he Austrairan coastine is 1 s\% occupied by a very special and beneficial habitat of extraordinary trees and washing waves. This practical guide describes each of these highly adapted plants.
athoritative cuide to australlas mangrove plants

- descriptions of 41 Australian species,
- more than 500 colour photographs
- feature artworks by Fran Davies
- State \& Territory sections with local specialist contribution
- a manual for community awareness

For research, teaching and the eco-minded

The University Of Queensland品

Australia's MANGROVES

The Authoritative Guide to Australia's Mancrove Plants

OCopyright Univesitity of Queensland and Norman C. Duke 2006
 distributed by any process or stored in any retiiveval system or data base without prior witt
Requests and inquiries concerning reproduction ights should be addressed to the author.
First published 2006 by:
This book may be cited as
University of Queensland, Brisbane. 200 pages.
This book is availabe from:
Centre for Marine Studies U Univesity y f aueensland, St LLcia QLD. 4072, Austraila.
htpo//www.m.s.
.
Duke, Norman C., 1952-
Austrai'ís mangroves:
Austalia's mangroves: the authorititive guide to Australia's mangrove plants.
1 sted.
Includes index.
ISBN 0646461966.

1. Mangrove plants - Austriai. 2. Mangrove plants
Australia - Identification. T.Title.
583.7630994

Designed by Diana Kline, Centre for Marine Studies, University of Queensland
Print coordidation bye Brian Cassingham, Cass slk, Brisbane QLD
Printed by Platypus Graphics, Bisbane QLD
The views expressed in this work are those of the author, and do not necessarily refect those of University of Queensland.

The phrase 'the lucky country' is lodged deep in the Australian psyche. Its original ironic context has long been forgotten but for mangroves Australia is indeed a paradise. Over half of the global mangrove species reside here and they represent six percent of the world's mangrove area. enjoy a relatively protected and non-threatening environment. However, vigilance is still required as they can occupy prime land for development.

Over the years, Australian scientists have written numerous books and papers on mangroves but Australia's Mangroves' must be considered the definitive text on the taxonomy and identification of mangroves in Australia. The author, Norman Duke is an internationally recognised expert on mangrove taxonomy and ecology. He has waded through mangrove swamps around the world with a burning enthusiasm to understand the biology of mangroves. Not content with this understanding, Norman has a mission to convert unbelievers to appreciate the beauty and importance of these often misrepresented ecosystems.

This elegantly produced book will be of immense value to professional scientists, students and conservation groups. At one level it can be used as a simple key to identify mangroves in the field. At another level, it provides a detailed scholarly description of every species of mangrove found in Australia. Above al it is the distillation of one person's detailed knowledge of those mysterious forests that lie between the land and the sea around the coast of Austraic.

The following mangrove and coastal habitat speciaisists have generously contributed ideas, information and photographs for the State and Territory section in particular:
John Beumer
John Beumer
ent Deparment of Primary Industries \& Fisheries
Flinders Uni
Chris Harty
Chris Harty Planning and Environmental Management, Victoria
Neil Saintilan
New South Wales Government, Department of Environment and Conservation
V \& C Semeniuk Research Group, Western Australia
Glenn Wightman
Northern Territory Govermment, Department of Natural Resources, Environment and the Arts.

Fording for this book was provided chiefly by The University of Queensland. For this, I thank Prof. Paul Greenfield (DVC), Prof. David Siddle (DVC Research), Prof. Mick MacManus (Exec. Dean, BACS) and Prof. Ove Hoegh-Guldberg (Director, Centre for Marine Studies).
Additional funding was also generously contributed by James Cook University, Damien Burrous.

