${ }_{(12)}$ Patent Application Publication Pogue et al.
(10) Pub. No.: US 2002/0194646 A1
(43) Pub. Date:

Dec. 19, 2002
(54) METHODS OF CREATING DWARF PHENOTYPES IN PLANTS
(76) Inventors: Gregory P. Pogue, Vacaville, CA (US); Guy R. Della-Cioppa, Vacaville, CA (US); Gershon M. Wolfe, Davis, CA (US); Wenjin Zheng, Davis, CA (US)

Correspondence Address:
HOWREY SIMON ARNOLD \& WHITE, LLP BOX 34
301 RAVENSWOOD AVE. MENLO PARK, CA 94025 (US)
(21) Appl. No.: 09/910,664
(22) Filed:

Jul. 20, 2001
Related U.S. Application Data
(60) Provisional application No. 60/219,943, filed on Jul. 20, 2000.

Publication Classification

(51) Int. Cl. ${ }^{7}$ \qquad A01H 5/00
(52) U.S. Cl. \qquad 800/290; 800/320; 800/317.3; 800/319

ABSTRACT

The invention is directed to the application of gene sequences which cause a dwarf phenotype in plants to the fields of forestry plants, ornamental horticultural plants, medicinal plants, and Nicotiana plants which are used for purposes other than for traditional tobacco products. The invention provides cDNAs identified by the polynucleotide sequences SEQ ID NO: 1-122 that may be used to create transfected or transgenic plants exhibiting a dwarf phenotype. The invention also provides methods of creating a transfected or transgenic plant exhibiting a dwarf phenotype by expressing in the plant DNA or mRNA identified by the sequences SEQ ID NO:1-122.

Figure 1a. GC/FID Conditions for the Analysis of Tobacco Metabolites in Fraction 1

Figure 1b. GC/FID Conditions for the Analysis of Tobacco Metabolites in Fraction 2

Figure 1c. GC/FID Conditions for the Analysis of Tobacco Metabolites in Fraction 3

Figure 1d. LC/FLD Parameters for the Analysis of Tobacco Metabolites in Fraction 4
Column: \quad Aminoquant Hypersil ODS $5-\mu \mathrm{m}$ column ($200 \mathrm{~mm} \times 2.1 \mathrm{~mm}$)
Guard Column: \quad Hypersil ODS $5 \mu \mathrm{~m}(20 \mathrm{~mm} \times 2.1 \mathrm{~mm})$
Column Temperature: $45{ }^{\circ} \mathrm{C}$

Agilent 1100 Binary Pump Program
Mobile Phase A: Aqueous Acetate Buffer pH 7.2 containing EDTA ($4 \mathrm{ug} / \mathrm{mL}$), triethylamine ($0.18 \mathrm{uL} / \mathrm{mL}$), THF (0.3%) (v:v)
Mobile Phase B: Aqueous Acetate Buffer pH7.2:methanol:acetonitrile (2:4:4) (v:v:v)
Pump Program

Time (min)	$\% \mathrm{~B}$	Flow (mL)
0.0	0	0.6
9.5	60	0.6
10	100	0.6
10.5	100	1.1
13.1	100	0.6
14	0	0.6

Agilent 1100 Autosampler Program

Step 1. Draw 5 uL borate buffer
Step 2. Draw 1 uL OPA reagent
Step 3. Draw 0 uL water (Needle Wash)
Step 4. Draw 1 uL sample
Step 5. Mix 7 uL air 5 times
Step 6. Draw 0 uL water (Needle Wash)
Step 7. Draw 1 uL FMOC reagent
Step 8. Draw 0 uL water (Needle Wash)
Step 9. Draw $1 u L$ borate buffer
Step 10. Mix 9 uL air 3 times
Step 11. Inject
Agilent 1100 Fluorescent Detector
Time 0.0
Excitation: $\quad 340 \mathrm{~nm}$
Emission: $\quad 450 \mathrm{~nm}$
PMT Gain: 10
Time 9.2 min

Excitation:	266 nm
Emission:	305 nm
PMT Gain:	9

METHODS OF CREATING DWARF PHENOTYPES IN PLANTS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the priority benefit of provisional U.S. Patent Application Serial No. 60/219,943, filed Jul. 20, 2000, which is hereby incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] This invention relates to nucleic acids and amino acid sequences identified in multiple metabolic pathways that lead to dwarfism and stunting in plants and the use of these sequences to create dwarf varieties of any plant species. Particularly, this invention relates to the use of nucleic acids and amino acid sequences which cause dwarfing in the fields of forestry plants, ornamental horticultural plants, medicinal plants, and Nicotiana plants.

