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ABSTRACT
Myricaria plants are widely distributed in Eurasia and are helpful for windbreak and
embankment protection. Current molecular evidence has led to controversy
regarding species boundaries within the Myricaria genus and interspecific
phylogenetic relationships between three specific species—M. bracteata,
M. paniculata and M. squamosa—which have remained unresolved. This study
treated these three unresolved taxa as a species complex, named the M. squamosa
complex. The genome skimming approach was used to determine 35 complete
plastome sequences and nuclear ribosomal DNA sequences for the said complex and
other closely related species, followed by de novo assembly. Comparative analyses
were conducted across Myricaria to identify the genome size, gene content, repeat
type and number, SSR (simple sequence repeat) abundance, and codon usage bias of
chloroplast genomes. Tree-based species delimitation results indicated that
M. bracteata,M. paniculata andM. squamosa could not be distinguished and formed
two monophyletic lineages (P1 and P2) that were clustered together. Compared to
plastome-based species delimitation, the standard nuclear DNA barcode had the
lowest species resolution, and the standard chloroplast DNA barcode and
group-specific barcodes delimitated a maximum of four out of the five species. Plastid
phylogenomics analyses indicated that the monophyletic M. squamosa complex is
comprised of two evolutionarily significant units: one in the western Tarim Basin and
the other in the eastern Qinghai-Tibet Plateau. This finding contradicts previous
species discrimination and promotes the urgent need for taxonomic revision of the
threatened genusMyricaria. Dense sampling and plastid genomes will be essential in
this effort. The super-barcodes and specific barcode candidates outlined in this study
will aid in further studies of evolutionary history.
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INTRODUCTION
Myricaria Desv. is one of the three genera in the Tamaricaceae family, which was
established by Desvaux (1825) by dividing certain species from the genus Tamarix L.
(Zhang & Zhang, 1984).Myricaria contains about 13 described species, mainly distributed
in the Qinghai-Tibet Plateau (QTP) and adjacent north-temperate areas of the Eurasian
continent (Yang & Gaskin, 2007; Wang et al., 2009). The dominant species, M. germanica
(L.) Desv., as well as two local species, M. dahurica (Willd.) Ehrenb. and M. longifolia
(Willd.) Enrenb. grow in central Asia and western Europe. The remaining ten species, of
which four are endemic to China—M. pulcherrima Batal., M. wardii Marquand,
M. laxiflora (Franch.) P. Y. Zhang & Y. J. Zhang and M. paniculata P. Y. Zhang & Y. J.
Zhang (Wang et al., 2006; Liu, Wang & Huang, 2009; Wang et al., 2009)—are naturally
distributed in the montane areas of western and northern China, close to rivers or lakes.
The latest attempt at taxonomic revision ofMyricaria species based on only morphological
data did not yield satisfactory results (Zhang & Zhang, 1984). Recent extensive field
investigations have revealed that the taxonomic status ofM. squamosa Desv.,M. bracteata
Royle and M. paniculata is ambiguous and problematic (Wang et al., 2006). These three
closely related species have widespread distributions in and around China, and their
morphological differences are not always clear and consistent. In this study,M. squamosa,
M. bracteata andM. paniculata were treated as a species complex, named theM. squamosa
complex.

M. squamosa was the first taxon described by Desvaux in 1825 and is widely distributed
in Central and East Asia from the Altai mountains to the Himalayas. M. bracteata was
described by J.F. Royle in 1839 and is native to central and northern China, western
Himalaya, the Pamirs, and the Tianshan, Sayan and Caucasus Mountains. In their 1984
revision, Zhang and Zhang classified specimens of M. germanica collected in China as a
distinct species, naming itM. paniculata. This species is primarily found in regions ranging
from Siberia to the Qinling and Hengduan Mountains (Zhang & Zhang, 1984;Wang et al.,
2006). Numerous specimens and practical field investigations have shown that the racemes
of M. squamosa are frequently lateral on ancient branches and fascicled in axils, and the
inflorescences of M. bracteata and M. paniculata are usually terminal. M. paniculata has
two inflorescence types: lateral racemose in spring on the branches of the previous year and
paniculate terminal lax in summer and autumn on the current year’s branches.
M. bracteata only has a dense racemose terminal type of inflorescence on the branches of
current year, with bracts that are broadly ovate and broader than both M. squamosa and
M. paniculata (Figs. 1C–1E). Inflorescences on the branches of the previous year typically
have numerous persistent imbricate scales at the base, while inflorescences on the current
year’s branches do not.

The initial step of taxonomic analyses traditionally involves delimiting groups of
individuals based on their morphological resemblance and phenotypic distinctiveness.
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Although M. squamosa, M. bracteata and M. paniculata have slight morphological
differences in inflorescence type, bract size and imbricate scales, there has been debate
about whether these morphological differences are sufficient to justify the delineation of
taxa (Wang et al., 2009). Previous studies on the phylogenetic relationships of Myricaria
species have mainly focused on the specific taxonomic status of M. elegans Royle (Zhang,
Yin & Pan, 2001; Zhang et al., 2003; Hua, Zhang & Pan, 2004).

Species delimitation is crucial in various biological disciplines, such as biogeography,
ecology, and evolutionary biology (Sites & Marshall, 2003; Reydon & Kunz, 2019). Species
serve as a metric in biology and are essential for conservation, as species help
conservationists develop effective strategies for targeted conservation management
(Coates, Byrne & Moritz, 2018). Accurately defining species allows the study of patterns of

Figure 1 Distribution map and morphological characteristics of theMyricaria species. (A) Distribution map of theMyricaria samples collected
in this study. (B) Morphology and habitat of M. paniculata. (C–E) Inflorescences of M. squamosa, M. paniculata and M. bracteata, respectively
(Photos by Guoqian Hao and Huan Hu). Full-size DOI: 10.7717/peerj.16642/fig-1
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genetic diversity and population structure within certain categories, as well as the factors
driving speciation (Nunes, Raxworthy & Pearson, 2022). For example, the discovery and
precise description of Ostryopsis intermedia B. Tian & J. Q. Liu sparked a series of research
projects focused on its homoploid hybrid speciation. These findings provided insights into
how Quaternary climate change triggered its demographic history and biogeography
pattern, as well as the underlying genetic mechanism of its speciation (Tian & Liu, 2010;
Liu et al., 2014; Wang et al., 2021). Similar studies have been conducted on species
exhibiting hybrid speciation, such as Allium przewalskianum Regel, Picea purpurea Mast.,
and Cupressus chengiana S.Y. Hu (Liang et al., 2014; Ru et al., 2018; Li et al., 2020; Wu
et al., 2022).

Since Ernst Mayr proposed the concept of species, it has sparked a heated debate and
resulted in a variety of definitions (Mayden, 1997). The traditional morphological
(taxonomic) species concept is based on discontinuous phenotypic differences across
species at the population level (Cronquist, 1978; Saraswati & Srinivasan, 2016), but it can
be inaccurate when cryptic species, phenotypic polymorphism, or adaptive convergence
are involved. Advances in molecular biology and phylogenetic analytic improvements have
led to increased popularity of the phylogenetic species concept, which refers to a species as
an independent evolutionary lineage, and sidesteps the non-universal criterion of
reproductive isolation, making it applicable to both extant and extinct organisms, as well as
to both sexual and asexual reproductive creatures (Mishler & Donoghue, 1982; Nixon &
Wheeler, 1990). As a result, DNA-based approaches have become increasingly important
in resolving taxonomic uncertainties and identifying evolutionarily significant units (ESUs;
Li et al., 2020).

In an era marked by widespread species extinction and ongoing environmental crises,
DNA barcoding has emerged as a standardized tool for species delimitation due to its
ability to facilitate accurate and direct comparison among different users (Hebert,
Ratnasingham & deWaard, 2003; Li et al., 2015; de Boer et al., 2017; Antil et al., 2023).
DNA barcoding is based on the principle of barcoding gap, which refers to the difference in
genetic distances between intra- and inter-species. Previous studies have assessed different
combinations of nuclear internal transcribed spacers (ITS) with the seven leading
candidate plastid DNA regions (Hollingsworth et al., 2009) as potential core DNA barcodes
discriminating closely related plant species (Kress & Erickson, 2007; Cheng et al., 2021).
However, these combinations may not always provide adequate barcoding gaps and
efficiency compared to the CO1 barcode used in animals, especially in plants with ancestral
polymorphisms, recent speciation, or hybridization (Parks, Cronn & Liston, 2009;
Twyford, 2014). Previous studies using traditional DNA barcodes for the M. squamosa
complex showed poor species resolution due to insufficient specimen sampling and genetic
diversity; M. squamosa, M. bracteata and M. paniculata shared haplotypes and tended to
cluster into one clade (Liu, Wang & Huang, 2009; Wang et al., 2009). This highlights the
need for more extensive taxon sampling and the development of more discerning
super-barcodes to identify the phylogenetic relationships and remove the taxonomic
ambiguity within this genus.
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The chloroplast, a high-copy organelle in plants, is one of the most technically accessible
regions of the plant genome. With the development of next-generation sequencing
technologies and the reduction of sequencing costs, the plastome has gained recognition as
a “super-barcode” with versatile applications in plant phylogenetics, species delimitation
and population genetics, especially in groups with poor morphological differentiation
among species (Parks, Cronn & Liston, 2009; Yang et al., 2013; Li et al., 2015; Ruhsam et al.,
2015; Liu et al., 2021).

Although previous studies have analyzed plastome features with a fewMyricaria species
available in GenBank, there is currently no report on species-specific identification and
determination of species boundaries within the M. squamosa complex (Wang et al., 2020;
Han et al., 2021). Plastome sequences and genome skimming can also be used for nuclear
ribosomal DNA (nrDNA) assembly, enabling the inference of phylogenetic relationships
using both uniparentally-inherited plastomes and biparentally-inherited nuclear genes
(Wen et al., 2018; Liu et al., 2019, 2020a, 2021).

To explore the features and structural differentiation of plastomes among the species in
the M. squamosa complex, and to establish a well-supported phylogenetic framework of
Chinese Myricaria, 25 individual samples, representing three recognized taxa in the M.
squamosa complex through a dense taxon sampling strategy, were used in this study.
Complete plastomes and nrDNA sequences via genome skimming were used to test their
discriminatory power in theM. squamosa species complex, an evolutionarily young lineage
where the traditional DNA barcoding approach has been insufficient. The main purposes
of this study were to: (i) gain insight into the structural features of multiple Myricaria
plastomes; (ii) determine whether plastome sequences can provide a more detailed
resolution of the shallow-level relationships within the M. squamosa complex compared
with nrDNA sequences; and (iii) evaluate the utility of proposed ‘Myricaria-specific’
plastid barcodes for species discrimination.