THe University Of Queensland

Preface
For a long time, people iving by he sea ha appeciace the breath-ike rhythm of watery tides egulary rising and pulsing back across the coastal margin
as man has within him a pool of blood wherein the lungs as he breathes expand and contract, so the ody of the earth has its ocean, which rises and falls every six hours with the breathing of the world

In this, I empathise also with the comparison of the human life force as a reminder and thoughtfu metaphor of our intimate relationship and total dependence on our unique planet. In light of the drastic iisk this implies, as we unwittingly alter earthly processes, I am further reminded of my offable eccentric isk this implies, as we unwittingly atter earthly processes, am further reminded of my affable eccen Victorian weir to demonstrate. this point, aided by Australian Geographic. Notwithtstand ding the outco Victorian weir to demonstrate this point, aided by Australian Geographic. Notwithstanding the outcome
of Lloydo's demonstration, when I look to my own discipline of three decades, I ask myself- what can be seen in the tea-cup of mangroves? The most effective answer lies in our recognition of the overwhelming influence of people on those earthly processes. Outcomes like environmental sustainability will be chieved only with the greater awareness and responsibility of a better-informed community. This is a community better able to weigh up the facts and potential consequences, and to prioritise everyday socio-economic needs with those of natural ecosystems like mangroves.

A chief objective with this book therefore has been to help demystify an often maligned group of Plants, and to share my enduring fascination for them. I do this, Itrust, with practical, state-of-the-art information on all of Australia's mangrove plants, and aided by contributions from local colleagues and friends focussing on each State. In particular, include the latest descriptions of species and variants, as a sum mary of carrent data on their regional distributions, along with respective geogrophic and
 water-proof field key. Let me know what you think! With all this, I hope you enjoy your mangrove

Norm Duke

12 th June 2006, University of Queensland, Centre for Marine Studies, n.duke@uq.edu.au

Australia's Mangroves
PART 1 Introduction
sea Trees and tides

NEW SOUTH WALES

$$
\begin{aligned}
& \text { NEW SOUTh } \\
& \text { VICTORIA } \\
& \text { SOUTH AUS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { VIctoria } \\
& \text { South Australia }
\end{aligned}
$$

Australia's Mangroves
PART 3 Descriptions of Species
Kerto Australla's mangroves
genus and species pages
Acknowledgements
References
Glossary
Using This Book

ACKNOWLEDGEMENTS
This book is the summation of three decades of studies on Australia's mangroves - a journey of
discovery I have shared with family, friends and colleagues in a number of work settings from the discovery I have shared with family, friends and colleagues in a number of work settings from the
Queensland Department of Primary Industries and Fisheries, to the Australian Institute of Marine Science, and the University of Queensland. For this Australian work, Ithank my fellow travellers
and collaborators most warmly for all your generous help and stimulating conversations:

- Kay Abel, Dan Alongi, Karen Arthur, Marilyn Ball, Alicia Beil, Kevin Boto, John Bunt, Damien Burrows, Maureen Cooper, Otto Dalhaus, Fran Davies, Bill Dennison, Sabine Dittman, Colin Duke,
Joanna Elison, Colin Field, Lloyd Godson Al Heylon Joanna Ellison, Colin Field, Lloyd Godson, Ali Heydon, Frances Huckett, Reg Huckett, John
Huckett, Amy Jones, Chris Harty, Betsy Jackes, Adrian Juncosa, Stacy Jupiter, John Knight, Lee Lafferty, Pippi Lawn, Greg Leach, Col Limpus, Cath Lovelock, Jock Mackenzie, Kathryn Mc Lee Lafierty, Pippi Lawn, Greg Leach, Col Limpus, Cath Lovelock, Jock Mackenzie, Kathryn Mc
Mahon, Jan-Olaf Meynecke, Dan Pedersen, Helen Penrose, Mike Poole, Richard Primack, Alistar Roberston, Roland Rupp, Neil Saintilan, Vic Semenuik, Tom J. Smith III, Andrew Sitiling, Barry
Tominson, Judith Wake, John Wellington, Graham Wells, Tim White, Glenn Wightman Nick Tominson, Jow Waie, Joln Wenlingon, Graham Wells, J. Wine, Glenn Wig For contributions of specific comments, editing and reviewing of this manuscript, Ifurther thank:-
Brad Daw (WAG CALM), Peter Erskine (UQ), Coin Field, Kirstin tanan, Chris Harty (Planning
and Environmental Management), Rob Kenyon (CSIIRO Marine), Jock Mackenzie (UQ \& QDPI\&), and Environmental Management), Rob Kenyon (CSIRO Marine) Jock M
Helen Penrose (UQ) Glenn Wightman (NTG DNRETA) and Trin Zakmel.