BACKGROUND OF THE INVENTION

[0003] The strategies for increasing the productivity of plants is dependent on rapid discovery of unknown gene sequences and their function through genomics research. These discoveries will provide fundamental information necessary to engineer plants for improved grain yields and resistance to drought, pests, salt, and other extreme environmental conditions. Such advances are critical for a world population expected to double by 2050 . Moreover, this information may identify genes and products encoded by genes that are useful for human and animal healthcare such as pharmaceuticals.
[0004] There has been a massive accumulation of expressed sequence tags (ESTs) as a result of recent genome research. Potential use of this sequence information is enormous once gene function is determined. Knowledge of function allows engineering of commercial plants and seeds for forestry, ornamental and horticultural plants, including any plants used to produce pharmaceutical products, and particularly plants of the genus Nicotiana for purposes other than traditional tobacco products.
[0005] Use of these sequences to convey any number of desirable traits to pharmaceutical and fiber crops and thereby increase production and building materials, medicines and chemicals for other uses. For example, gene profiling in cottonwood may lead to an understanding of the types of genes and promoters that act primarily in fiber cells. The novel sequences derived from these profiling studies may be important in genetic engineering of cottonwood fiber for increased strength. In plant breeding, gene profiling coupled to physiological trait analysis can lead to the identification of predictive markers that will be increasingly important in marker assisted breeding programs. Mining the DNA sequence of a particular crop for genes important for yield, quality, health, appearance, color, taste, etc. are applications of obvious importance for crop improvement.
[0006] The Green Revolution crops, introduced in the late 1960s and early 1970s, produce several times as much grain as the traditional varieties they replaced, and they spread rapidly. They enabled India to double its wheat crop in seven years, dramatically increasing food supplies and averting
widely predicted famine. The Green Revolution's leading research achievement was to hasten the perfection of dwarf spring wheat. Though it is conventionally assumed that farmers want a tall, impressive-looking harvest, in fact shrinking wheat and other crops has often proved beneficial. When bred for short stalks, plants expend less energy growing inedible column sections and more growing valuable grain. Stout, short-stalked wheat also neatly supports its kernels, whereas tall-stalked wheat may bend over at maturity, complicating reaping. Nature has favored genes for tall stalks, because in nature plants must compete for access to sunlight. However, in high-yield agriculture, equally shortstalked plants will receive equal sunlight. Researchers are actively seeking dwarf strains of rice and other crops in order to increase agronomic yields. The identification of genes and metabolic pathways that may be modified to create rapidly growing dwarf strains would greatly accelerate this effort. Furthermore, identification of these genes and metabolic pathways in food crops may lead to the development of dwarf strains in other plant types such as forest trees, ornamental species such as ornamental and turfgrass, and plants such as Nicotiana sp. grown as hosts for biopharmaceutical manufacturing.

