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Abstract Casearia (Salicaceae) is a pantropical genus of circa 200 species, around half of which dwell in the Neotropics. Despite the
availability of phylogenetic studies that suggest that Casearia sensu Sleumer is not monophyletic, a strong phylogenetic framework was
still lacking for this genus. We tested the monophyly of Casearia and examined the relationships of its species to other taxa of the tribe
Samydeae, including Laetia, Samyda and Zuelania, which recently have been sunk into Casearia, as well as Euceraea, Lunania, Neo-
ptychocarpus, Ryania and Tetrathylacium. We further put a focus on the Neotropical taxa since Casearia and allies are speciose both on
the Caribbean islands and adjacent mainlands, thus providing an interesting group to address the origin of the Caribbean and Cuban
flora. Our phylogenetic analyses based on four combined rapidly evolving plastid regions (petD, rpl16, rps4-trnT-L-F, trnK-matK-psbA)
as well as nuclear ITS revealed Casearia as monophyletic with high support, including not only the former members of Laetia, Samyda
and Zuelania but also Euceraea and Neoptychocarpus. Casearia is constituted by several major clades, mostly being entirely Neotrop-
ical, one of which exclusively comprises species endemic to the Caribbean islands. Another clade, which includes all Palaeotropical spe-
cies, is nested among Neotropical lineages. Our divergence date estimates using the plastid dataset and fossil calibration points in
Salicaceae indicate that the Casearia crown group started to diversify during the late Eocene, approximately 39 Ma. The stem of the
Old World clade diverged from Neotropical ancestors around 27 Ma, in the Oligocene. We used BayesTraits to reconstruct the evolution
of seven characters commonly used to define Casearia and allied genera. We found morphological characters, such as branched inflo-
rescences (fasciculate, glomerulous, cymose) or uniseriate stamen series, that work well to circumscribe the genus, whereas dioecy,
which was used to diagnose Neoptychocarpus, or higher stamen numbers (>12), found in Laetia and Zuelania, are homoplastic in
Salicaceae, the latter character derived within Casearia from ancestors with 7—12 stamens. Pellucid dots appear to have evolved earlier
than the divergence of the Casearia clade in Samydeae, and were lost in Ryania and Tetrathylacium, and thus are no synapomorphy for
Casearia. In order to establish a monophyletic genus concept for Casearia, we propose to also merge Euceraea and Neoptychocarpus.
Our reconstruction of ancestral areas using BioGeoBears indicate that South America is the ancestral area of Casearia. From there, mul-
tiple migrations occurred to Mesoamerica and the Caribbean islands. The Caribbean that comprises nearly all Caribbean endemics
started to diversify around 9.5 Ma. Our trees depict C. corymbosa, which exhibits significant infraspecific phylogenetic structure for
the sampled Mexican and Colombian individuals, as the sister to the Caribbean clade. The other clade, with Cuban endemics
(C. ternstroemioides) but also Mesoamerican and South American taxa, is not sufficiently resolved internally, to allow biogeographic
conclusions. The Old World clade of Casearia provides another example for a late Laurasian migration starting in the Neotropics.

Keywords ancestral area reconstruction; ancestral character state reconstruction; Euceraea; Neoptychocarpus; Neotropics;
Samydeae
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Bl INTRODUCTION ca. 90 are found in the Neotropics (Gentry, 1996). Formerly,

the genus formed part of the widely polyphyletic family

The genus Casearia Jacq. (Salicaceae) is pantropical with  Flacourtiaceae Rich. ex DC. (Warburg, 1895; Sleumer, 1980;
approximately 200 species (Sleumer, 1980), among which  Lemke, 1988). Phylogenetic studies by Chase & al. (2002)
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revealed the Flacourtiaceae to consist of different clades lo-
cated in distant positions within Malpighiales, which were
then recognized as part of Achariaceae Harms and Salicaceae
Mirb. (Bremer & al., 2003; Chase & al., 2016). The latter in-
cludes Casearia. Based on rbcL sequences, the authors inferred
Casearia sylvestris Sw. as sister to all remaining Salicaceae
(Chase & al., 2002), followed by Scyphostegia Stapf. This to-
pology was confirmed by subsequent studies using 82 plastid
genes (Xi & al., 2012) and 17 genes from all three genomic
compartments (Soltis & al., 2011). Whereas the Salicaceae
as a whole and its first two branches were well supported, all
these studies were limited in taxon sampling. Alford (2005)
carried out a phylogenetic analysis of the former Flacourtia-
ceae, with a much better representation of taxa, in particular
of the tropical members of the Salicaceae clade sensu lato
(Chase & al., 2002). Using the plastid t7nL-F spacer and the
trnL intron (here referred to as “trnL-F” region), ndhF se-
quence data and a comprehensive morphological dataset, the
resulting trees provided good support for three clades within
Salicaceae s.l. He recognized these three clades at family level,
namely as Samydaceae Vent. (including Casearia), Scyphoste-
giaceae Hutch. and Salicaceae (Alford, 2005) to account for
their morphological differences. However, the plastid trees
alone did not show Samydaceae as a clade but indicated a clade
comprising Casearia and allied genera (see Alford, 2005:
fig. 2.7).

The species of Casearia are trees or shrubs with pellucid
dots or striations on the leaves, which in most cases have ser-
rate margins (Hutchinson, 1967; Gentry, 1996). The flowers
are axillary and apetalous, with twice as many (or more) sta-
mens than sepals (Fig. 1). The stamens are more or less perig-
ynous, uniseriate and the ovary is unilocular with three
parietal multi-ovulate placentas (Warburg, 1895). Identifica-
tion of Casearia species is generally difficult, particularly in
the field, as the commonly used diagnostic characters are
mainly floral features no bigger than a few millimetres
(Sleumer, 1980). The first comprehensive treatment of Case-
aria and relatives can be attributed to Warburg (1895), who
dealt with the genus in the context of the whole Flacourtia-
ceae. He divided the family into 11 tribes, one of which was
“Casearieae Benth.” (not validly published), including Case-
aria, Euceraea Mart., Laetia Loef. ex L., Lunania Hook.,
Osmelia Thwaites, Patrisia J.St.-Hil. (syn. Ryania Vahl.),
Samyda Jacq., Tetrathylacium Poepp. and Zuelania A.Rich.
He defined the tribe as having perigynous flowers and no
petals. The leaves present pellucid dots, and there are twice
or more stamens than sepals, apart from Tetrathylacium,
which possess both in equal numbers. Plus, all members of
the “Casearieae” tribe have staminodes. Warburg then pre-
sented the genus Casearia with the following diagnostic char-
acters: 4 to 6 persistent sepals, 6 to 15 uniseriate stamens and
the same number of staminodia alternating with them, being
free or merged at the base, punctate leaves and a simple or
3—4-parted style (Warburg, 1895). The pellucid dots and stri-
ation of Casearia leaves are ducts and cavities present in the
limb. They are often secretory structures that play a role in
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the chemical defence of the plant (Roupert, 1926; Evert,
2006). In the case of Casearia, their structure has been studied
but their function remains unknown (Ferreira Fernandes
& al., 2018). Hutchinson (1967) largely adopted Warburg’s
classification but added new genera to the tribe “Casearieac”,
namely Neoptychocarpus Buch., Ophiobotrys Gilg. and Pseu-
dosmelia Sleumer. The “Casearieae” was considered as a well-
defined natural group in the classification system of Lemke
(1988), who defined 10 tribes of Flacourtiaceae by a set of
morphological, wood anatomical and secondary compound
characters (Lemke, 1988). The tribe “Casearieac” was charac-
terized to have small or obsolete floral bracts, lacking petals and
vessels without spiral thickenings and simple perforation plates
(Lemke, 1988). Lemke also described the tribe to have a half-
inferior ovary, which probably is a confusion as Casearia pos-
sess a superior ovary (Warburg, 1895; Alford, 2005). His cir-
cumscription corresponded to the “Casearieae” of Hutchinson
(1967) but additionally included Bivinia Jaub. ex Tul. (later
transferred to Homalieae; Chase & al., 2002) and Synandrina
Standl. & Steyerm. (now synonym of Casearia). Chase & al.
(2002) pointed out that the name “Casearieae’” was not validly
published according to Art. 31(1)b of the Code then in effect,
so that Samydeae has to be used.

Phylogenetic studies by Samarakoon (2015) focused on
the Samydeae (there classified as Samydaceae at the family
level) and provided well-resolved trees based on combined
plastid ndhF + matK and nuclear EMB2765 + GBSSI se-
quence data. The author included 21 species of Casearia,
most of which appeared in a core clade called Samydeae,
whereas C. commersoniana Cambess. and C. javitensis
Kunth, together with Ryania and Trichostephanus, were de-
picted as the sister clade called Ryanieae. Those two species
were part of C. sect. Piparea (Aubl.) Benth. Recently, the
members of this section were put into the genus Piparea Aubl.
On the basis of those phylogenetic results (Samarakoon
& Alford, 2019). Within the narrowly defined Samydeae,
the core of Casearia appeared paraphyletic to the small segre-
gated genera Hecatostemon S.F.Blake, Laetia, Samyda and
Zuelania, which were merged with Casearia (Samarakoon
& Alford, 2019). Warburg (1895) recognized five sections
in Casearia, of which only one possesses species from the
Old World, together with species from the New World.
Sleumer (1980) recognized six sections in Casearia. First is
C. sect. Guidonia (DC.) Eichler with three species and charac-
terized by an undivided style, formed by the upper part of the
ovary, and staminodes fused to the corona. The type of this
section is C. spinescens (Sw.) Griseb. Second is C. sect. Endo-
glossum Sleumer containing only C. fremula (Griseb.) Griseb.
ex C.Wright, characterized by an undivided style and free sta-
minodia that are disposed in a distinct row as the row of sta-
men. Third is C. sect. Casearia, which is the largest of all
sections, comprising all species of the Old World, around
100, together with about 60 species from the New World. This
section was divided into six informal groups including the
group llicifoliae, with species endemic to the Caribbean is-
lands Cuba and Hispaniola. Similar to C. sect. Endoglossum
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it is distinguished by having an undivided style, but the free
staminodes are arranged in the same row as the stamens, and
alternating with them. Fourth is C. sect. Gossypiospermum Gri-
seb. with around three species characterized by hairy seeds, a
trifid style and free staminodes. The type is C. praecox Griseb.
The fifth section is C. sect. Crateria Benth., with around three
species, and defined in having a trifid style and staminodes al-
ternating with the stamens. The type is C. carpinifolia Benth.
(= C. sylvestris var. lingua (Camb.) Eichler as currently
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accepted name). Finally, he recognized C. sect. Piparea, the
species of which also have a trifid style but staminodes placed
in the same row as the stamens, with C. commersoniana
as the type. However, as mentioned above this section was
recently excluded from Casearia (Samarakoon & Alford, 2019).
According to the same study (Samarakoon & Alford, 2019),
Casearia now includes further nine species formerly known
as Samyda, characterized by perigynous stamens, lacking
staminodes, and sepals fused into a tube. The authors also

Fig. 1. Morphology and species diversity of Casearia. A, Inflorescence of C. bissei from Cuba, Guantanamo (Borsch & al. 4428 [B, HAIB; labo-
ratory code: SAL012]); B, Flowering branch with coriaceous leaves of C. crassinervis from Cuba, Holguin (Borsch & al. 4056 [B, HAJB;
SAL002]); C, Axillary flowers of C. aculeata from Cuba, Villa Clara (Borsch & al. 5243 [B, HAJB; SAL014]); D, Fruits of C. aculeata from
Colombia; E, Flowers of C. nitida, Cuba; F, Flowers in glomerules on a branch of C. mollis from Cuba (Borsch & al. 5138 [B, HAJB;
SALO013]); G, Pellucid dots and lines of C. arborea, Cuba (T Borsch & al. 4845 [B, HAJB]). — Photos: A by M. Ackermann; B, C & F by
T. Borsch; D by O. Rojas-Zamora; E by J.L. Gémez; G by A. de Mestier.
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merged the eight species of the genus Laetia (which are also
characterized by perigynous, albeit free stamens and the
absence of staminodes) with Casearia. Furthermore, they
merged Casearia with the monotypic genera Hecatostemon,
which was originally diagnosed as distinct because of its nu-
merous (90—100) stamens, and Zuelania, characterized by
numerous stamens and an absent style.