MATERIALS AND METHODS
Sampling, DNA extraction, and sequencing
A total of 25 samples representing different populations of the M. squamosa species
complex, as well as 10 individual samples of M. laxiflora, M. wardii, M. elegans and
M. rosea W. W. Sm. were collected from southwest and northwest China from July to
September, spanning years 2019 to 2021 (Fig. 1). Additionally, four previously-published
Myricaria plastid genomes were obtained from NCBI. In total, seven recognized taxa of
Myricaria were sampled, with each species having more than two populations. Data from
Tamarix and Reaumuria L. were used as outgroups. Myricaria samples sequenced in the
present study were not included in the list of national key protected plants and not
collected from national parks or natural reserves. The research methods were approved by
the Ethical Experimentation Committee of Zunyi Medical University (Identification Code:
ZMU-BO-1903-169) and followed the legal and ethical standards of the local government.
The formal identifications of all samples were undertaken by Professor Guoqian Hao
(Yibin University) and Associate Professor Qian Wang (Zunyi Medical University) based
on the most widely-used morphologic criterion (Yang & Gaskin, 2007). Voucher
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specimens from each population were then deposited at the Herbarium of Zunyi Medical
University Life Science Museum with specific voucher numbers. Detailed information of
the species and datasets are listed in Table S1.

Total genomic DNA was extracted from approximately 200 mg of silica-dried leaves
using a Magnetic Universal Genomic DNA Kit (DP705; TIANGEN, Beijing, China).
Purified genomic DNA samples were sent to Novogene (Beijing, China) for
next-generation sequencing on the Illumina NovaSeq 6000 platform, with a 2 × 150-bp
paired-end run.

Plastid genome and nrDNA assembly, annotation and visualization
All raw Illumina data, ~2 Gb of raw data for each sample, were filtered using Trimmomatic
0.39 (Bolger, Lohse & Usadel, 2014) under default parameters to remove adapters and
low-quality bases. Clean reads were assembled by Oases 0.2.09 (Schulz et al., 2012) and
Velvet 1.2.10 (Zerbino & Birney, 2008) on an array of single-k assemblies. These assemblies
were merged into a final assembly and then mapped to the publishedM. laxiflora plastome
(GenBank accession: MN867948) using Burrows-Wheeler Alignment tool (BWA) 0.7.17
(Li & Durbin, 2009) and SAMtools 1.10 (Danecek et al., 2021). The orders of aligned
contigs were determined according to the reference genome by Geneious 8.1.4 (Kearse
et al., 2012). The plastid genomes were annotated using Plastid Genome Annotator (PGA;
Qu et al., 2019) and Amborella trichopoda Baill. (AJ506156) was as a reference, and then
manually corrected with Geneious, based on the recommended reference. Chloroplot
(Zheng et al., 2020) was used to illustrate a circular genome map.

The entire internal transcribed spacer sequence (ITS: ITS1, 5.8S, and ITS2) was
concatenated to obtain nrDNA sequences for each sample, using Tamarix chinensis Lour.
(KT377278) as a reference for assembly. This was done using a modified reference-based
method and a reference similar to that of the plastomes (Liu et al., 2020a; Su et al., 2021).
The clean reads were mapped to the reference using Bowtie2 2.4.5 (Langmead & Salzberg,
2012) and SAMtools 1.10 (Danecek et al., 2021), resulting in a BAM file with only mapped
reads. The BAM file was then imported into Geneious 8.1.4 and consensus sequences were
extracted to serve as the final nrDNA sequences.

Myricaria plastome feature analysis
For a comprehensive understanding of the Myricaria plastome features, six individuals
representing six lineages from the complete plastome phylogenetic result were selected for
further comparison.

Codon usage bias and gene selective pressure analysis
The codon usage bias parameters, containing effective number of codons (ENC), relative
synonymous codon usage (RSCU) value and GC content at the first, second, third base and
third synonymous position (GC1, GC2, GC3, and GC3s), were estimated using CUSP and
CHIPS plugins in EMBOSS (Lamprecht et al., 2011) and the CodonW 1.4.2 program
(https://codonw.sourceforge.net/). These analyses were performed on protein-coding
genes (PCGs) larger than 300 bp in size.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 6/31

http://dx.doi.org/10.7717/peerj.16642/supp-2
http://www.ncbi.nlm.nih.gov/nuccore/MN867948
http://www.ncbi.nlm.nih.gov/nuccore/AJ506156
http://www.ncbi.nlm.nih.gov/nuccore/KT377278
https://codonw.sourceforge.net/
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


To accurately detect site-specific positive selection in the protein-coding sequences
(CDSs) of Myricaria, the orthologous PCGs were extracted from six Myricaria plastomes
by a custom Perl script, and aligned using MUSCLE v5 (Edgar, 2021).M. laxiflora was then
compared with the other five individuals in 80 shared unique PCGs to analyze the Ka and
Ks substitution rates and Ka/Ks ratio using KaKs Calculator 2 (Wang et al., 2010) set to
genetic code table 11 and the γ-NG method of calculation (Yang et al., 2023). The selective
pressure of each gene was predicted by considering the ratio of Ka/Ks: Ka/Ks < 1 was
identified as purified selection, Ka/Ks = 1 was neutral selection and Ka/Ks > 1 was
identified as positive selection (Yang & Nielsen, 2000).

Repeat sequences analysis
Simple sequence repeats (SSRs) loci were searched in MISA-web (Beier et al., 2017), with
the threshold value of repeat number as ≥10 for mono-nucleotide repeats, ≥5 for
di-nucleotide repeats, ≥4 for tri-nucleotide repeats, and ≥3 for tetra-, penta-, and
hexa-nucleotide repeats. The maximum sequence length between two SSRs to create a
compound SSR was 100 bp (Yang et al., 2023). Tandem repeats (TRs) were detected by
analyzing the plastome sequences in TRF software with the parameters recommended by
the official manual: 2, 7, 7, 80, 10, 50, 500, -f, -d, -m (Benson, 1999). Four types of long
repetitive sequences (forward, reverse, complement and palindromic) were detected using
the online REPuter program with the maximum repeat size being set at 50 bp, the
minimum repeat size set to 30 bp, and hamming distance set to 3 (Kurtz et al., 2001).
All the repeats identified by these three programs were manually verified to remove
redundant and nested results. It is important to note that repeats located in the IR regions
were counted only once.

Species-specific DNA barcode development
Nucleotide diversity (Pi) of the Myricaria plastid genomes was calculated with a sliding
window analysis using DnaSP v.6.10 (window length = 800 bp and step size = 200 bp;
Rozas et al., 2017). Regions with relatively high Pi were defined as hyper-variable regions,
and tended to also have high species resolution. The discrimination power of specific
barcodes was inferred by a tree-based method using the maximum likelihood (ML)
analysis in IQ-TREE web server (Trifinopoulos et al., 2016).

Chloroplast genome comparison within Myricaria
The web-based mVISTA server (Frazer et al., 2004) was used to identify sequence and
structural variations among Myricaria species under Shuffle-LAGAN mode, using
M. laxiflora as the reference. IRscope was employed to compare and visualize the LSC/IRb
and SSC/IRa boundaries (Amiryousefi, Hyvönen & Poczai, 2018). Evolutionary divergence
(p-distances) among the 39Myricaria accessions were evaluated using MEGA 11 (Tamura,
Stecher & Kumar, 2021).

Phylogenetic profiles and species boundary test
Only cases where more than one individual was sampled per species were used in the
species boundaries assessment in this study. It is worth noting that the published plastome
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of M. prostrata J. D. Hooker & Thomson (MN088847) was excluded from our analysis.
This prevented singleton species samples from occupying phylogenetic space and
‘disrupting’ species-level monophyly, leading to ‘failed’ species recovery (Wang et al.,
2022a).

Four datasets were independently used for species delimitation by a tree-based method:
(1) the complete plastome sequences, (2) standard nrDNA barcodes (ITS), (3) the plastid
DNA barcodes (matK+rbcL+trnH-psbA+trnL-F) recommended by Li et al. (2015) and (4)
the group-specific DNA barcodes selected from hyper-variable regions in plastomes. Each
dataset containing outgroups was aligned using the MAFFT online service with default
parameters (Katoh, Rozewicki & Yamada, 2019) and manually checked using MEGA 7.0
(Kumar, Stecher & Tamura, 2016). The best-fit substitution model for each dataset was
then determined using Jmodeltest 2.1 (Guindon & Gascuel, 2003; Darriba et al., 2012). ML
phylogenetic analyses were then performed through the IQ-TREE web server with 1,000
bootstrap replicates using UFBoot2 and the collapsing near-zero branches option
(Trifinopoulos et al., 2016; Hoang et al., 2018). Bayesian inference (BI) analyses were
inferred using MrBayes v3.2.7 with two simultaneous parallel analyses employing the MC3
algorithm (Ronquist et al., 2012). For each run, four independent Markov Chain Monte
Carlo (MCMC) chains (one cold and three heated) were propagated for 1,000,000
generations each and sampled every 500 generations. The log file was checked to ensure
that the potential scale reduction factor (PSRF) was reasonably close to 1.0 and the
estimated sample size (ESS) was larger than 200 for all parameters. The first 25% of
samples were conservatively discarded as burn-in. The remaining trees were used to
generate a 50% majority-rule consensus tree. The ML and BI trees were annotated and
visualized using ITOL 6.5.8 (Letunic & Bork, 2021).

To check for discrepancies between different ML trees derived from nrITS and plastome
datasets, the ConsensusNetwork algorithm in SplitsTree v4.19.1 (Huson & Bryant, 2006)
was used to compute the consensus splits of the two trees to produce a consensus network.

