Skip the header
Open access
Technical Factsheet
Basic
21 November 2019

Cuscuta europaea (European dodder)

Identity

Preferred Scientific Name
Cuscuta europaea L. (1753)
Preferred Common Name
European dodder
Other Scientific Names
Cuscuta halophyta Fr. (1832)
Cuscuta laxiflora Aznav., non Benth. (1905)
Cuscuta major DC. (1671)
Cuscuta viciae W.D.J. Koch, Schnitzl. & Schönh. (1853)
International Common Names
English
greater dodder
French
cuscute d'Europe
Local Common Names
China
ou zhou to si zi
Czech Republic
kokotice evropska
Germany
Europäische Seide
Italy
cuscuta
Japan
kushironenashikazura
Netherlands
groot warkruid
Spain
cabellos de venus
Sweden
naesselsnaerja
EPPO code
CVCEU (Cuscuta europaea)

Pictures

C. europaea flowering on Artemisia vulgaris. Bhutan, 1991.
Flowering stage
C. europaea flowering on Artemisia vulgaris. Bhutan, 1991.
©Chris Parker/Bristol, UK
C. europaea: close-up of flowers on Artemisia vulgaris. Bhutan, 1991.
Flowers
C. europaea: close-up of flowers on Artemisia vulgaris. Bhutan, 1991.
©Chris Parker/Bristol, UK

Distribution

This content is currently unavailable.

Host Plants and Other Plants Affected

Prevention and Control

Cultural Control

Use of clean crop seed is vital. Seed crops which might have been infested should be inspected and cleaned if necessary, or seed should be obtained from a source known to be reliable. Separation of Cuscuta seeds from lucerne is quite successfully achieved by equipment comprising felt- or velvet-covered rollers to which the rough seeds of Cuscuta stick while the smoother crop seeds pass over (see Dawson et al., 1994).Rotation with non-susceptible crops can be helpful. Cereals are virtually immune, but some broad-leaved crops may also be sufficiently resistant, including soyabean, kidney bean (Phaseolus vulgaris), squash (Cucurbita sp.), cucumber and cotton (see Parker and Riches, 1993).Deep shade suppresses the coiling and attachment of Cuscuta; hence encouraging a dense crop canopy is a valuable component of any integrated control programme.

Mechanical Control

The young seedlings of Cuscuta, with rudimentary roots, are readily destroyed by shallow tillage before or after crop establishment. Hand-pulling is suitable only for scattered infestations as the infested crop plants have to be removed with the parasite. Scattered infestations of C. campestris have also been controlled by heat, using a hand-held flame gun. More extensive infestations of that species in lucerne are also sometimes treated with overall flaming, as the crop is able to recover. Close mowing is an alternative means of control in lucerne and clovers.

Chemical Control

There is relatively little information on the use of herbicides against C. europaea but good results have been reported for ethofumesate in sugar beet; propyzamide in sugar beet and onions; and a mixture of chlorthal-dimethyl with chlorpropham in onions and carrots (Foschi and Rapparini, 1977; Rapparini and Campagna, 1998). Other herbicides of value in the control of other Cuscuta species, especially C. campestris, include metham-sodium and dazomet as pre-planting fumigants, trifluralin and related compounds, pendimethalin, fluchloralin, butralin etc, in lucerne and some other legumes. These might be expected to be equally effective against C. europaea.

Biological Control

Biological control of C. europaea has been attempted in Kazakhstan, by augmentative release of Melanagromyza cuscutae but the outcome is not certain (Julien and Griffiths, 1998). This insect has also failed to give convincing results on other Cuscuta spp. The biology and host range of M. cuscutae were studied by Baloch et al. (1967) and reviewed by Spencer (1973). Other attempts at biological control of Cuscuta spp. by insects have mainly involved the gall-forming weevils Smicronyx spp.; S. tartaricus has given encouraging results for control of C. europaea in Kazakhstan when introduced from one region to another (Shinkarenko, 1982b), while among pathogens, Alternaria cuscutacidae and a form of Colletotrichum gloeosporioides [Glomerella cingulata] have given helpful results against C. chinensis and C. australis (Parker and Riches, 1993; Julien and Griffiths, 1998). Prospects for biological control of C. europaea and other Cuscuta spp. have been reviewed by Girling et al. (1979).

Integrated Control

Integrated methods for control of Cuscuta species generally involve the all-important use of clean seed; good field hygiene to eradicate scattered infestations before they get out of control; good control of other weeds which might act as reservoirs of infestation; timing of tillage and planting to maximize destruction of parasite seedlings before sowing; and optimum planting arrangement and growing conditions for a good crop canopy to suppress development of the weed.

Impact

Holm et al. (1979) list C. europaea as a 'serious' weed in Afghanistan and Poland, and a 'principal' weed in Czechoslovakia and the former USSR. It is rarely a major weed over large areas, perhaps because of the lack of attack on Gramineae [Poaceae], and the cleaning effect of cereal crops in rotation. But once contact is established with the host phloem, Cuscuta becomes a powerful sink for metabolites, causing a severe drain on host resources and often completely preventing normal fruit development, as shown by Wolswinkel (1979) for C. europaea on faba bean (Vicia faba). Owing to this powerful metabolic sink effect, studied and described in detail by Wolswinkel and Ammerlaan (1983), the damage to infected hosts can be severe, to the extent of total crop loss. Less dry matter and ash were found in the leaves of parasitized Urtica dioica and Aegopodium podagraria than in those of healthy plants. Leaves of parasitized U. dioica plants contained 8.5% less chlorophyll than uninfested ones (Gal'vidis, 1993). Perhaps the crop most seriously affected is sugarbeet in Italy, the former Yugoslavia and eastern Europe. There is also further economic loss when crop produce, such as clover or lucerne seed, intended for export, is rejected or has to be expensively cleaned.There are occasional reports of toxicity to livestock from Cuscuta species, including toxicity to horses from C. europaea (Pergat and Stolyarova, 1961).

Information & Authors

Information

Published In

History

Published online: 21 November 2019

Language

English

Authors

Metrics & Citations

Metrics

VIEW ALL METRICS

SCITE_

Citations

Export citation

Select the format you want to export the citations of this publication.

EXPORT CITATIONS

View Options

View options

Get Access

Login Options

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Related Articles

Skip the navigation