, bushes,

and trees) and one specifically for flowers, WTPlant can handle natural images with plants, flowers,

or both together. Other organs of the plant, such as fruit, bark, root, seedling, etc. can be simi-

larly classified and integrated into the system by adding new pipelines. In this way, this framework

can be expanded to a multi-objective fine-grained categorization problem and become the ultimate

plant identification system.
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4.1.1 Modularity

WTPlant framework incorporates auxiliary methods in a modular fashion, enabling the improve-

ment of each stage of the system (localization, preprocessing, and classification) to be done inde-

pendently. Moreover, each CNN can be easily upgraded (fine-tuned or retrained) and incorporated

back into the system. Therefore, later versions of the WTPlant system can be more accurate by

introducing new and more powerful CNNs. These new models can also be scaled up to classify a

broader range of plant species, covering a much larger environment. Experiments described in this

dissertation support the idea that a collection of CNNs carefully designed to analyze multiple plant

organs simultaneously may overcome the limitations of commonly used methods and monolithic,

non-modular DL approaches for the plant categorization problem.

4.2 Guided Multi-Scale Data Augmentation

As suggested by initial experiments (Section 3.3), bounding boxes delimiting the plants’ detected

regions are the most representative areas of the images for the plant categorization task. These

areas can be further exploited by extracting samples at different scales, depending on the resolution

of the image. So I exploit these areas implementing a new preprocessing method that changes the

scale of the plant and flower by zooming into its minimum resolution (minimum number of pixels in

the selected region without resizing it). The center of mass or centroid of each RoI is an excellent

indicator of the plant/flower location and, excluding extreme cases, its coordinates are inside of

the RoI. Using the coordinates of these centroids as their centers, I define the close-up areas for

plant and flower by selecting the input size of the CNN (224x224 or 299x299 pixels) and extracting

the most “zoomed-in” samples at a minimum resolution, called the close-up patches. In this case,

patches are the extracted samples used to train the classification models.

4.2.1 Extracting Multi-Scale Representative Patches

The close-up areas define the first patches used to train plant and flower classification models of

the WTPlant system. The extraction of patches at multiple scales starts by collecting the close-up

area and keeps extracting larger areas until it reaches the respective bounding box. When used

for training, this process is called the guided multi-scale data augmentation. In cases that the

bounding boxes are smaller than the close-up area, I extend these boxes to the borders of the

image, creating a space between the bounding box and the close-up patch. Typically, the bounding

box is bigger than the close-up area (depending on the resolution of the image). In both cases,

the desired number of patches divides the difference between the bounding box and the close-up

area. More specifically, the guided multi-scale extraction process uses the top-left and bottom-right

coordinates of the bounding box and the close-up area to calculate the increasing value between

the multi-scale patches.
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As an example, Figure 4.2 presents this process by showing the RoI of the plant (green), its

bounding box (the largest square in blue), the centroid of the RoI (blue dot), the close-up area

(the smallest box in blue), the multi-scale samples extracted (intermediate boxes in blue), and the

coordinates (red dots) used for positioning the multi-scale patches to be extracted. In this example,

an area of 224x224 pixels (size of the first layer of the ResNet models) around the centroid of the RoI

defines the close-up area and directs the extraction of larger areas. I later resize these areas using

nearest-neighbor interpolation to fit the first layer of the CNN, creating the multi-scale patches

used to train the classification models.

Figure 4.2: Example of guided multi-scale data augmentation process. The scene parsing localize
the plant (Koelreuteria formosana) region (green). WTPlant uses the coordinates of the bounding
box, the close-up area, and the patches in between (red dots), to collect multi-scale patches (blue).

After the preprocessing method, all extracted patches fit the first layer of the selected clas-

sification model without changing the plant aspect ratio. Thus, this method is a suitable data

augmentation for natural images of plants, with a variable number of multi-scale patches to be

extracted. As an example, Figure 4.3 presents ten extracted patches resized and ready to be fed
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into the first layer of the classification CNN during the training process. With variable size and

number of patches to be extracted, this guided multi-scale data augmentation is limited only by

the resolution of the training images. Applying this method to train the classification CNNs of the

WTPlant system, I create DL models that are more robust to scale variations of plants and flowers

in natural images.

Figure 4.3: Patches from Figure 4.2 resized to fit the first layer of the ResNet models.

4.2.2 Pseudocode II

The following pseudocode (Algorithms 2 and 3) details the preprocessing method of the WTPlant.

I designed it to make the system capable of categorizing plants and flowers at different scales. The

returned set of multi-scale patches (MWTP ) are extracted, resized according to the size of the first

layer of the CNN, and used as augmented data during the training process.

4.2.3 Experiments

Experiments described in this Section verify the efficacy of the guided multi-scale data augmentation

method when training CNN models for the plant categorization task. They used different datasets

to compare the guided multi-scale data augmentation against a commonly used approach called

the random crop. As suggested by its name, the random crop data augmentation approach chooses

arbitrary samples from random regions of the training images. These random samples are extracted

to create training patches, which have to be resized to fit the first layer of the classification models.

During the resizing process, it is important to take into consideration that the input layer of the

classification models is usually square-shaped, and randomly extracted patches have to fit that

shape perfectly. Because of that, most implementations of the random crop not always respect the

aspect ratio of the plants when extracting patches.
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Algorithm 2: GuidedMSPatchExtraction ( I )

Input: Image I
Output: A Set of Multi-scale Patches MWTP

/* Configurable Parameters */

1 n← 10 ; // Number of Multi-Scale Patches

2 p← 244 or 299 ; // Patch Size for ResNets or Inception Models

/* Plant Localization */

3 ( IPlant , BBPlant , IFlower , BBFlower ) ← PlantFlowerLocalication ( I ) ;

/* Guided Multi-Scale Data Augmentation */

4 MPlant ← GuidedMSDataAugmentation ( IPlant , BBPlant , n , p ) ;
5 MFlower ← GuidedMSDataAugmentation ( IFlower , BBFlower , n , p ) ;
6 MWTP ← ( MPlant , MFlower ) ;

7 return ( MWTP )

A single image can produce a large number of randomly extracted samples. For the following

experiments, I randomly create ten training patches for each plant image. In this way, CNNs

trained using random crop have ten times more training data than models trained with previous

approaches (Section 3.3). The guided multi-scale approach also extracts ten patches from each

plant image to provide a fair comparison between the data augmentation methods. The main

difference is that, instead of being random areas, this new data augmentation approach extracts

patches at various scales, zooming into the most representative areas of the image, guided by the

centers of mass (centroids) of the segmented plant and flower areas.

Using the same ResNet models from initial experiments, I similarly train the CNNs by simply

resizing the input images, using randomly cropped patches at the size of a quarter of the total

area of the image, and using patches extracted by the new guided multi-scale data augmentation.

The objective is to verify if patches extracted at different scales help the trained CNNs become

more robust to scale variations and better recognize plants in natural images. Two datasets with

annotated plants are used: the BJFU100 [63] from the Beijing Forestry University, and the UH-

Manoa100 (Section 3.3.1) from the UHM, both with 100 different plant species. All images used to

train and test the CNNs are natural images, presenting complex backgrounds, partial occlusions,

shadows, varying illumination, and different objects in the same scene.

BJFU100 Dataset

Recently, a collection of annotated high-resolution images called BJFU100 is presented by Sun et

al. [63]. The BJFU100 dataset has 100 images per plant species, totalizing 10,000 natural images

of ornamental plants present on the campus of the Beijing Forestry University. Figure 2.3 shows

examples of these images. To better understand this dataset, Figure 4.4 shows some of the images
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Algorithm 3: GuidedMSDataAugmentation ( IMask , BB , n , p )

Input: Mask and Patch Info IMask , BB, n , p
Output: Multi-scale Patches M
/* Define Close-Up Patch */

1 centroidx, centroidy ← CenterOfMass ( IMask ) ;
2 CloseUpTopLeft ← [ ( centroidx − p/2 ) , ( centroidy − p/2 ) ] ;
3 CloseUpBottomRight ← [ ( centroidx + p/2 ) , ( centroidy + p/2 ) ] ;

/* Define Increasing Ratio */

4 RatioTopLeft ← [ ( BBTopLeft − CloseUpTopLeft ) / ( n− 1 ) ] ;
5 RatioBottomRight ← [ ( BBBottomRight − CloseUpBottomRight ) / ( n− 1 ) ] ;

/* Extracting Multi-Scale Patches */

6 M← Ø;
7 for i← 0 to n− 1 do
8 TopLeftCorner(i)← CloseUpTopLeft − i×RatioTopLeft ;
9 BottomRightCorner(i)← CloseUpBottomRight + i×RatioBottomRight ;

10 patchMultiScale ← ExtractPatch ( TopLeftCorner(i) , BottomRightCorner(i) ) ;
11 patch← Resize ( patchMultiScale ) to p× p ;
12 M←M∪ { patch } ;

13 return M

from the same category in the dataset. It is noticeable that some of these images were taken from

the same specimen, facilitating the classification task of this dataset.

In their experiments, Sun et al. downsized these images to collect training patches for cus-

tomized residual networks (ResNets). In this dissertation, I perform a comparison between their

results and accuracies achieved using the same CNN models but three different preprocessing meth-

ods. Experiments detailed here followed the same implementation of Sun et al. and split the dataset

by 80% for training and 20% for testing. The random crop approach extracts the same number

of patches used by the guided multi-scale data augmentation, and both resize their patches to

224x224 pixels (as suggested by He et al. [20]) to fit them into the first layer of the ResNets. Three

ResNet models are trained for 100 epochs, and Table 4.1 presents the resulting prediction accuracy.

These results support the hypothesis that a guided multi-scale data augmentation can assist in the

training of CNN models. More specifically, this new method outperforms the random crop data

augmentation and the commonly used resized approach. It is noticed that the guided multi-scale

data augmentation takes advantage of the high-resolution images of the BJFU100 dataset to ex-

tract representative patches of the plants. Meantime, resized and random crop approaches extract

samples from a single scale. Consequently, models trained with these data augmentation methods

do not result in CNNs robust to scale variance on the plant appearance. When compared with

results from Sun et al., the multi-scale data augmentation also shows a significant improvement.
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Figure 4.4: Example images of two plant species from the BJFU100 dataset.

Even improving the ResNet models, Sun et al. need to implement a suitable preprocessing method

to better prepare their natural images for the plant categorization task.

For the guided multi-scale data augmentation, only the plant area is considered from the scene

parsing since this dataset does not present specimens with flowers. To be a fair comparison between

the methods, I use the guided multi-scale data augmentation only for the training process. The

classification is performed over the extracted bounding boxes of the testing images. That is, CNNs

classify only one patch per testing image for all approaches, and the largest squared central crop

tests the Random Crop. Sun et al. also implemented a customized ResNet with 26 layers, which

resulted in their best accuracy of 91.78%. However, it is still below the performance of the ResNet18

trained using the guided multi-scale approach, which yielded the best accuracy of 96.85%.
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Table 4.1: Percentage of accurately categorized BJFU100 test images.

CNN Model Resized Random Crop Sun et al. [63] Multi-Scale Data Aug.

ResNet18 74.33% 87.78% 89.27% 96.85%
ResNet34 71.38% 85.53% 88.28% 96.65%
ResNet50 53.73% 73.73% 86.15% 91.15%

For these experiments, the BJFU100 dataset provides a fair amount of high-quality annotated

plant images. It is noticeable in Figure 4.4 that these images are well standardized with single size

(3120x4208 pixels), all center-oriented, with small light variations, showing almost no occlusions,

and most importantly, having similar scales between images of the same species. These aspects make

the BJFU100 dataset relatively easy to classify, which explains the highly accurate performance

presented in Table 4.1. For example, Figure 4.5 visualizes the normalized distribution of the

guiding points – the center of mass or centroids of segmented plant area. This heatmap shows that

BJFU100 plant images are mostly center-oriented, making it easy for data augmentation approaches

to collect representative patches. Even though BJFU100 is a useful dataset for data augmentation

experiments, it does not present a wide range of scale changes. As a result, the CNNs trained on the

BJFU100 dataset may not have learned scale-invariant features because of the small intra-species

scale variation in the training data. Therefore, a model that aims to categorize plants in natural

images ranging from leaves to entire trees has to take into account the multi-scale issue and be

tested on a dataset with a large scale variation in plant appearance.

Figure 4.5: Normalized heatmap of 10,000 centroids from BJFU100 plant images, indicating that
plants are located around the center in most images of this dataset.
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UHManoa100 Dataset

I presented the UHManoa100 dataset in Section 3.3.1, and the following experiments using these

plant images seek to compare the novel guided multi-scale data augmentation with commonly used

methods in a more complex dataset. As presented in Figure 3.5, plants from the UHManoa100

dataset have images at different scales, varying their size and resolution. I collected images of

this dataset from different sources and not from the same specimen, resulting in a wide variety

of plant appearance. Consequently, accuracy results from UHManoa100 experiments cannot be

directly compared with experiments using the BJFU100 dataset. In both cases, I implement the

guided multi-scale data augmentation in an attempt to make the trained CNNs more robust to scale

variations. For the UHManoa100, comparative results of prediction accuracy from this new data

augmentation approach with other methods are presented in Table 4.2. As in previous experiments,

the ResNet18 is the CNN model that achieved the highest accuracy result after 100 training epochs.

These results also show that the UHManoa100 dataset is difficult to categorize, and preprocessing

methods that augment the data (Random Crop and Multi-Scale Data Aug.) help in the training

of these classification models.

Table 4.2: Percentage of accurately categorized UHManoa100 test images.

CNN Model Resized Random Crop Multi-Scale Data Aug.

