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Abstract: Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide
(C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially
the Rubiaceae. Along with this herbal component, dozens of its natural derivatives have also been
isolated and characterized by researchers. Furthermore, a large body of pharmacological evidence
has proved the various biological activities of geniposide, such as anti-inflammatory, anti-oxidative,
anti-diabetic, neuroprotective, hepatoprotective, cholagogic effects and so on. However, there have
been some research articles on its toxicity in recent years. Therefore, this review paper aims to provide
the researchers with a comprehensive profile of geniposide on its phytochemistry, pharmacology,
pharmacokinetics and toxicology in order to highlight some present issues and future perspectives as
well as to help us develop and utilize this iridoid glycoside more efficiently and safely.

Keywords: geniposide; iridoid glycoside; natural product; pharmacokinetics; pharmacology;
phytochemistry; toxicology

1. Introduction

Iridoid glycosides are phytochemicals which naturally occur in many plants belonging
to the families Scrophulariaceae, Rubiaceae, Gentianaceae and Caprifoliaceae, including some
Traditional Chinese Medicines (TCMs). Among them, geniposide (methyl (1S,4aS,7aS)-1-(β-D-gluco-
pyranosyloxy)-7-(hydroxylmethyl)-1,4a,5,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate; C17H24O10;
GS; Figure 1) is particularly well known. In view of its chemical structure, this component is
also considered as a glycoside consisting of one molecule each of genipin and glucose. To date,
this natural product has been isolated and identified in nearly 40 plants, most of which are
traditional phytomedicines and/or come from the family Rubiaceae. As far as bioactivities are
concerned, GS exerts many pharmacological functions, including anti-inflammatory [1], antidiabetic [2],
anti-oxidative [3], neuroprotective [4], hepatoprotective and choleretic effects [5]. GS is recorded as
a characteristic component for the quality control of Gardenia jasminoides Ellis (G. jasminoides) fruits
in the 2000–2015 editions of the Chinese Pharmacopoeia [6–9]. According to the national standard,
this phytomedicine with a GS content above 1.8% could be considered as having adequate quality.
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Additionally, in the 2015 edition, GS as also listed as the quantitative component for quality evaluation
of about twenty Chinese Patent Medicine preparations containing G. jasminoides fruits, such as Bazheng
mixture, Longdan Xiegan pills, Qingkailing soft capsules, Niuhuang Shangqing soft capsules and
Zhizi Jinhua pills [10]. On the other hand, in recent years, there have been many new findings on
the hepatotoxicity and nephrotoxicity of the natural product [11,12], which may limit its usage as a
candidate drug with good performance in some diseases.
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Although a large number of studies on GS have been carried out and a considerable amount of
relevant literature has been reported, a comprehensive review that provides a complete profile on
the phytochemistry, pharmacology, pharmacokinetics and toxicology of the active component is still
lacking. In the present study, with the help of some scientific search engines and databases, including
Google Scholar, Web of Science, Pubmed and Chinese National Knowledge Infrastructure (CNKI), we
summarize the recent research progress of the above aspects. In addition, some further studies and
future perspectives were also proposed. We hope that this review would prove helpful to researchers
to ensure that the GS will have an effective and safe application.

2. Sources

To our knowledge, researchers isolated and identified GS from Gardenia jasminoides forma
grandiflora (Lour.) Makino as an iridoid glycoside-type natural product in the 1960s [13]. Since
then, this compound has been found in nearly 40 plants, the majority of which belong to the Rubiaceae
(Table 1). Some of the plants are famous phytomedicines that have been used in the clinic for thousands
of years in China and Southeast Asia, such as G. jasminoides (Zhizi), Rehmannia glutinosa Libosch.
(Dihuang), Eucommia ulmoides Oliv. (Duzhong) and Achyranthes bidentata Blume (Niuxi). Among them,
G. jasminoides is a fundamental plant source of GS with a considerable content (3.3–8.56%) found in
the fruits of dry weight (DW) [14]. This iridoid glycoside has been found and isolated from various
parts of this phytomedicine, including leaves, flowers, fruits and tubers. Furthermore, there were
also several varieties of the species G. jasminoides containing GS, including Gardenia jasminoides cv.
fortuneana Hara, Gardenia jasminoides forma grandiflora (Lour.) Makino and Gardenia jasminoides
var. radicans (Thunb.) Makino. There were also some studies on the GS contents in other herbal
medicines from different production areas, which report various amounts such as 0.2035–0.4381%
(DW) for Rehmannia glutinosa Libosch. roots [15], 0.0699–0.1135% (DW) for Scrophularia ningpoensis
Hemsl. roots [16], and 0.0173–0.5811% (DW) for Eucommia ulmoides Oliv. barks [17].
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Table 1. Plants containing geniposide.

No. Plant Family Part References

1 Achyranthes bidentata Blume Amarathaceae roots [18]

2 Adina polycephala Benth. Rubiaceae branches and stems [19]

3 Alibertia sessilis (Vell.) K. Schum. Rubiaceae stems [20]

4 Biebersteinia heterostemon Maxim. Geraniaceae whole plants [21]

5 Castilleja tenuiflora Benth. Orobanchaceae whole plants [22]

6 Cistanche deserticola Y. C. Ma Orobanchaceae stems [23]

7 Codonopsis pilosula (Franch.)
Nannf. Campanulaceae roots [24]

8 Cornus suecica L. Cornaceae whole plants [25]

9 Cynanchum wilfordii (Maxim.)
Hemsl. Asclepiadaceae roots [26]

10 Dryopteris fragrans (L.) Schott Dryopteridaceae whole plants [27]

11 Eucommia ulmoides Oliv. Eucommiaceae
barks [28]
leaves [29]

12 Gardenia jasminoides cv. fortuneana
Hara Rubiaceae leaves [30]

13
Gardenia jasminoides forma
grandiflora (Lour.) Makino Rubiaceae

fruits [31]
leaves [32]

14 Gardenia jasminoides var. radicans
(Thunb.) Makino Rubiaceae fruits [33]

15 Gardenia jasminoides Ellis Rubiaceae

flowers [34]
fruits [35]
leaves [36]
tubers [37]

16 Gardenia sootepensis Hutchins. Rubiaceae fruits [38]

17 Globularia davisiana O. Schwarz Globulariaceae aerial parts [39]

18 Genipa americana L. Rubiaceae fruits [40]

19 Hedyotis diffusa Willd. Rubiaceae whole plants [41]

20 Hedyotis corymbosa (Linn.) Lam. Rubiaceae whole plants [42]

21 Lantana camara L. Verbenaceae roots [43]

22 Lippia alba (Mill.) N.E. Brown Verbenaceae [44]

23 Lonicera japonica Thunb. Caprifoliaceae flower buds [45]

24 Oroxylum indicum (L.) Kurz Bignoniaceae seeds [46]

25 Paederia scandens (Lour.) Merrill Rubiaceae roots [47]

26 Randia spinosa (Thunb.) Tirveng. Rubiaceae stems [48]

27 Rehmannia glutinosa Libosch. Scrophulariaceae roots [49]

28 Rothmanniaglobosa (Hochst.) Keay Rubiaceae fruits [50]

29 Scrophularia ningpoensis Hemsl. Scrophulariaceae roots [51]

30 Stemona japonica (Bl.) Miq. Stemonaceae roots [52]

31 Strychnos nux-vomica L. Loganiaceae seeds [53]

32 Tinospora sagittata var. yunnanensis
(S. Y. Hu) H. S. Lo Menispermaceae roots [54]

33 Vangueria edulis Vahl Rubiaceae flowers and leaves [55]

34 Vitex cannabifolia Sieb. et Zucc. Verbenaceae fruits [56]
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Table 2. Natural derivatives of geniposide.