Most of the species diversity of the pantropical genus
Casearia is centred in the Neotropics. In the circumscription
of Samarakoon & Alford (2019), the genus comprises some
220 species including the four above-mentioned segregate
genera that only occur in the Americas, totalling to about
110 species in the Americas. Asia and Oceania comprise about
100 species, whereas Africa only has some 15-30 species, de-
pending on their circumscription (Breteler, 2008; African Plant
Database, 2020). Of the 110 American species, about 70 are
found in continental South America and 50 are restricted to that
area (70%) based on Sleumer (1980) and later descriptions of
species (Marquete & Mansano, 2010, 2012, 2013; Alford,
2015; Nepomuceno & Alves, 2017), whereas Mesoamerica
and Mexico possess around 30 species, of which 15 are en-
demics (50%), based on Sleumer (1980) and later descrip-
tions of species (Castillo-Campos & Medina Abreo, 2003;
Linares & Angulo F., 2005). The Caribbean islands harbour
about 30 species, of which 15 to 20 are endemic (50%; in-
cluding many of the former genus Laetia), based on Sleumer
(1980) and later descriptions of taxa (Gutiérrez, 1980).
These include two taxa endemic to Cuba, which are recog-
nized subspecies of widely distributed species: C. arborea
subsp. occidentalis J.E.Gut. and C. sylvestris subsp. myri-
coides (Griseb.) J.E.Gut.

Although less pronounced than in other genera, Casearia
belongs to those Neotropical lineages with significant species
diversity and endemism in the Caribbean in relation to adja-
cent mainland, like Acalypha L. and other Acalyphoideae,
Euphorbiaceae (Cervantes & al., 2016); Brunfelsia L., Solana-
ceae (Filipowicz & Renner, 2012); the tribe Miconieae,
Melastomataceae (Michelangeli & al., 2008); Phyllanthus L.,
Phyllanthaceae (Falcén Hidalgo & al., 2020); or Rondeletia L.,
Rubiaceae (Torres-Montufar & al., 2020). In addition to spe-
cies restricted to either the islands or the mainland, there are
eight species in Casearia with a distribution shared between
the Colombian mainland and the Caribbean islands.

Casearia species grow in Neotropical dry forests, in
humid rain forests and savanna habitats. They mostly occur
at low elevations but can go up as far as 2000 m (Sleumer,
1980). Another interesting feature is that the genus comprises
some widely distributed species occurring in a broad range
of habitats, whereas others show more restricted distribu-
tion or ecological niches (Gutiérrez, 2000; Gonzalez, 2007,
Breteler, 2008). Casearia is therefore an interesting model
to study both the origin of Neotropical taxa in the context
of the evolution of a pantropical genus as well as biogeo-
graphic relationships and species diversification in northern
South America adjacent to the Caribbean and on the islands
themselves.
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Biogeographic relations between the Caribbean islands
and adjacent mainland have been the subject of several recent
studies. The evolution of plant diversity in the Caribbean was
strongly influenced by a complex geological history (tectonic
movements, volcanism, formation and submersion of is-
lands), as well as the proximity of continental land masses
with an exceptionally rich flora, as a source for plants to colo-
nize the islands through time (Santiago-Valentin & Olmstead,
2004). There are three major geological scenarios hypothe-
sized that potentially have influenced the distribution patterns
of the flora.

First, the Greater Antilles Aves Ridge (GAARlandia;
Iturralde-Vinent, 1999), thought to have connected the islands
with Mesoamerica in the Eocene from 35 to 32 Ma., has been
put forward to explain some diversification patterns such as in
Copernicia Mart. ex Endl. (Bacon & al., 2012). The respective
lineages were supposed to have colonized the Caribbean from
northern parts of South America via the GAARlandia bridge,
as in other genera such as Croton L. and Styrax L. (Fritsch,
2003; Van Ee & al., 2008) and also animals (Davalos, 2004;
Deler-Hernandez & al., 2018). However, this hypothesis re-
mains controversial, and some authors doubt that it played a
major role to support plant migrations to the Caribbean islands.
Cervantes & al. (2016) analyzed the speciose subfamily Acaly-
phoideae (Euphorbiaceae) and found repeated arrivals of the
ancestors of Caribbean island endemic lineages only since the
Miocene (approx. 9 Ma and younger), many of which came
from Central America and Mexico, thus not being compatible
with the GAARIandia hypothesis. Nieto-Blazquez & al. (2017)
looked at divergence times of 32 Caribbean endemic genera
using published sequence data, indicating younger stem and
crown nodes than the GAARIlandia time frame in 22 of these,
albeit not all lineages were appropriately sampled taxonomi-
cally. More recently, Roncal & al. (2020) reviewed so far pub-
lished phylogenetic studies, which essentially confirmed the
picture envisaged by Cervantes & al. (2016) in that Central
and South America are important ancestral areas of Caribbean
endemic lineages most of which diversified well after the Eo-
cene. Ali (2012) even questioned the existence of a GAARIlan-
dia land bridge from a geological point of view.

The second important geological event is the closure of
the Panama Isthmus that connects South America to Meso-
america, and was fundamental for the migration of animals
and plants between the Americas, including South American
ancestors of Mesoamerican and Mexican species, which later
reached Cuba and other islands over a near sea distance from
the West. However, the exact timing is still debated. The latest
review of all available data (geological, palaeontological and
molecular record) concluded a closure in the Late Pliocene
(O’Dea & al., 2016), although Bacon & al. (2015) had sug-
gested from a macroecological study and reviewing biogeo-
graphic data from both plants and animals that the exchange
between South America and Mesoamerica started as early as
the Oligocene—Miocene boundary.

The third complex of geological and palaeoenvironmental
factors are major sea level changes shaping intra-archipelagic
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connectivity (Caribbean islands) and thus, speciation through
vicariance (Weigelt & al., 2016; Heads, 2018). Sea level
changes also affect the outline of islands. They could cause
the extinction of plant populations that can no longer function
as the source for radiations, for example when an area of dis-
tribution became submerged (Alonso & al., 2012). According
to Iturralde-Vinent (1999), the sea level raised considerably in
the Caribbean at 30 Ma, thus reducing the surface of land
available for plants and creating barriers. However, sea level
changes and their impact on land plants are still poorly studied
in the Caribbean, and this includes the much more recent Pli-
ocene fluctuations that included lower sea levels and poten-
tially increased connectivity in periods of glaciation. On the
other hand, overwater dispersion is also proposed to explain
how plants migrated in the wider Caribbean, such as in Acaly-
phoideae (Cervantes & al., 2016) or palms of the tribes Cryo-
sophyleae and Sabaleae (Cano & al., 2018). Such dispersal
is supposed to be facilitated by hurricanes, which happen
repeatedly in the region (Lugo & al., 2000; Hedges, 2001;
Andraca-Gomez & al., 2015). The more recent investigation
of species-rich lineages such as Phyllanthus or the Acalyphoi-
deae (Euphorbiaceae) with a distribution on all adjacent main-
land (South America, Mesoamerica, Mexico) as well as the
islands even suggested more frequent migrations between Me-
soamerica and Mexico and the Caribbean islands, with continu-
ous arrivals since the Miocene, often followed by speciation on
the islands (Cervantes & al., 2016; Falcoén Hidalgo & al., 2020).

Well-resolved and dated molecular phylogenies are cru-
cial to understand the origins and diversification of the Carib-
bean flora. However, a thorough analysis of these patterns also
requires extensive knowledge of species-level taxonomy. Cur-
rently, detailed revisions or monographs covering both the
islands and adjacent mainland are rare, as are species-level
phylogenetic analyses with such a geographic coverage.

This study has therefore two major objectives: the first is
to provide a phylogenetic framework for Casearia and rela-
tives in order to better understand the phylogenetic position
of Neotropical taxa in this pantropical genus, which includes
an evaluation of the evolution of key morphological characters
for a monophyletic circumscription of the genus. We therefore
sampled five of the nine genera of the Salicaceae tribe Samy-
deae. The phylogenetic analysis of Samarakoon (2015) pro-
vided important insights towards a monophyletic circum-
scription of the genus Casearia. However, the relationships
between Casearia and allied genera remained still uncertain
due to the limited resolution and node support in her molecular
trees, and also, contrary to Asian species, Neotropical taxa
were only sparsely sampled. Based on our phylogenetic hy-
pothesis of Casearia and relatives, which provides the first
well-supported molecular trees for this group of plants, our
second major objective is to unravel the origin of the species
of Casearia in the Caribbean and in particular to test for bio-
geographic relationships with entities occurring in the adjacent
South American mainland. We therefore estimated divergence
times and ancestral areas of the Casearia clade in order to pro-
vide a first picture of its divergence in time and space.

Mestier & al. * Evolution of Casearia focusing on the Neotropics

B MATERIALS AND METHODS

Taxon sampling. — In this study, 103 samples corre-
sponding to 54 species were included, of which 42 belong to
Casearia inthe circumscription of Samarakoon & Alford (2019)
including the segregate genera Laetia, Samyda and Zuelania
(voucher information in Appendix 1). From the Samydeae,
we further sampled Euceraea, Lunania, Neoptychocarpus,
Piparea, Ryania, and Tetrathylacium; seven genera represent-
ing other lineages of Salicaceae were also selected as outgroup.
We also included Lacistema (Lacistemataceae) as outgroup,
considering the topology of Malpighiales published by Xi
& al. (2012). Plant material was collected in the Colombian de-
partments Atlantico, La Guajira, Magdalena and Bolivar be-
tween 2017 and 2019 (32 accessions) as well as in Cuba and
the Dominican Republic between 2010 and 2017 (29 acces-
sions). We further sampled herbarium specimens from B, BR,
and P from other parts of the Neotropics, Africa and Asia (8 ac-
cessions). Field-collected plant tissue was silica-dried, and cor-
responding vouchers were deposited in the herbaria B, HAJB,
and UNO. Information about localities, collectors etc. can be
found in Appendix 1. Recently, plastid genomes of Casearia
decandra Jacq. and C. velutina Blume were published (Li &
al., 2019), so we also included the respective genomic regions
from these sequences in our analyses (Li & al., 2019). It is to
be noted that for them the vouchers are not available, but we
were able to confirm their identification with barcode se-
quences available in GenBank for the same species.

DNA isolation, sequencing, alignment and indel
coding. — Genomic DNA was extracted from herbarium
specimens following the modified CTAB protocol (with triple
extraction) from Borsch & al. (2003). After a chloroform ex-
traction step, the DNA was precipitated with isopropanol,
resuspended in TE and purified by ammonium acetate and
sodium acetate washing steps followed by ethanol precipi-
tation. Extraction of genomic DNA from silica-dried leaf
material was achieved using the NucleoSpin Plant II Kit
(Macherey-Nagel, Diiren, Germany). Four plastid genomic
regions (petD, rpll6, rps4-trnT-L-F, trnK-matK-psbA) and
one nuclear region (nrITS) were selected based on their utility
to resolve relationships at the genus and species levels (Borsch
& Quandt, 2009). The trnLF region was extended by the two
adjacent spacers. Universal primers were used to amplify
these regions as much as possible, but also new internal
primers were designed in this study (suppl. Table S1) for more
fragmented DNAs from herbarium specimens. The larger
rps4-trnT-L-F and trnK-matK-psbA regions were generally
amplified in two overlapping halves. Most primers (suppl.
Table S1) were also used for sequencing. Amplifications were
made with a peqStart Thermocycler (PeqLab Biotechnologie,
Erlangen, Germany). Each tube contained 4 pl of DNA with a
concentration of 25 ng/ul, 19.2 pl water, 0.3 ul DNA poly-
merase Hot start (PeqLab), 5 pl Taq Buffer S, 2.5 pl MgCl,,
10 pl ANTP, 5 pl betaine and 2 pl forward and 2 pl reverse
primers. In some cases, an enhancer was added, enhancer
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solution P (PeqLab). The plastid regions were amplified using
a program with initial denaturation (1’30 min at 95°C); 34 cy-
cles of denaturation (0’30 min at 95°C), annealing (1 min at
52°C, rpli6: 55°C), extension (1 min at 72°C); and a final ex-
tension step (10 min at 72°C). For ITS, we used a program
with 35 cycles of denaturation (1 min at 96°C), annealing
(1 min at 48°C), extension (1’45 min at 60°C); and a final ex-
tension step (7 min at 72°C). PCR products were stained with
100x SYBR Green nucleic acid stain and electrophoresed on a
1.5% NEEO agarose gel (Carl Roth, Karlsruhe, Germany)
running for 2 hours at 100 volts. When excised from the gel
the products were purified using the GEL/PCR DNA Frag-
ment Extraction Kit (AveGene Life Science, Taipei, Taiwan),
or PCR products were cleaned directly using the Stratec Kit
(Invitek Molecular, Berlin, Germany). After a concentration ad-
justment, all PCR products were sent to Macrogen Europe
(Amsterdam, the Netherlands) and sequenced on an ABI 3730
XL capillary sequencer using the KB3730-Pop7-BDTv3
dye set.