ResNet18 39.21% 43.89% 49.28%
ResNet34 40.29% 44.60% 47.84%
ResNet50 28.42% 43.53% 47.48%

Experiments over the UHManoa100 show how this dataset is different from the BJFU100. More

specifically, the locations of the plants in the images of the UHManoa100 dataset are scattered and

not centralized as much as the images of the BJFU100 dataset. Figure 4.6 shows the normalized

heatmap of the centroids from segmented plant areas of the UHManoa100 dataset. For this dataset,

the preprocessing stage of the WTPlant system can localize the plants better than other approaches

and successfully extract more representative patches for the training process of the CNNs. In this

way, I exploit the most representative area of the images for the plant categorization task by

implementing a guided multi-scale approach and creating a novel data augmentation process. This

is the second contribution of this dissertation and is developed to address the research question

on how to classify plants at different scales. Results presented in Table 4.2 support this solution

and suggest the guided multi-scale data augmentation as an effective way to train CNNs for the

fine-grained categorization of plant species when the dataset presents a wide range of plant scale

variations in the images. It is a new approach in multi-scale analysis and trains CNN models to

become more robust to scale variations. Specific for the plant categorization task, CNNs trained

with this novel data augmentation outperform models trained using conventional preprocessing

approaches.
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Figure 4.6: Normalized heatmap of 4,778 centroids from UHManoa100 plant image, indicating that
plants are more scattered from the center than the BJFU100 dataset images.

4.3 Multi-Scale Classification Process

Previous experiments used one sample from each testing image, extracting only one patch per

image for the classification process. These individual testing patches are collected by the same

approach used to train the CNNs (Resized, Central Crop, or Bounding Boxes – Figure 3.6). In this

Section, I implement the extraction of multi-scale patches not only from the training set but also

from images of the testing set. This new classification process combines the analysis of patches

from different scales to produce the final species prediction. The following steps summarize this

multi-scale classification process:

1. Multi-scale patches are extracted from each input image to perform the classification of the

same plant in different scales;

2. The CNN models make predictions for all patches extracted from a single image;

3. The largest average predictive confidence (calculated using the arithmetic mean) indicates

the plant species in the image.

This final averaging process helps the models make a more robust prediction when categorizing

plants in natural images since the plant is analyzed multiple times over different scales. This new

classification process is another contribution of this dissertation and exploits the most representative

scales of the image for the plant categorization task.
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4.3.1 Pseudocode III

The following pseudocode (Algorithm 4) presents the multi-scale classification process designed to

make the WTPlant predictions more robust to scale variation of plants. This process outputs the

final plant species based on the analysis of multiple patches extracted out of a single input image.

Algorithm 4: MSClassification ( I )

Input: Image I
Output: Plant Species S

1 MPlant , MFlower ← GuidedMSPatchExtraction ( I ) ;

/* Multi-Scale Classification Process */

2 PlantPrediction ← Average ( CNNPlant ( MPlant ) ) ;
3 FlowerPrediction ← Average ( CNNFlower ( MFlower ) ) ;

/* Combining Plant Organs Predictions */

4 FinalPrediction ← ( PlantPrediction ) + ( FlowerPrediction ) ;
5 S ← Top-1 Species of FinalPrediction ;

6 return S

4.3.2 Experiments (WTPlant v1.0 )

These experiments use the first version of the WTPlant system that implements all the four of the

pseudocodes together. The WTPlant v1.0 trains its CNN models for each target dataset (starting

with the BJFU100) and categorizes testing images using the multi-scale classification process.

BJFU100 Dataset

The BJFU100 dataset contains high-resolution images that allow the preprocessing method to

collect patches up to 3120x3120 pixels. Using the same CNN models previously trained on the

BJFU100 (Table 4.1), I implement the multi-scale classification process using ten patches at dif-

ferent scales per test image. Table 4.3 compares the accuracy results without the multi-scale

classification process (Multi-Scale Data Aug.) and implementing it (WTPlant v1.0 ). Presenting

a slightly improved performance for this dataset, WTPlant v1.0 shows that the multi-scale clas-

sification process can assist in the categorization of plants even if the dataset has a small scale

variation in its images. This new approach utilizes CNNs trained on multi-scale data and also

extracts patches at different scales for classification, allowing the WTPlant system to perform a

more robust analysis of plants in natural images. Therefore, previously trained ResNets produced

improved accuracy results when analyzing multiple samples of the test images. ResNet18 remains

the most accurate model for this dataset, achieving an accuracy result of 97.80% correct Top-1

classified testing images.
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Table 4.3: Results for the BJFU100 dataset with (WTPlant v1.0 ) and without (Multi-Scale Data
Aug.) the multi-scale classification process.

CNN Model Multi-Scale Data Aug. WTPlant v1.0

ResNet18 96.85% 97.80%
ResNet34 96.65% 97.58%
ResNet50 91.15% 95.30%

UHManoa100 dataset

As described earlier, experiments using the UHManoa100 dataset have shown improved performance

of the ResNet models when implementing the new guided multi-scale data augmentation (Table

4.2). This preprocessing method enables the CNNs to learn scale-invariant features, making the

classification models more robust to the variation of scale and resolution on this dataset. To further

analyze the impact that the multi-scale classification process has during the plant categorization, I

purposefully select plant images at various scales for the testing set of this dataset. The difficulties

in categorizing these images lead to the creation of the WTPlant system and the implementation

of the multi-scale classification process specially designed for this type of dataset.

Table 4.4 presents the performance of the plant pipeline of the WTPlant v1.0 in comparison with

previous experiments (Multi-Scale Data Aug.) that analyzes only one patch extracted from testing

images. These results show a significant improvement in the models’ accuracy when implementing

the multi-scale classification process. ResNet18 still is the most accurate model, improving almost

8% just with the addition of this new process.

In contrast to the results achieved for the BJFU100 dataset (Table 4.3), Table 4.4 shows a

significant improvement when the multi-scale classification process is employed. This accuracy

boost is mostly because the UHManoa100 dataset presents a wide range of scale variations in its

training and testing sets, making the multi-scale classification process necessary for this analysis.

Thus, the results presented in this Table show a more significant improvement when compared to

BJFU100 experiments.

Table 4.4: Results for the UHManoa100 dataset with (WTPlant v1.0 ) and without (Multi-Scale
Data Aug.) the multi-scale classification process.

CNN Model Multi-Scale Data Aug. WTPlant v1.0

ResNet18 49.28% 57.19%
ResNet34 47.84% 56.12%
ResNet50 47.48% 52.16%
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Adding the Flower Classification Pipeline

As reported by Wäldchen and Mäder [72], most plant identification approaches rely on shape

features to correctly classify leaf images, and methods focusing specifically on flower images gen-

erally redirect their analysis from morphological features to textural ones. Implementing different

pipelines for separate analysis of plant and flower areas, the WTPlant system can train different

CNNs to focus on morphological features for the plant classification and textural features for the

flower classification. Approaches that rely only on flower images to identify plant species are not

very common since not every plant has a flowering stage. This is a strong indicator that a system

combining plant and flower analyses may result in a more robust approach. In contrast to existing

plant identification systems, WTPlant uses a collection of CNNs to classify plants and flowers sepa-

rately, and then combine their predictions to achieve more accurate results. As shown in Figure 4.1,

CNNs output the plant and flower predictions, which are combined to create the final prediction

of the plant species (Algorithm 4). This process is called “Prediction Confidence Analysis” and

enables the WTPlant system to work for both flowering and non-flowering plant species such as

ferns, mosses, and liverworts.

For the UHManoa100 dataset, the scene parsing stage of the WTPlant system successfully de-

tects the presence of 66 flower species of the 100 analyzed plants. From these flower samples, I select

15 images per species to provide a balanced training set. Consequently, this data augmentation

collects 9,900 samples, 10 multi-scale patches from each of the 15 images times 66 species. Most of

the 34 plant species whose flowers are not detected do not present a flowering stage during their life

cycle. However, some of them do present flowers in their training images, but they are not detected

by the scene parsing due to a tiny flower area. In the testing set, only 129 of the 278 test images

have flowers detected by the scene parsing approach. For these images, the flower pipeline assists

the categorization of the plant species providing additional predictions based on analyzing flowers.

Appendix B brings the complete list of analyzed flower species in the UHManoa100 dataset. Even

though the flower pipeline does not consider 34 of the 100 plant species, WTPlant still categorizes

those images using the plant pipeline only.

Table 4.5 presents the performance of each pipeline of the WTPlant system (Plant and Flower)

as well as the prediction accuracies obtained when these pipelines are combined (WTPlant v1.0 ). In

these experiments, Resnet34 outperforms the other models when analyzing flowers, while ResNet18

presents the best results for plants. However, when combining the predictions of the ResNet34 for

plants with the ResNet34 for flowers, the result does not outperform the accuracy of ResNet18 (for

plants only or combined with flowers). Due to the modularity of the WTPlant system, different

CNN models (in this case, the ResNet18 for plants and the ResNet34 for flowers) can work together

to predict the final plant species. Consequently, I further improve the WTPlant v1.0 performance

by doing these different classification models work together and achieve the accuracy result of

58.27% when classifying images of the UHManoa100 dataset.
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Table 4.5: Individual (Pland and Flower) and combined (WTPlant v1.0 ) accuracy results for the
UHManoa100 dataset.

CNN Model Plant Flower WTPlant v1.0 WTPlant v1.0

ResNet18 57.19% 39.50% 57.55% ResNet18 (plant)+
ResNet34 56.12% 46.22% 57.19% ResNet34 (flower)
ResNet50 52.16% 44.54% 53.24% 58.27%

4.4 Incorporating New and Pre-Trained Models

The first version of WTPlant utilizes ResNets for plant and flower classification. And I use different

architectures of this CNN model to evaluate the multi-scale data augmentation and the classification

process introduced by this system. The following experiments incorporate classification models

implementing inception modules, also called inception models. These modules are an important

milestone in the development of state-of-the-art CNNs. Their constant evolution leads to the

creation of multiple models, creating different CNN architectures. WTPlant v2.0 incorporates

three of the most popular inception models: Inception-v3 [66], Inc-ResNet-v2 [64], and Xception

[13]. These CNNs implement different inception modules with numerous layers, and, depending on

the data, one model may work better than the other. Before the use of these models, most popular

CNNs (such as the ResNets) seek to pile convolution layers going as deep as possible, hoping to

get better performance. On the other hand, inception models use broader architectures to boost

performance in terms of both speed and accuracy.

These three CNN models have their first layers bigger than the ResNet ones. Because of that,

the preprocessing method of the WTPlant system extracts larger patches to train these models and

extracts ten patches at different scales per image using the same multi-scale data augmentation

approach but with close-up patches set to the size of 299x299 pixels. Then I resize all the larger

multi-scale patches to this same size and also fit the first layer of the inception models. Similar

to ResNets, the training process of these new models uses the hyperparameters suggested by their

original papers. In this way, WTPlant v2.0 aggregates the three inception models and trains them

to classify plants and flowers using extracted patches.

The search for additional data augmentation approaches and the integration of pre-trained

knowledge to assist the training process of these models create new implementation opportunities

for the WTPlant system. A successful approach to augment images is to use their vertical and

horizontal mirrored reflections [55]. As for plants, multi-scaling and vertical mirroring may be

the right approaches for data augmentation since it always collects representative plant and flower

patches. WTPlant v2.0 also takes advantage of pre-trained weights to fine-tune its classification

models. By starting the training process with previously learned knowledge, inception models

incorporated into this version of the system present a considerable boost in accuracy, achieving

satisfactory results for the categorization of the UHManoa100 dataset.
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Furthermore, I noticed that the most zoomed-in areas (close-up patches) rarely assist the clas-

sification process in the plant pipeline. This insight emerged by individually analyzing each scale of

patches extracted during the preprocessing method [31]. As an alternative, WTPlant v2.0 utilizes

only the five largest scales and their corresponding mirrored images, balancing the training data

for a fair comparison with the previous version of the system. So I use the same number of patches

– in this case, ten patches per image – to training the models for this second version of the system,

using five multi-scale patches and their mirrored images.

4.4.1 Experiments (WTPlant v2.0 )

Continuing to focus on the UHManoa100 dataset, I present the WTPlant v2.0 initial performance in

Table 4.6. In these experiments, plant and flower pipelines have six different classification models

trained for the analysis of different areas of testing images. ResNet18 (in the plant pipeline)

continues to be the CNN model that better classifies images of the UHManoa100 dataset after 100

epochs, even when compared with inception models. Furthermore, the plant pipeline of this version

of the system presents an improved performance when compared with the previous results (Table

4.5). The flower pipeline, however, does not improve its performance and inception models achieved

similar results when compared with the previous results. The addition of the flower predictions

also helped in most of the cases, outperforming the ResNet18 plant pipeline to achieve an accuracy

of 66.19% when categorizing the UHManoa100 dataset.

Table 4.6: WTPlant v2.0 accuracy results with CNNs trained for the UHManoa100 dataset.

CNN Model Plant Flower WTPlant v2.0 WTPlant v2.0

ResNet18 65.11% 42.86% 63.67%
ResNet34 59.71% 45.38% 60.07% ResNet18 (plant) +
ResNet50 57.19% 38.66% 56.83% Inc-ResNet-v2 (flower)
Inception-v3 49.28% 39.50% 50.72% 66.19%
Inc-ResNet-v2 62.23% 46.22% 64.03%
Xception 53.24% 38.66% 58.63%

Not working as expected, inception models did not outperform the ResNets in these experiments

since overfitting happened during their training processes. In other words, these models learned

details of the training images but did not generalize well, negatively impacting the performance of

the models when classifying new images. I also implement other data transformation techniques

such as rotation, adaptive histogram equalization, and ZCA (Zero-phase Component Analysis)

whitening in an attempt to avoid these issues and increase the models’ accuracy. However, for the

plant categorization problem, none of these preprocessing approaches yield better performance of

the inception models.
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ImageNet Pre-Trained Weights

Although data augmentation techniques can help to deal with the problem of the limited amount

of data to some degree, it may not be enough to provide a good-sized dataset for training deep

networks to obtain the best performance. CNN models such as the Inception-v3 [66], Inc-ResNet-

v2 [64], and the Xception [13] have a large number of parameters (up to 54 million), and the

lack of training data generally leads to overfitting and poor generalization. Therefore, these CNN

models are commonly implemented using pre-trained weights [14]. To fully explore the capability

of inception models, I run new experiments using the UHManoa100 dataset to fine-tune these

pre-trained models.

The classification models are pre-trained using the ImageNet dataset [58] and fine-tuned for

the target dataset using previously learned weights as initial parameter values. In this way, filters

learned from datasets such as the ImageNet can be adapted to the classification of plant species.