For assistance with questions and issues concerning botanical taxonomy and nomenclature, I particularly thank Glenn Wightman (NTG DNRETA).
For permission to use three special creative artworks, It thank Fran Davies. Permission was granted also to use photographic images taken (number in brackets) by: Kieran Aland (1); Sabin
Dittmann (8); Kirstin Hannan (1); Chris Harty (17); Diana Kleine (1); Ian Morris (1); Mike Pole (1): Dittmann (8); Kirstin Hannan (1); Chris Harty (17); Diana Kleine (1); Ian Morris (1); Mike Pole (1)
Vic Semeniuk (3); Glenn Wightman, NTG NRETA (2); and the Bicentennial Copying Project, State Library of New South Wales (2). All other photographs are those taken by the author.

For giving and sharing much of my journey, I owe everything to my immediate family, particularly Kirstin and Mikel, and especially Margie. I trust they
who travels the world looking at mangroves.

SOURCES AND FURTHER READING

Ball, M. C. 2002. Interactive effects of salinity and irrailiance on growth: implications for mangrove forest structure along salinity gradients. Trees 16 : $126-13$
accher, D. and P. Saenger. 1994. Aclassification of tropicial and subtropical Australian estuaries. Aquatic Conseration: marine and freshwater ecosystems 41111
Clough, B. F., ed. 1982. Mangrove ecossystems in Austraila. Stucture, function and management. Austraian Institute of Marine Science and Austraian National University. Canberra. 302 pages mken, S. 1995. Benthos structure on tropical tidal flats of A ustraia. Helololànder Meeresunters. 49: 539-551.
Duke, N. C., M. C. Ball, and J. C. Ellison. 1998. Factors influencing biodiversity and diststioutional gradients in mangroves. GIobal Ecology and Biogeography Letters 7. 27-47.
Duke, N. C. 2001. Gap creation and regenerative processes diving diversity and structure of mangrove ecosystems. Wetlands Ecology and Management 9 : $257-269$. Field, C.D. . 1995 . Joumey amongst mangroves. Intemational Society for Mangrove Ecosystiems (IIME), Okinawa, Japan. 140 pages.
Galloway, R. W. 1982. Distribiution and physiographic patterns of Australian mangroves. Pagess $31-54$ in Clough (1982).
Galloway, R. W. . 1982 . Distribution and physiographic patterns of Austraian mangroves. Pages 31-54 in Clough (1982).
Hatry, C. 2002. Mangroves and saltmarshes - murky messages and muddy management. Queensland Regional Rippes 8 .
Harty, C. 2004. Planning strategies for mangrove and saltmarsh h changes in southeast Austraia. Coostal Managemenen 32 : $4005-415$

Lombok. ISME - International Society for Mangroves, Tokyo. 119 pages Lear, R., and T.T Turner. 1977. Mangroves of A Astralia. University of Queensland Press, Bisbane. 84 pages.
Lovelock, C. 1993. Field guide to the mangroves of Queensland. Austraian Institute of Marine Science, Townsville. 72 pages.
Ozestuaries 2000. Estuarine database compiled by Geoscience Austraia. www.ozestuaries.org
 Plaziat J.C.C. C. Cavagnetto, J.C. Koeniguer, and F. Balter. 2001. History and biogeography of the mangrove ecosysytem, based on a critical reassessmento f the paleontological record.