Contigs were assembled in PhyDE v.09971 after prior
inspection of pherograms for erroneous base calls. A motif-
based approach (Lohne & Borsch, 2005) was used to align
the sequences using PhyDE (Miiller & al., 2010) after initial
pre-alignment with the MUSCLE plug in. Short regions
of uncertain homology (hotspots) were excluded from the an-
alyses. Gaps were coded using the simple indel coding method
(Simmons & Ochoterena, 2000) as implemented in SeqState
v.1.4.1 (Miiller, 2005). Consensus DNA sequences were sub-
mitted to ENA (European Nucleotide archive, www.ebi.ac.uk/
ena/) using the software tool annonex2embl v.1.0.3 (Gruen-
staecudl, 2020). The combined multiple sequence alignment
with annotated hotspots is provided in suppl. Appendix S1
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and the corresponding matrix used for analysis in suppl.
Appendix S2; the ITS alignment is found in suppl. Appendix
S3 and the corresponding matrix in suppl. Appendix S4.

Phylogenetic analyses. — Parsimony analysis (MP) was
performed in PAUP* v.4.0b10 (Swofford, 2008) using the com-
mands obtained from the parsimony ratchet (Nixon, 1999)
as implemented in PRAP (Miiller, 2004). The files generated
by PRAP included all characters with equal weight and trea-
ted the gaps as missing characters. Ratchet settings included
200 iterations, unweighting 25% of the positions randomly
(weight = 2) and 100 random additional cycles. Jackknife
(JK) support was obtained by a single heuristic search in
PAUP within each of 10,000 JK pseudo-replicates, tree
bisection-reconnection branch swapping, and 36.79% of
characters being deleted in each replicate.

Bayesian inference (BI) was performed in MrBayes
v.3.2.7.a (Ronquist & al., 2011) using the CIPRES portal
(Miller & al., 2010). We chose the optimal nucleotide substi-
tution models for our matrices using jModelTest v.2.1.7
(Darriba & al., 2012) under the Akaike information criterion
(AIC). Matrices were obtained from partitions corresponding
to individual genomic regions (Table 1, also for the best-fit
models). Regarding the indels, we used the model proposed
by Ronquist & al. (2011), which is the F81 like model. We
realized four runs each with four chains performed for
50 million generations, for the plastid dataset and 20 million
generations for the nuclear dataset, sampling every 10,000th
generation. We verified the convergence of the runs using the
average standard deviation of split frequencies and post burn-
in effective sampling size (ESS). The first 10% of trees were
discarded as burn-in, and the remaining trees were used to con-
struct a 50% majority-rule consensus tree.

Table 1. Summary of character statistics, evolutionary models and tree statistics for each dataset under parsimony (MP), maximum likelihood (ML),

and Bayesian inference (BI).

Combined

rps4-trnL-F trnK-matK rpll6 petD plastid ITS
Number of taxa 103 103 103 103 103 66
Aligned length (bp) 2133 3138 1128 1333 7732 761
Parsimony-informative characters 356 529 237 265 1036 236
Consistency index 0.813 0.789 0.768 0.812 0.689 0.567
Retention index 0.897 0.901 0.866 0.933 0.828 0.767
Tree length 889 1376 604 532 3923 993

spacer rps4, trnK intron, rpl16 intron spacer petD,

trnT exon trnK exon petD exon

. spacer trnT-trnL, matK petD intron

Partition trnl exon

trnL intron, spacer trnK intron 2,

trnL-trnF, trnF trnK exon 2,

spacer, psbA

Substitution model GTR +T" GTR +T GTR +T" GTR +1 partitioned GTR+1+T

GTR +T GTR +T GTR +T"

GTR +T GTR +T
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Maximum likelihood (ML) analyses were performed
using RAXML v.8.2.12 in CIPRES. Rapid bootstrap support
(BS) was estimated based on the majority-rule consensus tree
from 1000 pseudo-replicates with 200 searches. The models
general time-reversible (GTR) + I' and binary (BIN) + I" were
used for the nucleotide and indel partitions, respectively.

The 50% majority-rule consensus tree obtained in MrBayes
was processed in TreeGraph v.2.14.0-771 (Stover & Miiller,
2010).

Assessment of morphological characters and ancestral
character state reconstruction. — Morphological characters
were selected that have been used to diagnose genera and sec-
tions in the Samydeae. The characters and their states were the
following: (1) sexual system (0 = bisexual, 1 = dioecious) and
(2) calyx lobes fused into a tube (0 = absent, 1 = present).
Characters 1 and 2 were used to diagnose Neoptychocarpus
(Buchheim, 1959; Sleumer, 1980; Gentry, 1996). We also as-
sessed diagnostic characters for the genus Casearia, which
were (3) presence of pellucid dots on the leaves (0 = absent,
1 = present; see Fig. 1), (4) the number of stamens (1 = 1-6,
2 = 7-12, 3 >12), as the number of stamens was used to
distinguish Casearia species with usually 7 to 12 stamens,
whereas species of Laetia, Samyda and Zuelania possess
more (Sleumer, 1980), and (5) the presence of staminodes
(0 = absent, 1 = present) (Warburg, 1895; Hutchinson, 1967
Sleumer, 1980). We also looked at (6) the arrangement of
the stamens (0 = spiral, 1 = uniseriate) and (7) the inflores-
cence type (0 =panicle, 1 = catkin, 2 =raceme/corymb, 3 = fas-
cicle/glomerule, 4 = cyme, 5 = solitary). In order to limit the
number of states that can be handled by BayesTraits (Pagel
& Meade, 2006), we grouped together the states “raceme”
and “corymb” because a corymb can be understood as a
specialized raceme. We also combined “fascicle” and “glom-
erule” since both are very similar and differ solely in the pres-
ence (fascicle) or absence of peduncles (glomerule) (Beentje,
2016). The information on characters and states was obtained
from the literature (Warburg, 1895; Hutchinson, 1967; Sleu-
mer, 1980; Gutiérrez, 2000; Marquete & Mansano, 2012),
herbarium vouchers and protologues. The resulting morpho-
logical character matrix can be found in Appendix 2.

For the reconstruction of ancestral character states, a re-
duced plastid matrix (suppl. Appendix S5) with one sample
per species was employed. From the post burn-in trees in-
ferred with MrBayes, using the above stated specifications,
a maximum credibility tree was generated with Mesquite
v.3.6 (Maddison & Maddison, 2018), and a population of
1000 trees from the MrBayes analysis were randomly se-
lected to consider topological variation. Probabilities for an-
cestral states were estimated in BayesTraits v.2.0.2 (Pagel
& Meade, 2006). Therefore, we generated a command file in
TreeGraph v.2.14.0-771 (Stover & Miiller, 2010) using the
function AddNodes including all relevant nodes for the analy-
sis. We then used a reverse jump Markov chain Monte Carlo
(yMCMC) approach to consider both the phylogenetic uncer-
tainty and the ancestral state uncertainty. An exponential hy-
perprior with the mean on a uniform interval [0—100] was
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employed for each jMCMC run in order to reduce the prob-
lem of assigning arbitral values to the parameters of the prior
distribution. We then visualized the results using the Import
BayesTraits data option in TreeGraph.

Estimation of divergence time. — Divergence time
was estimated using BEAST v.2.6.1, setting up the input file
with BEAUTi (Drummond & al., 2012). We used a log nor-
mal, uncorrelated relaxed clock (UCLN) model with three
calibration points (Drummond & al., 2006) and applied a
GTR + I' model to the plastid matrix (suppl. Appendix S1).
The first calibration point was applied to the Salix-Idesia
clade using a fossil of Pseudosalix, which was found in the
U.S.A. and dated 48 Ma (Boucher & al., 2003). The second
calibration point was applied to the Casearia clade, as de-
fined above, including FEuceraea and Neoptychocarpus
using a fossil of Casearia. It is a pollen fossil found in
Panama and dated 37 Ma (Graham, 1985). The pollen of
Casearia has been studied by Keating (1973) and this partic-
ular pollen was already used in other studies (Davis & al.,
2005; Xi & al., 2012). As it cannot be identified at the spe-
cies level, we assigned it to the crown node of our Casearia
clade. Indeed, it seems that this fossil could be attributed
with certainty to the Casearia genus and it is most similar
to C. sylvestris Sw. Attributing it to the crown group of Case-
aria allows to not underestimate the age of the crown group.
Fossil calibrations are used as a minimum age, and we se-
lected a lognormal distribution, which gives higher probabil-
ities to older ages. We respectively selected 37 Ma and
48 Ma as the minimum age (Casearia and Pseudosalix fos-
sil) and used the age of the Eocene, to which the fossil was
dated as a maximum age. Details of fossil calibration points
are found in suppl. Table S2. We also gave a maximum
age to the root of the tree, using the 92.78 Ma crown group
age of the Malpighiales (Foster & al., 2017). The effect of
the Yule speciation model versus the Birth-Death model as
speciation priors was tested using a stepping-stone sampling
(SSS), with 150 path steps, each with a chain length of
one million iterations. The other parameters were set by de-
fault in BEAST v.2.6.0. We then calculated the log-Bayes
factor (BF; suppl. Table S3) and found that the Yule model
fitted best.

We used BEAST v.2.6.1 under the relaxed clock normal
and Yule model with 50 million generations (logging parame-
ters every 10,000 generations). We used Tracer v.1.7.1 (Ram-
baut & al., 2018) to check for convergence using the effective
sample size (ESS). The first 10% of the Markov chain Monte
Carlo (MCMC) generations were removed as a burn-in and the
post burn-in MCMC runs were summarized using TreeAnno-
tator v.2.6.0 (Drummond & Rambaut, 2007) to generate a
maximum clade credibility tree visualized in FigTree v.1.4.4
(Rambaut, 2010).

Ancestral area reconstruction. — Areas were scored
following Cervantes & al. (2016) as (A) Mexico, (B) Meso-
america, (C) South America, (D) Caribbean Islands and
(E) Africa. The only difference in our area definitions used
here is that (F) stands for Asia, and a separate area is defined
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for New Caledonia (G). Since species limits in Casearia are in
many cases not fully understood and distribution areas depend
on currently accepted names with which specimens are identi-
fied, we preferred to code all samples by their respective areas
from which they were collected. Thus, we were able to test for
phylogeographic patterns in presumably widespread taxa and
to properly code samples in the case currently accepted spe-
cies were not resolved as monophyletic. This was particularly
relevant for our goal to analyse species diversification be-
tween the Caribbean islands and adjacent mainlands. Conse-
quently, the area of occurrence of each individual was coded
rather than the area of distribution of the respective species
corresponding to the currently applied taxon concept. The
ML tree from the analysis of suppl. Appendix S2 was used
in BioGeoBears implemented in RASP v.4 (Yu & al., 2020).
BioGeoBears estimates the ranges of the areas taking into ac-
count processes such as dispersal, extinction, founder-event
speciation and vicariance. We evaluated the models Bayarea-
like, DIVA and DEC and compared the AIC values and like-
lihood ratio tests (LRTs).