Similar to previous experiments, I perform the fine-tuning of these pre-trained CNNs for 100 epochs.

The accuracy results presented in Table 4.7 show that the use of pre-trained models and the fine-

tuning process improves the performance more significantly for CNNs with inception modules than

the ResNets. This phenomenon is natural since the number of parameters in CNNs with inception

modules (up to 54 million) is almost twice the amount of parameters of the ResNets trained in

these experiments (up to 26 million). Therefore the pre-learned weights have more impact on the

inception models, making them perform much better on a relatively small dataset such as the

UHManoa100.

In particular, the Inc-ResNet-v2 plant classification model is the most accurate CNN during

the experiments. Boosted by the ImageNet pre-trained weights, this model correctly categorizes

89.21% of the testing images. Inception models also present an increase in accuracy for the flower

pipeline, and the Xception with ImageNet pre-trained weights is the model that outperformed

previous results (Tables 4.5 and 4.6). Nevertheless, the merging of both plant and flower pipelines

when using the most accurate models does not improve the system’s final categorization results.

In this case, most of the correctly categorized testing images from the flower pipeline are already

correctly classified by the plant pipeline, and the wrong classification of the flower species negatively

impacts the final results.

Table 4.7: WTPlant v2.0 accuracy results with pre-trained CNNs fine-tuned for the UHManoa100.

Pre-Trained CNN Plant Flower WTPlant v2.0 WTPlant v2.0

ResNet18 61.51% 48.74% 59.71%
ResNet34 57.91% 50.42% 57.19% Inc-ResNet-v2 (plant)+
ResNet50 56.83% 46.22% 55.04% Xception (flower)
Inception-v3 85.61% 68.91% 84.53% 87.77%
Inc-ResNet-v2 89.21% 70.59% 87.41%
Xception 87.05% 73.11% 86.69%
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4.5 Graphical User Interface

Each stage of the WTPlant system (localization, preprocessing, and classification) produces useful

information for the plant categorization task. To visualize these stages, I designed a Graphical User

Interface (GUI) for the WTPlant system. Figure 4.7 presents this GUI, created to demonstrate

the WTPlant at the International Conference on Multimedia Retrieval (ICMR) [33]. In this GUI,

the user inputs the test image and clicks the “Identify Plant” button. WTPlant loads the image,

and the scene parsing produces plant and flower RoIs. These regions work as a guide to the

preprocessing method that extracts multi-scale patches. Plant and flower CNN models classify

these patches creating the confidence results for each sample. After the WTPlant combines the

prediction confidence of each sample for each pipeline, the GUI outputs the Top-5 prediction results

with a brief description of the plant taxonomy. I designed this GUI to be a simple and user-friendly

interface. However, technical features (such as a variable number of multi-scale patches and their

sizes) can be implemented. It is also purely academic, focusing on showing the results of the three

main stages of the implemented system. Figure 4.7 (b) shows the result of each one of these stages

when the WTPlant categorizes a test image. In this case, a plant image with a person partially

covering its leaves is categorized. This example simulates what happened during the demonstration

at the ICMR, where WTPlant successfully categorized live specimens.

4.6 Observations and Discussions

In this chapter, I present a new multi-scale plant categorization system called WTPlant. This

system exploits the most representative areas of a natural image for the plant categorization task

by implementing guided multi-scale approaches and creating a novel data augmentation method.

The guided multi-scale data augmentation is a significant contribution of this dissertation, and it

trains CNN models to become more robust to scale variations. Experiments detailed in Section

4.2.3 support the hypothesis that this data augmentation method can assist in the training of the

classification models. For the plant categorization task, CNNs trained with this novel method

outperform models trained using conventional preprocessing approaches.

This chapter also improves the classification process of the implemented system. For that, I

present a new multi-scale classification process for the analysis of a test image at various scales,

and a pre-selecting process to use the most appropriate multi-scale patches and their mirrored

images. WTPlant v1.0 implements the first new characteristic and improves its classification pro-

cess. Analyzing the results of BJFU100 dataset experiments (Section 4.3.2), this first version of

the system consistently improves in performance when implementing multi-scale approaches. As

shown in Table 4.1, over 97% accuracy is achieved when the multi-scale classification process is

applied to categorize the BJFU100 images. This result also confirms that I can successfully apply

the WTPlant system to datasets other than the one created specifically for this research.
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(a)

(b)

Figure 4.7: Graphical User Interface (GUI) of the WTPlant system. (a) Welcome screen, (b) result
screen after plant categorization.
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The second version of the WTPlant system also applies the multi-scale classification process,

but it pre-selects some of the patches. Additionally, the incorporation of inception models and

pre-trained weights boosted the accuracy of WTPlant v2.0 to achieve its best results. Experiments

using the UHManoa100 dataset better express the capability of this second version of this system

(Section 4.4.1), showing the impact that the improved classification process has on analyzing images

at different scales independent of the classification model selected for the task. With the impressive

achievement of 89% correctly classified images, the plant pipeline of the WTPlant v2.0 system

best categorize the UHManoa100 dataset when using the Inc-ResNet-v2 pre-trained classification

model. In this case, the addition of the flower pipeline does not improve the overall accuracy. Still,

it guarantees the WTPlant system’s ability to analyze images showing flowers exclusively.

Figure 4.8 presents correctly categorized images illustrating the capability of the WTPlant sys-

tem to handle substantial intra-class scale variation. These plants show a wide range of scale

variation, from close-ups of a specific part of the plant to larger scales covering the entire tree. All

of them are correctly classified by the WTPlant v2.0 system when using only the plant pipeline

with the Inc-ResNet-v2 classification model. These images are selected out of the 248 correctly

classified ones to represent the improvement on the categorization of plant species when applying

the WTPlant system. Experiments reported in [31] compare the WTPlant v2.0 approach with

commonly used preprocessing methods (Resizing, Random Crop, and Central Crop), and models

trained using these common methods miscategorized plants at different scales. Consequently, im-

ages presented in Figure 4.8 show the superiority of the WTPlant multi-scale data augmentation

and classification process when compared with other approaches.

Figure 4.9 shows examples incorrectly classified by WTPlant v2.0. Although these testing

images are incorrectly categorized, the final predictions are not far from the correct ones, meaning

WTPlant lists the right plant species in the Top-3 predictions. It is noticeable that all images in this

Figure are close-up pictures with no flowers, showing that the multi-scale approaches may not be

effective in categorizing these types of images. Figure 4.10 presents some of the most challenging

plant images in the UHManoa100 dataset. These images are incorrectly classified by the best

performing CNNs, with the correct plant species not appearing in the Top-5 predictions. The first

image is a Cecropia obtusifolia with other plant specimens in the background. Because of that,

species other than the dominant one also have a strong presence in the extracted patches making it

extremely difficult to perform the correct categorization. An image of the Delonix regia with other

trees mixing up their tops is also one of the most difficult examples in this dataset. Even though

its reddish color well distinguishes the target plant, most of it is mixed with the other treetops.

Consequently, the CNNs have a hard time distinguishing what the dominant species in the patches

present to them is. The third plant is a Persea americana, which has its fruits as a dominant

characteristic in the image. Currently, WTPlant is not prepared for the fine-grained categorization

of fruits, which may assist the prediction of plant species for this type of image.
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Figure 4.8: Examples of correctly categorized plant species showing large scale differences.

Figure 4.9: Examples of incorrectly classified plants but correctly categorized in Top-3 predictions.
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Figure 4.10: Plant images difficult to categorize. Correct species are not in the Top-5 predictions.
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CHAPTER 5
EXPANDING THE PLANT CATEGORIZATION SCOPE

The accurate categorization of 100 plant species from multiple datasets (BJFU100 and UH-

Manoa100) establishes the WTPlant as an effective system for classifying natural images. In this

chapter, I discuss the problems associated with expanding the scope of this system and present

a solution by modifying the WTPlant classification models. The first problem is to define a new

target region to list the existing species and collect representative images of each plant species from

that environment. By ensuring the correct species annotation, I collect natural images of plants to

create a new dataset and define the expanded scope. Considering that this new dataset represents

the flora biodiversity of a specific region of the globe, classification models trained over these im-

ages compose a plant categorization system with an expanded scope. The second problem is the

inclusion of the new species into the WTPlant system. A simple solution to this problem would

retrain the classification models all over again using the new dataset. Still, previous experiments

(Section 4.4.1) show how valuable the pre-trained weights are for the fine-tuning of these models.

Therefore, a solution to expand the plant categorization scope of this system must take into account

the pre-training process of the classification models. To integrate previously learned knowledge,

I implement a modification on the WTPlant classification models by replacing the top layers of

the CNNs for new extended ones. These new layers accommodate a more significant number of

plant species but do not guarantee a high categorization accuracy, creating another implementation

problem. In the proposed solution, I also create expert models by training the modified CNNs over

domain-specific datasets and use their pre-trained weights to fine-tune the classification models of

the system. In this way, knowledge extracted from CNNs pre-trained over plant-related datasets

assist in the fine-tuning of the models over the new target dataset. Like this, I expand the plant

categorization scope and adapt classification models to inherit powerful discriminative features

previously learned during the training over other datasets.

More specifically, this chapter describes approaches taken to deploy the WTPlant to a broader

environment, expanding its plant categorization scope to 300 species as an example case (UH-

Manoa300). Experiments performed using this solution compare the accuracy of the plant pipeline

of WTPlant system when different datasets (like the iNat682, a plant dataset from iNaturalist with

682 species) are used to pre-train its models before the fine-tuning process over the new target

dataset. Although it takes much longer to train the CNNs, the resulting models with integrated

domain-specific knowledge categorize plants more accurately throughout all experiments. For much

larger scopes that encompass more than one environment (e.g., different regions of the globe, con-

tinents, or countries), multiple systems can operate in parallel using other guidance methods (such

as geolocation of the testing image) to indicate which version to use. In this way, the WTPlant can

be deployed to larger environments and categorize the entire flora of that specific region.
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5.1 Increasing the Number of Plant Species

The first step to increasing the number of plants analyzed by the WTPlant system is to gather a

representative dataset of the selected species. For this, I used four different approaches to collect

natural images of annotated plants:

1. Utilizing the dataset shared by the Botany Department of UHM;

2. Scraping images from the internet (as described in Section 3.3.1);

3. Downloading images from the iNaturalist1 website that are annotated by volunteers2;

4. Taking high-resolution photographs of live specimens from the UHM campus.

The collected images are organized and reviewed by a UHM botanist specialist3. I eliminate

images with poor quality and low-resolution (smaller than 400x400 pixels) as well as the incorrectly

labeled ones. This process is necessary due to the lack of plant images with annotated species

available for the experiments conducted in this study. The combination of multiple sources of

natural images and the exhaustive sanity check by a botanist specialist extends the existing dataset

of 100 plant species (UHManoa100) to 300 species (UHManoa300).

5.1.1 UHManoa300 Dataset

In an attempt to make the UHManoa300 a more representative dataset, a clean-up process elim-

inates small, incorrectly annotated images to ensure that only those plants with visible traits

are selected. Following this initial process, I organize the UHManoa300 in a collection of 300

plant species with 50 natural images per species, totalizing 15,000 images. With different sizes

in height/width varying from 400x400 to 6000x4000 pixels, these images create a diverse dataset

representing 300 plant species on many different scales. They also show different plant organs

throughout multiple seasons of the year. Consequently, it becomes more difficult to categorize this

dataset as the appearance of plants changes considerably across the same species.

Appendix C presents the complete list of plant species selected for the UHManoa300 dataset.

Similar to the UHManoa100 (Section 3.3.1), this dataset focuses on common plant species present

at the Mānoa Campus of the University of Hawai‘i. Nevertheless, some species are challenging to

distinguish from each other, even for the most experienced botanists. As an example, the Bauhinia

spp listed in this dataset represents a combination of three species: Bauhinia blakeana, Bauhinia

purpurea, Bauhinia variegata. For the first two, the only way to tell them apart is that the first is

sterile (does not produce pods) and only has purple flowers. At the same time, the second produces

1https://www.inaturalist.org – “An online social network of people sharing biodiversity information”.
2Images classified as “Research” on the iNaturalist website, usually categorized by botanist specialist volunteers.
3https://www.botany.hawaii.edu/faculty/daehler/
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seeds (also usually purple flowers but occasionally white or pink flowers). Because of that, the

UHManoa300 dataset considers them as one single class called Bauhinia spp. Figure 5.1 shows

these three species and their similarities. Analogous to Bauhinia spp, Citrus spp is the union of

the species Citrus reticulata and Citrus sinensis since it is not possible to distinguish them using

photos only. UHManoa300 dataset also includes the Morus spp pictures as a mixture of Morus

alba and Morus rubra. Another example of merging species is the Sanchezia speciosa, which is very

difficult to differentiate from Sanchezia parviflora (also grown in Hawai‘i). Images of these species

are generally mixed up and commonly grouped in spp classes such as the Sanchezia spp.

Figure 5.1: Plant images from the Bauhinia spp, unification of three plant species.

The genus Tabebuia also has species that are hard to distinguish based on natural images.

Therefore, a class called Tabebuia pink is created to allocate images from the Tabebuia heterophylla,

Tabebuia impetiginosa, and Tabebuia rosea that have similar pink flowers. However, the Tabebuia

genus also has species such as the Tabebuia aurea that present bright yellow flowers and the Tabebuia

berteroi which has white flowers with wrinkled corolla lobes (both included in the UHManoa300).

Other species, such as the Stigmaphyllon ciliatum and the Stigmaphyllon floribundum, can only be
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distinguished by close-up photos of their flowers. Most of the collected images of these two species

do not have close-up photos of flowers, so they are not useful for this specific categorization. Hence,

UHManoa300 combines these two species in one class called Stigmaphyllon spp.

Even though visually indistinguishable species are unified in spp classes, the UHManoa300 is still

a challenging dataset to classify. Composed of natural images, this dataset is constructed similarly

to the UHManoa100, containing plants in different scales, showing multiple organs individually or

simultaneously throughout the images, and covering a wide range of image sizes and resolutions. In

particular, the Broussonetia papyrifera is an interesting species because it has separate male and

female plants, and the male flowers look entirely different from the female ones. Species like this

create even more challenges for the classification problem forcing the WTPlant system to recognize

two distinct flowers for one single species. Figure 5.2 presents examples of this species and contrasts

the male and female flowers of the plant.