Saenger, P.J. 2002. Mangrove ecology, silviculture and consenvation. Kluwer Academic Publishers, Dordrecht. 36 pages.
ald esturies. Estuaine Coastal and Sheff Science 61: 591-601.

Spalding, M. D.,. F. Bascoso, and C. D. Field, eds. 19997. Wordd mangrove e atas. World Conservaion Monitoring Centre \& Inteemational Society for Mangrove Ecosystems, Okinawa, Japan. 178 pages.

mer, L., D. Tracey, J. Tilden, and W. C. Dennison. 2004. Where river meets sea: exploring Austraia's estuaries. Cooperative Research Centre for Coastal I Zone, Estuary and Waterway Mangememnt, Brisbane. 278 pages.
Wightman. . M. 2005. Man

Zann, L.P. 1995. Our Sea, Our Future. Major Findingos of the State of the Marine Enviromment Report for Austalai. Great Barier Reef Marine Park Authoity, Townsuile, Austraii. Tecchical A Annex 1 , 191 pages.

 dosperm

arrangement of flowers or flower cluster
of sifipulse inserted ont stem between opposite leaves
land zone affected by tides, , efween high and low levels

roiled invard or toward hhe
joined inor forming, pairs or
inmature, not yet adduts
projecting ridge on a surface, ike the keel of a boal
above ground doots shaped ilie a knee
shaped, or formed, like a tringe, as a ligament, lassed into narow pointed Iobes
the leaf blade lance-shaped, much longer than wide with broad base tapering to the apex
one ofthe blades of compound leai, several leafeles form a leaf on a common one o of the blades of compoa
petione
fough, leather-ike structur
tough, leather-ikie structure
brown cookk spops on the bakk, used for gas exchange covered in small scaly leaves
coveredin smal stay
logng and very arow
divion of a leat
having small compartments
narrow wasted midedle lis

male and female flowers separate but on the same plant
sling g gue
slimy, que
leatapex usully broad, terminated by a shortstsiff point called a mucro atide of minimum range occurining a the time of fuarter and three quater moon
having nectar having nectar
point
leare leaves
leat shane thatis
point where leaves or branched a aise from a stem
leaf shape that s broadera the apex gradully narrowing to the base, op. posite of lanceolate
elongated,
inverser times onger than braad
ond
iiverasedy, gog-shaperd, with the broadere end upward
pear shaped
pear shaped
bunt tathe end, forming greater than ight angle
two leaves bome on either side of a branch ata single node a leaf that is in early yiriulur
the porition of the flowe which contains the o ovules, matures to the portion of th
bears seeds

Raceme	an inflorescence having stalked flowers arranged singly along an elongated unbranched axis
Radicle	the embryonic root
Recurved	bent or cureed backwards
Reflexed	a sharp bend dowwward of backward
Reticulate	like a net
Revolute	rolled downwards or to the lower side
Rhizome	an underground, horizonal stem
Ridge	anguar with lengthwisel lines
Rosette	a radiating cluster of leaves as in a dandelion
Rugose	winkled
Scales	smal dry fakes covering leaf of fuit surface
Scarious	scratched surface
Seniororicular	semi-icicular, usually a leat
Sepal	outermost part of a fower, collectively called the calyx
Sericeus	silky
Serpentine	snake like
Sessile	withouta stak
Sheath	a tubular covering that surrounds part of a plant
Sickle-shaped	shaped like a sicke, a curved knife
Simple	single, undivided piece, applied toleaves
Sinuous	curving like a meandering stream
Sinus	the base of a gap between lobes
Smooth	leaf texture not rough
Spate	a bract or pair of bracts, often large, enclosing the flowers
Spathulate	like a small spate, a flat spoon
Species	a naturally occurring population of individuals which are reproductively isolated from similar species
Spicate	like ears of corm
Spike	elongated, unbranched inflorescence like a raceme, but flowers are sessile
Spine	relatively stif, neede il ike thread between petal lobes, in Bruguiera
Sporangia	specilly developed spore cases found on the underisid off ern fionds
Spore	the reproductive structures of fems
Spring tide	tides of maximum range occur during both new and full moon
Stak	petiole, peduncle or stem
Stamen	the male organ of the flower consisting of the pollen-bearing anther and its stalk the filament
Staminate	like a stamen
Staminodes	a steriele stigma, often modified in shape and size
Stellate	star shaped
Sterile	inferilie, non-reproductive, not able to reproduce
Stigma	the portion of the style which receives the pollen