B RESULTS

Phylogenetic analyses. — For this study we generated
230 new sequences from four plastid genomic regions. The
concatenated multiple sequence alignment of the four plastid
genomic regions had 8228 positions, of which rps4-trnT-L-F
contributed 2316, trnK-matK-psbA 3260, petD 1395 and rpll6
1257 positions. The matrix used for tree inference had 7733
positions, after exclusion of hotspots (for rps4-trnL-F: three
poly-A microsatellites in alignment positions 434443, 651—
663, 1392-1403, one poly-AT microsatellite in 864879,
seven hotspots of other AT-rich sequence elements of unclear
homology in 980—1000, 1055-1063, 1160-1172, 1609-1627,
18731881, 1923—-1958, 22202234, one poly-T microsatellite
in 2039-2047; for trnK-matK: five poly-A microsatellites in
2565-2578, 2661-2666, 2908-2919, 4910-4921, 5311-5325,
two poly-T microsatellites in 2785-2793, 2891-2894, one
poly-AT microsatellite in 3102-3125, one hotspot of other
AT-rich sequence elements of unclear homology in 5110—
5136; for petD: one poly-A microsatellite in 5881-5888,
three poly-T microsatellites in 6038-6047, 6223-6236,
65286538, and one hotspot of other AT-rich sequence ele-
ments of unclear homology in 6366—-6384; and for rpli6:
three poly-A microsatellites in 7057-7067, 7271-7274,
7364-7372, two hotspots of other AT-rich sequence ele-
ments of unclear homology in 7804-7819, 7925-7981, one
poly-AT microsatellite in 8063—8094. In addition, 381 indels
were coded. The multiple sequence alignment is provided as
suppl. Appendix S1 and the matrix in suppl. Appendix S2 in-
cluding the indels. Sequence statistics, models of sequence
evolution, and tree statistics for the individual genomic re-
gions and concatenated matrices are presented in Table 1.
The plastid trees obtained with BI, ML and MP are mostly
congruent and the ML and MP trees are presented in suppl.
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Figs. S1 and S2. On average, most nodes received signifi-
cant support, with PP > 0.95, and BS as well as JK values
>75 % (Fig. 2).

Phylogenetic relationships inferred from the plastid
genome. — Plastid sequences revealed a well-supported
clade of Samydeae (BI-PP: 1, ML-BS: 100, MP-JK: 99.9),
including Tetrathylacium as well as a Lunania and a Ryania +
Piparea lineage, as successive sisters to a Casearia clade
(PP: 1, BS: 100, JK: 100) that includes the genera Laetia, Sa-
myda, and Zuelania (Fig. 2, clades B3 & B6), which recently
were merged into Casearia. One species of Euceraea and
two species of Neoptychocarpus were found as nested well
inside the Casearia clade (Fig. 2, clade B2). The other gen-
era of Salicaceae appear in an also well-supported sister-
clade to the Samydeae.

Within the Casearia clade we found two well-supported
clades (Clades A and B, Fig. 2). Clade A (PP: 0.98, BS:
60, JK: 63.9) includes species from South America, Mexico
and the Caribbean islands. Two subclades, clade Al (PP:
1, BS: 92, JK: 91.2) and clade A2 (PP: 1, BS: 79, JK: 92.3)
were revealed, the latter of which comprises the samples of
C. sylvestris with the different subspecies from Colombia,
Cuba and Venezuela, which constitute a paraphyletic group
since this clade also includes C. zizyphoides Kunth and
C. selloana Eichler. Clade B (PP: 0.99, BS: 69, JK: 63.4)
comprises species both from the New and the Old World.
Seven well-supported subclades can be distinguished: Clade
B1 (PP: 0.72, BS: 52, JK: 64.2) with all C. arborea (Rich.)
Urb. samples from Colombia, Cuba and Jamaica as well as
C. manausensis Sleumer as one lineage (PP: 1, BS: 97, JK:
63.6) that is sister to C. obliqua Spreng. plus C. ulmifolia
Vahl ex. Vent. (PP: 1, BS: 97, JK: 98.1). Clade B2 (PP: 0.94,
BS: 42, JK: 52.3) comprises the largely Amazonian
Euceraea nitida and two species of the Neotropical genus
Neoptychocarpus. Clade B3 (PP: 0.53, BS: 29, JK: [100])
consists of C. tremula together with species that formerly were
part of the genera Laetia and Zuelania. Clade B4 (PP: 1, BS:
99; JK: 95.6) harbours all individuals of C. corymbosa Kunth.
from the Colombian Caribbean as sister to a sample from
Mexico. Clade B5 (PP: 1, BS: 100; JK: 99.7) comprises
species from the Caribbean islands, C. comocladifolia Vent.
from Hispaniola and C. nitida Jacq., C. crassinervis Urb.,
C. moaensis Vict., C. ophiticola Vict. and C. bissei J.E.Gut.
from Cuba. Clade B6 (PP: 0.83, BS: 65; JK: [97.4]) includes
C. deplanchei Sleumer from New Caledonia together with
species from the Old World, in two well-supported lineages.
One (PP: 1, BS: 73, JK: 60.8) includes three species from Asia
and the other (PP: 0.99, BS: 44, JK: [60.8]) four species from
Africa. Finally, Clade B7 (PP: 1, BS: 71, JK: 74.1) comprises
taxa from Colombia, Ecuador, the Dominican Republic and
Cuba. Casearia dodecandra (Jacq.) T.Samar. & M.H.Alford
(formerly Samyda) is sister to a broadly paraphyletic assem-
blage of individuals from C. aculeata Jacq. that includes indi-
viduals currently identified as C. spinescens from Cuba.

Phylogenetic relationships inferred from ITS. — The
ITS dataset focuses on the Samydeae clade with Xylosma
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Samydeae clade

Fig. 2. Bayesian 50% majority-rule consensus tree of Casearia based on four plastid markers (rps4-trnL-F, trnK-matK, rpll6, petD). Values above
the node indicate posterior probability (PP, bold) and bootstrap support (BS, italics), and Jackknife (JK) support is indicated below the node. Values
in square brackets indicate conflicting topologies between Bayesian analysis and maximum likelihood or Bayesian analysis and parsimony. At the
tip of the node is the DNA number followed by the species name and the country code from where the individual was collected.
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G.Forst as outgroup. This was due to the strongly deviant ITS
sequences in the other lineages of Salicaceae and Lacistemata-
ceae that were not reliably alignable. The multiple sequence
alignment of ITS (suppl. Appendix S3) resulted in 860 posi-
tions, and 63 ITS sequences were newly generated in this
study. The matrix had 763 positions, after exclusion of hot-
spots (alignment positions 128-148, 162—174, 296-305,
350-359, 395409, 589-601, 606—621). In addition, 140 in-
dels were coded (suppl. Appendix S4). Sequence statistics
and models of sequence evolution are presented in Table 1.

The trees obtained with BI, ML and MP are mostly con-
gruent and presented in suppl. Figs. S3 and S4. The Bayesian
majority-rule consensus tree based on the ITS dataset is shown
in Fig. 3. All three tree inference methods resolved a Casearia
clade (PP: 1, BS: 77, JK: 79.31). We found the same nine sub-
clades as in the plastid phylogeny, however, with a lower res-
olution of the early branching in the Casearia clade (Fig. 3).
Euceraea nitida is retrieved together with Neoptychocarpus
with good support (PP: 1, BS: 91, JK: 89.17) and within the
Casearia clade, like in the plastid tree. However, this lineage,
which appears within clade B in the plastid trees, is here de-
picted in a polytomy with other subclades of clade B and a
weakly supported clade A. In the ITS tree, all samples of
C. aculeata appear in a clade with C. spinescens as sister.
Compared to the plastid dataset, the ITS tree presents four ma-
jor sublineages of clade B, namely clade B1, clade B2, clade
B3 p.p. and a clade consisting of clades B3 p.p., B4, B5, B6,
B7, respectively, in a polytomy. Casearia bicolor (formerly
Laetia procera (Poepp.) Eichler) is found as sister of C. suaveo-
lens (formerly L. suaveolens (Poepp.) Benth.) in a polytomy with
clade A and clade B of the ITS tree, and C. fernstroemioides
(= L. ternstroemioides) is part of clade B6 in ITS (Fig. 3) along
with taxa from the Old World.

Ancestral character states. — The matrix of morpholog-
ical characters is provided in Appendix 2. The ancestral
character states are visualized as pie charts in Figs. 4 and 5,
and the exact posterior probabilities calculated with Bayes
Traits for each node can be found in suppl. Table S4 (see
suppl. Fig. S5 for node numbers). The reconstructions in
Figs. 4 and 5 show that the number of stamens between
7 and 12, the presence of staminodes, one series of stamen
and the fasciculate/glomerulate inflorescence are ancestral
characters of Casearia with high probability (respectively
Bayesian posterior probability [BPP] =1, BPP =1, BPP =1
and BPP =0.98, see suppl. Table S4). However, clade B3 with
old Neotropical Laetia and C. tremula seemed to have gained
a number of stamens, as it has more than 12. The analyses in-
dicate that a plesiomorphic character for the clade is the pres-
ence of staminodes, but they are lost in some species of
Casearia (formerly Laetia) and Neoptychocarpus. The fascic-
ulate/glomerulate state is also plesiomorphic for the genus, al-
though Euceraea presents a paniculate inflorescence. The
analyses indicate that more strongly ramified inflorescences
are gained in this lineage and also in clade B4. The presence
of pellucid dots on the leaves has been considered a key char-
acter in the identification of Casearia species. However, our
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ancestral character state reconstruction (Fig. 4) shows the
presence of pellucid dots not only in Casearia but also in Lu-
nania and Piparea, indicating that it arose earlier than the di-
vergence of the actual Casearia clade but was lost again in
Ryania. Interestingly, the vast majority of Casearia species
and all other species of the Samydeae are bisexual. However,
the lineage of Neoptychocarpus evolved dioecy, and Euce-
raea, which also belongs to this lineage, has an unknown
sexual system but it is suspected to be dioecious or androdioe-
cious (Berry & al., 1998). Contrary to the Samydeae, the other
Salicaceae are largely dioecious, and dioecy apparently has
originated early on (Fig. 4).

Divergence time estimates. — The crown group of the
Casearia clade has an Eocene age of 39 Ma (95% highest pos-
terior density [HPD]: 37.04—46.22), whereas the stem dates
back to the Paleocene 50 Ma (95% HPD: 45.09-67.52;
Fig. 6). The African/Asian clade (clade B6) started to diverge
from Neotropical ancestors in the Oligocene (25 Ma; 95%
HPD: 18.01-31.01), and the crown age of the group is Mio-
cene (20 Ma; 95% HPD: 13.6-28.79, node XI). The crown
group of clade A (37 Ma; 95% HPD: 32.32-45.29) is slightly
older than that of clade B (34 Ma; 95% HPD: 26.3—40.47).
The most complex Caribbean clade (clade BS5) originated
around 15 Ma (95% HPD: 12.32-24.28) from South Ameri-
can ancestors, and its crown group started to diversify around
9 Ma (95% HPD: 5.57—-15.35). The other Caribbean lineages
are all younger. The precise ages estimated for all nodes can be
found in suppl. Table S5.