Figure 5.2: Male and female plants of the Broussonetia papyrifera.
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All images presented in this section belong to the UHManoa300 dataset. They show how

complicated categorizing plants in natural images can be, even for the most experienced botanist.

To better understand the complexity of the UHManoa300, the species Acacia koa is selected to

illustrate the diversity of the images in one class. Figure 5.3 shows the central patches of the 50

images of this species selected to be part of the UHManoa300 dataset. Similar to the UHManoa100,

different plants may appear in the background or even in front of the dominant plant. And the

annotation of the plant in the images indicates the dominant species (Acacia koa). Still, the

annotated plants cover the most substantial areas of the images. Also shown in this Figure, images

in the UHManoa300 dataset contain plants at various scales ranging from leaves and flowers to the

entire bush or tree. And original images are in various resolutions, allowing the WTPlant system

to collect more multi-scale representative training samples than just the ones presented here.

Figure 5.3: All 50 images of the Acacia koa in the UHManoa300 dataset.
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5.2 Modifying CNN Models to Accommodate Expanded Scope

After constructing a new dataset containing the species in the environment, I adapt the classification

models to work with the expanded scope. In this process, top classification layers of the CNNs

initially trained to categorize 100 plant species are removed, and the weights of each CNN model

are saved without the top layers. For each model, pre-trained weights create a basic knowledge of

what the model learned in previous training processes (also called base models). A new and larger

classification layer added at the top of a base model creates a new CNN with similar architecture

but adapted to work with an extended scope. Thus, knowledge learned from previous experiments

can be loaded into the same models but with a larger classification layer at the top. Retraining the

modified models over the extracted patches, I fine-tune the CNNs to learn discriminative features

between a more significant number of species using the pre-trained weights as a starting point for

this process.

The number of new species to be integrated into the scope determine the size of the new

classification layer at the top of the model. In this dissertation, I expand the WTPlant system

categorization from 100 to 300 plant species. In this process, I exclude the two dense layers at the

top of the model and replace them with new ones that accommodate the expanded scope. The

first one has the same size as the previously excluded layer, but the second one (the last layer)

is customized to the exact number of classes in the new dataset (300 plant species). These two

top layers work together and are responsible for producing the output predictions of the model.

Thereby, modified models have the same architecture as the previously trained ones but are loaded

with pre-trained weights and are ready to work with more classes (plant species).

The fine-tuning of modified models over the target dataset updates the parameter values for

the entire CNN based on the pre-trained weights. Consequently, well-trained base models lead to a

better fine-tuning process of CNNs over the target dataset. Implementing this adaptation over the

classification models of the WTPlant, I present a solution to expand the scope of this system using

multiple pre-trained CNNs. The implemented integration of knowledge from the continuous fine-

tuning processes of the CNNs suggests the creation of domain-specific models. These classification

models require a higher computational effort to be trained but yield more accurate results.

5.2.1 Integrating Domain-Specific Knowledge in the Plant Pipeline

Due to the lack of training data for most of the fine-grained categorization problems, ImageNet pre-

trained weights (Section 4.4.1) are frequently used as initial parameter values during the training

process of CNN models. These weights comprise a base model trained over a million images, and

this knowledge is useful for most of the visual classification problems. Recently, Cui et al. [15],

Xiangxi et al. [47], and Ngiam et al. [48] introduced domain-specific models for fine-tuning their

CNNs to different fine-grained categorization problems. Exploring these approaches, I expand the
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WTPlant system by adapting its classification CNNs and searching for the best pre-trained weights

to fine-tune its models over a new dataset such as the UHManoa300. Experiments using this new

target dataset compare the performance of the WTPlant system with the knowledge integration

of two different plant-related datasets (UHManoa100 and iNat682) using the ImageNet pre-trained

weights as a starting point.

ImageNet

Similar to WTPlant v2.0, the experiments described in this chapter use the ImageNet [58] pre-

trained weights to initialize the training process of the adapted CNN models. These pre-trained

weights are directly downloaded and used as base-model for all the following experiments over

the UHManoa300 dataset. As suggested by previous experiments on the UHManoa100 dataset

(Chapter 4), CNN models implementing inception modules (Inception-v3 [66], Inc-ResNet-v2 [64],

and Xception [13]) take the most advantage of the ImageNet pre-trained weights. These CNN

models have millions of parameters and are better fine-tuned over small datasets when pre-trained

weights are used as initial parameter values. I collect the next two pre-trained weights (Ima-

geNet+UHManoa100 and ImageNet+iNat682) after the training process of these CNNs using the

ImageNet as initial weights. Consequently, the following base models are an integration of pre-

viously learned knowledge built over the ImageNet initial weights and what is learned during the

fine-tuning process of these models over the UHManoa100 (Section 4.2.3) and the iNat682 datasets.

ImageNet+UHManoa100

The most accurately performing CNNs from previous experiments with 100 plant species (Sec-

tion 4.4.1) create new base models and the extraction of the ImageNet+UHManoa100 pre-trained

weights. As described previously, I remove the top layers of these models and save their weights

(parameter values). In this way, knowledge learned during previous experiments can be used during

the fine-tuning process of adapted models over the UHManoa300 dataset. It should be noted that

the knowledge integration of the ImageNet pre-trained weights fine-tuned over the UHManoa100

dataset creates a domain-specific model that can provide better initial weights for training models

on the UHManoa300 dataset.

ImageNet+iNat682

The iNat682 dataset is downloaded from the iNaturalist challenge website4 for the classification

of animals and plants. From this dataset, the training process selects only those images from the

Plantae category, excluding other groups such as animals, insects, fungus, and others. The resulting

training set is a highly unbalanced collection of 158,463 images over 682 plant species (and these

4https://www.kaggle.com/c/inaturalist-challenge-at-fgvc-2017
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images are not part of the UHManoa300). Ranging from 19 to 503, the number of images per class

varies according to the endemic nature of each species worldwide. Furthermore, these images vary

in resolution, orientation, and focus, making this dataset a very diverse collection of natural images

of plants. In an attempt to create a more robust domain-specific CNN model, the experiments using

these pre-trained weights aim to integrate the general knowledge from the ImageNet dataset and

the plant knowledge from the iNat682 dataset. For this process, the training of the CNN over the

iNat682 dataset is initiated with the ImageNet pre-trained weights and performed for 50 epochs.

However, no multi-scale patches are extracted from the original images of the iNat682 dataset; only

the central crop of each image is used. In such a way, this dataset contributes to the intermediate

training process undertaken to create a powerful domain-specific CNN model that learns useful

plant-related features for the fine-grained categorization of other plant datasets.

5.2.2 Experiments (WTPlant v3.0 )

Focusing on the UHManoa300 dataset, the WTPlant v3.0 expands previous versions of the system

to categorize 300 plant species. Due to the clean-up previously performed in this dataset (Section

5.1.1), the preprocessing stage extracts highly representative samples at various scales for plants

and flowers. Because of that, training and testing processes on this version of the WTPlant system

use all the multi-scale extracted patches and their mirrored images. That is, I collect a total of

300,000 (300 plant species × 50 images per species × 20 patches per image) patches from the

original images. For this balanced dataset, the testing set comprises 10% of the data (five images

per species) and the rest is the training set. And I perform the fine-tuning process of the CNNs over

the UHManoa300 dataset for 100 epochs. During this process, I divide the training set of extracted

patches into training (80%) and validation (20%). It is important to reinforce that, like previous

experiments, images selected for the validation set have all their patches for validation only. In

this way, I use training and validation patches exclusively in their respective sets for training and

validation of the models.

Table 5.1 presents the Top-1 classification accuracies of CNN models pre-trained on different

integrated datasets using only the plant pipeline of the WTPlant system. In these experiments, the

Xception outperforms the other models when classifying UHManoa300 images. I further improve its

performance by pre-training this model multiple times to integrate domain-specific knowledge. This

integration starts with the commonly used ImageNet weights and trains models initially loaded with

these parameter values on different plant datasets. It includes pre-trained weights from previous

experiments (ImageNet+UHManoa100) and new plant expert models trained with a domain-specific

dataset (ImageNet+iNat682). The use of these pre-trained weights allows the WTPlant v3.0 to

improve in accuracy during the categorization of the UHManoa300 plant species. More specifically,

the plant pipeline correctly categorized 84% of the testing images when the Xception is pre-trained

as a plant expert model and used to fine-tune this CNN.
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Table 5.1: WTPlant v3.0 accuracy results with CNNs pre-trained on different dataset for classifying
plant species in the UHManoa300 dataset.

CNN model ImageNet ImageNet+UHManoa100 ImageNet+iNat682

Inception-v3 75.67% 76.07% 78.80%
Inc-ResNet-v2 76.73% 77.07% 82.33%
Xception 81.20% 81.40% 84.00%

As shown in Table 5.1, CNNs fine-tuned for the UHManoa300 achieved more accurate results

when pre-trained as domain expert models. Initially, ImageNet pre-trained weights bring a general

knowledge with models trained to classify 1,000 common objects. The ImageNet pre-trained models

are commonly employed in numerous computer vision problems, but they are limited to the lack

of domain-specific knowledge required for fine-grained categorization problems. In the process of

creating plant expert models, I use domain-specific datasets to train the CNNs before fine-tuning

them over the target dataset (UHManoa300). I collect the ImageNet+UHManoa100 pre-trained

weights from CNN models that yielded the best performance in Section 4.4.1. However, CNNs fine-

tuned with these pre-trained weights resulted in just slightly more accurate models when compared

with no domain-specific knowledge integration (ImageNet). Even though it is a new plant dataset,

most UHManoa100 species are present in the UHManoa300 dataset. Hence, knowledge integration

is not that evident since the CNN models learned similar discriminating features from UHManoa100

and UHManoa300.

In the process of creating plant expert models, I use a much larger plant dataset to train the

CNNs before the fine-tuning process over the target dataset. The training processes over domain-

specific datasets help the models to learn more discriminative features and better generalize objects

from that domain. Thus, I use natural images of different plant species in the iNat682 dataset to

train plant expert CNN models. These models produce domain-specific pre-trained weights that

serve as initial parameter values for the fine-tuning process over the UHManoa300. Consequently,

the knowledge integration from an extensive dataset such as ImageNet and a domain-specific dataset

such as the iNat682 resulted in better pre-trained CNN models for the plant categorization.

5.3 Observations and Discussions

The WTPlant v3.0 detailed in this chapter is an extended version of the previously presented CNN-

based plant categorization system. In this new version, I increase the number of plant species to

be categorized from 100 to 300. A botanist helped with the creation and organization of the new

dataset (UHManoa300), ensuring a collection of good quality natural images of correctly annotated

plants. The adaptation of the classification models to accommodate a larger number of species

allows the use of pre-trained weights, improving the models’ accuracy. Domain-specific knowledge
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from a much larger dataset is integrated into the plant pipeline classification CNNs to create

plant expert models. Like this, WTPlant v3.0 maintains a highly accurate performance similar

to previous versions of the system even when expanding its scope. The integration of domain-

specific knowledge also helps to avoid the overfitting problem often encountered when training

large CNN models over small datasets. Presented in Table 5.1, experimental results using the

plant pipeline of the WTPlant show the improvement of the system when the CNN models are

pre-trained with domain-specific datasets. This accuracy gain is more evident when a large dataset,

such as the iNat682, is used to generate the base models. Training over the iNat682 dataset, base

models become plant expert CNNs and assist on the fine-tuning of the classification models over

the UHManoa300 dataset.

On the other hand, integrate domain-specific knowledge from the iNat682 dataset requires a

lot of additional computational effort. Even with the ease of downloading ImageNet pre-trained

weights5, the creation of plant expert models demands the learning of thousands of plant images.

For instance, creating plant expert models with the iNat682 dataset required the full training of

each CNN over 158,463 images before the final fine-tuning process. With ten multi-scale patches

and their mirrored images, the fine-tuning process is also computationally demanding and increases

as the system expands. As an example, for the experiments presented in this chapter, I used three

GPUs (two GeForce RTX 2070 and one GeForce GTX 1080 ), and it took almost two months to

complete them. Furthermore, I verify the performance of CNN models fine-tuned up to the 50th

epoch to predict the gain on performing this process for more than 100 epochs. I observed only a

slight average improvement of 0.39% when comparing CNN models fine-tuned for 100 epochs over

the other ones. Hence, extending the fine-tuning of the classification models for more than 100

epochs may not be very useful, given the additional computational effort for minimal improvement

in accuracy.

Experiments performed in this chapter focus on extending the plant categorization scope from

100 to 300 plant species. State-of-the-art CNN models trained to categorize the UHManoa100

dataset (Chapter 4) achieved highly accurate results, and they serve as a starting point for the

experiments with the UHManoa300 dataset. With almost the same number of images per plant

species, categorizing 300 plant species can be considered three times more difficult than categorizing

100 species. Fortunately, the adaptation of previously trained CNNs to accommodate an extended

classification scope allows the WTPlant system to upgrade its models to a new target dataset (UH-

Manoa300). It also creates the opportunity to integrate knowledge from domain-specific datasets,

resulting in plant expert models with pre-trained weights (ImageNet+iNat68) that help the fine-

tuning process of the classification models. Experimental results presented in Table 5.1 show that

CNN models improved their predictions when fine-tuned using domain-specific pre-trained weights.

The results also show that the Xception [13] is the most effective CNN model for classifying 300 plant

5https://keras.io/applications/

63



species. Focusing on the predictions of this model, this fine-tuned CNN can correctly categorize

an average of 120 testing images more when using the ImageNet+iNat682 pre-trained weights. In

particular, ten images are categorized correctly when the Xception model uses ImageNet+iNat682

pre-trained weights, and they are not even listed in the Top-5 predictions of models using other

pre-trained weights. Figure 5.4 presents some of these images showing possible discriminative fea-

tures that this CNN (Xception) has inherited from its respective plant expert model. Visually

reviewing these images, they all resembled the shape of small trees with voluptuous treetops. The

iNat682 dataset has multiple annotated images of trees (but it does not include any image from

the UHManoa300 testing set) and creates the transferable knowledge of classifying these types of

plants. Representative images of entire trees are not common for some species in the UHManoa300

dataset, causing categorization errors. As suggested by experiments performed in this chapter,

these errors can be remediated by integrating plant domain-specific knowledge.