No. Compounds Sources

1 Alpinoside

Globularia alypum L. leaves [57], Globularia aphyllanthes Crantz aerial parts [58], Globularia cordifolia L.
underground parts [59], Globularia davisiana O. Schwarz aerial parts [39], Globularia dumulosa O. Schwarz
aerial parts [60], Globularia trichosantha Fisch. & C. A. Meyer whole plants [61], Plantago asiatica L. seeds [62],
Plantago alpina L. aerial parts [63] and Veronica cymbalaria Bodard. aerial parts [64]

2 Apodanthoside Dioecrescis erythroclada (Kurz) Tirveng leaves and branches [65], Tocoyena Formosa (Cham. & Schltdl.) K.
Schum. stems [66] and Vangueria edulis Vahl flowers and leaves [55]

3 Asperulosidic acid

Borreria verticillata (L.) G. Mey. root barks [67], Diodia teres Walter whole plants [68], Eucommia ulmoides Oliv.
leaves [69], Galium aegeum (Stoj. & Kitan.) Ancev aerial parts [70], Galium humifusum Bieb. aerial parts [71],
Galium macedonicum Krendl. aerial parts [70], Galium melanantherum Boiss aerial parts [72], Galium mirum
Rech. Fil. aerial parts [70], Galium rhodopeum Velen. aerial parts [70], Galium rivale (Sibth. and Sm.) Griseb.
aerial parts [73], Galium verum subsp. verum L. aerial parts [74], Globularia aphyllanthes Crantz aerial parts
[58], Globularia trichosantha Fisch. & C. A. Meyer whole plants [61], Hedyotis corymbosa (Linn.) Lam. whole
plants [42] and aerial plants [75], Hedyotis tenelliflora Blume whole plants [76], Lasianthus acuminatissimus
Merr. roots [77], Morinda citrifolia L. fruits [78] and seeds [79], Oldenlandia diffusa Roxb. aerial parts [80],
Oldenlandia umbellata L.aerial parts [81], Paederia scandens (Lour.) Merrill roots [47] and Saprosma scortechinii
Bl. King & Gamble stems [82]

4 Daphylloside

Asperula lilaciflora Boissaerial parts [83], Borreria verticillata (L.) G. Mey. root barks [67],
Globularia aphyllanthes Crantz aerial parts [58], Galium aegeum (Stoj. & Kitan.) Ancev aerial parts [70],
Galium humifusum Bieb.aerial parts [71], Galium macedonicum Krendl. aerial parts [70], Galium mirum Rech.
Fil. aerial parts [70], Galium verum subsp. verum L. aerial parts [74], Hedyotis corymbosa (Linn.) Lam.whole
plants [84], Hedyotis diffusa Willd. whole plants [41], Hedyotis tenelliflora Blume leaves [85] and
Lasianthus wallichii (Wight & Arn.) Wight leaves [86]

5 Deacetylalpinoside Globularia dumulosa O. Schwarz aerial parts [60], Globularia trichosantha Fisch. & C. A. Meyer whole
plants [61]

6 Deacetylasperulosidic acid

Asperula lilaciflora Boiss aerial parts [83], Borreria verticillata (L.) G. Mey. root barks [67], Eucommia ulmoides
Oliv. leaves [69], Jasminum officinale L. var. grandiflorum buds [87], Galium aegeum (Stoj. & Kitan.) Ancev
aerial parts [70], Galium humifusum Bieb. aerial parts [71], Galium macedonicum Krendl. aerial parts [70],
Galium melanantherum Boiss aerial parts [72], Galium mirum Rech. Fil. aerial parts [70], Galium rhodopeum
Velen. aerial parts [70], Galium rivale (Sibth. and Sm.) Griseb. aerial parts [73], Galium verum subsp. verum L.
aerial parts [74], Hedyotis corymbosa (Linn.) Lam. whole plants [84], Lasianthus acuminatissimus Merr. roots
[77], Morinda citrifolia L. fruits [78] and seeds [79], Morinda officinalis How roots [88], Oldenlandia diffusa Roxb.
aerial parts [80], Paederia scandens (Lour.) Merrill var. Mairei (Leveille) Hara whole plants [89],
Saprosma scortechinii Bl. King & Gamble leaves and stems [82] and Serissa serissoides (DC.) Druce whole
plants [90]
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Table 2. Cont.

No. Compounds Sources

7 Galioside
Cornus canadensis L.leaves [91], Gardenia jasminoides cv. fortuneana Hara leaves [30], Hedyotis diffusa Willd.
whole plants [41], Morinda officinalis How roots [92], Randia spinosa (Thunb.) Tirveng. stems [48] and
Tocoyena Formosa (Cham. & Schltdl.) K. Schum. stems [66]

8 Gardenoside

Dicliptera chinensis (L.) Juss. whole plants [93], Dioecrescis erythroclada (Kurz) Tirveng leaves and branches
[65], Gardenia jasminoides Ellis flowers [34], fruits [94] and leaves [36], Gardenia jasminoides cv. fortuneana
Hara leaves [30], Genipa americana L. fruits [40], Hedyotis diffusa Willd. whole plants [37] and Randia spinosa
(Thunb.) Tirveng. stems [48]

9 Geniposidic aicd

Adina polycephala Benth. branches and stems [19], Alibertia myrciifolia Spruce ex K. Schum. aerial parts [95],
Alibertia sessilis (Vell.) K. Schum. stems [20], Asperula lutea subsp. rigidula aerial parts [96], Bellardia trixago
(L.) All. whole plants [97], Canthium gilfillanii leaves [98], Castilleja tenuiflora Benth. aerial parts [99],
Diodia teres Walter whole plants [68], Eremophila longifolia F. Muell. leaves [100], Eucommia ulmoides Oliv.
leaves [69,101], Euphrasia pectinata Ten. aerial parts [102], Galium aegeum (Stoj. & Kitan.) Ancev aerial parts
[70], Galium humifusum Bieb. aerial parts [71], Galium melanantherum Boiss aerial parts [72], Galium mirum
Rech. Fil. aerial parts [70], Galium rhodopeum Velen. aerial parts [70], Galium rivale (Sibth. and Sm.) Griseb.
aerial parts [73], Gardenia sootepensis Hutchins. fruits [38], Gardenia jasminoides fruits [103], Genipa americana
L. fruits [40], Globularia trichosantha Fisch. & C. A. Meyer whole plants [61], Lantana montevidensis (Spreng.)
Briq. roots [104], Morinda longissima Y. Z. Ruan roots [105], Oldenlandia diffusa Roxb. aerial parts [80],
Pedicularis longiflora Rudolph whole plants [106], Pedicularis plicata Maxim whole plants [107],
Pedicularis verticillata L. whole plants [108], Plantago alpina L. aerial parts [63], Plantago depressa Willd whole
plants [109], Rehmannia glutinosa Libosch. roots [49,110], Scyphiphora hydrophyllacea Gaertn. F. aerial parts
[111] and stem barks [112], Vangueria edulis Vahl flowers and leaves [55], Verbascum lasianthum Boiss. ex
Bentham flowers [113], Veronica anagallis-aquatica L. whole plants [114], Veronica bellidioides L. aerial parts
[115] and Veronica kellererii aerial parts [115]

10 Genipin 1,10-di-O-β-D-glucopyranoside Gardenia jasminoides Ellis flowers [34] and fruits [94] and Genipa americana L. fruits [40]

11 Genipin gentiobioside Gardenia jasminoides Ellis flowers [34] and fruits [94,103], Gardenia jasminoides forma grandiflora (Lour.)
Makino fruits [31] and leaves [32], Genipa americana L. fruits [40] and Rehmannia glutinosa Libosch roots [110]

12 Genipin isomaltoside Gardenia jasminoides Ellis flowers and fruits [94]

13 Jasmigeniposide A Gardenia jasminoides Ellis fruits [103]

14 Jasmigeniposide B Gardenia jasminoides Ellis fruits [103]

15 Majoroside Plantago asiatica L.seeds [62], Plantago cornuti Gouan L. aerial plants [64], Plantago depressa Willd whole
plants [109] and Platago major L. aerial parts [116]
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Table 2. Cont.