Ancestral areas. — We found the BayArea model with
founder speciation event (BAYAREALIKE+]) to be the
most accurate model to reconstruct the ancestral areas of
Casearia and its relatives. Supplementary Table S6 shows
the log-likelihood (LnL) values and LRT results across all
tested models. The Samydeae including the Casearia clade
originated in South America with multiple migrations to the
Caribbean Islands and one towards the Old World (Fig. 7).
The most comprehensive Caribbean clade (clade BS5) is sister
to a lineage (clade B4) composed of Colombian and Mexican
samples of C. corymbosa, and these two clades are sister
to a mixed Mesoamerican, Caribbean, South American
(Colombia and Guyana) clade B3. Notably, the ancestral
areas reconstructed (Fig. 7) are always in South America,
indicating that the most recent common ancestors of species
in the Caribbean islands came from there. Subclade B4 further
shows C. comocladifolia from the Dominican Republic as
sister to a lineage with endemic taxa from Cuba such
as C. bissei or C. ophiticola, thus suggesting a single com-
mon ancestor for the Cuban species and an early split in
Casearia diversification on different Caribbean islands soon
after a Miocene (crown group age of 9 Ma of clade B5) ar-
rival. The Old World clade clearly has South American an-
cestors (Fig. 7) that apparently split into an African and an
Asian lineage at the beginning of their crown group diversi-
fication. The obtained probabilities for the respective ances-
tral areas in each node of the tree are provided in suppl.
Table S7.
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Fig. 3. Bayesian 50% majority-rule consensus tree of Casearia based on the nuclear marker ITS. Values above the node indicate posterior proba-
bility (PP, bold) and bootstrap support (BS, italics), and Jackknife (JK) support is indicated below the node. Values in square brackets indicate con-
flicting topologies between Bayesian analysis and maximum likelihood or Bayesian analysis and parsimony. At the tip of the node is the DNA
number followed by the species name and the country code from where the individual was collected.
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Fig. 6. Maximum clade credibility (MCC) chronogram obtained in BEAST based on four plastid markers (rps4-trnL-F, trnK-matK, rpl16, petD)
with age estimate using three calibration points. Time interval is indicated in the scale in millions of years ago, yellow stars correspond to the cal-
ibration points. Blue bars represent 95% highest posterior density (HPD) intervals of the divergence times, the number at each node represents the
median age of the most recent common ancestor (MRCA), and the roman numbers correspond to the clades for which ages are given in Table S5.
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Fig. 7. Result of the Bayesian binary method (BBM) analysis for the ancestral area reconstruction obtained with RASP. The pie chart at each node
gives insight into the ancestral geographic range at the different nodes, black represents other ancestral ranges.
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H DISCUSSION

Phylogenetic relationships of Samydeae. — With this
investigation we were able to recover a well-supported Samy-
deae clade (PP: 1, BS: 100, JK: 99.9). This clade includes
Tetrathylacium, Lunania, Ryania, Piparea and a more inclu-
sive also well-supported Casearia clade (Figs. 2, 3). Our mo-
lecular trees therefore considerably advance the previously
existing knowledge (Alford, 2005; Samarakoon, 2015) about
phylogenetic relationships in this part of the Salicaceae. The
Casearia clade includes not only the genera Laetia, Samyda
and Zuelania that were recently merged into Casearia
(Samarakoon & Alford, 2019) but also the Neotropical genera
Euceraea and Neoptychocarpus. The Samydeae are retrieved
as sister to a well-supported clade (Fig. 2) comprising all other
sampled genera of the Salicaceac with Idesia Maxim. and
Salix L. in one subclade and Azara Ruiz & Pav., Flacourtia
Comm. ex L’Hér., Oncoba Forssk. and Xylosma in another.
These findings are in line with the results of Chase & al.
(2002), and Xi & al. (2012) depicting two major lineages
within Salicaceae, although we did not sample Scyphostegia
that appeared as sister to them. More recently, Li & al.
(2019) inferred a lineage of C. decandra and C. velutina as sis-
ter to other Salicaceae in their maximum likelihood analysis of
63 plastid gene sequences, in which other taxa of Samydeae
were not included (Li & al., 2019). We retrieved Tetrathyla-
cium macrophyllum Poepp. as sister to all other Samydeae
with high support based on our combined plastid matrix and
with all three inference methods (Fig. 2). This topology was
also shown by Alford (2005) after combining frnl-F and
ndhF sequence data with his morphological matrix and Luna-
nia parviflora Spruce ex Benth. alone forming the second
branch (Alford, 2005; his fig. 2.8). Also, Ryania speciosa
Vahl and Piparea dentata Aubl. were here inferred as sisters,
as third branch in Samydeae (Fig. 2). The Casearia clade, re-
trieved in our plastid tree with high support (PP: 1, BS:
100, JK: 100; Fig. 2), was also found in the combined morpho-
logical analysis by Alford (2005) with a JK value of 100%,
although the internal relationships of the Casearia clade re-
mained largely unresolved in his study. Now, we found Samyda
dodecandra Jacq. as first branch of the well-supported sub-
clade B7 of the Casearia clade in our plastid and ITS trees
(Figs. 2, 3). The segregate genus Laetia is monophyletic within
the Casearia clade, with L. procera, L. suaveolens and L. tern-
stroemioides retrieved together, however in a weakly supported
subclade B3, along with Zuelania guidonia (Sw.) Britton &
Millsp. and C. tremula (Fig. 2). Thus, our results support the
recent nomenclatural changes made by Samarakoon & Alford
(2019). However, Casearia still appears paraphyletic to Fu-
ceraea and Neoptychocarpus, which were retrieved with good
support within the Casearia clade, in both the plastid and the
nuclear trees (Figs. 2, 3).

Phylogenetic relationships of Casearia. — With the re-
sults of this study (Figs. 2, 3) we present the most comprehen-
sive species-level phylogeny of Casearia to date, sampling
42 currently accepted taxa. Within the monophyletic genus
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Casearia (including Euceraea and Neoptychocarpus), nine
subclades are retrieved that are mostly consistent in composi-
tion when the plastid (Fig. 2) and ITS trees (Fig. 3) are com-
pared. Relationships between these subclades are better
resolved in the plastid trees than with ITS, probably caused
by considerable homoplasy and even alignment uncertainty
due to predominant indels in ITS at larger distances as also ob-
served in other datasets (Fuentes-Bazan & al., 2012; Falcon
Hidalgo & al., 2020). Subclades Al and A2 are consistently
supported as sister by plastid and ITS data, both comprising
South American, Mexican and Caribbean island taxa. The Pa-
laeotropical species were retrieved together in a well-supported
clade (subclade B6) nested among New World Casearia. Direct
sister is subclade B7 including all samples of C. aculeata as well
as C. spinescens from Cuba and C. dodecandra (formerly Sa-
myda dodecandra) branching first. The subclade B5 with spe-
cies from the Caribbean islands is sister to C. corymbosa, a
species very common in the Caribbean part of Colombia but
also distributed in Meso- and South America. Subclade BS5 is
constituted of species that were informally called the Ilicifoliae
group defined by Sleumer (Sleumer, 1980), together with
one new species from Cuba, C. bissei, that are morphologi-
cally different from other Casearia species by forming thick
coriaceous and mostly spiny leaves and having pink or white
flowers (Fig. 1). The Ilicifoliae group is endemic to Hispan-
iola and Cuba, with C. comocladifolia, occurring on the coasts
of Cuba and Hispaniola (Gutiérrez, 2000), as sister to a lineage
of Cuban serpentine endemics (C. bissei, C. crassinervis,
C. moaensis, C. ophiticola). Although C. nitida is not in
the Ilicifoliae group sensu Sleumer, Gutiérrez (1998) al-
ready suggested its affinity with it, which is confirmed by
the molecular results. The well-supported serpentine clade
is in line with what has been found in other flowering plant
genera such as Buxus (Gonzalez Gutierrez, 2014) or Phyl-
lanthus (Falcon Hidalgo & al., 2020). In these cases, the
serpentine-adapted species often also differ by coriaceous
and smaller leaves from their next relatives growing on lime-
stone (Brady & al., 2005; Anacker, 2014). Casearia sect.
Casearia, with C. nitida as type, is paraphyletic to the former
segregate genera Laetia, Samyda and Zuelania and also to Eu-
ceraea and Neoptychocarpus. Casearia sect. Guidonia, with
the type C. spinescens, appears to be very closely related to
C. aculeata and is nested within the C. sect. Casearia, as is
the monotypic C. sect. Endoglossum with C. tremula. Also,
subclade A1 with C. mollis Kunth, C. prunifolia Kunth and rel-
atives belongs to C. sect. Casearia, as currently classified, so
that sect. Crateria with C. sylvestris and relatives becomes
deeply nested in sect. Casearia. Thus, the currently used sec-
tional classification (Sleumer, 1980) is highly artificial.

Some reticulation or incomplete lineage sorting becomes
evident by comparing plastid and nuclear ITS topologies.
Apparently, this only applies to individual taxa or samples
within terminal subclades such as C. spinescens from Cuba,
nested among samples of C. aculeata in the plastid tree
(B7, Fig. 2), whereas it is sister to C. aculeata in the ITS
tree (Fig. 3). At this level, speciation is still ongoing with some
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probability that our dichotomous trees do not fully describe
evolutionary relationships, but also that an even more com-
plete sampling of individuals and populations across the range
of species will yield further insights.

Evolution of morphological characters and circumscrip-
tion of Casearia. — The ancestral character state reconstruc-
tion showed that the crown group of the Casearia clade
(including the segregate genera Euceraea, Laetia, Neoptycho-
carpus, Samyda and Zuelania) is marked by a number of char-
acter state transitions. Several of the states are almost unique
or completely unique to the members of this clade and thus
support the corresponding monophyletic circumscription of
Casearia. The pellucid dots on the leaves (Fig. 4) are a useful
character to recognize Casearia in the field. However, the re-
sults of our analysis show that it is not a synapomorphy for the
genus. Pellucid dots already evolved before the divergence of
Lunania although they were lost in Ryania (Fig. 4). Fascicu-
late and glomerulate inflorescences are almost a synapomor-
phy of the Casearia clade within the Samydeae, although
corymbs and cymose inflorescences, respectively present in
C. corymbosa and Cuban endemic species, are derived from
a fasciculate state. The first is independently gained in
C. corymbosa and C. (= Laetia) ternstroemioides, and the
cymes within the Caribbean subclade B4 (Fig. 5). The pres-
ence of one series of stamens is also almost a synapomorphy
for the Casearia clade, although it got lost again in the Neo-
ptychocarpus sublineage. Laetia and Samyda were recognized
as distinct from Casearia and long accepted as separate gen-
era on the basis of a few characters such as the absence of sta-
minodes and a higher stamen number (Warburg, 1895;
Sleumer, 1980; Samarakoon, 2015). However, our ancestral
character state reconstruction shows that the presence of sta-
minodes is homoplastic as they were lost two times, both in
Neoptychocarpus and in Laetia (Fig. 5; the species C. bicolor
(= L. procera), C. (= L.) suaveolens and C. (= L.) ternstroe-
mioides in clade B3). The position of C. tremula in clade B3
is not resolved so that no conclusion is possible whether stami-
nodes were re-gained in C. tremula or lost after its divergence.
Furthermore, the stamen number is also homoplastic as it in-
creased independently in subclade B3 (C. tremula, C. bicolor
(= L. procera) and C. (= L.) ternstroemioides and in C. lae-
tioides (= Z. guidonia), which are deeply nested in Casearia.
The genus Zuelania can therefore not be distinguished from
Casearia based on a higher number of stamens (de la Sagra,
1845; Sleumer, 1980). Neoptychocarpus is a South American
genus with three species. It was first described by Buchheim
(1959) and separated from Casearia for being dioecious, hav-
ing the calyx lobes fused into a tube in addition to lacking sta-
minodes; however, the transition from bisexual flowers to a
dioecious arrangement of unisexual flowers is frequent in
flowering plants (Renner & Ricklefs, 1995). Within Neotrop-
ical Samydeae, dioecy is only present in Neoptychocarpus and
is also suspected to occur in the genus Fuceraea, although its
mode of reproduction remains unclear (Berry & al., 1998).
Two Old World Samydeae, Osmelia and Pseudosmelia, also
are dioecious (Alford, 2005) The transition from free to fused
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calyx lobes happened multiple times in the evolution of the
Casearia clade, apart from Neoptychocarpus in C. arborea,
C. combaymensis Tul. and the C. aculeata—C. spinescens lin-
eage. Finally, some Casearia species (formerly Laetia) also
lack staminodes, but this is a secondary loss (Fig. 5). There-
fore, both morphology and the molecular phylogeny support
the inclusion of Neoptychocarpus into Casearia. Euceraea
is a South American genus of three species, first described
by Martius (1831) and separated from Casearia for having a
paniculate inflorescence, four perianth parts and a sessile
stigma (Sleumer, 1980; Berry & al., 1998). However, like
Casearia it possesses pellucid dots on the leaves, has eight sta-
men and staminodes. Individuals of Casearia can present four
sepals; the paniculate inflorescence has been independently
gained in the taxon, and other species also present a sessile
stigma such as C. laetioides (= Z. guidonia). Therefore, both
morphology and the molecular phylogeny support the inclu-
sion of Euceraea into Casearia.