Expanding the plant categorization scope brings the challenges of gathering a new target dataset

(Section 5.1) and adapt the classification models to work with the new scope (Section 5.2). This

chapter addresses both of these challenges, but one problem is noticeable in all versions of the

WTPlant independently of its scope: The difficulty that this system has on categorizing extreme

close-up images. As an example, WTPlant v2.0 faces problems when categorizing plants in close-up

images as the ones presented in Figure 4.9. By considering all the ten multi-scale patches and their

mirrored images, this version of the preprocessing method zooms into the plant to extract patches

from large scales. And extreme close-up images result in extreme close-up patches that do not cover

a representative area of the plant. Figure 5.5 presents some of those incorrectly categorized images

showing the same behavior as previous versions of the WTPlant. I also noticed that most of the

close-up images focus on a specific organ of the plant (fruits or flowers), making it harder for the

plant pipeline to collect good representative patches. Therefore, the addition of other pipelines to

analyze different organs of the plant may be a suitable alternative to handle those close-up images.

Other incorrectly classified images may also take advantage of a separate pipeline for analyzing

flowers. As shown in Figure 5.6, some incorrectly categorized plants do not have their plant area

visible, while the flowers of that species are evident in the image. In these cases, the WTPlant v3.0

may successfully categorize the plant species if the flower analysis is incorporated. Therefore, the

next chapter focuses on expanding the flower categorization scope and on the improvement when

merging plant and flower classification pipelines.
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Figure 5.4: Images correctly categorized by the plant pipeline of the WTPlant v3.0 system using
the Xception model with ImageNet+iNat682 pre-trained weights.
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Figure 5.5: Close-up images incorrectly categorized by the plant pipeline of the WTPlant v3.0.

Figure 5.6: Flower images incorrectly categorized by the plant pipeline of the WTPlant v3.0.
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CHAPTER 6
EXPANDING THE FLOWER SCOPE AND MERGING

CLASSIFICATION PIPELINES

Flowering plants are the largest and most diverse group in the Plantae kingdom, and one of

nature’s visual delights. Most of the existing flowers are quite colorful and can present themselves

in diverse shapes and forms, creating unique traits for the plant species categorization. For this

reason, WTPlant implements another classification pipeline for the analysis of flowers and combines

with the plant pipeline to handle both flowering and non-flowering plants. With the expansion of

the plant categorization scope, the number of flower species in the dataset increases accordingly.

But not all species listed in the UHManoa300 dataset produce flowers. So for the flower pipeline, I

implement the same preprocessing method used for the WTPlant v3.0 (Chapter 5) to extract multi-

scale patches only focusing on the detected flowers. The largest connected flower area segmented

by the scene parsing stage (Chapter 3) guides the collection of training and testing patches. In

this way, I implement the same preprocessing and fine-tuning methods for both plant (WTPlant

v3.0 ) and flower (WTPlant v3.1 ) pipelines for the same target dataset (UHManoa300). However,

in this chapter, I consider an unbalanced dataset of flower images to fine-tune the CNNs and

verify the efficiency of training with a limited number of patches (less common flower species).

And the integration of knowledge from a sizeable domain-specific dataset trains the CNNs to

become flower expert classification models. This process creates pre-trained weights to fine-tune

the flower classification models of this new pipeline. The presented solution includes a refined

analysis of each (plant and flower) prediction confidence to combine the classification scores of

multiple expert classification models. This solution also allows the WTPlant system to incorporate

more classification pipelines and analyze different plant organs such as fruits, barks, seedlings,

roots, etc., depending only on the availability of annotated natural images.

6.1 Increasing the Number of Flower Species

Similar to the plant pipeline in Chapter 5, the analysis of flowers starts by preprocessing the

training images to extract multi-scale representative patches. Using the UHManoa300 dataset,

the preprocessing step of the WTPlant extracts ten multi-scale patches from these natural images.

However, not all images of this dataset contain flowers. Therefore, the flower pipeline of this system

classifies only 246 species (Appendix D) out of the 300 plants. The remaining 54 species do not

present flowers in their images or do not have a significant number of flowers detected during the

scene parsing stage. As described in Section 3.1.1, the preprocessing stage of the WTPlant system

may detect many flowers in a single image. Still, it uses the largest area connected to the plant to

guide the extraction of multi-scale patches. Images that do not contain any detected flower do not

activate the flower pipeline of the system and rely only on the plant classification pipeline.
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Unlike earlier versions of the WTPlant system, the flower experiments described in this chapter

use an unbalanced dataset and try to include all the detected flower species. Nevertheless, I had to

leave some species out of the training process. Previous experiments with flowers (Section 4.3.2)

considered a threshold of 15 images per flower species to balance the dataset. Although lower

thresholds and more flower species have been considered, dealing with an unbalanced dataset is

challenging for training a CNN model, especially when there are not enough samples per class to

be separated between training and validation. Because of this, the list of analyzed species excludes

plants that do not have at least five images with flowers detected. I select this threshold to ensure

that at least one image is left for validation (20%) while the others go for the training (80%) for

each species.

In summary, the UHManoa300 flower dataset comprises a total of 5,481 images for training

(from the 13,500 training images) and 501 for testing (from the 1,500 testing images). Similar

to previous experiments, the fine-tuning process of the classification models uses ten multi-scale

patches and their mirrored images. In this process, images selected for validation have their patches

in the validation set, and the training set is separated using the same procedure. In this way, I

ensure that the training, validation, and test patches are mutually exclusive. More specifically,

from the total of 109,620 extracted training patches (5,481 images × 10 multi-scale × 2 mirrored

patches), 88,680 (80.9%) are set as training patches, and 20,940 (19.1%) for validation. As an

example, the Cyperus mindorensis has only six images with flowers in the training set, resulting in

five (>80%) images for training and one (<20%) image for validation. Consequently, the result of

this small adjustment reflects on the number of patches selected for training or validation during

the fine-tuning process of flower classification models.

6.1.1 Integrating Domain-Specific Knowledge in the Flower Pipeline

After preprocessing the training images and collecting multi-scale patches, the flower pipeline is

ready to fine-tune its classification models. As performed for the plant pipeline in WTPlant v3.0,

flower classification models are pre-trained to integrate knowledge from a much larger dataset.

Experimental results in Section 5.2.2 suggest that initial weights pre-trained on a domain-specific

dataset help in the creation of plant expert models. Therefore, I employ the same knowledge

integration approach for pre-training models over the 2018 FGVCx Flower Classification Challenge1

dataset. The training process over this dataset creates flower expert models that can be used in

the fine-tuning process of the WTPlant classification models over a specific flower dataset such as

the UHManoa300.

1https://www.kaggle.com/c/fgvc2018-flower
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ImageNet+FGVC997

Similar to Section 5.2.1, I create flower expert CNN models by fine-tuning the ImageNet pre-trained

weights over a large domain-specific dataset. In this case, the dataset used for this process is called

FGVC997 and presents 997 different flower species from around the world. This dataset, like the

iNat682 (presented in Section 5.2.1), is a highly unbalanced collection of 669,304 natural images of

flowers. It ranges from 15 to 3,909 images per species, and varies in size, orientation, and focus,

making this dataset a very diverse collection of natural images of flowers. Using the FGVC997

dataset, the training process of flower expert models occurs during 50 epochs, which took weeks

to complete it with the available GPUs. As noted earlier (Section 5.3), training CNN models with

massive domain-specific datasets is computationally expensive. However, it is an important step to

the creation of flower expert models and the integration of domain-specific knowledge. In the end,

pre-trained weights from flower expert CNNs work as initial parameter values for the fine-tuning

process of the classification models of the system.

6.1.2 Experiments (WTPlant v3.1 )

Using images from the UHManoa300 dataset, the WTPlant v3.1 implements the categorization

of flowers exclusively. Similar to the plant pipeline in WTPlant v3.0, I perform the fine-tuning

process of classification models for the flower pipeline during 100 epochs using extracted multi-scale

patches. The experiments described below report the categorization results of the flower pipeline

only, disregarding images that do not have flowers observed during the scene parsing. With 246

detected species, the flower pipeline has its CNNs adapted to handle this amount of classes using

the approach described in Section 5.2. Similar to the plant experiments (WTPlant v3.0 in Section

5.2.2), I use three pre-trained weights (ImageNet, ImageNet+iNat682, and ImageNet+FGVC997)

as initial parameter values for the fine-tuning process over the flower extracted patches.

Table 6.1 presents the accuracy results of CNN models pre-trained on different integrated

datasets using only the flower pipeline of the WTPlant system. Five hundred one (501) test-

ing images with detected flowers create the testing set used to calculate these accuracies. Similar

to the results from plant experiments presented in Table 5.1, CNN models trained to categorize

flowers also performed better when integrating domain-specific knowledge. More specifically, the

third column of Table 6.1 shows that the ImageNet+iNat682 pre-trained weights for plants (Section

5.2.1) can help (even if slightly) in the fine-tuning of the flower classification models. However, this

Table shows that a dataset more closely related to the domain of interest, such as the FGVC997,

creates better expert models for the same classification problem. As a result, the Xception model

that integrates flower-related knowledge (fourth column) outperforms other CNNs with different

pre-training strategies, achieving 83.63% accuracy on the classification of the UHManoa300 flow-

ers. On average, the flower classification models improve their performance by 6% when using the

ImageNet+FGVC997 pre-trained weights as initial parameter values for the fine-tuning process.
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Furthermore, this new version of the system (WTPlant v3.1 ) may assist in the categorization of

the plant species (WTPlant v3.0 ) by adding its expert analysis of flowers. The next section de-

scribes a way to use both plant and flower extended pipelines and combine their predictions for a

more accurate species categorization.

Table 6.1: WTPlant v3.1 accuracy results for flower images of the UHManoa300 dataset.

CNN model ImageNet ImageNet+iNat682 ImageNet+FGVC997

Inception-v3 72.65% 73.85% 80.24%
Inc-ResNet-v2 74.25% 74.85% 81.44%
Xception 78.44% 78.64% 83.63%

6.2 Merging Expanded Plant and Flower Pipelines

In contrast to existing plant identification methods, WTPlant implements different classification

pipelines to categorize plants and flowers, combining their predictions to produce more accurate

outputs. As shown in its framework (Figure 4.1), the last step of this system is called “Predic-

tion Confidence Analysis” and is responsible for merging the classification pipelines. It combines

the plant and flower analysis by summing the confidence scores of each pipeline (as described in

Algorithm 4, in Section 4.3):

FinalPrediction ← (PlantPrediction) + (FlowerPrediction)

Experimental results on the UHManoa100 dataset (Tables 4.5 and 4.6) indicate that the com-

bination of the plant and flower predictions may be helpful for the species categorization. How-

ever, experiments in Section 4.4.1 combine plant and flower predictions by simple summation.

To improve the confidence analysis when merging classification pipelines, I implement a new ap-

proach to strengthen the combination of multi-scale plant and flower predictions. In this new

approach, I calculate the geometric mean (Gmean) to merge the prediction scores of each pipeline

(PlantGPrediction and FlowerGPrediction). It combines the n prediction values using the product

instead of the sum and apply the n-th root instead of the division. The next formula shows how

to calculate PlantGPrediction (working similarly for FlowerGPrediction):

PlantGPrediction ← n

√
(Predpatch1)× (Predpatch2)× · · · × (Predpatchn)

For example, the combination of three multi-scale patches with the predictions of 90%, 20%,

and 10% over the wrong species result in 40% using the arithmetic mean and 26.20% using the

geometric mean. In this way, the geometric mean consistently handles ratio values and reduces the

impact that an incorrect patch prediction has during the categorization process.
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Thus, I perform the combination of extracted patches predictions and the merge of both classi-

fication pipelines by calculating the geometric mean in this third version of the WTPlant system.

More specifically, I combine plant and flower predictions using the following new command on line

4 of Algorithm 4:

FinalPrediction ←
√

(PlantGPrediction)× (FlowerGPrediction)

For UHManoa300 experiments, geometric mean combines each patch classification score and

merge multiple pipelines at the end of the WTPlant framework. When merging plant and flower

pipelines, the geometric mean combines each array of 246 classes created by the flower pipeline

with their respective plant species on the 300 class array. As described in Chapter 3, only flower

areas connected to plant (if they exist) activate the flower pipeline. If more than one flower area is

detected, only the largest area is further processed. If no plant area is detected, but the flower area

is, it activates only the flower pipeline. If no flower and no plant areas are detected, the WTPlant

system informs that there is “No Plant” in the image. As a result, this multi-pipeline approach

enables the categorization of both flowering and non-flowering plant species such as ferns, mosses,

and liverworts. And the same approach can be used to expand the categorization to other organs

of the plant.

6.2.1 Experiments (WTPlant v3.2 )

Classification models pre-trained on domain-specific datasets achieved the most accurate results

(WTPlant v3.0 with ImageNet+iNat682 pre-trained weights and WTPlant v3.1 with ImageNet+

FGVC997 pre-trained weights). Table 6.2 presents the performance of the WTPlant v3.2 system

over the UHManoa300 dataset when plant and flower predictions are combined. A comparison

between the previous approach (using Sum) and the new combination process (using Geomet-

ric Mean or Gmean) shows the improvement when combining plant and flower predictions using

Gmean for the categorization of 300 plant species. In both cases (Sum and Gmean), merging

the flower pipeline helped in the categorization of the plants. Xception continues to be the most

accurate model, correctly classifying 85.53% of testing images (and almost 95% correct with Top-5

predictions).