RESULTS
Characteristics of newly-obtained Myricaria plastomes
The Myricaria plastomes ranged in size from 154,485 to 155,347 bp in length, and
exhibited a quadripartite structure (Fig. 2), including a large single-copy region (LSC,
84,216–84,825 bp), a small single-copy region (SSC, 18,238–18,319 bp), and two inverted
repeated regions (IRs, 25,966–26,149 bp; Table S1). The total GC content was 36.3–36.6%,
with the IRs having a higher GC content (42.4–42.5%) compared to LSC (34.0–34.1%) and
SSC (29.5–29.9%). The Myricaria plastomes encoded a total of 88–90 PCGs (80–81 PCG
species), 8 rRNAs (4 rRNA species) and 37 tRNAs (30 tRNA species; Fig. 2). A total of
19–20 genes were duplicated in the IRs, including 4 rRNAs (rrn16, rrn23, rrn4.5 and rrn5),
7 tRNAs (trnICAU, trnLCAA, trnVGAC, trnIGAU, trnAUGC, trnRACG and trnNGUU) and 8–9
PCG species (rpl2, rpl23, ycf2, ycf15, ndhB, rps12, ycf68, rps7 or the additional ycf15).
Of the 11 genes with introns detected, nine had a single intron (rps16, atpF, petB, petD,
rpl16, rpl2, ndhB, rps12, ndhA), while two had double introns (ycf3, clpP).
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Figure 2 Gene map of the complete Myricaria plastome. Full-size DOI: 10.7717/peerj.16642/fig-2
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The genome size, GC content, gene number and gene order in theMyricaria plastomes
were relatively conserved compared to the outgroups, with the exception of an early
terminator observed in the ycf15 gene in a few individuals (Table S1). The major genes in
the plastome ofMyricaria species could be roughly divided into three functional categories
(Table 1), with genes associated with photosynthesis and self-replication comprising the
majority of the chloroplast genome.

Codon usage bias and gene selective pressure analysis
The number of CDSs in the six newly-assembled Myricaria plastomes ranged from 50
(M. squamosa complex P2) to 51, based on a length threshold of 300 bp for codon
preference analysis. The ENC values varied from 34.44 to 51.66, with the highest observed
in the rps3 gene and lowest values in the rps16 and/or rps14 genes, which frequently had
values smaller than 35. The overall GC content of the plastomes was consistent across all
six samples, ranging from 36.91% to 37.06%. As expected, the GC1, GC2, GC3 and GC3s
contents were also consistent among the plastomes (Table S2).

The number of codons in the CDSs of the six plastomes ranged from 20,520 (M. rosea)
to 20,713 (M. wardii). Among all samples, leucine was the most abundant amino acid, with

Table 1 Gene contents in the chloroplast genomes of Myricaria species.

Category Group of genes Gene names Amount

Photosynthesis Photosystem I psaA, psaB, psaC, psaI, psaJ 4

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN,
psbT, psbZ

15

NADH dehydrogenase ndhA*, ndhB*(2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK 12

cytochrome b/f complex petA, petB*, petD*, petG, petL, petN 6

ATP synthase atpA, atpB, atpE, atpF*, atpH, atpI 6

Large subunit of rubisco rbcL 1

Self-replication Proteins of large ribosomal
subunit

rpl14, rpl16*, rpl2*(2), rpl20, rpl22, rpl23(2), rpl32, rpl33, rpl36 11

Proteins of small ribosomal
subunit

rps11, rps12**(2), rps14, rps15, rps16*, rps18, rps19, rps2, rps3, rps4, rps7(2),
rps8

14

Subunits of RNA polymerase rpoA, rpoB, rpoC1*, rpoC2 4

Ribosomal RNAs rrn16(2), rrn23(2), rrn4.5(2), rrn5(2) 8

Transfer RNAs 37 tRNAs (6 contain an intron, 7 in the IRs) 37

Other genes Maturase matK 1

Protease clpP** 1

Envelope membrane protein cemA 1

Acetyl-CoA carboxylase accD 1

c-type cytochrome synthesis
gene

ccsA 1

Translation initiation factor infA 1

Genes of unknown
function

Proteins of unknown function ycf1, ycf15(2), ycf2(2), ycf3**, ycf4, ycf68(2) 8

Notes:
Gene*, gene with one intron.
Gene**, gene with two introns.
Gene(2), number of copies of multi-copy genes.
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2,142–2,164 codons, while cysteine was the least abundant, with 223–228 codons
(Table S3). In contrast, methionine and tryptophan were encoded by only one codon each,
with codon counts ranging from 470 to 477 and 363 to 378, respectively, and neither
showed codon usage bias (RSCU = 1). Among the six plastomes, the UUA codon for
leucine had the highest RSCU values (2.00–2.04) and the AGC codon for Serine had the
smallest RSCU values (0.33; Table S3). In general, codon usage and amino acid frequency
were similar across the Myricaria taxa.

The nonsynonymous (Ka) and synonymous (Ks) substitution ratios were calculated for
80 shared CDSs in the six Myricaria plastomes, using M. laxiflora as the reference
(Table S4). Out of these orthologous CDSs, 42 genes, including clpP, infA. three atp, three
ndh, five pet, two psa, 15 psb, six rpl, four rps and two ycf genes, had no nonsynonymous
rate change. Additionally, 17 of these genes, as well as the ndhB and rps7 genes, had no
synonymous rate change. Ka/Ks values of the remaining 35 CDSs ranged from 0.0430
(accD. to 2.0038 (ycf1). Most of the genes had a Ka/Ks < 1, ranging from 0.0430 (accD. to
0.9666 (atpI). However, six genes—ycf1 ycf2, rpoA, psaB, psaA and psaJ—occasionally
showed Ka/Ks >1 (Fig. 3).

Sequence repetition in the Myricaria plastomes
A total of 373 SSRs were found in the six plastomes of Myricaria, and six types of repeat
patterns were identified: mono-, di-, tri-, tetra-, and penta-nucleotide, as well as compound
repeats. Mononucleotide repeats were the most abundant, accounting for 61.39% of the
total SSRs (n = 229, ranging from 36 to 43), followed by dinucleotide (15.01%),
trinucleotide (9.38%), tetranucleotide (7.51%), compound (6.17%) and pentanucleotide,
which was extremely rare (0.54%; Table 2). Further comparison of the size and position of
different SSR units revealed that composite SSR varied among the six samples, while
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Figure 3 The Ka/Ks values of 35 protein-coding genes (PCGs) of five Myricaria chloroplast genomes for comparison with M. laxiflora. Ka,
nonsynonymous; Ks, synonymous. A Ka/Ks ratio >1 indicates strong positive selection. Full-size DOI: 10.7717/peerj.16642/fig-3
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mononucleotide repeats of A/T and dinucleotide repeats of AT/TA were almost all
conserved (Table S5).

A total of 129 tandem repeats were found, ranging from 6 to 65 bp. The number of
tandem repeats varied among the samples, with M. elegans having the fewest (15), and
M. squamosa complex P2 and M. rosea having the most (24; Tables 2 and S6).

There were 237 dispersed repeats detected, belonging to four categories: forward,
reverse, complementary and palindromic repeats. Palindrome repeats were the most

Table 2 Type, location and number of simple sequence repeats (SSRs), tandem repeats and dispersed repeats found in the six Myricaria
chloroplast genomes.

Type Numbers of repeats

M. squamosa complex
P1

M. squamosa complex
P2

M. laxiflora M. wardii M. rosea M. elegans Percentage
(%)

SSRs Mononucleotide 43 36 37 37 40 36 61.39

Dinucleotide 9 8 8 10 11 10 15.01

Trinucleotide 6 6 7 6 5 5 9.38

Tetranucleotide 5 4 6 4 4 5 7.51

Pentanucleotide 0 0 0 1 1 0 0.54

Compound 4 5 3 4 4 3 6.17

Total 67 59 61 62 65 59 —

Location IGR 40 39 40 44 45 38 65.95

CDS 11 10 11 10 10 10 16.62

CDS-IGR 1 0 1 0 0 0 0.54

Intron 14 9 8 7 8 10 15.01

Exon 1 1 1 1 2 1 1.88

Tandem
repeats

Total 22 24 23 21 24 15 —

Location IGR 14 15 14 11 13 8 58.14

CDS 7 8 8 8 8 6 34.88

CDS-IGR 1 1 1 1 1 1 4.65

Intron 0 0 0 1 2 0 2.33

Dispersed
repeats

Forward 15 16 13 13 17 12 36.29

Reverse 0 0 9 2 4 9 10.13

Palindrome 19 22 23 15 15 22 48.94

Complement 0 0 4 0 1 6 4.64

Total 34 38 49 30 37 49 —

Location IGR 14 16 41 14 21 41 62.03

CDS 9 9 0 1 2 0 8.86

CDS-IGR 2 2 2 3 2 2 5.49

Intron 5 7 5 8 8 5 16.03

tRNA 3 3 1 3 2 1 5.49

Exon 1 1 0 1 2 0 2.11

Note:
IGR, intergenic region.
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abundant (n = 15–23, 48.94%), followed by forward repeats (n = 12–17, 36.29%; Tables 2
and S7).

All individuals showed similar distributions of both type and location of SSRs, tandem
repeats and dispersed repeats. The majority (58.14–65.95%) of these repetitive elements
were located in the intergenic regions (IGRs; Table 2).

Myricaria-specific chloroplast barcodes
Pi values were used to determine hypervariable regions with potential to develop as
group-specific barcodes for Myricaria. The sliding window analysis result showed that Pi
values in IRs were less than those in the LSC and SSC regions, ranging from 0 to 0.01291. A
total of 11 highly-variable regions (Pi > 0.0097, more than 75% of the maximum) were
identified inMyricaria plastomes, including ten intergenic spacer regions (trnKUUU-rps16,
rps16-trnQUUG, psbI-trnGUCC, trnQUUG-atpA, rpoB-petN, psbM-trnYGUA, ndhF-rpl32,
rpl32-trnLUAG, rps32-ccsA, rps15-ycf1) and one protein-coding region (partial ycf1). These
sequences were all located in LSC and SSC regions, with none found in IR regions (Fig. 4).

Complete plastome sequence comparison of Myricaria species
Six Myricaria plastomes from different lineages in the plastome phylogenetic result were
compared to visualize the overall sequence divergence (Fig. 5). The intergenic spacers
located in single copy regions, namely trnEUUC-trnTGGU, rps4-trnTUGU, trnFGAA-ndhJ,
petA-psbJ and ndhF-rpl32, were found to be the most diverse regions.
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Comparing the IR/LSC and IR/SSC boundaries in the six chloroplast genomes
uncovered stable IRs with little expansion or contraction (Fig. 6). The LSC-IRb borders
were found to be located within the rps19 gene, with a shift of 38 bp inM. elegans and 80 bp
inM. laxiflora. The LSC-IRa borders were located within the trnHGUG gene. The boundary
of SSC-IRb was positioned one base in front of the ndhF gene, while SSC-IRa was
positioned within the ycf1 gene.