Biogeography of the pantropical genus Casearia at a
continental level. — The Salicaceae and the Samydeae are
part of the rapid radiation of the Malpighiales that started in
the Cretaceous (Davis & al., 2005). The origin of the Samy-
deae here estimated as 102 Ma (95% HPD: 86.05-102.08,
stem) and 90 Ma (95% HPD: 64.86-95.04, crown) falls into
a time when the breakup of Gondwana could still have re-
sulted in vicariant biogeographic patterns. The Samydeae
clade is unambiguously South American in origin (Fig. 7).
Our ancestral area reconstruction infers this even for the Sali-
caceae, although additional taxon sampling will be necessary
to better understand the diversification in the other tribes of
Salicaceae. Apparently, there was no migration into or out of
South America within the Samydeae at Gondwanan times.
The Casearia clade started to diversify during the Eocene
(40 Ma, 95% HPD: 37.04-46.22, crown group age), and from
the perspective of the diversification of the pantropical genus
Casearia it is noteworthy that there is a single Old World sub-
clade (B6, labelled as node X in Fig. 7) that diverged from
Neotropical ancestors at the Oligocene/Miocene boundary
(stem age 25 Ma, 95% HPD: 18.01-31.01). In our trees, the
crown group of the Old World subclade is split into an African
and an Asian lineage at 14 Ma (95% HPD: 8.55-22.76). Al-
though our estimation of the crown group age may be slightly
too young, considering that a denser sampling of species from
this subclade may break down the rather long stem, it can be
considered as Miocene with confidence (Fig. 7).

Casearia therefore shows a clear pattern of a South
American ancestral area, from where migration or dispersal
must have occurred towards Africa and Asia. There are two
main hypotheses. One is migration across Laurasia via a se-
ries of connections that may have acted as a huge bridge
(the “North Atlantic Land Bridge”) for plant migrations, at
a time with Eocene paratropical climates (Tiffney, 1985),
considering that the breakup of Gondwana started in the
Southern Hemisphere. Such a scenario was assumed for
Malpighiaceae by Davis & al. (2002), supported by fossils
found in North America and Europe. Our case of the late
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Oligocene/early Miocene stem age (25 Ma, 18.01-31.01 HPD)
of the Old World clade (B6) of Casearia is at the verge of sup-
porting a scenario of Laurasian migration or being too young.
The split into an African and an Asian sublineage of the Old
World subclade of Casearia could be consistent with ancestors
having migrated eastwards, first reaching Africa and then Asia.
However, considering that the African and Asian species of
Casearia sampled so far are resolved into two sister clades,
any further conclusions on the directionality based on the sam-
pling of this investigation are limited. It is noteworthy that the
New Caledonian C. deplanchei is sister to the African plus
Asian clade (Figs. 2, 3) and has diverged already in the early
Miocene (stem age of 19.8 Ma, Fig. 6), whereas the
African-Asian split of the crown group occurred much later
(14.3 Ma). It is therefore questionable whether C. deplan-
chei represents a “Gondwanan relic” or an arrival from other
continents after the breakup of Gondwana. It requires addi-
tional sampling, in particular of SE Asian species of Casearia,
considering that New Caledonian biota have very different ori-
gins (Pillon, 2012).

There are other plant groups for which South America is
the ancestral area, such as the Solanaceae (Dupin & al.,
2017). In that case, many dispersal events from South Amer-
ica to other continents were dated to have occurred well after
the breakup of Gondwana, starting at the end or later than
the Oligocene, mostly into Central and North America. While
the authors do not reject a migration through Beringian land
bridge (Dupin & al., 2017), they favour a transoceanic long-
distance dispersal due to the variety of fruits from dry to fleshy
that can easily be transported through currents or migrating
animals. Contrary to the Solanaceae, which include a large
number of taxa growing in temperate climates, a migration
of Casearia via the Beringia land bridge does not seem to be
likely in Casearia, which is exclusively constituted by tropical
shrubs and trees, for which the climate probably was too cold.
There are other cases in which plants from the Neotropics
migrated to the Old World, through long-distance dispersal
as in the African Tragia/Tragiella lineage (Euphorbiaceae;
Cervantes & al., 2016), the Cissus trianae clade (Vitaceae;
Rodrigues & al., 2014), or Jacquemontia (Convolvulaceae;
Namoff & al., 2010). Long-distance dispersal is also consid-
ered to explain the relatively recent origin of Neotropical Acantha-
ceae from Old World ancestors (Tripp & McDade, 2014)
and it is another hypothesis for Smilax and Solanaceae
(Zhao & al., 2013; Dupin & al., 2017) or Phyllanthus procerus
and relatives (Falcon Hidalgo & al., 2020). Casearia fruits are
small and fleshy, dispersal by birds is therefore a possible mech-
anism given the colourful arils (Howe & Primack, 1975; Howe
& Estabrook, 1977).

Biogeographic relations between the Caribbean is-
lands and adjacent mainland. — The largest Caribbean sub-
clade with mostly Cuban endemics (e.g., C. crassinervis,
C. ophiticola) and the Dominican C. comocladifolia started
to diversify during the late Miocene (9 Ma, 95% HPD:
5.57-15.35, Figs. 6, 7). Studies on other genera that comprise
endemic Caribbean subclades also found similar divergence
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times of their crown groups (Appelhans & al., 2012; Filipo-
wicz & Renner, 2012; Cervantes & al., 2016; Machado
& al., 2018). Indeed, during the late Miocene—Pliocene, the is-
lands were separating from each other, which likely triggered
speciation (Alonso & al., 2012). Whereas Santiago-Valentin
& Olmstead (2004) summarized that most of the mainland
areas adjacent to the Caribbean islands could have been places
of origin for the ancestors of island taxa, some better-resolved
and supported phylogenetic trees point to South American or-
igins as in Brunfelsia (Filipowicz & Renner, 2012), which has
not reached Mesoamerica, and Philodendron (Canal & al.,
2019). However, Cervantes & al. (2016) showed through
their biogeographic analysis of the subfamily Acalyphoideae
(Euphorbiaceae), a speciose group of flowering plants on the
Caribbean islands and as well on all adjacent mainland, that
multiple colonization events from Mexico and Mesoamerica
to the islands occurred since the Miocene.

In the case of Casearia, our results depict multiple migra-
tions of the genus towards the Caribbean from South America,
followed by speciation within the islands, especially Cuba and
Hispaniola. The Caribbean clade is sister to C. corymbosa,
here represented by several samples from Colombia and one
from Mexico (Fig. 2). Due to the current sampling, the origin
of the Caribbean Casearia clade is inferred as South Ameri-
can with the only Mexican individual appearing as sister to a
Colombian clade. Our divergence time estimate indicates that
stem nodes relevant for the split of Caribbean Island lineages
are not older than 12 to 15 Ma (Fig. 6). This also the case for
the shallow clade with C. mollis from Cuba and C. mariquiten-
sis Kunth from Guyana, which are sister to C. arguta from
Mexico (Figs. 2, 3, clade A1). Further sampling of individuals
within widespread species and Mesoamerican-Mexican taxa
will be needed to test if the ancestor of the Cuban-Hispaniolan
Casearia clade B5 in the Miocene really arrived from the
South American continent and to better resolve relationships
in clade Al.

On the other hand, the stem and crown of the Caribbean sub-
clade BS are far too young to assume a migration via a GAAR-
landia land bridge that was advocated to have existed in the
early Eocene ca. 40 Ma (Iturralde-Vinent, 1999). The debate if
such a land bridge existed and if it facilitated the direct migration
of plants to the Caribbean islands from South America is still on-
going (Nieto-Blazquez & al., 2017; Roncal & al., 2020), and our
results add further evidence of Caribbean plant migrations that
do not support the GAARIandia hypothesis.

Contrary to earlier ideas, the closure of the Isthmus of
Panama is often reported as early as Miocene (Bacon & al.,
2015; Cervantes & al., 2016; Sosa & al., 2018) and could have
facilitated the subsequent crossing of relatively short marine
distances. The timing and extent of this American biotic inter-
change is therefore relevant for Caribbean Casearia as a
potential migration route rather than arrivals on Caribbean is-
lands directly from South America. About 24% of Casearia
species occur in Mesoamerica and Mexico, with eight species
occurring only in that area (e.g., C. bartletii Lundell, C. ele-
gans Standl., C. williamsiana Sleumer). However, these are
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still underrepresented in our taxon sampling. Looking at
widespread species, there are more taxa shared only between
South America and the Caribbean islands than taxa shared
only between Mesoamerica and the Caribbean. Our analysis
includes two widely distributed species of Casearia, namely
C. aculeata and C. sylvestris, which occur on most of the Ca-
ribbean Islands, in southern Mexico, Mesoamerica and large
parts of South America (GBIF, 2020). The split into the re-
spective lineages containing these species was inferred to have
occurred 20 Ma (95% HPD: 14.28-25.95, stem age; Fig. 6)
and 37 Ma (95% HPD: 32.32-45.29, stem age; Fig. 6),
respectively.

Our current ancestral area reconstruction (Fig. 7) iden-
tifies South American ancestors for the sampled Caribbean
plants. Whereas the existence of multiple migrations between
mainland and Caribbean islands is suggested by our data, fur-
ther analyses are required to understand the precise patterns,
also because the currently applied species concepts appear to
be very wide, with multiple heterotypic synonyms in both of
these species (Sleumer, 1980; WFO, 2021).

Our gene trees do not entirely correspond to current spe-
cies circumscriptions, which may indicate incomplete lineage
sorting and reticulate speciation. Another explanation may
be that the currently accepted taxa based on few deviating
morphological characters (alpha-taxonomy) do not reflect
meaningful biological entities. Interestingly, Cuba has a mor-
phologically well-defined endemic subspecies Casearia sylves-
tris subsp. myricoides, found on serpentine soil (Gutiérrez,
2000), which appears nested within the C. sylvestris subclade,
although it is distant from Cuban samples of C. sylvestris subsp.
sylvestris. Interestingly, the individual of C. arborea from
Jamaica is found sister to the plant from Colombia in our ITS
tree (Fig. 3), but further sampling of this widespread species
also from the Lesser Antilles and Mesoamerica, as well as phy-
logeographic methods applied to species complexes within
Casearia, will be needed to illuminate their biogeographic
history, which is likely to include more recent dispersals in
addition to migration events in the Miocene. Considering
that the majority of endemic Caribbean species belongs to
more widespread and not endemic genera, further detailed
analyses of such bigger genera will be instrumental to obtain
a full picture of the evolution and diversification of Carib-
bean plants in time and space.

Implications for species delimitation. — Our molecular
phylogenetic results reveal the need to clarify species limits
within Casearia, as some species were retrieved paraphy-
letic to other species currently accepted. This regards to
the widespread C. sylvestris in subclade A2, which is one
of the most common species of the New World in the
currently accepted species classification, ranging from
Argentina and Uruguay to Mexico and to all Caribbean is-
lands. Casearia sylvestris is retrieved paraphyletic to two
South American taxa: Casearia selloana, the type of which
is from Bahia, Brazil, and which was already considered to
be a possible variant of C. sylvestris in very dry habitats
(Sleumer, 1980).
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The second taxon is Casearia zizyphoides, which was
originally described from Venezuela (where our sample is
from) but was also reported from Trinidad and Tobago and
was considered a dry-adapted relative of C. sylvestris (Sleumer,
1980). It can be morphologically distinguished by the mucronate
leaves and the simple style (branched in C. sylvestris). It
should be examined in more detail if the individuals morpho-
logically matching C. zizyphoides are closely related to the
populations of C. sylvestris subsp. myricoides that occur as
xerophytic shrubs over serpentine in Cuba (Gutiérrez, 2000),
given that they appear closely related in our ITS trees, albeit
without statistical support.