SUMMARY OF THE INVENTION

[0007] The invention is directed to the application of gene sequences which cause a dwarf phenotype in plants to the fields of forestry plants, ornamental horticultural plants, medicinal plants, and Nicotiana plants which are used for purposes other than for traditional tobacco products.
[0008] The invention provides cDNAs identified by the polynucleotide sequences SEQ ID NO: 1-122 that may be used to create transfected or transgenic plants exhibiting a dwarf phenotype. These cDNAs have been identified by phenotypic screening of the Large Scale Biology's libraries over 8000 cDNAs from Arabidopsis, Nicotiana, Oryza and Papaver constructed in the GENEWARE® vector.
[0009] The invention provides methods of creating a transfected or transgenic plant exhibiting a dwarf phenotype comprising: expressing in the plant a cDNA (or its encoded mRNA) identified by a polynucleotide sequence chosen from the group consisting of SEQ ID NO: 1-122.
[0010] The invention also provides a method of creating a transfected or transgenic plant exhibiting a dwarf phenotype comprising the steps of: (a) providing a viral inoculum capable of infecting a plant comprising the cDNA (or its encoded mRNA) identified by a polynucleotide sequence chosen from the group of SEQ ID NO: 1-122; and (b) applying said viral inoculum to a plant; whereby the plant is infected and the cDNA (or its encoded mRNA) is expressed in the plant.
[0011] The methods of the invention provide for creating a transfected or transgenic plant exhibiting a dwarf phenotype in any plant type. Preferred embodiments of the invention provide methods for creating dwarf plants of ornamental and horticultural plants, medicinal plants or forest trees. A preferred embodiment provides methods for creating dwarf plants of Nicotiana sp. Another preferred embodiment provides methods for creating dwarf turfgrass.
[0012] The invention also provides methods for creating transfected or transgenic plants exhibiting a dwarf pheno-
type for use in biopharmaceutical manufacturing comprising: applying a viral inoculum capable of infecting a plant and comprising the DNA (or its encoded mRNA) identified by a polynucleotide sequence chosen from the group of SEQ. ID NO 1-122 to a plant that expresses a biopharmaceutical, whereby the plant is infected, exhibits a dwarf phenotype, and expresses the biopharmaceutical.
[0013] The invention also provides a transfected or transgenic plant exhibiting a dwarf phenotype made by the method comprising expressing in the plant a cDNA(or its encoded mRNA) identified by a polynucleotide sequence chosen from the group consisting of SEQ ID NO: 1-122. The invention provides for transfected or transgenic plants made by the use of this method with any plant type. Preferred embodiments are transfected or transgenic plants of ornamental and horticultural plants, medicinal plants or forest trees. Preferred embodiments include transfected or transgenic plants of Nicotiana sp and dwarf turfgrass.
[0014] The invention also provides methods of producing multiple crops of the transfected or transgenic plants expressing a cDNA(or its encoded mRNA) identified by a polynucleotide sequence chosen from the group consisting of SEQ ID NO: 1-122 and exhibiting a dwarf phenotype comprising the steps of: (a) planting a reproductive unit of the transfected or transgenic plant; (b) growing the planted reproductive unit under natural light conditions; (c) harvesting the plant; and (d) repeating steps (a) through (c) at least once in the year.
[0015] The invention provides a method of constructing and characterizing a normalized cDNA library in a viral vector. The invention further provides a method of constructing and characterizing of a normalized whole plant cDNA library in viral vectors.
[0016] The invention identifies cDNAs corresponding to genes in the trans-ketolase and carbohydrate metabolic pathways as useful for creating transfected or transgenic plants exhibiting a dwarf phenotype.
[0017] The invention also provides method of manufacturing a biopharmaceutical comprising:

DESCRIPTION OF THE INVENTION

[0018] Before the present proteins, nucleotide sequences, and methods are described, it should be noted that this invention is not limited to the particular methodology, protocols, plants, cell lines, vectors, and reagents described herein as these may vary. It should also be understood that the terminology used herein is for the purpose of describing particular aspects of the invention, and is not intended to limit its scope which will be limited only by the appended claims.
[0019] It must be noted that as used herein and in the appended claims, the singular forms "a", "an", and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, reference to "a host cell" includes a plurality of such host cells, reference to the "antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
[0020] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as com-
monly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods, devices, and materials are now described. All publications mentioned herein are incorporated herein by reference for the purpose of describing and disclosing the cell lines, vectors, and methodologies which are reported in the publications which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