Whole plastome as super-barcode for phylogenetic reconstruction of
Myricaria and species discrimination in the M. squamosa complex
The best-fit model of nucleotide substitutions for the ML and BI analysis was TVM+G, as
calculated by jModeltest based on the matrix of the 43 whole plastome sequences aligned
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by MAFFT (163,629 bp in length). The ML tree was generally congruent with the Bayesian
consensus tree (Fig. 7A). TheMyricaria samples formed six monophyletic lineages within
two clearly separated clades, and all posterior probabilities (PP) and bootstrap supports
(BS) were 100%. Clade A consisted of the well-delineated M. elegans and its variation (as
lineage P6), and clade B grouped the remaining Myricaria species sampled in this study.
TheM. squamosa complex was separated into two lineages (P1 and P2), which were sister
toM. laxiflora (P3), and together, were sister to a subclade consisting ofM. wardii (P4) and
M. rosea (P5). In total, the plastome sequences identified six well-supported monophyletic
lineages. Four of these lineages corresponded to recognized species, namely M. laxiflora,
M. wardii,M. rosea andM. elegans, and were successfully discriminated with high support
values. However, M. squamosa, M. bracteata and M. paniculata were found to be non-
monophyletic. Two newly-recovered lineages within cluster I, P1 and P2, were affiliated
with three original taxa from theM. squamosa complex, but had no distinct morphological
characteristics. Lineage P1 was mainly distributed in the eastern QTP, containing 21
populations originally assigned to three taxa of the M. squamosa complex, while P2 was
distributed in the western Tarim Basin, consisting of four populations assigned to the three
taxa of the M. squamosa complex (Fig. 7D).

Sequence divergences among 39 Myricaria plastomes were compared using nucleotide
differences and sequence distances (Table S8). At the inter-species level, the greatest
differentiation occurred between M. laxiflora and M. elegans (p-distance = 8.46 × 10−3),
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whereas the closest species relationship was found between M. wardii and M. rosea (p-
distance = 1.01 × 10−3). At the intra-species level, the maximum p-distances within species
ranged from 2.13 × 10−4 (M. wardii) to 1.38 × 10−3 (M. elegans). The p-distances also
supported the tentative taxonomic treatment of the five species using a tree-based method.
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Phylogenetic reconstruction and species discrimination of potential
barcodes
The aligned nrITS matrix, consisting of 41 samples (35 assembled from genome skimming,
five downloaded from GenBank, and one treated as an outgroup), had a length of 648 bp.
The most appropriate model of nucleotide substitutions for the ML analysis was TIM2+G,
as calculated by jModeltest. The phylogenetic analyses of the nrITS sequences revealed two
distinct parallel clades, similar to the plastome dataset: the poorly-supported M. elegans
clade (clade A, BS = 16.4%, PP = 0.93), and the well-delineated clade B, comprising the
remaining Myricaria species. However, the subclades recovered within the Myricaria
species clade (clade B) and their relationships differed from those observed in the plastome
dataset. Notably, onlyM. laxiflora,M. wardii and P2 clustered separately, whereasM. rosea
accessions did not group together (Fig. 7B). A few individuals from P1 of theM. squamosa
complex (codes 0901 and 0102) failed to form a monophyly. M. wardii appeared to be
totally embedded among M. squamosa complex accessions. Overall, the nrITS dataset
identified only three monophyletic lineages, two of which corresponded to recognized
species, M. laxiflora and M. wardii. A phylogenetic network, reconstructed using the
ConsensusNetwork method (Fig. 7C), unveiled the presence of two well-defined clades,
M. elegans, and the rest of the Myricaria species, which had apparent clustering patterns.
While the topology of the network exhibited slight incongruence with the phylogenetic
trees constructed using the plastome and ITS datasets (Fig. 7), the species group delineated
by the phylogenetic network closely resembled those trees, except forM. rosea. Within the
M. squamosa complex, there were two lineages (P1 and P2) with alternative splits
connecting different sections of M. laxiflora, M. wardii and M. rosea. This reticulate
network rendered the phylogenetic placement of these closely related species unclear.

The aligned standard chloroplast DNA barcode combination matrix was 4,417 bp in
length. The ML analysis of the four-barcode combination revealed four monophyletic
lineages (Fig. 8A). Similar to the phylogenetic analyses of the plastome and ITS datasets,
the Myricaria samples formed two clades; the M. elegans clade, which was highly
supported in this dataset, and the remainingMyricaria species. TheM. squamosa complex
clustered together and was sister toM. laxiflora, whileM. rosea individuals were paralleled
with M. wardii. In total, the standard chloroplast DNA barcodes successfully identified
four monophyletic lineages corresponding to the M. squamosa complex, M. laxiflora,
M. wardii and M. elegans.

Further phylogenetic analyses were performed using each region and a combination of
newly-obtained Myricaria-specific barcodes. The relationships between each
monophyletic lineage were generally consistent with the plastome dataset, although the
relationship between theM. squamosa complex andM. laxiflora showed slight differences.
The single Myricaria-specific barcode and 11-barcode combination both confirmed the
presence of up to five monophyletic lineages corresponding to four recognized species
(Figs. 8B and S1).
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DISCUSSION
Myricaria chloroplast genome features and genome variations
This work conducted the first-ever comparative analysis ofMyricaria chloroplast genomes.
The results showed that all Myricaria chloroplast genomes had a typical quadripartite
structure containing two IR regions, each separated by a LSC and SSC region (Fig. 2), as
reported for other land plants (Wicke et al., 2011; Shi et al., 2023). The Myricaria
chloroplast genomes ranged from 154,485 to 155,347 bp in length and displayed high
conservation, with only minor differences mainly caused by expansion or contraction of
the IR regions (Fig. 6; Yang et al., 2023). Significant IR contractions of rps19 and ycf1 were
observed, which were predicted as the main contributors to the overall variation observed
among Myricaria chloroplast genomes, in line with reports for species in other genera,
including Cerasus, Prunus and Rubus (Yu et al., 2022; Wan et al., 2023). The comparative
analysis and Pi values test (Figs. 4 and 5) showed that the non-coding regions of the LSC
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and SSC regions exhibited higher divergence compared to the IR regions, which is
consistent with the findings of similar studies (Yu et al., 2022; Yang et al., 2023).
Additionally, 11 Myricaria-specific barcodes were identified that have the potential of
reflecting inter-species relationships, with 10 positioned in the IGRs of the LSC and SSC
regions (Figs. 4, 8B and S1).

A total of 114–115 unique genes were annotated in this study (Tables 1 and S1),
including four rRNA genes, 30 tRNA genes, and 80–81 CDSs, similar to previous reports
(Liu et al., 2020b). There were some differences in the genes annotated in this study
compared to previous studies, mainly reflected in CDSs, such as ycf genes (Wan et al.,
2023); specifically, the ycf15 gene was detected in 32Myricaria samples, but absent in three
individuals (codes 7301, 3010 and 2912; Table S1). The discrepancy in the number of
PCGs in the publicly-available Myricaria plastomes may be attributed to a different
annotation strategy.

Evolutionary and phylogenetic analysis of the genus Myricaria
Repetitive sequences are crucial in the rearrangement and diversification of chloroplast
genomes, making them essential for studying indels and substitutions (Cavalier-Smith,
2002; Shi et al., 2023). A total of 129 TRs and 237 dispersed repeats were discovered in this
study, with the majority of them located in the IGRs of the LSC region (Tables 2, S6 and
S7), which is similar to the findings of previous studies (Ruang-Areerate et al., 2021).
Chloroplast SSRs are highly polymorphic and valuable markers for identifying population
genetic structure and phylogeography patterns at both inter- and intra-population levels. A
total of 337 SSRs were detected in this study, with six types in the Myricaria chloroplast
genomes and a predominant mononucleotide repeat of A/T (Tables 2 and S5).

Codons serve as a crucial foundational element linking amino acids, proteins, and
genetic materials in living organisms (Wang et al., 2022b). RSCU results indicated that
Myricaria chloroplast genes tend to end with A/T codons, which is consistent with
observations made in other plants (Campbell & Gowri, 1990). The Myricaria plastomes
exhibited remarkable similarity in GC1, GC2, GC3, GC3s, codon usage, and amino acid
frequency, which is likely related to the conservation of chloroplast genomes within this
taxonomic group.

Ka and Ks nucleotide substitution rates as well as the Ka/Ks ratio are commonly used to
estimate the differences in gene sequences and potential purifying selection in CDSs. A
selective pressures analysis was performed on the orthologous CDSs, and the results
showed that the Ka/Ks ratio for most genes was less than 1, supporting the presence of
purifying selection in the CDSs ofMyricaria chloroplast genomes (Makalowski & Boguski,
1998). However, there were six genes that showed evidence of strong positive selection,
suggesting potential functional divergence or adaptive evolution.

Until now, phylogenetic analyses of the genus Myricaria have been based only on ITS
and cpDNA markers, which have limited variations (Liu, Wang & Huang, 2009; Zhang
et al., 2014). In this study, the inter-lineage relationships identified by the
maternally-inherited plastomes differed from those identified by the biparentally-inherited
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nuclear ITS sequence variations (Figs. 7A and 7B). The position of M. elegans has been a
matter of debate, with arguments for its placement withinMyricaria, Tamarix, or even as a
new genus called Myrtama, an intermediate and hybrid group between Myricaria and
Tamarix (Baum, 1966; Zhang et al., 2003; Gaskin et al., 2004; Hua, Zhang & Pan, 2004;
Zhang et al., 2014; Channa, Shinwari & Ali, 2018). The plastome results of the present
study (Fig. 7A) further support the inclusion of M. elegans within the genus Myricaria, as
all of the Myricaria species, including M. elegans, showed strong support with Myricaria,
with a bootstrap support (BS) of 100% and a posterior probability (PP) of 1. While the ITS
tree in this study (Fig. 7B) showed a parallel relationship between M. elegans and the
remainingMyricaria species, it did not provide sufficient evidence for includingM. elegans
within Myricaria due to insufficient variability features. The M. squamosa complex was
sister toM. laxiflora on the plastome tree, but had a closer relationship with M. wardii on
the ITS tree. Notably, none of the interspecies relationships inferred from the plastome
variations were confirmed by the ITS dataset. Phylogenetic inconsistencies between
different genes or genomes, particularly between plastome and ITS datasets, are prevalent
in most angiosperms (Rokas & Chatzimanolis, 2008; Hu et al., 2016; Villar et al., 2019;
Giaretta et al., 2021; Su et al., 2021). Biological and methodological factors, such as
incomplete lineage sorting (ILS), hybridization, introgression in species undergoing rapid
radiation and convergent molecular evolution, as well as sample error, rate signal, model
selection and heterotachy, can contribute to conflicting gene trees (Zhang et al., 2020; Cai
et al., 2021; Doyle, 2021; Steenwyk et al., 2023). The occurrence of hybridization processes
in Tamaricaceae has frequently been reported, even between extremely different taxa
(Gaskin & Schaal, 2002; Mayonde et al., 2015). For example, reticulate gene flow might
have occurred between M. wardii and M. rosea and the M. squamosa complex. It is also
highly probable that ILS in Myricaria contributes to the persistence of ancestral genetic
polymorphisms during fast speciation events, resulting in phylogenetic discordance
between plastome and ITS datasets. Wider taxonomic sampling and nuclear variations
with sufficient information are necessary to better understand this significant
heterogeneity and to further explore possible causes of these incongruences (Gonçalves
et al., 2019).