Stilt root	a root arising from the stem some distance above the ground and affording support to the plant, often called prop roots
Stipule	a leaf-ike or scale-ike appendage, often in pairs at the base of the leaf petiole
Stomata	openings of the leaf connected to itemal a i spaces
Strigose	with pointed, rigid, hai-l-ike scales or bistles
Stylar beak	pointed end of a fuitit formed fiom the spents style
style	an often slender portion of the pistil which arises from the ovary and supports the stigma
Subtended	joined to
Subterminal	near terminal shoots or buds
Succession	the order in which one vegetation type or ecological community replaces another following some change or disturbance
Succulent	juicy orfeshy, thick
Superior	above the part
Suture	line where two parts are joined, and often split apatt
Taproot	central main root evident in deep rooted species
Taxon faxa	a category of classificaion such as family, genera, species, variey and form
Terete	circuar in transerse section, cylindicic and usualy tapering
Teminal	borme at the end or apex
Testa	hard shell
Tetranedral	anguar shaped, often 4 sided
Tetramerous	4 -parts shape
Thecate	like a container
Thicket	dense growth of shrubs and small trees
Thum	a threadike part of a flower, a stamen, a counter to 'Pin'
Tomentose	densely woolly, the hairs are soft and matted
Translucent	allows light through
Tree	higher woody plant, susully with one major tunk
Ti-Hocular	having three compartments
Turbinate	shaped like a turbin
Umbel	an inflorescence consisting of a number of flower stalks or pedicels, nearly equal in length and spreading from a common centre, like umbrella ribs
Umbelliform	shaped like an umbel
Uniocular	single compartment
Urcolate	shaped ilike a pitcher or urn
Valvate	shaped like a valve
Variely	taxoonomic unit within the species
Venation	patterss in the veins ofa leaf blade, typically paralle veined or netveined
Vestige	remnant piece
Viviparous	a gemminated sedeling that has develoloed while still atached to the parent plant
zygomorphic	a flower that is bilaterally symmetrical

PROPACULES
SEED CAPSULE
CRYPTO-VIVIPAROUS
pod

USING THIS BOOK

Species pages are standardised to make identification easier. Scientific and common names are listed along with special features and distinguishing characters. Background text describes family affinities and closest relatives. Selected photographs show key attributes. Margin icons and descriptive charts provide further reference.

MARGIN ICONS AND DESCRIPTIVE CHARTS

Sonneratia
caseolaris

Nine icons show the key attributes that characterise each species.
GROWTH FORM Plant Structure

INDEX TO SPECIES AND COMMON NAMES

ACANTHUS	
Acanthus ebracteatus	88
Acanthus ebracteatus subsp. ebarbatus	0
Acanthus ebracteatus subsp. ebracteatus	1
Acanthus ilicifolius	2
Acrostichum speciosum	94
Aegialitis annulata	96
Aegiceras corniculatum	98
Apple Mangroves (Sonneratia)	74
AVICENNIA	100
Avicennia integra	102
Avicennia marina	104
Avicennia marina var. australasica	107
Avicennia marina var. eucalyptifolia	108
Avicennia marina var. marina	109
Barringtonia racemosa	110
Black Mangroves (Lumnitzera)	148
Brackishwater Mangrove	110
Bractless Holly Mangrove	88
BRUGUIERA	112
Bruguiera cylindrica	114
Bruguiera exaristata	116
Bruguiera gymnorhiza	118
Bruguiera parviflora	120
Bruguiera \times rhynchopetala	122
Bruguiera sexangula	124
Camptostemon schultzii	126
Canonball Mangrove	188
Cedar Mangrove	190
CERIOPS	128
Ceriops australis	130
Ceriops decandra	132
Ceriops tagal	134
Club Mangrove	96
Clumped Yellow Mangrove	132
Corky Stilt Mangrove	164
Cynometra iripa	136
Diospyros litorea	138
Dolichandrone spathacea	140
Eastern White Mangrove	107
Ebony Mangrove	138