No. Compounds Sources

16 Monotropein

Cornus canadensis L. leaves [91], Cornus suecica L.whole plants [25], Coussarea platyphylla Müll. Arg. [117],
Damnacanthus officinarum Huang roots [118], Galium aegeum (Stoj. & Kitan.) Ancev aerial parts [70],
Galium humifusum Bieb.aerial parts [71], Galium macedonicum Krendl. aerial parts [70],
Galium melanantherum Boiss aerial parts [72], Galium mirum Rech. Fil. aerial parts [70], Galium rhodopeum
Velen. aerial parts [70], Galium rivale (Sibth. and Sm.) Griseb.aerial parts [73], Galium verum subsp. verum L.
aerial parts [74], Morinda officinalis How roots [88], Pyrola calliatha H. Andres whole plants [119], Pyrola
decorate leaves [120], Pyrola elliptica roots [121], Pyrola japonica whole plants [122], Pyrola xinjiangensis Y. L.
Chou whole plants [123] and Saprosma scortechinii Bl. King & Gamble leaves [82]

17 Paederosidic acid

Paederia pertomentosa Merr. ex Li aerial parts [124], Paederia scandens (Lour.) Merrill roots [47] and stems
[125], Paederia scandens (Lour.) Merrill var. Mairei (Leveille) Hara whole plants [89], Saprosma fragrans
Beddome aerial parts [126], Saprosma scortechinii Bl. King & Gamble leaves and stems [82] and Serissa
serissoides (DC.) Druce whole plants [90]

18 Paederosidic acid methyl ester Paederia scandens (Lour.) Merrill roots [47] and stems [125]

19 Scandoside

Asperula lutea subsp. rigidula aerial parts [96], Cornus canadensis L. leaves [91], Galium aegeum (Stoj. & Kitan.)
Ancev aerial parts [70], Galium humifusum Bieb. aerial parts [71], Galium macedonicum Krendl. aerial parts
[70], Galium melanantherum Boiss aerial parts [72], Galium mirum Rech. Fil. aerial parts [70], Galium
rhodopeum Velen. aerial parts [70], Galium rivale (Sibth. and Sm.) Griseb. aerial parts [73], Globularia
aphyllanthes Crantz aerial parts [58], Globularia trichosantha Fisch. & C. A. Meyer whole plants [61],
Oldenlandia diffusa Roxb. aerial parts [80], Oldenlandia umbellata L. aerial parts [81], Paederia scandens (Lour.)
Merrill var. Mairei (Leveille) Hara whole plants [89] and Saprosma scortechinii Bl. King & Gamble stems [82]

20 Scyphiphorin A Hedyotis corymbosa (Linn.) Lam. whole plants [127] and Scyphiphora hydrophyllacea Gaertn. F. stem
barks [112]

21 Scyphiphorin B Scyphiphora hydrophyllacea Gaertn. F. stem barks [112]

22 Scyphiphorin C Scyphiphora hydrophyllacea Gaertn. F. stem barks [128]

23 Scyphiphorin D Scyphiphora hydrophyllacea Gaertn. F. stem barks [128]

24 Theveside Lantana montevidensis (Spreng.) Briq. roots [104] and Lippia alba leaves [129]

25 4′-O-β-D-Glucopyranosyl-geniposide Genipa americana L. fruits [40]

26 4′ ′-O-(E)-p-Coumaroylgenipin gentiobioside Gardenia jasminoides Ellis fruits [130]
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Table 2. Cont.

No. Compounds Sources

27 6α-Hydroxygeniposide

Adina polycephala Benth. branches and stems [19], Alibertia sessilis (Vell.) K. Schum. stems
[20], Galium aegeum (Stoj. & Kitan.) Ancev aerial parts [70], Galium macedonicum Krendl. aerial parts [70],
Galium melanantherum Boiss aerial parts [72], Galium verum L. whole plants [131], Galium verum subsp.
verum L. aerial parts [74], Gardenia jasminoides Ellis flowers [34], fruits [94] and tubers [37],
Gardenia jasminoides cv. fortuneana Hara leaves [30], Gardenia jasminoides forma grandiflora (Lour.) Makino
leaves [32], Gardenia sootepensis Hutchins. fruits [38], Hedyotis corymbosa (Linn.) Lam.whole plants [84],
Hedyotis diffusa Willd. whole plants [41], Hedyotis tenelliflora Blume leaves [85], Oldenlandia umbellata L. aerial
parts [81], Paederia pertomentosa Merr. ex Li aerial parts [124], Paederia scandens (Lour.) Merrill stems [125],
Pittosporum glabratum Lindl. roots [132], Plantago lagopus L. aerial parts [133] and Randia spinosa (Thunb.)
Tirveng. stems [48]

28 6α-Methoxygeniposide Gardenia jasminoides Ellis fruits [94], Hedyotis tenelliflora Blume leaves [85]

29 6α-n-Butoxygeniposide Gardenia jasminoides Ellis forma grandiflora (Lour.) Makino fruits [134]

30 6α-Methoxygeniposidic acid Hedyotis tenelliflora Blume leaves [85]

31 6β-Ethoxygeniposide Gardenia jasminoides Ellis flowers [34]

32 6β-Hydroxygeniposide

Adina polycephala Benth. branches and stems [19], Alibertia sessilis (Vell.) K. Schum.stems [20],
Biebersteinia heterostemon Maxim.whole plants [21], Borreria verticillata root barks [67], Cornus canadensis L.
leaves [91], Gardenia jasminoides cv. fortuneana Hara leaves [30], Gardenia jasminoides Ellis flowers [34] and
fruits [94], Gardenia jasminoides forma grandiflora (Lour.) Makino leaves [32], Gardenia sootepensis Hutchins.
fruits [38], Hedyotis corymbosa (Linn.) Lam. whole plants [42,79] and aerial plants [74], Hedyotis diffusa Willd.
whole plants [41], Hedyotis tenelliflora Blume leaves [85] and roots [135], Morinda citrifolia L. fruits [78],
Oldenlandia diffusa Roxb. aerial parts [80], Oldenlandia umbellata L. aerial parts [81], Randia spinosa (Thunb.)
Tirveng. stems [48], Vangueria edulis Vahl flowers and leaves [55] and Wendlandia formosana Cowan leaves
[136]

33 6β-Methoxygeniposide Hedyotis tenelliflora Blume leaves [85] and Wendlandia formosana Cowan leaves [136]

34 6β-n-Butoxygeniposide Gardenia jasminoides Ellis flowers [34] and Gardenia jasminoides Ellis forma grandiflora (Lour.) Makino
fruits [134]

35 6β-O-β-D-Glucosylpaederosidic acid Paederia scandens (Lour.) Merrill stems [125]

36 6β-O-(E)-p-methoxy-cinnamoylgeniposide Hedyotis diffusa Willd.aerial parts [137,138] and whole plants [139]

37 6β-O-(E)-Feruloylgeniposide Hedyotis diffusa Willd.aerial parts [137,138] and whole plants [139]

38 6β-O-(E)-p-Coumaroyl-geniposide Hedyotis diffusa Willd.aerial parts [137,138] and whole plants [139]

39 6β-O-(Z)-Feruloylgeniposide Hedyotis diffusa Willd.aerial parts [138]

40 6β-O-(Z)-p-Methoxycinnamoyl-geniposide Hedyotis diffusa Willd.aerial parts [138] and whole plants [139]
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Table 2. Cont.