Species boundaries within the M. squamosa complex
Results of the present study on the tree-based species boundaries of seven recognized
Myricaria species in China revealed two broad findings:

1) Despite the difficulties in delimiting species within the M. squamosa complex based on
variable flower morphology in a field investigation (Fig. 1), phylogenetic analyses of
plastid datasets, which accumulated mutations, highly supported the incorporation of
three traditionally recognized taxa, M. squamosa, M. bracteata and M. paniculata, into
one species (Figs. 7A, 8 and S1). This suggests the presence of two paraphyletic,
independent ESUs (P1 and P2) within this species complex, but indicates both are still
monophyletic and likely undergoing speciation.
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2) Complete chloroplast genome sequences provide higher species resolution compared to
much shorter standard DNA barcode fragments (two datasets: ITS, and four plastid
barcode combination), allowing for the distinction of six well-supported monophyletic
lineages. For P1 and P2, which may be revised as one taxon, the entire chloroplast
genome sequences were able to discriminate all five tentative species. In contrast, the
ITS region resolved only three lineages, representing two species (Fig. 7B), and standard
plastid DNA barcodes resolved four lineages, representing four species (Fig. 8A).
To further reduce costs, 11 group-specific barcodes were selected from plastomes based
on high Pi values. Among them, a combination of barcodes and four single barcodes
showed the highest discrimination rate of four out of five species, identifying five
lineages (Figs. 8B and S1). Though all barcodes failed to detect theM. rosea lineage, the
trnK-rps16, rps16-trnQ, psbM-trnY and rps15-ycf1 regions are still suitable candidate
group-specific barcodes that offer different details in species delimitation. These
findings contribute to an improved understanding of the widely-used complete plastid
genome as a super-barcode for distinguishing closely related species (Wang et al., 2018;
Dong et al., 2021).

The results of this study support the adoption of five Myricaria clusters as species
(Fig. 7). Phylogenetic results showed that all six lineages within the five clusters formed
distinct evolutionary units, satisfying the criteria for phylogenetic species (de Queiroz &
Donoghue, 1988). However, dividing the M. squamosa complex into two distinct taxa
based on the newly-recovered reciprocally monophyletic lineages (P1 and P2) would
conflict with the former morphological criteria. Phenotypic gaps between species with
genetic distinctions are often considered initial and critical evidence in different species
delimitation methods (Liu, 2016). The five clusters have previously been described as seven
independent species in the morphological species concept (Zhang & Zhang, 1984; Yang &
Gaskin, 2007). However, determining species boundaries between M. bracteata,
M. paniculata and M. squamosa is challenging due to the lack of clear morphological
divergence. The morphological gaps previously utilized to delimit these three taxa appear
to contradict the phylogenetic results. No morphological divergence was observed after
further subdivision of Cluster I into two ESUs, P1 and P2. The P2 lineage, comprising four
populations in the western Tarim Basin (Populations 41, 45, 42, 47), exhibits three distinct
morphological characteristics. Population 41, characterized by lateral racemes on old
branches, and solitary or clustered racemes in axils, has been classified as M. squamosa
based on field surveys and specimen records. Population 42, distinguished by a typical
large panicle terminal on current-year branches starting in September, has been classified
as M. paniculata. Racemes of populations 45 and 47 were terminal on current-year
branches, clustered into spikes, and their bracts were about 1.5 times broader than those of
populations 41 and 42, supporting their classification as M. bracteata. Samples of P1,
collected from the eastern QTP, previously belonged to three different taxa based on minor
morphological differences in inflorescence type, bract size and imbricate scales, but now
form a well-supported monophyletic evolutionary lineage. The presence of interspecific
morphological differences in both P1 and P2 ESUs was confirmed based on sufficient field
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surveys and specimen records. However, such differences lack discontinuous,
nonoverlapping morphological traits, which indicates that they cannot be diagnosed solely
based on the criteria of the morphological species concept. Considering genetic
distinctions, phenotypic gaps and distribution evidence, M. bracteata and M. paniculata
should be classified as two varieties underM. squamosa, as phenotypic plasticity may result
from adaptation to different environments (Stern, 2013; Cheng et al., 2018). Rapid
environmental changes and habitat fragmentation caused by anthropogenic activities can
lead to swift phenotypic changes in species, which may not necessarily reflect evolutionary
responses over deep timescales (Levis & Pfennig, 2016). For instance, the Ericales displayed
elevated conflict and rapid phenotypic change during early radiation (Larson et al., 2020).
The rates of morphological evolution vary significantly across plants, and the underlying
causes of these patterns remain unclear but merit further study. The observed discordance
between genetic and morphological divergence in theM. squamosa species complex can be
attributed to the complex interplay between the micro- and macroevolutionary processes
that drive major organismal changes from the genomic to the phenotypic level (Parins-
Fukuchi, Stull & Smith, 2021). It is also worth noting that morphological features do not
always align with phylogenetic clades, even in closely related groups, as seen in
M. paniculata, which typically has two different inflorescence types, but they do not group
together. Similar difficulties have been encountered in the phylogenetic revision of
Tamarix, such as the incongruence between morphological features and phylogenetic
relationships of T. amplexicaulis, T. canariensis and T. gallica (Villar et al., 2019).
The incongruence between molecular phylogeny and morphological classification reported
here may also largely be attributed to ILS, where the uniparental attribute of plastid and the
biparental-inherited ITS regions do not offer sufficient information to resolve the
phylogeny (Villar et al., 2019; Feng et al., 2022; Liu et al., 2022).

CONCLUSIONS
This study performed comparative analyses of plastomes for multipleMyricaria species at
the population level and tested species resolution of whole plastomes, standard DNA
barcodes and group-specific plastid barcode candidates in the Myricaria. The tree-based
evidence from plastid data highlighted inconsistencies between molecular phylogenetics
and traditional taxonomic systems, suggesting that M. squamosa, M. bracteata and
M. paniculata should be treated as a single taxon. Moreover, this study provides valuable,
comprehensive molecular markers for further species identification for all Myricaria taxa.
Further field investigations of morphological distinctions among all Myricaria species are
proposed, encouraging international cooperation with dense sampling and population
genetics studies.

ACKNOWLEDGEMENTS
The authors thank Mei Zhang and Linrui Yi for their technical assistance.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 22/31

http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This study was supported by grants from the National Natural Science Foundation of
China (31860104), the Guizhou Science and Technology Program (QKHJC-ZK[2022]-
591), Science and Technology Project of Zunyi City (ZSKHHZ[2020]88), and the
Outstanding Young Talent Project of Zunyi Medical University (17zy-002). The funders
had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 31860104.
Guizhou Science and Technology Program: QKHJC-ZK[2022]-591.
Science and Technology Project of Zunyi City: ZSKHHZ[2020]88.
Outstanding Young Talent Project of Zunyi Medical University: 17zy-002.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Huan Hu conceived and designed the experiments, performed the experiments, analyzed
the data, prepared figures and/or tables, authored or reviewed drafts of the article, and
approved the final draft.

� Qian Wang performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

� Guoqian Hao performed the experiments, authored or reviewed drafts of the article, and
approved the final draft.

� Ruitao Zhou analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Dousheng Luo analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Kejun Cao analyzed the data, prepared figures and/or tables, and approved the final
draft.

� Zhimeng Yan performed the experiments, prepared figures and/or tables, and approved
the final draft.

� Xinyu Wang conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Field experiments were approved by the Research Council of Zunyi Medical University
(Project Number: 31860104, Identification Code: ZMU-BO-1903-169).

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 23/31

http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

The annotated plastid genomes and ITS sequences datasets are available at NCBI
GenBank: OP763799–OP763833, OP778385–OP778418, and OP756567.

Data Availability
The following information was supplied regarding data availability:

The raw data of NGS supporting the results are available at GenBank:
SRR22582227–SRR22582261; PRJNA910234.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.16642#supplemental-information.

REFERENCES
Amiryousefi A, Hyvönen J, Poczai P. 2018. IRscope: an online program to visualize the junction

sites of chloroplast genomes. Bioinformatics 34(17):3030–3031
DOI 10.1093/bioinformatics/bty220.

Antil S, Abraham JS, Sripoorna S, Maurya S, Dagar J, Makhija S, Bhagat P, Gupta R, Sood U,
Lal R, Toteja R. 2023. DNA barcoding, an effective tool for species identification: a review.
Molecular Biology Reports 50(1):761–775 DOI 10.1007/s11033-022-08015-7.

Baum B. 1966. Monographic revision of the genus Tamarix. Final Research Report for the United
States Department of Agriculture. Tel Aviv: Department of Botany, Hebrew University.

Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017.MISA-web: a web server for microsatellite
prediction. Bioinformatics 33(16):2583–2585 DOI 10.1093/bioinformatics/btx198.

Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids
Research 27(2):573–580 DOI 10.1093/nar/27.2.573.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence
data. Bioinformatics 30(15):2114–2120 DOI 10.1093/bioinformatics/btu170.

Cai L, Xi Z, Lemmon EM, Lemmon AR, Mast A, Buddenhagen CE, Liu L, Davis CC. 2021. The
perfect storm: gene tree estimation error, incomplete lineage sorting, and ancient gene flow
explain the most recalcitrant ancient angiosperm clade, Malpighiales. Systematic Biology
70(3):491–507 DOI 10.1093/sysbio/syaa083.

Campbell WH, Gowri G. 1990. Codon usage in higher plants, green algae, and cyanobacteria.
Plant Physiology 92(1):1–11 DOI 10.1104/pp.92.1.1.

Cavalier-Smith T. 2002. Chloroplast evolution: secondary symbiogenesis and multiple losses.
Current Biology 12(2):R62–R64 DOI 10.1016/S0960-9822(01)00675-3.