Excoecaria agallocha	142	Reef Barrier Mangrove	160
Excoecaria agallocha var. agallocha	144	Reflexed Orange Mangrove	114
Excoecaria agallocha var. ovalis	145	RHIZOPHORA	162
Grey Mangroves (Avicennia) 100,	107, 108	Rhizophora apiculata	164
Gulngai-Hybrid Apple Mangrove	180	Rhizophora \times lamarckii	166
Happy Face - Hybrid Stilt Mangrove	166	Rhizophora mucronata	168
Heritiera littoralis	146	Rhizophora stylosa	170
Holly Mangroves (Acanthus)	86	Rib-fruited Orange Mangrove	116
Hybrid Apple Mangrove-Gulngai	180	Rib-fruited Yellow Mangrove	134
Hybrid Apple Mangrove-Urama	184	River Mangrove	98
Hybrid Black Mangrove	154	Scyphiphora hydrophylacea	172
Hybrid Orange Mangrove	122	Small-leafed Orange Mangrove	120
Hybrid Stilt Mangrove - Happy Face	166	Smooth-barked Grey Mangrove	108
Kapok Mangrove	126	Smooth-fruited Yellow Mangrove	130
Keeled-pod Mangrove ${ }^{\prime}$	146	SONNERATIA	174
Lanceolate-leafed Apple Mangrove	182	Sonneratia alba	176
Large-leafed Orange Mangrove	118	Sonneratia caseolaris	178
Long-style Stilt Mangrove	170	Sonneratia \times gulngai	180
Looking-glass Mangrove	146	Sonneratia lanceolata	182
LUMNITZERA	148	Sonneratia \times urama	184
Lumnitzera littorea	150	Spineless Holly Mangrove	90
Lumnitzera racemosa	152	Spiny Holly Mangrove	92
Lumnitzera \times rosea	154	Spurred Mangroves (Ceriops)	128
Mahogany Mangroves	186	Stilt Mangroves (Rhizophora)	162
Mangrove Fern (Acrostichum)	94	Stilted Grey Mangrove	102
Mangrove Palm (Nypa)	156	Trumpet Mangrove	140
Milky Mangroves (Excoecaria)	142, 144	Upriver Orange Mangrove	124
Mrytle Mangrove	158	Upriver Stilt Mangrove	168
Northern Grey Mangrove	108	Urama-Hybrid Apple Mangrove	184
Nypa fruticans	156	Western White Mangrove	109
Osbornia octodonta	158	White-flowered Apple Mangrove	176
Orange Mangroves (Bruguiera)	112	White-flowered Black Mangrove	152
Ovate-leafed Milky Mangrove	145	White-flowered Holly Mangrove	91
Palm Mangrove (Nypa)	156	White Mangrove (Avicennia marina) 104, 107, 109	
Pemphis acidula	160	Wrinkle-pod Mangrove	136
Pink-Flowered Black Mangrove	154	Yamstick Mangrove	172
Pornupan Mangroves (Sonneratia)	174	Yellow Mangroves (Ceriops)	128
Puzzle-nut Mangroves (Xylocarpus)	186	XYLOCARPUS	186
Red-flowered Apple Mangrove	178	Xylocarpus granatum	188
Red-flowered Black Mangrove	150	Xylocarpus moluccensis	190