By comparing the most accurate classification results for plants (Table 5.1), flowers (Table

6.1), and their predictions combined (Table 6.2), I show how the “Prediction Confidence Analysis”

step of the WTPlant framework improves the system’s performance. Although improvement is

marginal, experimental results in Table 6.2 show that a categorization method can benefit from

analyzing multiple organs of the plant simultaneously. More importantly, the individual analysis

of different areas of the image allows the WTPlant system to handle diverse natural scenarios

showing plants, flowers, or both together. This is often a significant limitation for other plant
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categorization approaches that generally focus on a single part of the plant (usually the leaf or the

flower). However, it is important to stress that each pipeline of the WTPlant framework has to

be carefully fine-tuned for its purpose. By integrating domain-specific knowledge from plants and

flowers, I train each CNN to become an expert model and use them for the fine-tuning process of the

classification models over a target (UHManoa300) dataset. Finally, the plant and flower predictions

are combined using the geometric mean to improve the confidence analysis of the system.

Table 6.2: Accuracy results of the WTPlant v3.2 system combining plant and flower predictions.

CNN model
WTPlant v3.0 WTPlant v3.1 WTPlant v3.2
Plant Pipeline Flower Pipeline Using Sum Using Gmean

Inception-v3 78.80% 80.24% 78.93% 79.27%
Inc-ResNet-v2 82.33% 81.44% 82.93% 83.33%
Xception 84.00% 83.63% 84.87% 85.53%

6.3 Observations and Discussions

After expanding the plant categorization scope in Chapter 5, I face new challenges when adding the

flower classification pipeline. As an example, the expanded flower scope creates a highly unbalanced

number of patches per species after the preprocessing stage of the WTPlant system, that is because

not all images from the UHManoa300 dataset contain flowers. Some species do not have flowers

at any time of their life cycle, so the flower pipeline automatically excludes them. Also, some

species do not have the minimum number of images for the training process. Using this unbalanced

dataset of flower images, experiments described in this chapter address the challenge of training

and fine-tuning models with limited data per species when expanding the flower categorization

scope. Consequently, the WTPlant system may help with the analysis of less common species that

inevitably present a lack of annotated images.

For experiments with flower images of the UHManoa300 dataset, 37 species (marked in Ap-

pendix D) have less than ten flowers detected in their training set. When analyzing these flower

species, I notice that most of them have their test images correctly categorized. These results en-

courage the inclusion of less common plant species, even with a small number of images available.

Figure 6.1 presents some of the species that have a small number of training images (less than ten)

and have their testing images correctly categorized by the WTPlant v3.1. Experimental results

with this version of the system support the hypothesis that expert classification models can handle

classes with limited training data and learn sufficiently discriminative features.

One particular species (Calophyllum inophyllum) represents well the scale variation challenge

when expanding the flower categorization scope. The testing images of this species present multiple

scales of its flowers during different blooming stages. Figure 6.2 exhibits those that are correctly
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Figure 6.1: Less common flower images correctly categorized by the WTPlant v3.1.

categorized by the WTPlant v3.1. Even though the scale of the flowers differs significantly between

the three images, this version of the system can categorize them successfully. With both pipelines

functioning (WTPlant v3.0 and WTPlant v3.1 ), another challenge arises: how to combine plant

and flower predictions effectively? Table 6.2 shows that WTPlant v3.2 can answer this question

by properly merging plant and flower pipelines using different functions. The geometric mean

(Gmean) presents the best results when combining multi-scale predictions of plants and flowers. It

also combines each pipeline prediction score to merge the analysis of different organs of the plant,

facilitating the inclusion of new pipelines in the future. In this way, this version of the WTPlant

system can categorize natural images of plants and flowers, combining these and more predictions

to perform a robust analysis. Consequently, images where the flower is visible and the plant is
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hidden (such as the ones presented in Figure 5.6) are now correctly classified by the system when

using its most accurate classification models (Xception) for plants and flowers. Figure 6.3 presents

other examples of plant images with flowers that are not correctly classified by the plant pipeline

but are accurately categorized after the combination with the flower pipeline.

Figure 6.2: Images of the Calophyllum inophyllum correctly categorized by the WTPlant v3.1.

Experimental results in this Chapter (Table 6.2) and the images in Figure 6.3 show how powerful

this method is when expert classification models combine their analysis. Nevertheless, one species in

the UHManoa300 dataset did not have any of its test images categorized correctly by the WTPlant

v3.2. This plant is the Persea americana (Avocado Tree) and Figure 6.4 shows the incorrectly

categorized images. Although they are misclassified in the Top-1 prediction, WTPlant correctly

categorize most of them (except the second image in Figure 6.4) in the Top-5, making confusion

between this species and the Artabotrys hexapetalus plants (Figure 6.5). For this reason, Persea

americana is considered the most difficult plant species to categorize throughout the experiments

of this dissertation. It is noticed that three of the five images shown in Figure 6.4 present its

fruits, and the addition of a pipeline for the analysis of this specific plant organ would probably

assist in the categorization of this species. Other plant species may also take advantage of a fruit

pipeline, enabling the WTPlant system to better categorize plants at this stage of their life cycle.

Figure 6.6 presents some of these fruitful plants that are incorrectly classified by the most accurate

plant and flower models (Xception) of the system and would be better categorized if the fruit

pipeline is implemented. Despite this, the results presented in Table 6.2 show that even with only

two pipelines analyzing two different organs of the plant, the WTPlant v3.2 system can produce

satisfactory results when categorizing an expanded scope of 300 plant species.
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Figure 6.3: Images correctly categorized when WTPlant v3.2 combines plant (WTPlant v3.0 ) and
flower (WTPlant v3.1 ) predictions.
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Figure 6.4: Images of the Persea americana incorrectly categorized by the WTPlant v3.2.

Figure 6.5: Images of the Artabotrys hexapetalus for comparison with the Persea americana.
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Figure 6.6: Images of fruitful species incorrectly categorize by the WTPlant v3.2.
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CHAPTER 7
WTPLANT MOBILE APPLICATION

The modularity and versatility of the WTPlant allow this plant categorization system to work

as a classification engine for different applications. As a case study, a partnership with the Harold L.

Lyon Arboretum1 leads to the creation of a new dataset with natural images of local plant species.

This new dataset is a collection of 100 plant species living in the 200-acre arboretum located at

the upper end of the Mānoa Valley. I use this dataset and previously trained expert CNNs to fine-

tune of WTPlant classification models for the categorization of the new plant species. To make

it available and easy to use for the visitors of the arboretum, I also developed a front-end mobile

application that calls the WTPlant categorization engine hosted in a remote server to categorize the

input image (similar to the Graphical User Interface described in Section 4.5). This mobile version

of the WTPlant employs an Android Studio template functioning as the front-end for this system.

It works by uploading a newly taken or previously saved picture from the visitors’ smartphones to

a server running the categorization engine fine-tuned explicitly for the plant species present in the

arboretum. After the image is categorized, WTPlant returns the Top-5 predicted species to the

front-end application, showing the probable plant species on the mobile screen. Moreover, different

Android Studio templates may work as front-end for any version of the categorization system fine-

tuned to other datasets such as the BJFU100, UHManoa100, and UHManoa300. An example of

practical use of this system for the Hawaiian community is the beta version of this mobile app

tailored to categorize the plant species of a local arboretum and its ecosystem.

7.1 Case Study: Lyon Arboretum App

I officially presented the WTPlant system to the Lyon Arboretum board in 2018, and they agreed

to participate in this project by providing recently taken photographs of live plant specimens from

their ecosystem. These images focus on plant species present in the surroundings of the main trail

of the arboretum, aiming to create a plant categorization mobile app that visitors can use while

exploring the area. For this beta version of the Lyon Arboretum App, the WTPlant system uses

only the plant pipeline and extracts fifteen multi-scale patches from the high-resolution images

provided. With a powerful categorization engine, the Lyon Arboretum App enables its users to

identify, learn, and interact with the flora at both scientific and cultural levels. By increasing

the number of plant species in this dataset and expanding the categorization scope, this mobile

application will be available for botanists, gardeners, tourists, and the Hawaiian community to

enhance their experience when walking through all the trails of the Lyon Arboretum.

1https://manoa.hawaii.edu/lyonarboretum/
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7.1.1 Lyon100 Dataset

The target dataset collected for training the categorization engine of the Lyon Arboretum App is

called Lyon100 and contains one hundred species of plants that live in the arboretum. Appendix

E presents the complete list of plant species in this dataset. A total of 4,604 images of the same

size (3024×4032 pixels) comprise the Lyon100, 4,000 of which are images used for training and the

rest for testing. Because the image resolution is high, the WTPlant categorization system is set to

extract more multi-scale patches totaling 120,000 representative patches for training (100 species ×
40 images per species × 15 multi-scale patches × 2 mirrored patches). The increase in the number

of multi-scale patches helps avoid overfitting issues and address the lack of training data. However,

for the 604 testing images, I use only five patches of the largest scales (as suggested by experiments

in Section 4.4 for the plant pipeline) due to the need for a faster categorization process.

7.1.2 Front-End Design

From numerous pre-designed Android Studio templates available online, I select a suitable front-

end for the Lyon Arboretum App. This front-end can use numerous templates, and the selected

one presents the capability of scroll through the list of plants to facilitate the user’s navigation. A

detailed description of each species and representative images from the training set of the Lyon100

dataset populate this empty app template. Consequently, users can access all the species informa-

tion and categorizes plants that they see while walking through the arboretum. They will learn

details of each species such as Scientific Name, Hawaiian Name, Conservation Status (Low Risk,

Medium Risk, or High Risk), Status (Endemic, Indigenous, Introduced, or Invasive), and more.

Figure 7.1 presents screenshots from this beta version of the Lyon Arboretum App.

When opening this application on a mobile device, the welcome screen (Figure 7.1(a)) brings the

Lyon Arboretum logo for a few seconds until it loads the main screen (Figure 7.1(b)). This second

screen brings up all the 100 plant species listed alphabetically, and users can scroll down through

the complete list of plant species. Furthermore, users have the option to take new pictures by

pressing the top-left camera icon or to load previously taken ones using the top-right upload icon.

Either of these two actions uploads a new image to the WTPlant system trained to categorize plant

species of the Lyon100 dataset. After receiving the Top-5 categorization results back, the front-end

lists the predicted plant species presenting them by confidence order (Top-1 to Top-5). At this

moment, users have the option of selecting each one of the outputted species and learn more details

of the plant, such as its scientific information, history, and common use. The information screen

(Figure 7.1(c)) presents these details. As a result, visitors of the Lyon Arboretum can explore the

flora of the area and categorize the plant species with self-taken pictures, including selfies with the

plants. The deployment of this mobile application may include the geolocation capability, enabling

the WTPlant system to work as a conservation tool and help with the maintenance of plants.
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(a) (b) (c)

Figure 7.1: (a) Welcome screen, (b) Main screen where the user can search through the 100 species,
and (c) Information screen providing description, history, and common use of the plant.

7.1.3 Experimental Results

The CNN models of the WTPlant achieved satisfactory accuracy results when categorizing plants

from the Lyon100 dataset. I calculate these results based on the correct categorization of the 604

testing images. Similar to UHManoa datasets, multiple objects (including other plants and people)

are also present in the Lyon100 testing images, making the guidance process of the WTPlant

system extremely important for this categorization. Using only the plant pipeline, this version of

the system integrates previously learned knowledge from plant expert models (Section 5.2.1) for

the fine-tuning process over the Lyon100 dataset. Table 7.1 presents the Top-1 and Top-5 accuracy

results of these experiments using all the 15 multi-scale testing patches and only the 5 largest scales.

Table 7.1: Accuracy results of the WTPlant for the Lyon100 dataset.

CNN model
With 5 largest scales With 15 multi-scales
Top-1 Top-5 Top-1 Top-5

Inception-v3 92.05% 97.35% 91.56% 97.68%
Inc-ResNet-v2 94.70% 98.68% 94.87% 98.34%
Xception 93.38% 98.68% 93.71% 98.18%
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With almost 95% accuracy, Inc-ResNet-v2 performs the best for this version of the system,

correctly categorizing 573 images from the testing set. The other two CNN models also performed

well, achieving similar accuracies. To identify the most challenging images in the Lyon100 dataset,

I cross the results from the three CNNs to indicate the images that none of the classification models

could identify in their Top-5 predictions. Figure 7.2 presents some of those images.

Figure 7.2: Plant images of the Lyon100 dataset that are not correctly classified in Top-5 predictions
by all three CNN models used.

First image of Figure 7.2 presents a close-up picture of the Alcantarea imperialis. As uncovered

in previous experiments, the WTPlant system does not perform well when categorizing extreme

close-up images. Also, the presence of multiple plants in the background makes this image a hard

example to categorize. The second image is a Cordyline fruticosa that also has other plants in the

background. In this case, the problem is exacerbated due to the open spaces between the plant’s

leaves, through which other plant species appear. As another extreme example, the third image

shows two fruits of the Elaeocarpus angustifolius on the ground, incorrectly categorized by the

WTPlant system. However, a new pipeline for the independent analysis of fruits may help with

the categorization of this image.

In this mobile application, the analysis of an image can take more than a minute on the testbed

server with one GPU (GeForce GTX 1080 ). To speed up the execution of the Lyon Arboretum

App, I extract only five multi-scale patches from the input image and categorize them using the

fastest of the three classification models (Inception-v3 ), which reduce the categorization time to

about 30 seconds. Currently, I am considering a much faster implementation by implementing the

WTPlant categorization engine in a cloud computing service such as Amazon Web Services (AWS).
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CHAPTER 8
CONCLUSION

In this dissertation, I study the problem of plant species categorization using natural images.

Amongst the many challenges of this problem, this dissertation addresses the particular challenges of

the plant appearing in different scales by implementing new multi-scale approaches, the analysis of

multiple plant organs by using classification pipelines, and the expansion of the plant categorization

scope by adapting CNNs and integrating knowledge from domain-specific datasets. Four research

questions drive the creation of a solution to this problem. They inquire how to (1) define the most

representative areas in the image for the plant categorization task, (2) classify multiple plant organs

at different scales, (3) improve the classification process during the categorization of a plant image,

and (4) expand the plant categorization scope while maintaining high accuracy.