Channa FN, Shinwari Z, Ali SI. 2018. Phylogeny of Tamaricaceae using psbA-trnH nucleotide
sequences. Pakistan Journal of Botany 50:983–987.

Cheng S, Zeng W, Wang J, Liu L, Liang H, Kou Y, Wang H, Fan D, Zhang Z. 2021. Species
delimitation of Asteropyrum (Ranunculaceae) based on morphological, molecular, and
ecological variation. Frontiers in Plant Science 12:681864 DOI 10.3389/fpls.2021.681864.

Cheng F, Zhao S, Schmidt B, Ye L, Hallerman E, Xie S. 2018. Morphological but no genetic
differentiation among fragmented populations of Hemiculter leucisculus (Actinopterygii,
Cyprinidae) from a lake complex in the middle Yangtze, China. Hydrobiologia 809(1):185–200
DOI 10.1007/s10750-017-3464-0.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 24/31

http://www.ncbi.nlm.nih.gov/nuccore/OP763799
http://www.ncbi.nlm.nih.gov/nuccore/OP763833
http://www.ncbi.nlm.nih.gov/nuccore/OP778385
http://www.ncbi.nlm.nih.gov/nuccore/OP778418
http://www.ncbi.nlm.nih.gov/nuccore/OP756567
http://www.ncbi.nlm.nih.gov/sra/SRR22582227
http://www.ncbi.nlm.nih.gov/sra/SRR22582261
http://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA910234
http://dx.doi.org/10.7717/peerj.16642#supplemental-information
http://dx.doi.org/10.7717/peerj.16642#supplemental-information
http://dx.doi.org/10.1093/bioinformatics/bty220
http://dx.doi.org/10.1007/s11033-022-08015-7
http://dx.doi.org/10.1093/bioinformatics/btx198
http://dx.doi.org/10.1093/nar/27.2.573
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1093/sysbio/syaa083
http://dx.doi.org/10.1104/pp.92.1.1
http://dx.doi.org/10.1016/S0960-9822(01)00675-3
http://dx.doi.org/10.3389/fpls.2021.681864
http://dx.doi.org/10.1007/s10750-017-3464-0
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


Coates D, Byrne M, Moritz C. 2018. Genetic diversity and conservation units: dealing with the
species-population continuum in the age of genomics. Frontiers in Ecology and Evolution 6:165
DOI 10.3389/fevo.2018.00165.

Cronquist A. 1978. Once again, what is a species? In: Romberger JA, ed. Biosystematics in
Agriculture. Monclair: Allenheld & Osmun, 3–20.

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T,
McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. GigaScience
10(2):2078 DOI 10.1093/gigascience/giab008.

Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: more models, new heuristics
and parallel computing. Nature Methods 9(8):772 DOI 10.1038/nmeth.2109.

de Boer HJ, Ghorbani A, Manzanilla V, Raclariu AC, Kreziou A, Ounjai S, Osathanunkul M,
Gravendeel B. 2017. DNA metabarcoding of orchid-derived products reveals widespread illegal
orchid trade. Proceedings Biological Sciences 284(1863):20171182 DOI 10.1098/rspb.2017.1182.

de Queiroz K, Donoghue MJ. 1988. Phylogenetic systematics and the species problem. Cladistics
4(4):317–338 DOI 10.1111/j.1096-0031.1988.tb00518.x.

Desvaux NA. 1825. Sur la nouvelle famille de plantes fondée sur le genre Tamarix. Annales des
Sciences Naturelles 4:344–350.

Dong S, Ying Z, Yu S, Wang Q, Liao G, Ge Y, Cheng R. 2021. Complete chloroplast genome of
Stephania tetrandra (Menispermaceae) from Zhejiang Province: insights into molecular
structures, comparative genome analysis, mutational hotspots and phylogenetic relationships.
BMC Genomics 22(1):880 DOI 10.1186/s12864-021-08193-x.

Doyle JJ. 2021. Defining coalescent genes: theory meets practice in organelle phylogenomics.
Systematic Biology 71(2):476–489 DOI 10.1093/sysbio/syab053.

Edgar R. 2021. MUSCLE v5 enables improved estimates of phylogenetic tree confidence by
ensemble bootstrapping. BioRxiv DOI 10.1101/2021.06.20.449169.

Feng S, Bai M, Rivas-González I, Li C, Liu S, Tong Y, Yang H, Chen G, Xie D, Sears KE,
Franco LM, Gaitan-Espitia JD, Nespolo RF, Johnson WE, Yang H, Brandies PA, Hogg CJ,
Belov K, Renfree MB, Helgen KM, Boomsma JJ, Schierup MH, Zhang G. 2022. Incomplete
lineage sorting and phenotypic evolution in marsupials. Cell 185(10):1646–1660.e18
DOI 10.1016/j.cell.2022.03.034.

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. 2004. VISTA: computational tools for
comparative genomics. Nucleic Acids Research 32(Web Server):W273–W279
DOI 10.1093/nar/gkh458.

Gaskin JF, Ghahremani-nejad F, Zhang DY, Londo JP. 2004. A systematic overview of
Frankeniaceae and Tamaricaceae from nuclear rDNA and plastid sequence data. Annals of the
Missouri Botanical Garden 91(3):401–409.

Gaskin JF, Schaal BA. 2002.Hybrid Tamarix widespread in U.S. invasion and undetected in native
Asian range. Proceedings of the National Academy of Sciences of the United States of America
99(17):11256–11259 DOI 10.1073/pnas.132403299.

Giaretta A, Murphy B, Maurin O, Mazine FF, Sano P, Lucas E. 2021. Phylogenetic relationships
within the hyper-diverse genus Eugenia (Myrtaceae: Myrteae) based on target enrichment
sequencing. Frontiers in Plant Science 12:759460 DOI 10.3389/fpls.2021.759460.

Gonçalves DJP, Simpson BB, Ortiz EM, Shimizu GH, Jansen RK. 2019. Incongruence between
gene trees and species trees and phylogenetic signal variation in plastid genes. Molecular
Phylogenetics and Evolution 138(6338):219–232 DOI 10.1016/j.ympev.2019.05.022.

Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies
by maximum likelihood. Systematic Biology 52(5):696–704 DOI 10.1080/10635150390235520.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 25/31

http://dx.doi.org/10.3389/fevo.2018.00165
http://dx.doi.org/10.1093/gigascience/giab008
http://dx.doi.org/10.1038/nmeth.2109
http://dx.doi.org/10.1098/rspb.2017.1182
http://dx.doi.org/10.1111/j.1096-0031.1988.tb00518.x
http://dx.doi.org/10.1186/s12864-021-08193-x
http://dx.doi.org/10.1093/sysbio/syab053
http://dx.doi.org/10.1101/2021.06.20.449169
http://dx.doi.org/10.1016/j.cell.2022.03.034
http://dx.doi.org/10.1093/nar/gkh458
http://dx.doi.org/10.1073/pnas.132403299
http://dx.doi.org/10.3389/fpls.2021.759460
http://dx.doi.org/10.1016/j.ympev.2019.05.022
http://dx.doi.org/10.1080/10635150390235520
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


Han M, Xu M, Wang S, Wu L, Shi Y, Su T. 2021. The complete chloroplast genome sequence of
Myricaria elegans: an endemic species to the Himalayas. Mitochondrial DNA Part B Resources
6(12):3343–3345 DOI 10.1080/23802359.2021.1997111.

Hebert PDN, Ratnasingham S, deWaard JR. 2003. Barcoding animal life: cytochrome c oxidase
subunit 1 divergences among closely related species. Proceedings: Biological Sciences 270(Suppl
1):S96–S99 DOI 10.1098/rsbl.2003.0025.

Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: improving the
ultrafast bootstrap approximation. Molecular Biology and Evolution 35(2):518–522
DOI 10.1093/molbev/msx281.

Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M,
Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K-J,
Kress WJ, Schneider H, van AlphenStahl J, Barrett SCH, van den Berg C, Bogarin D,
Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS,
Ford CS, Hedderson TAJ, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR,
Kim JS, Kim Y-D, Lahaye R, Lee H-L, Long DG, Madriñán S, Maurin O, Meusnier I,
Newmaster SG, Park C-W, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V,
Seberg O, Wilkinson MJ, Yi D-K, Little DP. 2009. A DNA barcode for land plants. Proceedings
of the National Academy of Sciences of the United States of America 106(31):12794–12797
DOI 10.1073/pnas.0905845106.

Hu H, Hu Q, Al-Shehbaz IA, Luo X, Zeng T, Guo X, Liu J. 2016. Species delimitation and
interspecific relationships of the genus Orychophragmus (Brassicaceae) inferred from whole
chloroplast genomes. Frontiers in Plant Science 7:1826 DOI 10.3389/fpls.2016.01826.

Hua L, Zhang D, Pan B. 2004.Molecular systematics of Tamarix and Myricaria in China inferred
from ITS sequence data. Acta Botanica Yunnanica 26(3):283–289.

Huson DH, Bryant D. 2006. Application of phylogenetic networks in evolutionary studies.
Molecular Biology and Evolution 23(2):254–267 DOI 10.1093/molbev/msj030.

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment,
interactive sequence choice and visualization. Briefings in Bioinformatics 20(4):1160–1166
DOI 10.1093/bib/bbx108.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,
Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious
basic: an integrated and extendable desktop software platform for the organization and analysis
of sequence data. Bioinformatics 28(12):1647–1649 DOI 10.1093/bioinformatics/bts199.

Kress WJ, Erickson DL. 2007. A two-locus global DNA barcode for land plants: the coding rbcL
gene complements the non-coding trnH-psbA spacer region. PLOS ONE 2:e508
DOI 10.1371/journal.pone.0000508.

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version
7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870–1874
DOI 10.1093/molbev/msw054.

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. 2001. REPuter:
the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research
29(22):4633–4642 DOI 10.1093/nar/29.22.4633.

Lamprecht AL, Naujokat S, Margaria T, Steffen B. 2011. Semantics-based composition of
EMBOSS services. Journal of Biomedical Semantics 2(Suppl 1):S5
DOI 10.1186/2041-1480-2-S1-S5.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods
9(4):357–359 DOI 10.1038/nmeth.1923.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 26/31

http://dx.doi.org/10.1080/23802359.2021.1997111
http://dx.doi.org/10.1098/rsbl.2003.0025
http://dx.doi.org/10.1093/molbev/msx281
http://dx.doi.org/10.1073/pnas.0905845106
http://dx.doi.org/10.3389/fpls.2016.01826
http://dx.doi.org/10.1093/molbev/msj030
http://dx.doi.org/10.1093/bib/bbx108
http://dx.doi.org/10.1093/bioinformatics/bts199
http://dx.doi.org/10.1371/journal.pone.0000508
http://dx.doi.org/10.1093/molbev/msw054
http://dx.doi.org/10.1093/nar/29.22.4633
http://dx.doi.org/10.1186/2041-1480-2-S1-S5
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


Larson DA, Walker JF, Vargas OM, Smith SA. 2020. A consensus phylogenomic approach
highlights paleopolyploid and rapid radiation in the history of Ericales. American Journal of
Botany 107(5):773–789 DOI 10.1002/ajb2.1469.