Another species retrieved as paraphyletic is Casearia ar-
borea, a widely distributed species from Mexico to northern
Argentina, including the Caribbean islands. It is retrieved to-
gether with C. manausensis, described in 1980 and so far only
reported from Manaus, Brazil (Sleumer, 1980). It appears in
the same group of C. arborea and is morphologically very
similar. Its leaves differ in being hirsutulous beneath at the
midrib and lateral nerves, and C. arborea leaves are reported
to be entirely glabrous. We also retrieved a C. aculeata clade
including C. spinescens in the plastid tree (Fig. 2), whereas
C. spinescens, a widespread species here represented by two
Cuban samples, appears as sister to all other samples from
C. aculeata (Caribbean islands, Colombia, Ecuador) in the
ITS tree (Fig. 3). The topological differences between plastid
and nuclear trees may indicate plastid capture in C. spinescens
and warrant the addition of further material matching the mor-
photype of C. spinescens to test if this evolved once or if the
less numerous flowers in the inflorescences of C. spinescens,
the smaller fruits compared to C. aculeata and a different dis-
tribution of spines on the plant (Gutiérrez, 2000; Sleumer,
1980) are more an adaptive homoplastic trait. Casearia acu-
leata is a widespread species that has more than 20 syno-
nyms and was first described by Jacquin (1760) from a
plant collected in Haiti. No authentic specimen is known
for this species, and an illustration from Plumier (1757:
t. 147, fig. 1) was later designated by Sleumer (1980) as a
lectotype.

B TAXONOMIC TREATMENT

The genera Euceraea and Neoptychocarpus are nested in-
side the Casearia clade, and the morphological characters that
were used to distinguish it from Casearia are homoplastic or
can be well-explained as part of the evolutionary diversifica-
tion of Casearia. In order to make Casearia monophyletic,
the genera Fuceraea and Neoptychocarpus have to be merged.

1. Casearia apodantha (Kuhlm.) de Mestier, Celis & Borsch,
comb. nov. = Ptychocarpus apodanthus Kuhlm. in Arch.
Jard. Bot. Rio de Janeiro 4: 358 1925 = Neoptychocarpus
apodanthus (Kuhlm.) Buchheim in Taxon 8: 76. 1959 —
Lectotype (designated by Sleumer in F1. Neotrop. Monogr.
22: 255. 1980): Brazil, Para, Peixe Boi, fr., Huber s.n.
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(MG barcode MGO0007811; isolectotype: MG barcode
MGO000930 [image!]).

2. Casearia chocoensis (A.H.Gentry & Forero) de Mestier, Ce-
lis & Borsch, comb. nov. = Neoptychocarpus chocoensis
AH.Gentry & Forero in Phytologia 55(6): 368-370.
1984 — Holotype: Colombia, Choco, road (under construc-
tion) to Lloro (2 km S of Yuto) from km 27 of Quibdo—
Istmina road, alt. ca. 100 m, tropical pluvial forest, 05°30’
N, 76°37'W, 1982, Gentry & J. Brand 36955 (COL n.v;
isotypes: F barcode V0060274F [No. 1921760; image!],
K barcode K000471345 [image!], L barcodes L 0539777
[image!] & L 0539778 [image!], MO barcodes MO-279911
[No. 3008215; image!] & MO-279912 [No. 3189823;
image!], NY barcodes 00108117 [image!] & 00108118
[image!], US barcode 00114918 [image!]).

3. Casearia euceraea de Mestier, Celis & Borsch, nom. nov. =
Euceraea nitida Mart., Nov. Gen. Sp. PL. 3: 90, t. 238. 1831,
non Jacq. 1760 — Lectotype (designated here): Colombia,
Amazonas, Rio Caqueta, falls of Aracuara & Montes Cu-
pati, 1885, Martius 3202 (M barcode M-0113016 [image!];
isolectotypes: M barcodes, M-0113013 [image!], M-
0113014 [image!] & M-0113015 [image!]).

Note: The name Casearia nitida Jacq. was validly pub-
lished by Jacquin (1760), and the respective taxon, a species en-
demic to Cuba, is accepted (Gutiérrez, 2000). A new name for
this largely Amazonian species had to be found. The lectotype
is here designated, following the original description of Mar-
tius, and the locality was precised following Dugand (1948).

4. Casearia killipii (Monach.) de Mestier, Celis & Borsch,
comb. nov. = Ptychocarpus killipii Monach. in Phytolo-
gia 2. 432. 1948 = Neoptychocarpus killipii (Monach.)
Buchheim in Taxon 8: 76. 1959 — Holotype: Peru, Loreto,
Mishuyacu near Iquitos, 1929, Killip & Smith 29936
(NY barcode 00108135 [image!]; isotypes: F barcode
V0041365F [No. 615917; image!], L barcode L 0011146
[image!], US barcode 00114915 [image!]).

5. Casearia rheophytica (P.E.Berry & M.E.Olson) de Mestier,
Celis & Borsch, comb. nov. = Euceraea rheophytica P.E.
Berry & M.E.Olson in Brittonia 50(4): 493-496. 1998 —
Holotype: Venezuela, Amazonas: cerro de la Neblina, camp
IV, 15 km NNE of Pico Phelps, N branch of river in canyon,
780 m, 00°51'N, 65°57'W, 1984, R. Liesner 16820 (MO
barcode MO-1921543 [No. 5998402; image!]).

6. Casearia sleumeriana (Steyerm. & Maguire) de Mestier,
Celis & Borsch, comb. nov. = Euceraea sleumeriana
Steyerm. & Maguire in Mem. New York Bot. Gard. 23:
870, fig. 10. 1972 — Holotype: Venezuela, Bolivar, occi-
dental border of the Meseta de Sarisarinama, 1967, Steyer-
mark 97851 (VEN n.v.; isotypes: L barcode L 0010830
[image!]; NY barcode 00107406 [image!]; US barcode
00114815 [image!]).
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H CONCLUSION

We presented here the most comprehensive study to date
of the tribe Samydeae and more precisely of Casearia, based
on five molecular markers from plastid and nuclear DNA. Sa-
mydeae was retrieved as a well-supported clade as was a Case-
aria clade with nine subclades, including accessions from
Euceraea and Neoptychocarpus. The combination of rapidly
evolving plastid genomic regions with high levels of hierar-
chical phylogenetic signal resulted in an overall well-resolved
and supported phylogenetic tree of the Samydeae. Consider-
ing that the topology is largely consistent with the trees in-
ferred from nuclear ITS, our study provides the first picture
on the evolution of Casearia and relatives through time and
space. Our study unravelled that some of the currently ac-
cepted taxon concepts at species level are in conflict with a
more evolutionary based delimitation of these species, in par-
ticular of the taxa considered to be more widespread with
ranges shared between the Caribbean islands and Mesoamer-
ica, Mexico and South America. Further work is needed that
uses a geographically representative sampling within these
taxa, and employs further molecular markers to increase reso-
lution within shallow terminal clades and also network
analyses. Our inference of ancestral areas underscores the im-
portance of both a dense taxon sampling and a thorough
knowledge of species-level taxonomy to illuminate the origin
of the Caribbean flora and its biogeographic relationships. We
have used an approach in which the geographic origin of each
specimen included in the molecular trees was coded, and thus
were able to avoid bias that could have been introduced by ex-
trapolating distributions of taxa without prior clarification of
species limits. Our study shows once again that migrations be-
tween the Caribbean islands and adjacent mainland have been
frequent within genera since the Miocene, and that including
or not including of some species may be fundamental to cor-
rectly infer to geographic origin of the Caribbean flora.
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Martinez-Habibe & al. 2502 (UNO), OV302618, —, HG997897, HG998081, —; Casearia corymbosa Kunth, SAL080, Colombia: Bolivar, M.C. Martinez-
Habibe & al. 2512 (UNO), HG997979, OV302620, HG997899, HG998083, —; Casearia corymbosa Kunth, SAL096, Colombia: La Guajira, M.C.
Martinez-Habibe & al. 2572 (UNO), HG997983, —, HG997903, HG998086, —; Casearia corymbosa Kunth, SAL102, Colombia: La Guajira, M.C. Martinez-
Habibe & al. 2598 (UNO), HG997987, —, HG997907, HG998090, —; Casearia corymbosa Kunth, SAL181, Colombia: Magdalena, M.C. Martinez-Habibe
& al. 2973 (UNO), HG998012, OV302648, HG997929, HG998112, —; Casearia corymbosa Kunth, SAL182, Colombia: Magdalena, M.C. Martinez-Habibe
& al. 2976 (UNO), HG998013, OV302649, HG997930, HG998113, —; Casearia corymbosa Sw., SAL185, Colombia: Magdalena, M.C. Martinez-Habibe
& al. 2982 (UNO), HG998015, OV302651, HG997932, HG998115, FR990836; Casearia corymbosa Kunth, SAL187, Colombia: Magdalena, M.C.
Martinez-Habibe & al. 2986 (UNO), HG998016, OV302652, HG997933, HG998116, —; Casearia corymbosa Kunth, SAL189, Colombia: Magdalena, M.C.
Martinez-Habibe & al. 2988 (UNO), HG998018, OV302654, HG997934, HG998118, —; Casearia crassinervis Urb., SAL002, DB 44704, Cuba: Holguin,
T Borsch & al. 4056 (HAJB, B), HG997942, OV302586, —, HG998052, FR990778; Casearia crassinervis Urb., SALO15, DB 44717, Cuba: Holguin,
N. Koster & al. 2724 (HAJB, B), HG997952, 0V302594, HG997872, HG998058, FR990787; Casearia crassinervis Urb., SAL019, DB 44721, Cuba: Holguin,
S. Fuentes & al. 453 (HAJB, B), HG997956, OV302598, HG997876, HG998062, —; Casearia decandra Jacq., MN078142> (complete genome); Casearia de-
planchei Sleumer, SAL164, DB 44875, New Caledonia, G. Dagostini 783, P 04819071, HG998006, OV302642, HG997925, HG998106, FR990832; Casearia
dodecandra (Jacq.) T.Samar. & M.H.Alford, SAL127, DB 33091, Dominica: Pedernales, W. Greuter 26585 (B), HG997993, OV302629, HG997912,
HG998095, FR990819; Casearia gladiiformis Mast., SAL148, DB 44789, Mozambique, P.C.M. Jansen 7670, BR 0000015960818, HG998003, OV302637,
HG997920, —, FR990827; Casearia glomerata Roxb., SAL142, DB 44783, Hong Kong, L. Tsuen 12687 (BR), HG998000, OV302635, HG997918,
HG998101, FR990825; Casearia grewiifolia Vent., SAL161, DB 44874, Vietnam, U. Swenson 1541 (P), OV302641, HG997924, —, HG998105, FR990831;
Casearia sp., SAL017, DB 44719, Cuba: Holguin, S. Fuentes & al. 442 (HAJB, B), HG997954, OV302596, HG997874, HG998060, FR990789; Casearia ja-
vitensis Kunth, SAL169, DB 44877, French Guyana, J.J. de Granville 17165 (P), —, —, —, —, FR990834; Casearia laetioides (A.Rich.) Northr., SAL139, DB
44780, Cuba: Pinar del Rio, 7' Borsch & al. 5954 (B), HG997999, OV302634, —, HG998100, —; Casearia manausensis Sleumer, SAL053, DB27885, Brasil:
Amazonas, J.L. Santos 855 (B), HG997971, OV302612, HG997890, HG998076, —; Casearia mariquitensis Kunth, SAL054, DB27886, Guyana: Rupununi,
M.J. Jansen-Jacobs 4348 (B), HG997972, —, HG997891, —, —; Casearia moaensis Vict., SAL026, DB 44728, Cuba: Holguin, S. Fuentes & al. 1689 (HAJB,
B), HG997961, OV302603, —, HG998067, FR990795; Casearia mollis Kunth, SAL013, DB 44715, Cuba: Villa Clara, T Borsch & al. 5138 (HAJB, B),
HG997950, OV302592, HG997870, —, FR990785;Casearia mollis Kunth, SAL023, DB 44725, Cuba: Matanzas, T. Borsch & al. 5611 (HAJB, B), —, —,
HG997879, HG998064, FR990793; Casearia mollis Kunth, SAL136, DB 44777, Cuba: Artemisia, S. Fuentes & al. 1976 (HAJB, B), HG997996,
0V302631, HG997915, HG998097, FR990822; Casearia nitida Jacq., SAL021, DB 44723, Cuba: Las Tunas, S. Fuentes & al. 841 (HAJB, B), HG997958,
0V302600, HG997878, —, FR990791; Casearia obliqua Sprengel, SAL058, DB27890, Brasil: Parana, R. Kummrow 3000 (B), HG997974, OV302614,
HG997893, —, FR990806; Casearia ophiticola Vict., SAL020, DB 44722, Cuba: Holguin, S. Fuentes & al. 656 (HAJB, B), HG997957, OV302599,
HG997877, HG998063, FR990790; Casearia ophiticola Vict.,, SAL025, DB 44727 Cuba: Holguin S. Fuentes & al. 1645 (HAJB B), HG99796O