To answer the question (1), I present a new localization process that identifies the presence of

plants and estimates their locations to delimit the most representative areas in the image. This

process starts by running a CNN designed to parse scenes from natural environments. It segments

the images into multiple regions associated with semantic categories of everyday objects (including

plants and flowers). I use the segmented regions to delimit bounding boxes around plants and

flowers, defining the most representative areas in the image. This localization process is a necessary

step to work with natural images and guide the analysis of plants regardless of their surroundings.

In this dissertation, I consider only the largest plant and flower regions to indicate the dominant

species in the scene. And the localization process can include the delimitation of smaller plants and

flowers also detected during the scene parsing to categorize multiple plant species in the image.

Research question (2) focuses on the classification of multiple plant organs at different scales. I

answer this question by extracting multi-scale samples from previously delimited bounding boxes.

When used to train the CNNs, I call this process the guided multi-scale data augmentation. And

it helps classification models to become more robust to variations on plant size in the image. The

multi-scale training process is an innovative data augmentation approach created to improve the

learning process of plant and flower images at various scales.

To answer the question (3), I use the same process of extracting multi-scale samples implemented

for training in the analysis of a testing image. When used to categorize a new image, I call it

the multi-scale classification process. Unlike other categorization methods, this new classification

process analyzes multiple areas of the testing images at different scales. For this multi-scale analysis,

I combine the predictions of each extracted sample to implement a classification process robust to

scale changes. Furthermore, both multi-scale approaches (data augmentation and classification)

can contribute to the categorization of different objects that, like plants and flowers, may appear

at various scales when captured in nature. Consequently, other categorization problems can take

advantage of these novel multi-scale approaches whenever the scale issue is part of the problem.
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After conducting numerous experiments over plant datasets with 100 species [31, 32], I answer

the question (4) by adapting the classification models to work with an expanded scope of 300 species

while using pre-trained weights from expert models to maintain a high categorization accuracy. Ini-

tially, a botanist reviews the collected images to correctly annotate this dataset and prepare it for

the extraction of plant and flower multi-scale samples. Then I modify the classification models to

accommodate a more significant number of plant species and use the extracted samples to fine-tune

them. This adaptation allows the expansion to a more significant number of plants until the dataset

covers all the species from the target environment. However, additional challenges arose with the

expansion of the plant scope, especially to maintain the high categorization accuracy over a more

significant number of species. These challenges include the exhaustive collection of plant images

correctly annotated, the technical adjustments in the classification models, the creation of domain-

specific knowledge, and the proper combination of plant and flower analysis from each classification

pipeline. Among them, the creation of expert models by integrating domain-specific knowledge

is the most demanding one. I implement this integration process by repeatedly training the clas-

sification models over plant-related datasets and extracting their pre-trained weights to integrate

knowledge. By dedicating an enormous computational effort to train and fine-tune the modified

models, I expand the plant categorization scope to a broader environment while maintaining high

accuracy. As a final result, the main objective of this dissertation is achieved, providing an accurate

and scalable solution for the problem of plant species categorization using natural images.

Putting together the solutions created to answer the research questions of this dissertation,

I present a CNN-base system for the categorization of plant species using natural images called

WTPlant (What’s That Plant?). This system implements a new framework with independent

classification pipelines for plants and flowers. On each one of these pipelines, the guidance to extract

representative samples comes from different parts of the plant. Therefore, unlike the conventional

approach of ensemble models, I implement multiple CNNs working in parallel for more than one

classification problem. Both problems (plant and flower classification) count with the multi-scale

analysis and combine the prediction of samples collected on each pipeline. In the end, WTPlant

merges plant and flower pipelines to combine their predictions and output the categorized species.

To evaluate this novel plant categorization system and validate the answers to the research

questions, I performed the categorization of multiple plant datasets (UHManoa100, BJFU100,

UHManoa300, and Lyon100). As a result, multi-scale methods implemented in the WTPlant system

improve the accuracy of the classification models substantially when compared with commonly

used preprocessing approaches such as resizing and random crop. Additionally, the merging of

two independent pipelines enables the WTPlant to handle plant images with and without flowers

to further improve the plant species categorization. Most of the existing plant categorization

applications do not have this capability, being restricted to one or another classification problem

at the time.
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8.1 Contributions

The main contribution of this research is a novel and expandable CNN-based plant categorization

system. By developing the WTPlant system, I not only produce a new application to the plant

categorization problem but also create valuable scientific knowledge to the analysis of plants in

natural images. My contributions include the localization process that performs a scene parsing of

the image to identify the most representative areas for the plant categorization task, a new guided

multi-scale data augmentation to make the classification models more robust to scale variations,

and a new classification process with distinct CNN models for comparative analysis.

Another significant contribution is the comprehensive experimental validation and evaluation

with many recently developed CNN architectures performed on the WTPlant system over dif-

ferent datasets. These exhaustive experiments indicate a considerable improvement in accuracy

when implementing the multi-scale approaches (data augmentation and classification) for the plant

categorization task. And the development of this new categorization system brings significant

contributions to the fields of Botany. The adaptation and retraining of this system’s classification

models can redirect its focus to any environment in the world, creating a powerful tool for botanists.

An additional contribution is a process that integrates domain-specific knowledge, which I used

to keep the high accuracy of the WTPlant system when expanding its scope. This integration

process trains the classification models over different plant-related datasets to create expert mod-

els. The extraction and publication of pre-trained weights from these plant and flower expert

classification models is another contribution of my research. Plant and flower pre-trained weights

certainly helped during the fine-tuning process of the WTPlant classification models, making the

CNNs achieve more accurate results. They are available online1, and researchers can use them to

fine-tune their classification models for new plant datasets.

8.2 Applications

To apply the WTPlant multi-scale capability in other systems, I am considering a partnership

with existing plant categorization apps. Most of the apps listed in Chapter 2 use CNNs as their

classification models and can take advantage of the new multi-scale approaches (data augmentation

and classification). Hence, I contacted some of the latest plant categorization apps to offer an

association and support to full or partial implementation of the WTPlant in their systems. Some

of these apps do not publish their results, so I did not list them in the related work. One of these

apps is called Seek2, and developers of this app showed interest in the WTPlant system. Designed

by the iNaturalist team, this mobile app uses images from the iNat682 dataset (and others) to

train its classification models. One of the problems with this app is the issue of categorizing plants

1https://github.com/jonaskrause/Plant Flower-Expert CNN Models
2https://www.inaturalist.org/pages/seek app
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that are far from the observer, and WTPlant multi-scale approaches can undoubtedly assist the

classification of these plant images. By implementing the guided multi-scale data augmentation

and classification processes, I can help solve the scale problem by improving this and most apps

that use CNNs as their plant classification models.

With further applications in agriculture, I can apply the WTPlant multi-scale approaches to-

gether with high-resolution cameras built into field phenotyping systems (mobile platforms for a

fast crop phenotyping) to remotely manage each acre of ranches and farms with a close view of

the plants. New applications can retrain the WTPlant system to work with specific crop plants

and use the multi-scale analysis to identify plant abnormalities such as pests, diseases, or invasive

species. Consequently, future versions of this system can function as plant growth monitor and

identify which crop areas are most fertile for cultivation. Plant counting is also an important task

that I can readjust the WTPlant system to perform during the crop assessment. These activities

are essential to maintain a healthy crop and can lead to a reduction in pesticide use. Thus, an

automated multi-scale plant categorization system retrained to work as an agricultural tool may

benefit farmers by saving money on crop management and thereby increasing their productivity.

8.3 Future Work

A future work for this research is the categorization of multiple plant species present in the same

natural image. I intend to develop this multi-species process not only by considering the application

of classification pipelines over small detected areas of plants and flowers but also by creating a

multi-location approach to identify clustered plants and flowers. So this future work includes the

categorization of entangled plants of different species. During the initial experiments of WTPlant,

I noticed how difficult it is to segment a plant from a natural background correctly, which led to

using the scene parsing only as a guiding process for extracting multi-scale samples. On multiple

occasions, the segmentation of the largest plant in the image includes other species in the same

delimited area. I can address this problem by implementing a multi-location process to indicate the

presence of more than one species of plant in the same area, helping in cases that the segmentation

process does not perform a good job. In this new multi-location process, if WTPlant detects more

than one species by evaluating slightly dislocated close-up samples, classification models can focus

exclusively on one part of the identified plant area and output the species present in that specific

location. This process will create a map of the image, pointing the location and categorizing all the

plant species in the scene. In this way, plant and flower classification models can analyze different

details of multiple plants and accurately indicate entangled plant species. However, upgrading the

WTPlant categorization system to implement this plant mapping feature comes at the high cost of

more computational resources and several new research experiments.
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APPENDIX A
LIST OF PLANT SPECIES - UHMANOA100 DATASET

Acacia confusa Delonix regia Norantea guianensis
Acalypha hispida Dendrobium spp Orthosiphon aristatus
Alocasia macrorrhiza Dichorisandra thyrsiflora Pandanus tectorius
Aloe vera Eichhornia crassipes Pentas lanceolata
Alpinia purpurata Elaeocarpus grandis Persea americana
Anthurium andreanum Erythrina crista-galli Petrea volubilis
Azadirachta indica Eucalyptus deglupta Phytolacca dioica
Bauhinia variegata Eugenia uniflora Plectranthus scutellarioides
Bixa orellana Ficus microcarpa Podranea ricasoliana
Blighia sapida Filicium decipiens Portulacaria afra
Bombax glabra Gardenia brighamii Punica granatum
Bougainvillea spp Gomphrena globosa Pyrostegia venusta
Brugmansia x candida Guaiacum officinale Quisqualis indica
Caesalpinia pulcherrima Harpullia pendula Rhaphiolepis umbellata
Calotropis gigantea Hedychium coronarium Solanum seaforthianum
Canna indica Hemigraphis alternata Spathodea campanulata
Cardamine flexuosa Hibiscus rosa-sinensis Stemmadenia littoralis
Cardiospermum grandiflorum Hippeastrum reticulatum Strelitzia reginae
Cascabela thevetia Impatiens wallerana Swietenia mahagoni
Cassia bakeriana Ixora spp Symphytum officinale
Casuarina equisetifolia Jasminum sambac Tabebuia impetiginosa
Catharanthus roseus Justicia brandegeana Tabernaemontana divaricata
Cattleya spp Kigelia africana Tamarindus indica
Cecropia obtusifolia Koelreuteria formosana Tectona grandis
Chlorophytum comosum Lantana montevidensis Terminalia catappa
Clerodendrum quadriloculare Leea guineensis Thunbergia battescombei
Clitoria ternatea Litchi chinensis Tipuana tipu
Cocos nucifera Lonicera japonica Tradescantia spathacea
Codiaeum variegatum Lophostemon confertus Turnera ulmifolia
Couroupita guianensis Magnolia grandiflora Vitex rotundifolia
Crescentia cujete Mangifera indica Waltheria indica
Crinum asiaticum Metrosideros polymorpha Youngia japonica
Cupressus sempervirens Musa x paradisiaca
Cyperus papyrus Nandina domestica
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APPENDIX B
LIST OF FLOWER SPECIES - UHMANOA100 DATASET

Acacia confusa Impatiens wallerana
Acalypha hispida Ixora spp
Alpinia purpurata Jasminum sambac
Anthurium andreanum Justicia brandegeana
Bauhinia variegata Koelreuteria formosana
Bixa orellana Lantana montevidensis
Blighia sapida Leea guineensis
Bougainvillea spp Litchi chinensis
Caesalpinia pulcherrima Magnolia grandiflora
Calotropis gigantea Metrosideros polymorpha
Canna indica Nandina domestica
Cardiospermum grandiflorum Norantea guianensis
Cassia bakeriana Pentas lanceolata
Catharanthus roseus Petrea volubilis
Cattleya spp Plectranthus scutellarioides
Clerodendrum quadriloculare Podranea ricasoliana
Clitoria ternatea Portulacaria afra
Codiaeum variegatum Punica granatum
Couroupita guianensis Pyrostegia venusta
Delonix regia Quisqualis indica
Dendrobium spp Rhaphiolepis umbellata
Dichorisandra thyrsiflora Solanum seaforthianum
Eichhornia crassipes Spathodea campanulata
Erythrina crista-galli Stemmadenia littoralis
Eugenia uniflora Symphytum officinale
Gardenia brighamii Tabebuia impetiginosa
Gomphrena globosa Tabernaemontana divaricata
Guaiacum officinale Thunbergia battescombei
Harpullia pendula Tipuana tipu
Hedychium coronarium Turnera ulmifolia
Hemigraphis alternata Vitex rotundifolia
Hibiscus rosa-sinensis Waltheria indica
Hippeastrum reticulatum Youngia japonica
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APPENDIX C
LIST OF PLANT SPECIES - UHMANOA300 DATASET