Letunic I, Bork P. 2021. Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree
display and annotation. Nucleic Acids Research 49(W1):W293–W296
DOI 10.1093/nar/gkab301.

Levis NA, Pfennig DW. 2016. Evaluating ‘Plasticity-First’ evolution in nature: key criteria and
empirical approaches. Trends in Ecology & Evolution 31(7):563–574
DOI 10.1016/j.tree.2016.03.012.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics 25(14):1754–1760 DOI 10.1093/bioinformatics/btp324.

Li J, Milne RI, Ru D, Miao J, Tao W, Zhang L, Xu J, Liu J, Mao K. 2020. Allopatric divergence
and hybridization within Cupressus chengiana (Cupressaceae), a threatened conifer in the
northern Hengduan Mountains of western China. Molecular Ecology 29(7):1250–1266
DOI 10.1111/mec.15407.

Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. 2015. Plant DNA barcoding: from gene to
genome. Biological Reviews of the Cambridge Philosophical Society 90(1):157–166
DOI 10.1111/brv.12104.

Liang Q, Hu X, Wu G, Liu J. 2014. Cryptic and repeated allopolyploid speciation within Allium
przewalskianum Regel. (Alliaceae) from the Qinghai-Tibet Plateau. Organisms Diversity &
Evolution 15:265–276 DOI 10.1007/s13127-014-0196-0.

Liu JQ. 2016. The integrative species concept and species on the speciation way. Biodiversity
Science 24(9):1004–1008 DOI 10.17520/biods.2016222.

Liu B, Abbott RJ, Lu Z, Tian B, Liu J. 2014. Diploid hybrid origin of Ostryopsis intermedia
(Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Molecular
Ecology 23(12):3013–3027 DOI 10.1111/mec.12783.

Liu B, Hong D, Zhou S, Xu C, Dong W, Johnson G, Wen J. 2019. Phylogenomic analyses of the
Photinia complex support the recognition of a new genus Phippsiomeles and the resurrection of
a redefined Stranvaesia in Maleae (Rosaceae). Journal of Systematics and Evolution
57(6):678–694 DOI 10.1111/jse.12542.

Liu Q, Li X, Li M, Xu W, Schwarzacher T, Heslop-Harrison JS. 2020b. Comparative chloroplast
genome analyses of Avena: insights into evolutionary dynamics and phylogeny. BMC Plant
Biology 20(1):406 DOI 10.1186/s12870-020-02621-y.

Liu B, Liu G, Hong D, Wen J. 2020a. Eriobotrya belongs to Rhaphiolepis (Maleae, Rosaceae):
evidence from chloroplast genome and nuclear ribosomal DNA data. Frontiers in Plant Science
10:3 DOI 10.3389/fpls.2019.01731.

Liu Z, Ma H, Ci X, Li L, Song Y, Liu B, Li H-W, Wang S-L, Qu X-J, Hu J-L, Zhang X-Y,
Conran JG, Twyford AD, Yang J-B, Hollingsworth PM, Li J. 2021. Can plastid genome
sequencing be used for species identification in Lauraceae? Botanical Journal of the Linnean
Society 197(1):1–14 DOI 10.1093/botlinnean/boab018.

Liu Y, Wang Y, Huang H. 2009. Species-level phylogeographical history of Myricaria plants in the
mountain ranges of western China and the origin of M. laxiflora in the Three Gorges mountain
region. Molecular Ecology 18(12):2700–2712 DOI 10.1111/j.1365-294X.2009.04214.x.

Liu X, Zhang S, Cai Z, Kuang Z, Wan N, Wang Y, Mao L, An X, Li F, Feng T, Liang X, Qiao Z,
Nevo E, Li K. 2022. Genomic insights into zokors’ phylogeny and speciation in China.
Proceedings of the National Academy of Sciences of the United States of America
119(19):e2121819119 DOI 10.1073/pnas.2121819119.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 27/31

http://dx.doi.org/10.1002/ajb2.1469
http://dx.doi.org/10.1093/nar/gkab301
http://dx.doi.org/10.1016/j.tree.2016.03.012
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1111/mec.15407
http://dx.doi.org/10.1111/brv.12104
http://dx.doi.org/10.1007/s13127-014-0196-0
http://dx.doi.org/10.17520/biods.2016222
http://dx.doi.org/10.1111/mec.12783
http://dx.doi.org/10.1111/jse.12542
http://dx.doi.org/10.1186/s12870-020-02621-y
http://dx.doi.org/10.3389/fpls.2019.01731
http://dx.doi.org/10.1093/botlinnean/boab018
http://dx.doi.org/10.1111/j.1365-294X.2009.04214.x
http://dx.doi.org/10.1073/pnas.2121819119
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


Makalowski W, Boguski MS. 1998. Evolutionary parameters of the transcribed mammalian
genome: an analysis of 2,820 orthologous rodent and human sequences. Proceedings of the
National Academy of Sciences of the United States of America 95(16):9407–9412
DOI 10.1073/pnas.95.16.9407.

Mayden RL. 1997. A hierarchy of species concepts: the denouement in the saga of the species
problem. In: Claridge MF, Dawah HA, Wilson MR, eds. Species: the Units of Diversity. London:
Chapman & Hall, 381–423.

Mayonde S, Cron G, Gaskin JF, Byrne M. 2015. Evidence of Tamarix hybrids in South Africa, as
inferred by nuclear ITS and plastid trnS-trnG DNA sequences. South African Journal of Botany
96(2):122–131 DOI 10.1016/j.sajb.2014.10.011.

Mishler BD, Donoghue MJ. 1982. Species concepts: a case for pluralism. Systematic Biology
31(4):491–503 DOI 10.1093/sysbio/31.4.491.

Nixon KC, Wheeler QD. 1990. An amplification of the phylogenetic species concept. Cladistics
6(3):211–223 DOI 10.1111/j.1096-0031.1990.tb00541.x.

Nunes LA, Raxworthy CJ, Pearson RG. 2022. Evidence for ecological processes driving speciation
among endemic lizards of Madagascar. Evolution 76(1):58–69 DOI 10.1111/evo.14409.

Parins-Fukuchi C, Stull GW, Smith SA. 2021. Phylogenomic conflict coincides with rapid
morphological innovation. Proceedings of the National Academy of Sciences of the United States
of America 118(19):e2023058118 DOI 10.1073/pnas.2023058118.

Parks M, Cronn R, Liston A. 2009. Increasing phylogenetic resolution at low taxonomic levels
using massively parallel sequencing of chloroplast genomes. BMC Biology 7(1):84
DOI 10.1186/1741-7007-7-84.

Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible
batch annotation of plastomes. Plant Methods 15(1):50 DOI 10.1186/s13007-019-0435-7.

Reydon TAC, Kunz W. 2019. Species as natural entities, instrumental units and ranked taxa: new
perspectives on the grouping and ranking problems. Biological Journal of the Linnean Society
126(4):623–636 DOI 10.1093/biolinnean/blz013.

Rokas A, Chatzimanolis S. 2008. From gene-scale to genome-scale phylogenetics: the data flood
in, but the challenges remain. Methods in Molecular Biology 422:1–12
DOI 10.1007/978-1-59745-581-7.

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference
and model choice across a large model space. Systematic Biology 61(3):539–542
DOI 10.1093/sysbio/sys029.

Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE,
Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets.
Molecular Biology and Evolution 34(12):3299–3302 DOI 10.1093/molbev/msx248.

Ru D, Sun Y, Wang D, Chen Y, Wang T, Hu Q, Abbott RJ, Liu J. 2018. Population genomic
analysis reveals that homoploid hybrid speciation can be a lengthy process. Molecular Ecology
27(23):4875–4887 DOI 10.1111/mec.14909.

Ruang-Areerate P, Kongkachana W, Naktang C, Sonthirod C, Narong N, Jomchai N,
Maprasop P, Maknual C, Phormsin N, Shearman JR, Pootakham W, Tangphatsornruang S.
2021. Complete chloroplast genome sequences of five Bruguiera species (Rhizophoraceae):
comparative analysis and phylogenetic relationships. PeerJ 9(1):e12268
DOI 10.7717/peerj.12268.

Ruhsam M, Rai HS, Mathews S, Ross TG, Graham SW, Raubeson LA, Mei W, Thomas PI,
Gardner MF, Ennos RA, Hollingsworth PM. 2015. Does complete plastid genome sequencing

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 28/31

http://dx.doi.org/10.1073/pnas.95.16.9407
http://dx.doi.org/10.1016/j.sajb.2014.10.011
http://dx.doi.org/10.1093/sysbio/31.4.491
http://dx.doi.org/10.1111/j.1096-0031.1990.tb00541.x
http://dx.doi.org/10.1111/evo.14409
http://dx.doi.org/10.1073/pnas.2023058118
http://dx.doi.org/10.1186/1741-7007-7-84
http://dx.doi.org/10.1186/s13007-019-0435-7
http://dx.doi.org/10.1093/biolinnean/blz013
http://dx.doi.org/10.1007/978-1-59745-581-7
http://dx.doi.org/10.1093/sysbio/sys029
http://dx.doi.org/10.1093/molbev/msx248
http://dx.doi.org/10.1111/mec.14909
http://dx.doi.org/10.7717/peerj.12268
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


improve species discrimination and phylogenetic resolution in Araucaria? Molecular Ecology
Resources 15(5):1067–1078 DOI 10.1111/1755-0998.12375.

Saraswati P, Srinivasan M. 2016. Morphology, taxonomy and concepts of species. In:
Micropaleontology. Cham: Springer, 53–65.

Schulz MH, Zerbino DR, Vingron M, Birney E. 2012. Oases: robust de novo RNA-seq assembly
across the dynamic range of expression levels. Bioinformatics 28(8):1086–1092
DOI 10.1093/bioinformatics/bts094.