SAL218, DB 44851, Peru Loreto, A. Gentry 29158 (JBGP), HG998025,7, HG997941,7, FR990843 Casearia selloana Eichler, SAL065 DB27897, Brasﬂ
Paraiba do Sul, Schwacke 3215 (B), HG997975, OV302615, HG997894, HG998078, —; Casearia spinescens (Sw.) Griseb., SAL003, DB 44705, Cuba: Hol-
guin, T Borsch & al. 4115 (HAJB, B), HG997943, OV302587, HG997866, HG998053, FR990779; Casearia spinescens (Sw.) Griseb., SAL018, DB
44720, Cuba: Holguin, S. Fuentes & al. 445 (HAJB, B), HG997955, OV302597, HG997875, HG998061, —; Casearia stipitata Mast., SAL128, DB33096,
Cameroon, 4.J. M. Leeuwenberg 9884 (B), HG997994, —, HG997913, HG998096, FR990820; Casearia suaveolens (Poepp.) T.Samar. & M.H.Alford, SAL
153, Peru, M. Rimachi Y. 7666 (BR), HG998005, OV302640, HG997923, —, FR990830; Casearia sylvestris Sw., SAL016, DB 44718, Cuba: Holguin, SF
441 (HAJB, B), HG997953, OV302595, HG997873, HG998059, FR990788; Casearia sylvestris Sw., SAL050, DB27882, Venezuela: Guerico,
H. & E. Walter 236 (B), HG997970, OV302611, —, HG998075, —; Casearia sylvestris Sw., SAL095, Colombia: La Guajira, M.C. Martinez-Habibe & al.
2569 (UNO), HG997982, —, HG997902, —, FR990814; Casearia sylvestris Sw., SAL097, Colombia: La Guajira, M.C. Martinez-Habibe & al. 2581 (UNO),
HG997984, OV302623, HG997904, HG998087, FR990815; Casearia sylvestris Sw., SAL184, Colombia: Magdalena, M.C. Martinez-Habibe & al. 2981
(UNO), HG998014, OV302650, HG997931, HG998114, —; Casearia sylvestris Sw., SAL188, Colombia: Magdalena, M.C. Martinez-Habibe & al. 2987
(UNO) HG998017, OV302653, —, HG998117, FR990837; Casearia sylvestris Sw., SAL200, Colombia: Bolivar, M.C. Martinez-Habibe & al. 3002 (UNO),

- , FR990839; Casearia sylvestris Sw., SAL203, Colombia: Bolivar, M.C. Martinez-Habibe & al. 3005 (UNO), HG998020, —, HG997936,
HG998120 —; Casearia sylvestris Sw., SAL211, Colombia: La Guajira, M.C. Martinez-Habibe & al. 2764 (UNO), HG998023, OV302657 HG997939,
HG998123, —; Caseana sylvestris Sw., SAL022 DB 44724, Cuba: Pinar del Rio, 7' Borsch & al. 5784 (HAJB, B), —, —, —, —, FR990792; Casearia sylvestris
subsp. myricoides (Griseb.) J.E.Gut., SAL010, DB 44712, Cuba: Guantanamo, T. Borsch & al. 4901 (HAJIB, B), HG997948, —, —, —, FR990783; Casearia syl-
vestris subsp. myricoides (Griseb.) J.E.Gut., SAL138, DB 44779, Cuba: Sancti Spiritu, S. Fuentes & al. 1727 (HAJB, B), HG997998, OV302633, HG997917,
HG998099, FR990824; Casearia ternstroemioides (Griseb.) T.Samar. & M.H.Alford, SAL 135, DB 44776, Cuba: Guantanamo, 7. Borsch & al. 4425 (HAJB,
B), HG997995, 0V302630, HG997914, —, FR990821; Casearia tremula (Griseb.) Griseb. ex C.Wright, SAL 170, DB, Nicaragua: Boaco, J.B. Quezada 242 (P),
HG998008, OV302644, HG997927, HG998108, FR990835; Casearia tremula (Griseb.) Griseb. ex C.Wright, SAL 213, DB 44846, Colombia: Bolivar,
V. Londono 408 (JBGP), HG998024, —, HG997940, HG998124, FR990842; Casearia ulmifolia Vahl ex Vent., SAL071, DB27903, French Guyana, S. Mori
21177 (B), HG997976, OV302616, HG997895, HG998079, FR990807; Casearia velutina MN078141% (complete genome); Casearia zizyphoides Kunth,
SAL072, DB27904, Venezuela: Bolivar, J.A. Steyermark 88293 (B), HG997977, OV302617, HG997896, HG998080, FR990808; Euceraea nitida Mart.,
SAL242, Brazil, G. Hobbes 213 (BH), OU452358, —, OU452356, OU452354, —, OU452366; Neoptychocarpus apodanthus (Kuhlm.) Buch., SAL167, DB
44802, French Guyana, O. Lachenaud 2143 (P), HG998007, OV302643, HG997926, HG998107, FR990833; Neoptychocarpus killipii (Monach.) Buch., 4l-
ford & Grandez 3119, AY757040°
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Appendix 2. Matrix of coded of morphological characters. The characters are 1: sexual system (0 = bisexual, 1 = dioecious), 2: calyx lobes fused into a tube
(0 = absent, 1 = present), 3: presence of pellucid dots on the leaves (0 = absent, 1 = present), 4: stamen number (1 = 1-6, 2 = 7-12, 3 >12), 5: presence of
staminodes (0 = absent, 1 = present), 6: arrangement of the stamens (0 = spiral, 1 = uniseriate), 7: inflorescence type (0 = panicle, 1 = catkin, 2 = raceme/
corymb, 3 = fascicle/glomerule, 4 = cyme, 5 = solitary).

Character
Species Code 1 2 3 4 S5 6 7 Source
Azara salicifolia N521 0 0 0 3 1 0 2 Sleumer(1980), Alford (2015)
Casearia commersoniana SAL242 o o0 1 2 1 1 3  Sleumer (1980)
Dovyalis caffra NS535 1 0 0 3 0 0 3 Protologue, herb. specimen
Flacourtia jangomas N483 1 0 0 3 0 0 2 Sleumer(1954), Alford (2015)
Idesia polycarpa N477 1 0 0 3 0 0 0 Yang& Zmarzty (2007)
Lacistema nena N512 0 0 0 1 0 0 1 Sleumer(1980), Macbride (1941)
Ryania speciosa var. subuliflora SAL152 0 0 0 3 0 0 5 Sleumer(1980), Alford (2015)
Salix purpurea N504 1 0 0 1 0 0 1 Argus(1986), herb. specimen
Salix reticulata N507 1 0 0 1 0 0 1 Argus(1997), herb. specimen
Tetrathylacium macrophyllum SAL149 0 0 0 1 0 - O Sleumer(1980), Alford (2015)
Xylosma spiculifera SAL124 1 0 0 3 0 - 3 Sleumer(1980)
Casearia aculeata SALO14 0 1 1 2 1 1 3 Sleumer (1980), Gutiérrez (2000), herb. voucher
Casearia arborea SAL024 0 1 1 2 1 1 3 Sleumer (1980), herb. voucher
Casearia arguta SAL034 0 0 I 2 1 1 3 Sleumer(1980), herb. voucher
Casearia barteri SAL145 0 0 I 2 1 - 3 Sleumer(1971), Breteler (2008)
Casearia bicolor (Laetia procera) SAL126 0 0 I 3 0 1 3 Sleumer(1980), herb. voucher
Casearia bissei SALO012 o o0 1 2 1 1 4  Gutiérrez (2000)
Casearia combaymensis SALO036 0 1 1 2 1 1 3 Sleumer (1980)
Casearia comocladifolia SAL028 0 0 I 2 1 1 3 Gutiérrez(2000)
Casearia corymbosa SAL189 o o0 1 2 1 1 2  Sleumer (1980)
Casearia crassinervis SALO19 0 0 1 2 1 1 4 GQGutiérrez (2000), herb. voucher
Casearia decandra MNO78142 0 O 1 2 1 1 3 Sleumer (1980)
Casearia deplanchei SAL164 0 0 1 2 1 — 3 Sleumer(1974), Lescot (1980)
Casearia dodecandra (Samyda dodecandra) SAL127 0 0 1 2 1 1 3 Gutiérrez(2000)
Casearia gladiiformis SAL148 o o0 1 2 1 1 3 Sleumer (1971), Alford (2015)
Casearia glomerata SAL142 0 — 1 2 1 - 3 Yang& Zmarzty (2007)
Casearia grewiifolia SAL161 0 - 1 2 1 1 3 Sleumer (1955)
Casearia laetioides (Zuelania guidonia) SAL139 0 0 1 3 1 1 3 Sleumer(1980), Gutiérrez (2000)
Casearia manausensis SALO053 0 0 1 2 1 1 3 Sleumer (1980), herb. voucher
Casearia mariquitensis SALO054 0 0 1 2 1 1 3 Sleumer(1980)
Casearia moaensis SAL026 0 0 I 2 1 1 4 Gutiérrez (2000), herb. voucher
Casearia mollis SAL023 0 0 1 2 1 1 3 Sleumer(1980)
Casearia nitida SALO021 0 0 1 2 1 1 4 Gutiérrez (2000), herb. voucher
Casearia obliqua SALO058 0 0 1 2 1 1 3 Sleumer(1980)
Casearia ophiticola SAL020 0 0 1 2 1 1 4 Gutiérrez(2000)
Casearia prismatocarpa SAL144 0 - 1 2 1 - 3 Breteler (2008)
Casearia prunifolia SAL218 0 0 I 2 1 1 3 Sleumer(1980)
Casearia selloana SALO065 0 0 1 2 1 1 3 Sleumer (1980)
Casearia sp. SALO17 0 - 1 2 1 - 3 Herb. voucher
Casearia spinescens SALO18 0 0 1 2 1 1 3 Gutiérrez(2000)
Casearia stipitata SALI128 o o0 1 2 1 1 3 Sleumer (1971), Breteler (2008)
Casearia suaveolens (Laetia suaveolens) SAL153 0 0 1 2 0 1 3 Sleumer(1980)
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Appendix 2. Continued.
Character
‘ Species Code 1 2 3 4 5 7  Source
Casearia sylvestris SAL097 0 0 1 1 3 Sleumer (1980), Alford (2015), herb. voucher
Casearia sylvestris subsp. myricoides SAL138 o o0 1 2 1 3 Gutiérrez (2000), herb. voucher
Casearia ternstroemioides (Laetia SAL135 0 0 1 3 0 2 Sleumer (1980)
ternstroemioides)
Casearia tremula SAL213 0 0 1 3 1 3 Sleumer (1980), Gutiérrez (2000), Alford (2015), herb.
voucher
Casearia ulmifolia SALO071 o o 1 2 1 3 Sleumer (1980), Marquete & Mansano (2012)
Casearia velutina MNO78141 0 0 1 2 1 3 Sleumer (1955), Yang & Zmarzty (2007)
Casearia zizyphoides SAL072 o o 1 2 1 3 Sleumer (1980), herb. voucher
Euceraea nitida SAL241 - 0 1 2 1 0  Sleumer (1980), Alford (2015)
Lunania parviflora AY756902 0 O 1 2 0 2 Sleumer (1980)
Neoptychocarpus apodanthus SAL167 1 1 1 2 0 3 Sleumer (1980)
Neoptychocarpus killipii AY757040 1 1 1 2 0 3 Sleumer (1980), protologue, Alford (2015)
Oncoba routledgei N667 0 0 0 3 0 5 Type, herb. voucher
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