Acacia confusa Bombax glabra Clerodendrum quadriloculare
Acacia koa Bougainvillea spp Clitoria ternatea
Acalypha hispida Brachychiton acerifolium Clusia rosea
Acalypha wilkesiana Breynia distinta Coccinia grandis
Adansonia digitata Broussonetia papyrifera Coccoloba uvifera
Adenanthera pavonina Brugmansia x candida Cochlospermum vitifolium
Agapanthus praecox Brunfelsia latifolia Cocos nucifera
Agathis robusta Caesalpinia ferrea Codiaeum variegatum
Ageratum conyzoides Caesalpinia pulcherrima Coffea arabica
Aleurites moluccana Calliandra calothyrsus Colocasia esculenta
Allamanda cathartica Callistemon citrinus Colvillea racemosa
Alocasia macrorrhiza Callistemon viminalis Combretum indicum
Aloe vera Calophyllum inophyllum Cordia dichotoma
Alpinia purpurata Calotropis gigantea Cordia sebestena
Alstonia scholaris Calyptocarpus vialis Cordia subcordata
Amaranthus spinosus Canna indica Cordyline fruticosa
Annona muricata Capsicum frutescens Couroupita guianensis
Anthurium andreanum Cardamine spp Crescentia cujete
Araucaria columnaris Cardiospermum grandiflorum Crinum amabile
Aristolochia littoralis Carica papaya Crinum asiaticum
Artabotrys hexapetalus Carissa macrocarpa Cupressus sempervirens
Artocarpus altilis Carludovica palmata Cyperus mindorensis
Artocarpus heterophyllus Cascabela thevetia Cyperus papyrus
Asparagus setaceus Casimiroa edulis Delonix regia
Asystasia gangetica Cassia bakeriana Den Phal Dendrobium
Averrhoa carambola Cassia fistula Desmodium spp
Azadirachta indica Cassia x nealiae Dichorisandra thyrsiflora
Azolla filiculoides Casuarina equisetifolia Dieffenbachia spp
Barringtonia asiatica Catalpa longissima Dietes bicolor
Bauhinia galpinii Catharanthus roseus Dodonaea viscosa
Bauhinia spp Cecropia obtusifolia Dracaena marginata
Bidens pilosa Chloris barbata Duranta erecta
Bixa orellana Chlorophytum comosum Eichhornia crassipes
Blighia sapida Citharexylum spinosum Elaeocarpus grandis
Bombax ceiba Citrus spp Elaeodendron orientale
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Emilia sonchifolia Hylocereus undatus Mimosa pudica
Enterolobium cyclocarpum Impatiens wallerana Monstera deliciosa
Epipremnum pinnatum Ipomoea batatas Morinda citrifolia
Erythrina crista-galli Ipomoea horsfalliae Moringa oleifera
Erythrina sandwicensis Ixora spp Morus spp
Eucalyptus deglupta Jasminum multiflorum Muehlenbeckia platyclada
Eugenia uniflora Jasminum sambac Murraya paniculata
Euphorbia hirta Jatropha integerrima Musa x paradisiaca
Euphorbia milii Justicia betonica Mussaenda Queen Sirikit
Euphorbia pulcherrima Justicia brandegeana Myoporum sandwicense
Euphorbia tirucalli Kalanchoe pinnata Nandina domestica
Fagraea berteroana Kigelia africana Nephrolepis exaltata
Ficus carica Koelreuteria formosana Nerium oleander
Ficus lyrata Lagerstroemia speciosa Norantea guianensis
Ficus microcarpa Lantana camara Nymphaea spp
Ficus pseudopalma Lantana montevidensis Ochna thomasiana
Ficus religiosa Lecythis minor Odontonema spp
Filicium decipiens Leea guineensis Olea europaea
Furcraea foetida Lemna spp Opuntia cochenillifera
Galphimia gracilis Leucaena leucocephala Orthosiphon aristatus
Gardenia brighamii Ligustrum japonicum Osteomeles anthyllidifolia
Gardenia taitensis Liriope muscari Oxalis corniculata
Gliricidia sepium Litchi chinensis Oxalis debilis
Gomphrena globosa Lonicera japonica Pandanus tectorius
Gossypium spp(non-native) Lophostemon confertus Pandorea jasminoides
Gossypium tomentosum Macadamia integrifolia Passiflora edulis
Graptophyllum pictum Macaranga mappa Passiflora foetida
Guaiacum officinale Macfadyena unguis-cati Pentas lanceolata
Harpullia pendula Magnolia grandiflora Pereskia grandifolia
Hedychium coronarium Malpighia coccigera Persea americana
Heliconia psittacorum Malvastrum coromandelianum Petrea volubilis
Hemerocallis lilioasphodelus Malvaviscus penduliflorus Phymatosorus grossus
Hemigraphis alternata Mangifera indica Phytolacca dioica
Hibiscus arnottianus Manihot esculenta Pilea microphylla
Hibiscus rosa-sinensis Manilkara zapota Pimenta dioica
Hibiscus tiliaceus Melaleuca quinquenervia Piper methysticum
Hippeastrum reticulatum Melia azedarach Pistia stratiotes
Hiptage benghalensis Merremia tuberosa Pithecellobium dulce
Holmskioldia sanguinea Metrosideros polymorpha Pittosporum tobira
Hura crepitans Michelia champaca Plantago major
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Plectranthus scutellarioides Rivina humilis Tabebuia berteroi
Plumbago auriculata Russelia equisetiformis Tabebuia pink
Plumbago zeylanica Saccharum officinarum Tabernaemontana divaricata
Plumeria obtusa Sanchezia spp Tabernaemontana litoralis
Plumeria rubra Sansevieria trifasciata Tamarindus indica
Podocarpus macrophyllus Scaevola sericea Tecomanthe dendrophila
Podranea ricasoliana Schefflera actinophylla Tecomaria capensis
Polyscias guilfoylei Sida fallax Tectona grandis
Portulaca oleracea Solanum seaforthianum Terminalia catappa
Pouteria sapota Sonchus oleraceus Thespesia populnea
Pritchardia spp Spathiphyllum x clevelandii Thunbergia battiscombei
Prosopis pallida Spathodea campanulata Thunbergia erecta
Pseuderanthemum atropurpureum Spermacoce spp Thunbergia grandiflora
Pseuderanthemum carruthersii Stenocarpus sinuatus Tipuana tipu
Pseudobombax ellipticum Stephanotis floribunda Tradescantia spathacea
Psidium cattleianum Sterculia foetida Trema orientalis
Psidium guajava Stigmaphyllon spp Trimezia martinicensis
Pterocarpus indicus Strelitzia nicolai Triplaris surinamensis
Pterospermum acerifolium Strelitzia reginae Tristellateia australasiae
Punica granatum Swietenia mahagoni Turnera ulmifolia
Pyrostegia venusta Symphytum officinale Verbesina encelioides
Ravenala madagascariensis Synedrella nodiflora Vitex rotundifolia
Rhaphiolepis umbellata Syzygium cumini Waltheria indica
Rhapis excelsa Syzygium jambos Youngia japonica
Ricinus communis Tabebuia aurea Zingiber zerumbet
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APPENDIX D
LIST OF FLOWER SPECIES - UHMANOA300 DATASET

* Less common flower species in this dataset

Acacia confusa Calophyllum inophyllum Crinum amabile
Acacia koa Calotropis gigantea Cyperus mindorensis*
Acalypha hispida Calyptocarpus vialis Delonix regia
Acalypha wilkesiana Canna indica Den Phal Dendrobium
Adenanthera pavonina* Capsicum frutescens Desmodium spp
Agapanthus praecox Cardamine spp* Dichorisandra thyrsiflora
Ageratum conyzoides Cardiospermum grandiflorum Dietes bicolor
Aleurites moluccana Carica papaya* Dodonaea viscosa
Allamanda cathartica Carissa macrocarpa Duranta erecta
Alpinia purpurata Carludovica palmata* Eichhornia crassipes
Anthurium andreanum Cascabela thevetia* Elaeocarpus grandis*
Aristolochia littoralis Cassia bakeriana Elaeodendron orientale
Artabotrys hexapetalus* Cassia fistula Emilia sonchifolia
Artocarpus heterophyllus* Cassia x nealiae Erythrina crista-galli
Asystasia gangetica Casuarina equisetifolia* Erythrina sandwicensis
Averrhoa carambola Catalpa longissima Eugenia uniflora
Azolla filiculoides* Catharanthus roseus Euphorbia hirta
Barringtonia asiatica* Chloris barbata* Euphorbia milii
Bauhinia galpinii Citharexylum spinosum Euphorbia pulcherrima
Bauhinia spp Citrus spp Fagraea berteroana
Bidens pilosa Clerodendrum quadriloculare Ficus microcarpa*
Bixa orellana Clitoria ternatea Ficus religiosa*
Blighia sapida Clusia rosea Galphimia gracilis
Bombax ceiba Coccinia grandis Gardenia brighamii
Bougainvillea spp Coccoloba uvifera Gardenia taitensis
Brachychiton acerifolium Cochlospermum vitifolium Gliricidia sepium
Breynia distinta Codiaeum variegatum Gomphrena globosa
Broussonetia papyrifera* Coffea arabica Gossypium spp nonnative
Brugmansia x candida* Colvillea racemosa Gossypium tomentosum
Brunfelsia latifolia Combretum indicum Graptophyllum pictum
Caesalpinia ferrea Cordia dichotoma Guaiacum officinale
Caesalpinia pulcherrima Cordia sebestena Harpullia pendula
Calliandra calothyrsus Cordia subcordata Hedychium coronarium
Callistemon citrinus Cordyline fruticosa Heliconia psittacorum
Callistemon viminalis Couroupita guianensis Hemerocallis lilioasphodelus
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Hemigraphis alternata Melaleuca quinquenervia Plumbago auriculata
Hibiscus arnottianus Melia azedarach Plumbago zeylanica
Hibiscus rosa-sinensis Merremia tuberosa Plumeria obtusa
Hibiscus tiliaceus Metrosideros polymorpha Plumeria rubra
Hippeastrum reticulatum Michelia champaca Podranea ricasoliana
Hiptage benghalensis Mimosa pudica Portulaca oleracea
Holmskioldia sanguinea Morinda citrifolia* Pouteria sapota*
Hura crepitans* Moringa oleifera Pseuderanthemum atropurpureum
Hylocereus undatus Morus spp Pseuderanthemum carruthersii
Impatiens wallerana Muehlenbeckia platyclada* Pseudobombax ellipticum
Ipomoea batatas Murraya paniculata Psidium cattleianum
Ipomoea horsfalliae Musa x paradisiaca* Psidium guajava
Ixora spp Mussaenda Queen Sirikit Pterocarpus indicus
Jasminum multiflorum Myoporum sandwicense Punica granatum
Jasminum sambac Nandina domestica Pyrostegia venusta
Jatropha integerrima Nerium oleander Rhaphiolepis umbellata
Justicia betonica Norantea guianensis Ricinus communis
Justicia brandegeana Nymphaea spp Rivina humilis
Kalanchoe pinnata Ochna thomasiana Russelia equisetiformis
Kigelia africana Odontonema spp Sanchezia spp
Koelreuteria formosana Opuntia cochenillifera Scaevola sericea
Lagerstroemia speciosa Orthosiphon aristatus Sida fallax
Lantana camara Osteomeles anthyllidifolia Solanum seaforthianum
Lantana montevidensis Oxalis corniculata Sonchus oleraceus
Lecythis minor Oxalis debilis Spathiphyllum x clevelandii
Leea guineensis Pandanus tectorius* Spathodea campanulata
Lemna spp* Pandorea jasminoides Spermacoce spp
Ligustrum japonicum Passiflora edulis Stenocarpus sinuatus
Liriope muscari* Passiflora foetida Stephanotis floribunda
Litchi chinensis Pentas lanceolata Sterculia foetida
Lonicera japonica Pereskia grandifolia Stigmaphyllon spp
Lophostemon confertus* Persea americana* Strelitzia reginae
Macadamia integrifolia* Petrea volubilis Symphytum officinale
Macfadyena unguis-cati Phymatosorus grossus* Synedrella nodiflora
Magnolia grandiflora Phytolacca dioica* Syzygium cumini
Malpighia coccigera Pimenta dioica Syzygium jambos
Malvastrum coromandelianum Pistia stratiotes* Tabebuia aurea
Malvaviscus penduliflorus Pithecellobium dulce Tabebuia berteroi
Mangifera indica* Pittosporum tobira Tabebuia pink
Manilkara zapota* Plectranthus scutellarioides Tabernaemontana divaricata

92



Tabernaemontana litoralis Thunbergia erecta Tristellateia australasiae
Tecomanthe dendrophila Thunbergia grandiflora Turnera ulmifolia
Tecomaria capensis Tipuana tipu Verbesina encelioides
Tectona grandis* Tradescantia spathacea Vitex rotundifolia
Terminalia catappa* Trema orientalis* Waltheria indica
Thespesia populnea Trimezia martinicensis Youngia japonica
Thunbergia battiscombei Triplaris surinamensis Zingiber zerumbet*
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APPENDIX E
LIST OF PLANT SPECIES - LYON100 DATASET

Acacia koa Crescentia cujete Myoporum sandwicensis
Acalypha hispida Curcuma sp Myristica fragrans
Acca sellowiana Cyperus javanicus Osmanthus fragrans
Acoelorrhaphe wrightii Dicorysandra thyrsiflora Osmoxylon lineare
Afrocarpus mannii Dietes bicolor Pelagodoxa henryana
Ageratum conyzoides Duranta erecta Pentagonia macrophylla
Aglaonema commutatum Elaeocarpus angustifolius Pimenta dioica
Alcantarea imperialis Etlingera coccinea Piper magnificum
Alpinia zerumbet Etlingera corneri Pipturus albidus
Amherstia nobilis Heliconia caribaea Plumbago zeylanica
Aphelandra aurantiaca Heliconia latispatha Portlanida grandiflora
Aphelandra sinclairiana Heliconia magnifica Pritchardia martii
Araucaria columnaris Heliconia psittacorum Pseudobombax ellipticum
Averrhoa bilimbi Heliconia rostrata Psydrax odorata
Bacopa monnieri Heliconia xanthovillosa Quesnelia testudo
Begonia sp Hemerocallis sp Renealmia alpinia
Beilschmiedia anay Heterotis rotundifolia Rhapis subtilis
Brexia madagascariensis Hibiscus arnottianus Rhododendron x sp
Brownea coccinea Hippeastrum striatum Sanchezia speciosa
Brownea hybrida Holmskioldia sanguinea Santalum freycinetianum
Brownea macrophylla Jatropha multifida Saraca declinata
Brugmansia x candida Johannesteijsmannia altifrons Spathiphyllum sp
Carex wahuensis Justicia aurea Sphaeropteris cooperi
Chamaerops humilis Justicia betonica Sphenomeris chinensis
Chloranthus spicatus Liriope muscari Strongylodon macrobotrys
Cibotium glaucum Macaranga tanarius Synsepalum dulcificum
Clavija nutans Magnolia grandiflora Theobroma cacao
Clerodendrum microstegium Medinilla magnifica Thunbergia mysorensis
Colocasia esculenta Metrosideros polymorpha Tillandsia cyanea
Cordyline fruticosa Metroxylon sp Warszewiczia coccinea
Corypha umbraculifera Microlepia strigosa Widdringtonia schwarzii
Costus dubius Microsorum grossus Zamia furfuracea
Costus lasius Monstera deliciosa
Couroupita guianensis Musa ornata
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Pl@ntNet - My Business. In Proceedings of the 25th ACM International Conference on Mul-

timedia, MM ’17, pages 551–555, New York, NY, USA, 2017. ACM.
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