No. Compounds Sources

41 6β-O-(Z)-p-Coumaroyl-geniposide Hedyotis diffusa Willd.aerial parts [138] and whole plants [139]

42 6-epi-Paederosidic acid Saprosma scortechinii Bl. King & Gamble stems [82]

43 6-O-Acetylscandoside Galium aegeum (Stoj. & Kitan.) Ancev aerial parts [70]

44 6′-O-(E)-p-Coumaroylgeniposide Gardenia jasminoides Ellis fruits [35,140]

45 6′-O-(E)-p-coumaroyl-geniposidic acid Gardenia jasminoides Ellis fruits [35]

46 6′-O-Acetylgeniposide Gardenia jasminoides Ellis fruits [35,140]

47 6′-O-(E)-Sinapoylgeniposide Gardenia jasminoides Ellis fruits [35,130,140]

48 6’-O-(E)-caffeoyl-6α-hydroxygeniposide Gardenia jasminoides Ellis fruits [130]

49 6′ ′-O-(E)-Sinapoylgenipin gentiobioside Gardenia jasminoides Ellis fruits [35,101]

50 6′ ′-O-(E)-p-Coumaroylgenipin gentiobioside Gardenia jasminoides Ellis fruits [35,103,130]

51 6′ ′-O-(E)-Cinnamoylgenipin gentiobioside Gardenia jasminoides Ellis fruits [35]

52 6′ ′-O-(E)-Feruloylgenipin gentiobioside Gardenia jasminoides Ellis fruits [103]

53 6′ ′-O-(Z)-p-Coumaroylgenipin gentiobioside Gardenia jasminoides Ellis forma grandiflora (Lour.) Makino fruits [134]

54 8α-Butylgalioside Gardenia jasminoides Ellis flowers [34]

55 8-epi-Apodantheroside Gardenia jasminoides cv. fortuneana Hara leaves [30]

56 9-epi-6α-Methoxygeniposidic acid Morinda citrifolia L. fruits [78]

57 10-Acetoxymajoroside Plantago cornuti Gouan L. aerial plants [64], Platago major L. aerial parts [64]

58 10-Acetylscandoside Saprosma scortechinii Bl. King & Gamble stems [82]

59 10-Deoxygeniposidic acid Scyphiphora hydrophyllacea Gaertn. F. stem barks [128]

60 10-Hydroxymajoroside Plantago asiatica L. seeds [62], Plantago cornuti Gouan L. aerial parts [141], Plantago depressa Willd whole
plants [109], Platago major L. aerial parts [64]

61 10-Methoxyapodanthoside Vangueria edulis Vahl flowers and leaves [55]

62 10-O-(4′ ′-O-Methylsuccinoyl)-geniposde Gardenia jasminoides Ellis fruits [140]

63 10-O-Acetylgeniposide Gardenia jasminoides Ellis fruits [35,140]

64 10-O-Acetylgeniposidic acid Plantago alpina L. aerial parts [63] and Scyphiphora hydrophyllacea Gaertn. F. stem barks [128]

65 10-O-Acetylscandoside Eucommia ulmoides Oliv. Leaves [69]

66 10-O-Benzoyl-6α-hydroxygeniposide Hedyotis corymbosa (Linn.) Lam. whole plants [84,127] and aerial plants [75]
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Table 2. Cont.

No. Compounds Sources

67 10-O-Benzoyl-6β-hydroxygeniposide Hedyotis corymbosa (Linn.) Lam. whole plants [42,84,127] and aerial plants [75] and Oldenlandia diffusa Roxb.
aerial parts [80]

68 10-O-Benzoylgeniposide Hedyotis corymbosa (Linn.) Lam. whole plants [127]

69 10-O-Benzoyldeacetyl-asperulosidic acid Saprosma scortechinii Bl. King & Gamble stems [82]

70 10-O-Benzoyl-6′-O-arabinosyl-6β-hydroxygeniposide Oldenlandia diffusa Roxb. aerial parts [80]

71 10-O-Caffeoyl-6β-hydroxygeniposide Wendlandia formosana Cowan leaves [136]

72 10-O-Caffeoyldaphylloside Wendlandia formosana Cowan leaves [136]

73 10-O-(E)-3,4-Dimethoxycinnamoyl-geniposidic acid Leonotis nepetaefolia (L.) R. Br. stems [142]

74 10-O-(E)-Caffeoylgeniposidic acid Avicennia marina (Forssk.) Vierh. whole plants [143]

75 10-O-(E)-Caffeoyl-6α-hydroxygeniposide Gardenia jasminoides Ellis tubers [37]

76 10-O-(E)-Cinnamoylgeniposidic acid Avicennia marina (Forssk.) Vierh.whole plants [143]

77 10-O-(E)-p-Coumaroyl-6β-hydroxygeniposide Hedyotis corymbosa (Linn.) Lam. whole plants [42,127] and aerial plants [75]

78 10-O-(E)-p-Coumaroyl-geniposidic acid Avicennia marina (Forssk.) Vierh. whole plants [143]

79 10-O-p-Hydroxybenzoyl-6β-hydroxygeniposide Hedyotis corymbosa (Linn.) Lam. whole plants [42,127] and aerial plants [75]

80 10-O-p-Hydroxybenzoyl-geniposidicacid Leonotis nepetaefolia (L.) R. Br. stems [142]

81 10-O-p-Hydroxybenzoyl-geniposide Hedyotis corymbosa (Linn.) Lam. whole plants [127]

82 10-O-Succinoylgeniposide Gardenia jasminoides Ellis fruits [35]

83 10-O-Vanilloyl geniposidic acid Alibertia myrciifolia Spruce ex K. Schum. aerial parts [95]

84 10-O-(Z)-p-Coumaroylmonotropein Vaccinium bracteatum Thunb. branches and leaves [144]
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3. Natural Derivatives

We know that approximately 90 derivatives have been found present in natural plants along
with GS. Table 2 lists their names and Figure 2 shows the structures of the representative derivatives.
The compounds listed here are all iridoid glycosides. Some are the substitution derivatives on the
various positions of GS, such as geniposidic acid, scandoside and daphylloside. Some, including
alpinoside, majoroside and monotropein, are derivatives of the structural isomers of GS with different
double bond positions. Some are the biosynthetic products of GS, such as galioside, gardenoside,
6α-hydroxygeniposide and 6β-hydroxygeniposide [145].
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As for its chemical structure, GS is regarded as an iridoid glycoside, namely genipin
1-O-β-D-glucopyranoside. From another point of view, this component is also regarded as a C11
methyl ester of geniposidic acid, which is a common derivative of GS found in Nature. Due to the
bioactivities and high content in the phytomedicine, geniposidic acid was recorded as the chemical
marker for the quality evaluation of Plantaginis Semen in the Chinese Pharmacopoeia [146]. Other
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derivatives commonly found in natural plants are 6α-hydroxygeniposide and 6β-hydroxygeniposide
with their own derivatives. These two natural components are characterized by a α-OH or β-OH
on the C6 position of GS. These hydroxyl groups and that on the C10 position are often esterified
with some organic acids, such as acetic acid, ferulic acid, caffeic acid, cinnamic acid, succinic acid and
p-coumaric acid. In addition, there are also some other derivatives with a C6–C7 double bond (e.g.,
gardenoside, galioside and monotropein) or a C8–C9 double bond (e.g., alpinoside and majoroside),
which differ from the C7–C8 double bond of GS.