Shi W, Song W, Chen Z, Cai H, Gong Q, Liu J, Shi C, Wang S. 2023. Comparative chloroplast
genome analyses of diverse Phoebe (Lauraceae) species endemic to China provide insight into
their phylogeographical origin. PeerJ 11:e14573 DOI 10.7717/peerj.14573.

Sites JW, Marshall JC. 2003. Delimiting species: a Renaissance issue in systematic biology. Trends
in Ecology & Evolution 18(9):462–470 DOI 10.1016/S0169-5347(03)00184-8.

Steenwyk JL, Li Y, Zhou X, Shen X-X, Rokas A. 2023. Incongruence in the phylogenomics era.
Nature Reviews Genetics 24(12):834–850 DOI 10.1038/s41576-023-00620-x.

Stern DL. 2013. The genetic causes of convergent evolution. Nature Reviews Genetics
14(11):751–764 DOI 10.1038/nrg3483.

Su N, Liu B, Wang J, Tong R, Ren C, Chang Z, Zhao L, Potter D, Wen J. 2021. On the species
delimitation of the Maddenia group of Prunus (Rosaceae): evidence from plastome and nuclear
sequences and morphology. Frontiers in Plant Science 12:743643 DOI 10.3389/fpls.2021.743643.

Tamura K, Stecher G, Kumar S. 2021.MEGA11: molecular evolutionary genetics analysis version
11. Molecular Biology and Evolution 38(7):3022–3027 DOI 10.1093/molbev/msab120.

Tian B, Liu T. 2010. Ostryopsis intermedia, a new species of Betulaceae from Yunnan, China.
Botanical Studies 51(51):257–262.

Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online
phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research
44(W1):W232–W235 DOI 10.1093/nar/gkw256.

Twyford AD. 2014. Testing evolutionary hypotheses for DNA barcoding failure in willows.
Molecular Ecology 23(19):4674–4676 DOI 10.1111/mec.12892.

Villar JL, Alonso-Vargas MÁ, Juan A, Gaskin J, Crespo M. 2019. Out of the Middle East: new
phylogenetic insights in the genus Tamarix (Tamaricaceae): phylogenetic insights in Tamarix.
Journal of Systematics and Evolution 57(5):488–507 DOI 10.1111/jse.12478.

Wan T, Qiao BX, Zhou J, Shao KS, Pan LY, An F, He XS, Liu T, Li PK, Cai YL. 2023.
Evolutionary and phylogenetic analyses of 11 Cerasus species based on the complete chloroplast
genome. Frontiers in Plant Science 14:1070600 DOI 10.3389/fpls.2023.1070600.

Wang Z, Cai Q, Wang Y, Li M, Wang C, Wang Z, Jiao C, Xu C, Wang H, Zhang Z. 2022b.
Comparative analysis of codon bias in the chloroplast genomes of Theaceae species. Frontiers in
Genetics 13:1 DOI 10.3389/fgene.2022.824610.

Wang J, Fu C, Mo Z, Möller M, Yang J, Zhang Z, Li D, Gao L. 2022a. Testing the complete
plastome for species discrimination, cryptic species discovery and phylogenetic resolution in
Cephalotaxus (Cephalotaxaceae). Frontiers in Plant Science 13:768810
DOI 10.3389/fpls.2022.768810.

Wang Z, Jiang Y, Bi H, Lu Z, Ma Y, Yang X, Chen N, Tian B, Liu B, Mao X, Ma T, DiFazio SP,
Hu Q, Abbott RJ, Liu J. 2021. Hybrid speciation via inheritance of alternate alleles of parental
isolating genes. Molecular Plant 14(2):208–222 DOI 10.1016/j.molp.2020.11.008.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 29/31

http://dx.doi.org/10.1111/1755-0998.12375
http://dx.doi.org/10.1093/bioinformatics/bts094
http://dx.doi.org/10.7717/peerj.14573
http://dx.doi.org/10.1016/S0169-5347(03)00184-8
http://dx.doi.org/10.1038/s41576-023-00620-x
http://dx.doi.org/10.1038/nrg3483
http://dx.doi.org/10.3389/fpls.2021.743643
http://dx.doi.org/10.1093/molbev/msab120
http://dx.doi.org/10.1093/nar/gkw256
http://dx.doi.org/10.1111/mec.12892
http://dx.doi.org/10.1111/jse.12478
http://dx.doi.org/10.3389/fpls.2023.1070600
http://dx.doi.org/10.3389/fgene.2022.824610
http://dx.doi.org/10.3389/fpls.2022.768810
http://dx.doi.org/10.1016/j.molp.2020.11.008
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


Wang Y, Liu Y, Liu S, Huang H. 2006. Geographic distribution and current status and
conservation strategy of the genus Myricaria in China. Journal of Wuhan Botanical Research
24(5):455–463.

Wang Y, Liu Y, Liu S, Huang H. 2009. Molecular phylogeny of Myricaria (Tamaricaceae):
implications for taxonomy and conservation in China. Botanical Studies 50:343–352.

Wang A, Wu H, Zhu X, Lin J. 2018. Species identification of Conyza bonariensis assisted by
chloroplast genome sequencing. Frontiers in Genetics 9:374 DOI 10.3389/fgene.2018.00374.

Wang Q, Zhang S-D, Ding B, Zhu X, Deng H-P. 2020. The complete chloroplast genome of
Myricaria laxiflora (Tamaricaceae): an endemic and endangered species from China.
Mitochondrial DNA Part B-Resources 5(2):1153–1154 DOI 10.1080/23802359.2020.1730266.

Wang D, Zhang Y, Zhang Z, Zhu J, Yu J. 2010. KaKs_Calculator 2.0: a toolkit incorporating
gamma-series methods and sliding window strategies. Genomics, Proteomics & Bioinformatics
8(1):77–80 DOI 10.1016/S1672-0229(10)60008-3.

Wen J, Harris AJ, Kalburgi Y, Zhang N, Xu Y, Zheng W, Ickert‐Bond SM, Johnson G,
Zimmer EA. 2018. Chloroplast phylogenomics of the New World grape species (Vitis,
Vitaceae). Journal of Systematics and Evolution 56(4):297–308 DOI 10.1111/jse.12447.

Wicke S, Schneeweiss GM, dePamphilis CW, Müller KF, Quandt D. 2011. The evolution of the
plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular
Biology 76(3–5):273–297 DOI 10.1007/s11103-011-9762-4.

Wu S, Wang Y, Wang Z, Shrestha N, Liu J. 2022. Species divergence with gene flow and hybrid
speciation on the Qinghai-Tibet Plateau. The New Phytologist 234(2):392–404
DOI 10.1111/nph.17956.

Yang L, Deng S, Zhu Y, Da Q. 2023. Comparative chloroplast genomics of 34 species in subtribe
Swertiinae (Gentianaceae) with implications for its phylogeny. BMC Plant Biology 23(1):164
DOI 10.1186/s12870-023-04183-1.

Yang Q, Gaskin J. 2007. Flora of China. Vol. 13. St. Louis: Science Press, Beijing, and Missouri
Botanical Garden Press.

Yang Z, Nielsen R. 2000. Estimating synonymous and nonsynonymous substitution rates under
realistic evolutionary models. Molecular Biology and Evolution 17(1):32–43
DOI 10.1093/oxfordjournals.molbev.a026236.

Yang J, Tang M, Li H, Zhang Z, Li D. 2013. Complete chloroplast genome of the genus
Cymbidium: lights into the species identification, phylogenetic implications and population
genetic analyses. BMC Evolutionary Biology 13(1):84 DOI 10.1186/1471-2148-13-84.

Yu J, Fu J, Fang Y, Xiang J, Dong H. 2022. Complete chloroplast genomes of Rubus species
(Rosaceae) and comparative analysis within the genus. BMC Genomics 23(1):32
DOI 10.1186/s12864-021-08225-6.

Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn
graphs. Genome Research 18(5):821–829 DOI 10.1101/gr.074492.107.

Zhang ML, Meng HH, Zhang HX, Vyacheslav BV, Sanderson SC. 2014. Himalayan origin and
evolution of Myricaria (Tamaricaeae) in the neogene. PLOS ONE 9(6):e97582
DOI 10.1371/journal.pone.0097582.

Zhang X, Sun Y, Landis JB, Lv Z, Shen J, Zhang H, Lin N, Li L, Sun J, Deng T, Sun H, Wang H.
2020. Plastome phylogenomic study of Gentianeae (Gentianaceae): widespread gene tree
discordance and its association with evolutionary rate heterogeneity of plastid genes. BMC Plant
Biology 20:340 DOI 10.1186/s12870-020-02518-w.

Zhang D, Yin L, Pan B. 2001. Phylogenetic status study of Myricaria elegans Royle. In: The second
Symposium on Plant Science and Development in Western China, Urumqi, China, 3.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 30/31

http://dx.doi.org/10.3389/fgene.2018.00374
http://dx.doi.org/10.1080/23802359.2020.1730266
http://dx.doi.org/10.1016/S1672-0229(10)60008-3
http://dx.doi.org/10.1111/jse.12447
http://dx.doi.org/10.1007/s11103-011-9762-4
http://dx.doi.org/10.1111/nph.17956
http://dx.doi.org/10.1186/s12870-023-04183-1
http://dx.doi.org/10.1093/oxfordjournals.molbev.a026236
http://dx.doi.org/10.1186/1471-2148-13-84
http://dx.doi.org/10.1186/s12864-021-08225-6
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1371/journal.pone.0097582
http://dx.doi.org/10.1186/s12870-020-02518-w
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/


Zhang P, Zhang Y. 1984. A study on the taxonomy of the genus Myricaria Desv. in China. Bulletin
of Botanical Research 4:67–80.

Zhang D, Zhang Y, Gaskin JF, Chen Z. 2003. Myrtama, supported as a distinct genus of
Tamaricaceae by internal transcribed spacer sequences of nuclear ribosomal DNA. In: Seventieth
Annual Meeting of the Botanical Society of China, Chengdu, China, 1.

Zheng S, Poczai P, Hyvönen J, Tang J, Amiryousefi A. 2020. Chloroplot: an online program for
the versatile plotting of organelle genomes. Frontiers in Genetics 11:576124
DOI 10.3389/fgene.2020.576124.

Hu et al. (2023), PeerJ, DOI 10.7717/peerj.16642 31/31

http://dx.doi.org/10.3389/fgene.2020.576124
http://dx.doi.org/10.7717/peerj.16642
https://peerj.com/

	Insights into the phylogenetic relationships and species boundaries of the Myricaria squamosa complex (Tamaricaceae) based on the complete chloroplast genome ...
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