In terms of glycoside-moiety numbers, the above mentioned natural derivatives are
mono-glycosides. Apart from these components, some diglycosides have also been discovered
in the plants. For example, genipin gentiobioside is a diglycoside with a gentiobiose on the C1
position, while genipin isomaltoside has an isomaltose moiety on the C1 position. These two
compounds are considered as 6′-O-β-D-glucosylgeniposide and 6′-O-α-D-glucosylgeniposide. The
substitutions with different acids mentioned above are also found on the C6′ or C6′ ′ position of genipin
gentiobioside. Furthermore, genipin 1,10-di-O-β-D-glucopyranoside is another diglycoside with two
glucose molecules on C1 and C10, which is also known as 10-O-β-D-glucosylgeniposide.

4. Analytical Methods

Due to its higher separation efficiency, shorter analysis time and less sample consumption, liquid
chromatography (LC) is considered as an accepted and effective analytical method to separate mixtures
in the natural products research field. To determine the GS content in the different plant sources and
medical preparations, high performance liquid chrpmatography (HPLC) or ultra performance liquid
chromatography (UPLC) is usually employed, coupled with some detectors, such as an ultraviolet
detector (HPLC-UV), diode array detector (HPLC-DAD) or evaporative light scattering detector
(HPLC-ELSD) [9,10,14,147,148]. Since the GS content is much lower and some endogenous interfering
substances are present in the plasma or other biological samples, a mass spectrometry detector (MSD)
is much preferable, especially in multiple-reaction monitoring (MRM) mode when pharmacokinetic
studies are involved [149–151].

Like HPLC, capillary electrophoresis (CE) is also characterized by high efficiency and high
selectivity. Han et al. quantitatively analyzed GS along with other four phytochemicals in
Rehmannia glutinosa Libosch. roots. Sodium borate (60 mM) was used as buffer solution (5% methanol,
pH 9.5), the separation voltage was set at 20 kV, and the temperature was maintained at 20 ◦C [15].
Micellar electrokinetic chromatography (MEKC) is a CE mode used to separate either neutral or
charged components. Along with other nine bioactive compounds, GS was successfully separated and
determined in Eucommia ulmoides Oliv. barks by MEKC using 50 mM boric acid (pH 9.5) as the buffer
solution, with 50 mM sodium dodecylsulfate and 4% 1-butanol [152].

Aside from the chromatographic methods mentioned above, the near-infrared spectroscopy
(NIRS) technique has also been used for quantitative analysis of GS in Gardenia jasminoides Ellis fruits
with a partial least squares (PLS) method in the spectral regions of 8660–7500 cm−1, 6650–5600 cm−1

and 4900–4000 cm−1 [153].

5. Pharmacology

With the rapid development of modern pharmacology, an increasing amount of evidence has
emerged for the multiple bioactive functions of GS, including its anti-inflammatory, antitumor,
anti-oxidative, neuroprotective, hepatoprotective and cholagogic effects.

5.1. Hepatoprotective and Cholagogic Effects

As a major component in G. jasminoides fruits, GS also has a hepatoprotective effect similar to the
phytomedicine and has been considered as a potential drug for liver diseases. After a CCl4 challenge
in mice in vivo, serum levels of alanine transaminase (ALT), aspartate transaminase (AST) and alkaline
phosphatase (ALP) increased markedly, while in the liver homogenate, the level of glutathione
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(GSH) and activity of antioxidant enzymes (SOD and CAT) decreased significantly. Furthermore,
deformability, irregular arrangement and rupture of hepatocytes were observed in the liver. These
biochemical parameters and histopathological examination results indicated liver damage, which were
all ameliorated by a peroral GS treatment of 400 mg/kg [154]. In terms of liver damage induced by
Tripterygium glycosides, GS (i.g.; 20, 40, 80 mg/kg) also had protective effects in vivo, which may be
involved in alleviating oxidative stress and inflammationin in addition to facilitating tissue repair
and regeneration [155]. Furthermore, GS (i.g.; 20, 40, 80 mg/kg) could ameliorate alcohol-induced
oxidative stress damage in the liver in vivo through upregulating the expression of the main antioxidant
enzymes, including GSH, glutathione-S-transferase (GST), glutathione peroxidase (GPx), copper-and
zinc-containing superoxide dismutase (CuZn-SOD) as well as catalase (CAT) [156]. Liver fibrosis
is known to cause the destruction of the hepatic parenchyma and the liver structure. GS (20 µM)
was able to inhibit epithelial-mesenchymal transition (EMT), which was induced by transforming
growth factor β1 (TGF-β1) in hepatic fibrosis. This in vitro effect may be related to the inhibition of
the TGFβ/Smad and external signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK)
signaling pathways [157].

The homeostasis of bile acids between uptake, efflux and biosynthesis is essential. Once the
balance is broken, cholestasis will occur and result in damage to the liver. In a related pharmacological
investigation, α-naphthylisothiocyanate (ANIT)-induced rats were used to characterize the effect of
GS on this disorder. Subsequently, associated with some regulation of enzymes and transporters
contributing to the homeostasis of bile acids, such as organic anion transporting polypeptide 2, bile
acids export pump and organic solute transporter β, the active component (i.g.; 25, 50, 100 mg/kg)
was observed to reduce the uptake and biosynthesis of bile acids; to increase canalicular secretion;
and to downregulate bile acids in plasma in vivo [5]. In another study, GS of 50 mg/kg (i.g.) also
inhibited ANIT-induced cholestasis and liver damage in ICR mice in vivo, which was related to the
downregulation of signal transducers and activators of transcription-3 (STAT3) and nuclear factor-κB
(NF-κB) signaling [158].

5.2. Anti-Inflammation

In an anti-inflammatory study, the mouse mastitis model and the primary mouse mammary
epithelial cells, both induced by lipopolysaccharide (LPS), were used to investigate the anti-mastitis
effect of GS. The results suggested that GS (2.5, 5, 10 mg/kg in vivo; 25, 50, 100 µg/mL in vitro)
could alleviate mammary gland apoptosis through the modulation of Toll-like receptor 4 (TLR4)
and apoptosis-related factors, such as p53, Bax, BcI-2 and Caspase-3 [159]. In another study in vivo,
2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat ulcerative colitis and LPS-infected Caco-2 cells
were employed to evaluate the anti-inflammatory effect of GS. As a result, the iridoid glycoside
was found to regulate abnormal NF-κB, cyclooxygenase-2, inducible nitric oxide synthase (iNOS),
myosin light chain kinase (MLCK) protein expression and tight junction protein (occludin and
zonula occludens-1) expression; as well as activating 5’-AMP-activated protein kinase (AMPK)
phosphorylation. It was concluded that GS (i.g.; 25, 50 mg/kg) could ameliorate inflammation
and modulate barrier dysfunction via the activation of the AMPK pathway [1].

As for acute lung injury (ALI), GS also showed good protective effect performance. In LPS-induced
ALI mice in vivo, the natural product (i.p.; 20, 40, 80 mg/kg) inhibited the pathological changes in
lung tissue, including alveolar wall changes, alveolar hemorrhage and neutrophil infiltration; reduced
inflammatory cells and total protein concentration in the bronchoalveolar lavage fluid; and finally
regulated inflammatory mediators, such as tumor necrosis factor-α (TNF-α), IL-6 and IL-10 [160].

5.3. Anti-Diabetic Effect

In China, as early as in the Tang Dynasty, G. jasminoides fruits were used in the clinic for treatment
of “Xiaoke” (Type 2 diabetes), which was recorded in “Yaoxinglun”, a famous book on herbal medicines.
In the early 1980s, Japanese researchers led by Kimura first revealed that GS derived from G. jasminoides
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fruits exhibited hypoglycemic actions in high sugar diet-fed rats in vivo at the dose of 100 and
300 mg/kg (i.g.) [161]. From then on, many studies have been carried out to examine this mechanism
of action. In an in vitro study of HepG2 cells, GS (10, 100 µM) was found to suppress hepatic glucose
production through activating AMPK, acetylcoenzyme A synthetase (ACC) and forkhead box class
O1 (FoxO1) phosphorylation in addition to inhibiting phosphoenolpyruvate carboxykinase (PEPCK)
and glucose-6-phosphatase (G6Pase) activities. The effects mentioned were related with the AMPK
FoxO1 pathway to some extent, indicating the function of inhibiting hepatic gluconeogenesis in Type 2
diabetes [162]. Renal pathology is a common complication in diabetic patients. The levels of serum
creatinine, blood urea nitrogen and urinary albumin are usually used to evaluate renal function.
These indexes increased in streptozotocin-induced diabetic rats, which indicated renal dysfunction.
Significant glomerular basement membrane thickening was also observed by histological examination.
In the model rats pretreated with GS (i.g.; 50, 100 mg/kg), the abnormal structural and functional
changes of kidney were all attenuated. The in vivo effects were concluded associated with an inhibition
of NF-κB-mediated inflammatory response [163].

GS (10 µM) was shown to activate glucagon-like peptide 1 receptor (GLP-1R) and to improve
glucose-stimulated insulin secretion (GSIS) in INS-1 pancreatic β cells in vitro [164]. The effect was
found to be counteracted by preincubation with an inhibitor of phosphatidylinositol 3-phosphate
kinase (PI3K), which suggested that a PI3K-dependent mechanism was perhaps involved and mediated
with an increase of glucose transporter 2 (GLUT2) protein levels [165]. GS (10 µM) also exhibited
the prevention in vitro against INS-1 cell damage induced by high-glucose through increasing heme
oxygenase-1 (HO-1) and Bcl-2 protein levels; decreasing Bax protein level; as well as preventing
caspase-3 cleavage. The findings indicated that AMPK played a fundamental role in the prevention
of cell damage, which was confirmed by the effects of preincubation with an AMPK inhibitor and
an AMPK activator [166]. Furthermore, GS of the same concentration as above could accelerate
thioredoxin-interacting protein (Txnip) degradation in INS-1 pancreatic β-cells in vitro with high
glucose (25 mM) treatment [167].

5.4. Neuroprotection

Synaptic and mitochondrial dysfunctions are commonly seen in the early stage of Alzheimer’s
disease (AD). Amyloid-β (Aβ1–42) is able to induce axonal mitochondrial abnormalities and synaptic
damage in cultured hippocampal neurons and model mice with AD. GS treatment (12.5, 25, 50 mg/kg
in vivo, 2.5, 5, 10 µM in vitro) demonstrated the protection against the above dysfunction through
attenuating axonal mitochondrial fragmentation, trafficking impairments and reactive oxygen species
(ROS) elevation; protecting synaptic loss, abnormal spine density and morphology; and ameliorating
the decrease in synapse-related proteins. The findings indicated GS as a potential drug to cease and
prevent the early progression of AD [168].

A large body of evidence has shown that streptozotocin (STZ) is able to induce sporadic AD.
However, intracerebral-ventricular (ICV) injection of GS (50 µM) was shown in vivo to prevent spatial
learning deficit and tau phosphorylation in order to facilitate GSK3β (pS-9) expression and inhibit
GSK3β (pY-216) expression, which were all induced by STZ. In terms of STZ-induced neural pathology,
the active component could avert paired helical filament-like structures, vesicles accumulation
in synaptic terminals, endoplasmic reticulum abnormalities and early stages of apoptosis [169].
In addition, GS could reduce Aβ production in addition to attenuating the corresponding neurotoxicity
in neurons (10 µM) in vitro and amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice
in vivo (i.g.; 40 mg/kg). As for the protective mechanism, the iridoid glycoside could induce the
phosphorylation of Janus kinase 2 (JAK2) in addition to the signal transducers and activators of
transcription 3 (STAT3). Furthermore, this glycoside can regulate the expression level of α- and
β-secretase, which may be mediated with leptin signaling [170]. Furthermore, Aβ accumulation and
cholinergic defects are considered to be related with learning and memory impairments. In cultured
primary hippocampal neurons of middle-aged Alzheimer’s model mice in vivo, GS (i.p.; 12.5, 25,
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50 mg/kg) inhibited the toxic effect of cholinergic deficits through increasing choline acetyltransferase
(ChAT) activity and decreasing acetylcholinesterase (AChE) activity [4].

5.5. Immunomodulation

It is well known that rheumatoid arthritis (RA) is a chronic systemic disease and its pathogenesis
is related to the imbalance of cellular and humoral immunity. In RA rats in vivo, GS (i.g.; 33, 66,
132 mg/kg) was observed to improve the cell proliferation of mesenteric lymph node lymphocytes
(MLNLs); to decrease IL-6 and IL-17; to increase IL-4 and TGF-β1; and to attenuate histopathological
changes. The rapidly accelerated fibrosarcoma/mitogen activated protein kinase kinase/extracellular
signal-regulated kinase1/2(Raf/MEK/ERK 1/2) signaling pathway in MLNLs is considered to be
involved in the mechanism of this bioactivity [171]. Allergic asthma, which is related to immune
responses, is considered as a chronic inflammatory disease to the respiratory system with the
cardinal pathophysiological symptoms, such as airway hyperresponsiveness, bronchoalveolar lavage
eosinophilia, mucus hypersecretion;as well as increased levels of T-helper-2-associated cytokines,
chemokines and serum ovalbumin (OVA)-specific immunoglobulin E (IgE). These changes were
all found in OVA-challenged BALB/c mice. The pathological changes in vivo were attenuated by
intraperitoneal injections of GS (80 mg/kg) and the effects were comparable to dexamethasone, a
well-known anti-asthma drug [172].

5.6. Anti-Tumor

Irradiation at a low dosage is a reliable strategy to treat tumors although it can destroy the
hematopoietic organs, including spleen, thymus and bone marrow, at high doses. Hsu et al. found
that GS (i.p.; 500 mg/kg) was able to reduce undesirable damages of sub-lethal radiation to the
hematologic tissue in vivo, which was beneficial to preventing tumors in the hematologic system [173].
Pretreatment of GS (0.2 or 1.0 µM) could also inhibit H2O2 and myeloperoxidase formation caused
by 12-O-tetradecanoylphorbol-13-acetate (TPA) in addition to inhibiting TPA-induced skin tumor in
female CD-1 mice in vivo [174].

5.7. Effects on Cardiocerebrovascular Diseases

Brain microvascular endothelial cell (BMEC) with oxygen–glucose deprivation (OGD) was a
common model of cerebral ischemia in vitro. After the OGD challenge, the mRNA and protein
expression of P2Y14 were upregulated. However, GS (33.2 µg/mL) in vivo was able to alleviate the
abnormal tendency by suppressing the phosphorylation of RAF-1, mitogen activated protein kinase
kinase1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2); as well as declining the
productions of IL-8, IL-1β and monocyte chemotactic protein 1 (MCP-1). The findings proved the
potential of GS in treating cerebral ischemia in clinics [175]. Furthermore, GS (i.g.; 100 mg/kg) was
proved to protect against atherosclerosis in vivo through inhibiting the development of atherosclerotic
lesions; increasing Wnt1; decreasing dickkopf-related protein-1(DKK1) and NF-κB expression; reducing
serum total cholesterol and low-density lipoprotein levels; and elevating the ratio of Wnt1/DKK1.
Therefore, it was concluded that the protection of GS against atherosclerotic lesions were associated
with enhancing Wnt1 and inhibiting DKK1 expression [176]. Another study on atherosclerosis was
carried out in apolipoprotein E knockout (APOE-/-) mice. The findings indicated that GS (i.g.;
100 mg/kg) could promote the number and function of T-regulatory cells; in addition to decreasing
plaque areas in the aorta, total cholesterol and low-density lipoprotein cholesterol in the serum, which
contributed to stop the progression of atherosclerotic lesions in vivo [177].

As an agonist of GLP-1 receptor [164,178], GS also exerted inhibitory effects in cardiac hypertrophy.
In mice with constriction of the transverse aorta, a functional decline in the heart was observed with
a decrease in ejection fraction and fractional shortening, while the left ventricularinternal diastolic
diameter increased significantly. All these morphological changes could be attenuated by GS treatment.
In addition, the iridoid glycoside (i.g.; 25, 50 mg/kg) in vivo activated AMPKα and inhibited mTOR,
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ERK and ER stress in hypertrophic heart and in H9c2 cardiomyocytes. The protection and activation
was mediated with GLP-1 receptor through the experiments of GLP-1 knockdown and blockade [179].

5.8. Other Effects

Apart from the actions mentioned above, GS also exhibited other effects, including anti-allergic,
anti-depressive, anti-hyperuricemic, anti-oxidative and anti-thrombotic effects, which are shown in
Table 3 [180–187].

6. Pharmacokinetics

With the rapid development in pharmacokinetics and further studies examining TCMs, an
increasing amount of attention has been paid to natural products, especially bioactive ones,
including GS.

6.1. Absorption

It is well known that the bioavailability of the drug can vary with different administration methods
and GS is not an exception. To compare the bioavailabilities of GS, some Sprague Dawley (SD) rats
were administered with this natural compound intragastrically (i.g.; 50 mg/kg), intramuscularly
(i.m.; 8 mg/kg) and intranasally (i.n.; 8 mg/kg). The results demonstrated that the order of absolute
bioavailability is i.m. (72.69%) > i.n. (49.54%) > i.g. (9.74%) [188]. GS was also found to penetrate
the skin both in vivo and in vitro, allowing it to be quickly distributed in the subcutaneous tissue
and blood after use of Shangyi Aerosol in mice [189]. To study the absorption mechanism of GS
in Huanglian Jiedu Decoction, in vivo experiments and in vitro investigations, including intestinal
perfusion and Caco-2 models, have been conducted. The results indicated that the GS absorption could
be promoted by other co-existing compounds in the Chinese formula. In addition, GS was proved to
be mainly absorbed by passive diffusion and to be a potential substance of P-glycoprotein in intestinal
perfusion and Caco-2 models [151].

6.2. Distribution

In regard to tissue distribution after oral administration, the AUC0→4h values of GS were
calculated as the order of kidney > spleen > liver > heart > lung > brain [150].

6.3. Metabolism

In a metabolic profile experiment, normal male SD rats were orally administrated with GS at the
dosage of 350 mg/kg. As a result, 33 metabolites were found and identified. Among them, there were
17, 31, six, 12, three, six, 12 and six metabolites detected in the plasma, urine, heart, liver, spleen, lung,
kidney and brain, respectively. It was concluded that one fundamental metabolic pathway involved the
hydrolysis of the hydroxyl groups on C-1, while the other was related with demethylation, methylation,
cysteine conjugation, glycosylation and glucuronide conjugation [190]. In another study on the male
rats with adjuvant arthritis, GS and the four metabolites, genipin (G1), the mono-glucuronide conjugate
of genipin (G2), a cysteine conjugate ring-opened genipin (G3), an oxidation of G3 (G4) were detected
and identified: GS, G1 and G2 in plasma; GS and G1 in mesenteric lymph node; only GS in liver and
synovium; GS, G1, G3 and G4 in spleen; in addition to GS, G1, G2 and G3 in urine [191].

From the results of a pharmacokinetics study of GS, Cmax was assayed as 0.68 ± 0.29 µg/mL at
0.44 ± 0.13 h and area under curve (AUC) was 1.46 ± 0.37 µg·h/mL [149]. To study the influence of
gender on the pharmacokinetics of this natural product from Eucommia ulmoides Oliv. barks, some
female and male rats were treated intragastrically with the extract of the plant. The pharmacokinetic
parameters AUC0→t, AUC0→∞, Cmax, MRT0→∞ and T1/2 were quite different between the two sexes. It
was observed that absorption was increased while the distribution and elimination were decreased in
male rats compared with female rats, which showed gender influence on the metabolism of GS [192].
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Table 3. Other pharmacological effects of geniposide.

Function Inducer Model Efficacy Evaluation Reference

Anti-allergy
(in vitro) Compound 48/80 MC/9 cells Inhibited histamine release [180]

Anti-depression
(in vivo) STZ Mice (i.g.; 50, 100 mg/kg)

Attenuated increased immobility time in FST,
elevated BDNF levels,
upregulated the mRNA expression of BDNF and TrkB

[181]

Anti-enterovirus
(in vitro) EV 71 Rd cells (1, 2, 3 mg/mL) Inhibited both EV71 replication and viral IRES activity [182]

Anti-hypopigmentation
(in vitro) Norepinephrine Human epidermal melanocyte

(1, 10, 100 µM)

Upregulated c-kit production,
abrogated the repression of tyrosinase activity and melanin
production

[183]

Anti-hyperuricemia
(in vivo) Potassium oxonate Mice

(i.g.; 50, 100, 200 mg/kg)
Reduced SUA level,
Elevated UUA level [184]

Anti-osteoporosis
(in vitro) - Osteoblast-like cells (MG-63, Saos-2),

osteoclast (10−1–10−5 mg/mL)
Increased proliferation of osteoblast-like cells and proline
incorporation activity, Inhibited osteoclast activity [185]

Anti-oxidation
(in vitro) H2O2

HUVEC
(12.5, 25, 50 µg/mL)

Increased the viability of injured cells,
increased the activities of SOD, GSH-Px, NOS and NO production,
decreased intracellular ROS level,
reduced apoptosis rate,
restored the potential of cell proliferation

[186]

Anti-thrombosis
(in vivo)

Photochemical reaction Male ICR mice (i.v.; 20, 40 mg/kg) Prolonged the time required for thrombotic occlusion
[187]

Collagen Blood (7.7, 26, 77 µM) Inhibited platelet aggregation and PLA2 activity.

BDNF = brain-derived neurotrophic factor; EV = enterovirus; FST = forced swimming test; GSH-Px = glutathione peroxidase; HUVEC = human umbilical vein endothelial cell;
IRES = internal ribosome entry site; NOS = nitric oxide synthase; PLA2 = phospholipase A2; SUA = serum uric acid; TrkB = tropomyosin-related kinase B; and UUA = urinary uric acid. -
indicates no inducer.
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Apart from the pharmacokinetic study of GS alone in healthy rats, analogous studies of GS
from some extracts or prescriptions in the model rats have been carried out. After the rats in
the healthy group as well as Type 1 and Type 2 diabetic groups were orally administered with
G. jasminoides extract, a longer Tmax, increased Cmax, MRT0→∞, AUC and decreased CL were observed
in both diabetic groups while the values of T1/2 were similar among the three groups [193]. After i.v.
infection of Reduning in the rats, the plasma concentration of GS reached its maximum around the
administration time, before decreasing rapidly. The iridoid glycoside was eliminated quickly with a
lower T1/2 (0.75 ± 0.04 h) [194].

6.4. Excretion

The excretion kinetics of GS was investigated with its concentration in urine. As for the volunteers
in a clinic trial, the cumulative excretion amount of GS reached 70% as the prototype within 10 h after
i.v. Naoxuening Injection. It was concluded that the majority of excretion of GS in human was via
urine [195].

7. Toxicology

Although GS exerts many diverse biological activities, there are some studies examining its
toxicity, which should be focused on by researchers. Hepatotoxicity was considered as the most
fundamental issue of GS safety. An acute toxic study in rats revealed that GS of 574 mg/kg or above
would result in hepatotoxicity associated with oxidative stress 24–48 h after oral administration.
However, GS of 24.3 mg/kg or less would not cause hepatotoxicity even in the study of consecutive
90 days by oral administration [11]. As for the administration routes of GS, intranasal treatment
was resulted in less hepatotoxicity than intravenous, intragastrical or intramuscular treatments [196].
The rats treated with GS had obvious hepatotoxicity, which did not show any significant differences
between the SD rats and the Wistar rats of different ages. On the other hand, there was no obvious
hepatotoxicity induced in the ICR mice [197].

Apart from the toxicity in normal rats, GS showed hepatotoxicity and nephrotoxicity in the rats
with jaundice induced by ANIT. Alanine aminotransferase (ALT), aspartic transaminase (AST), alkaline
phosphatase (ALP), total bilirubin (TBIL), blood urea nitrogen (BUN) and creatinine (CREA) activities
in serum were increased after the model rats were treated with GS of 1.2 g/kg (i.g.). In addition,
serious pathological damages in the liver and kidney of these rats were observed [12].

8. Conclusions and Future Perspectives

With the idea of “back to Nature”, the traditional phytomedicines and natural products have
drawn attention from the field of medicine. As a traditional phytomedicine in East Asia, G. jasminoides
fruits have been employed to “purge fire to relieve vexation, clear heart and drain dampness in
addition to cooling the blood to remove toxins” in clinics for thousands of years. Since GS was first
isolated in this herbal plant, a considerable number of scientists and researchers have started to focus
on this active iridoid glycoside.

To our knowledge, the content of GS varies in the different plants and even in different parts
of the same plant. To successfully perform pharmacological, toxicological and pharmacokinetic
studies, it is necessary to prepare a considerable amount of this iridoid glycoside. Therefore,
extraction–isolation–purification is the common and inevitable procedure to obtain the active
compound. The following are the necessary aspects that researchers would have to consider in
the further studies: (1) High efficiency is important in order to obtain a relatively high content and
relatively low cost. Therefore, many plant origins and their parts will be tested to find the optimal ones
for GS preparation; (2) It is important to save resources and making full use of them to avoid waste is
preferable. For example, we should try to search for some other valuable extracts or natural compounds
as byproducts when preparing GS from one plant or otherwise; (3) It is important to be environmentally
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friendly. During the preparation procedure of GS, we should choose less toxic or non-toxic solvents to
reduce pollution as far as possible, which requires screening of preparation methods.

In some studies of different bioactivities, GS was proved as a GLP-1 receptor agonist to stimulate
insulin secretion in pancreatic β-cells [2], exhibit antinociception [178] and protect against cardiac
hypertrophy [179]. Apart from the abovementioned effects, GLP-1 was also found: (1) to decelerate
gastric emptying by suppressing the gastrointestinal peristalsis and gastricacidsecretion [198]; (2) to
increase intracellular cyclic adenosine monophosphate (cAMP) content, to accelerate calcium influx, to
decrease the pyruvic acid content of the myocardium and to inhibit cardiomyocyte apoptosis [199–201];
and (3) to reduce the damage caused by stroke [202]. Nevertheless, few articles of GS have
examined these physiological functions. Is GS able to show effects on the gastrointestinal system,
cardiovascular system and nervous system through such mechanisms? It is worth investigating for the
pharmacological researchers and the results may extend the range of GS bioactivities.

On the other hand, there has been concern about the potential toxicity of GS. It has even been used
to induce liver damage in mouse models [203]. Despite needing to remain cautious regarding toxicity
during the drug research and development stage, it is important to consider the contributing factors to
this toxicity. Dosage may be one obvious issue. In the studies on GS toxicity, the experimental animals
were often administered orally with this natural compound at several hundred mg/kg, which was
several times the dosage used for disease treatment. Furthermore, it was reported that low-dose GS
would not induce acute toxicity (28 mg/kg) [203] or chronic toxicity (24.3 mg/kg) [11]. Meanwhile, we
also found that present pharmacological experiments were performed on model animals while the
toxicological experiments were carried out on normal animals. Sometimes, the effective dosage in one
pharmacological study was found to overlap the toxic dosage in another toxicological study. However,
as we have known, the responses stimulated by the same dosage on model animals and normal ones
are obviously different. Essentially, toxic experiments in the future should be also carried out in model
animals, which could accurately reflect the actual situation of disease treatments. For each indication,
it is better to try several dosages to determine either the effective dosage or the toxic dosage. Thus, the
therapeutic window of the disease could be confirmed and the active compound could be employed
safely. The next problem to resolve would be finding out which compounds are toxic in vivo after GS
administration. As an iridoid glycoside with low bioavailability, GS converts into some metabolites
in vivo, among which genipin, the aglycone of GS, is the primary one and has been proposed as the
toxic compound. Nevertheless, this theory lacks enough support, especially from pharmacokinetic
study on model animals at toxic dosages of GS. We also speculated that there may be significant
differences between the pharmacokinetic profiles at high (toxic) dosage and low (therapeutic) dosages,
which probably provides some clues of the toxic metabolites. Therefore, it is important to carry out the
comprehensive absorption–distribution–metabolism–excretion–toxicity studies on both models and
normal animals at different doses of GS with various administrations, with which we could explain the
reason of inducing toxicity explicitly. On the other hand, the systematic structure–activity relationship
(SAR) studies of GS derivatives should be included in the future with actual screening trials and
virtual computer designs, which will guide the subsequent structural modification. With the findings,
the effects of GS may be improved through increasing the bioavailability, reducing the toxicity and
changing the solubility.

Taken together, as a bioactive natural product, GS may be developed as a candidate drug or
a lead compound. However, a considerable amount of studies are still required. In this review,
we have summarized the research on GS in various research fields in the recent years covering its
phytochemistry, pharmacology, pharmacokinetics and toxicology. In spite of these valuable findings,
some problems still remain unresolved, which have been proposed here and demand prompt solutions.
There will be many interesting directions of this iridoid glycoside for either fundamental research
or study of applications. Therefore, this paper will provide valuable background information to the
researchers who are either interested in thorough investigation of the bioactivity of GS or to develop
effective therapies based on this natural product.
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