Definitions

[0021] "Acylate" as used herein, refers to the introduction of an acyl group into into a molecule, i.e. acylation
[0022] "Adjacent" as used herein, refers to a position in a nucleotide sequence proximate to and 5 ' or 3 ' to a defined sequence. Generally, adjacent means within 2 or 3 nucleotides of the site of reference.
[0023] "Agonist", as used herein, refers to a molecule which, when bound to a gene product of interest, increases the biological or immunological activity of that gene product. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to a gene product of interest.
[0024] "Alterations" in a polynucleotide sequence, as used herein, comprise any deletions, insertions, and point mutations in the polynucleotide sequence. Included within this definition are alterations to any genomic DNA sequence corresponding to the polynucleotide sequence.
[0025] "Amino acid sequence" as used herein refers to an oligopeptide, peptide, polypeptide, or protein sequence, and fragments or portions thereof, and to naturally occurring or synthetic molecules. "Amino acid sequence" and like terms, such as "polypeptide" or "protein" as recited herein are not meant to limit the amino acid sequence to the complete, native amino acid sequence associated with the recited protein molecule.
[0026] "Amplification" as used herein refers to the production of additional copies of a nucleic acid sequence and is generally carried out using polymerase chain reaction (PCR) technologies well known in the art (Dieffenbach, C. W. and G. S. Dveksler (1995) PCR Primer, a Laboratory Manual, Cold Spring Harbor Press, Plainview, N.Y.).
[0027] "Antibody" refers to intact molecules as well as fragments thereof which are capable of specific binding to the epitopic determinant. Antibodies that bind a polypeptide of interest can be prepared using intact polypeptides or fragments as the immunizing antigen. These antigens may be conjugated to a carrier protein, if desired.
[0028] "Antigenic determinant,""determinant group," or "epitope of an antigenic macromolecule" as used herein, refers to any region of the macromolecule with the ability or potential to elicit, and combine with, specific antibody. Determinants exposed on the surface of the macromolecule are likely to be immunodomi-
nant, i.e. more immunogenic than other (imunorecessive) determinants which are less exposed, while some (e.g. those within the molecule) are non-immunogenic (immunosilent). As used herein, antigenic determinant refers to that portion of a molecule that makes contact with a particular antibody (i.e., an epitope). When a protein or fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to a given region or three-dimensional structure on the protein; these regions or structures are referred to as antigenic determinants. An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
[0029] "Antisense", as used herein, refers to nucleotide sequences which are complementary to a specific DNA or RNA sequence. The term "antisense" or "(-) sense" is used in reference to the nucleic acid strand that is complementary to the "sense" or " $(+)$ sense" strand. The designation "negative" is sometimes used in reference to the antisense strand, and "positive" is sometimes used in reference to the sense strand. Antisense molecules may be produced by any method, including synthesis by ligating the gene of interest in a reverse orientation to a viral promoter which permits the synthesis of a complementary strand. Once introduced into a cell, the transcript of this strand may hybridize to natural sequences to block either their further transcription or translation. In this manner, mutant phenotypes may be generated.
[0030] "Anti-Sense Inhibition" as used herein, refers to a type of gene regulation based on cytoplasmic, nuclear or organelle inhibition of gene expression due to the presence in a cell of an RNA molecule complementary to at least a portion of the mRNA being translated. It is specifically contemplated that DNA molecules may be from either an RNA virus or mRNA from the host cells genome or from a DNA virus.
[0031] "Antagonist" or "inhibitor", as used herein, refer to a molecule which, when bound to a gene product of interest, decreases the biological or immunological activity of that gene product of interest. Antagonists and inhibitors may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to the gene product of interest.
[0032] "Biologically active", as used herein, refers to a molecule having the structural, regulatory, or biochemical functions of a naturally occurring molecule.
[0033] "Cell Culture" as used herein, refers to a proliferating mass of cells which may be in either an undifferentiated or differentiated state, growing contiguously or non-contiguously.
[0034] "Chimeric plasmid" as used herein, refers to any recombinant plasmid formed (by cloning techniques) from nucleic acids derived from organisms which do not normally exchange genetic information (e.g. Escherichia coli and Saccharomyces cerevisiae).
[0035] "Chimeric Sequence" or "Chimeric Gene" as used herein, refers to a nucleotide sequence derived from at least two heterologous parts. The sequence may comprise DNA or RNA.
[0036] "Coding Sequence" as used herein, refers to a nucleic acid sequence which, when transcribed and translated, results in the formation of a cellular polypeptide or a ribonucleotide sequence which, when translated, results in the formation of a cellular polypeptide.
[0037] "Common Embryological Basis" as used herein, is intended to include all tissues which are derived from the same germinal layer, specifically the ectoderm layer, which forms during the gastrulation stage of embryogenesis. Such tissues include, but are not limited to, brain, epithelium, adrenal medulla, spinal chord, retina, ganglia and the like.
[0038] "Compatible" as used herein, refers to the capability of operating with other components of a system. A vector or plant viral nucleic acid which is compatible with a host is one which is capable of replicating in that host. A coat protein which is compatible with a viral nucleotide sequence is one capable of encapsidating that viral sequence.
[0039] "Complementary" or "Complementarity", as used herein, refer to the Watson-Crick base-pairing of two nucleic acid sequences. For example, for the sequence 5^{5}-AGT-3' binds to the complementary sequence 3^{\prime}-TCA-5'. Complementarity between two nucleic acid sequences may be "partial", in which only some of the bases bind to their complement, or it may be complete as when every base in the sequence binds to it complementary base. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands.
[0040] "Complementation analysis" as used herein, refers to observing the changes produced in an organism when a nucleic acid sequence is introduced into that organism after a selected gene has been deleted or mutated so that it no longer functions fully in its normal role. A complementary gene to the deleted or mutated gene can restore the genetic phenotype of the selected gene.
[0041] "Constitutive expression" as used herein refers to gene expression which features substantially constant or regularly cyclical gene transcription. Generally, genes which are constitutively expressed are substantially free of induction from an external stimulus.
[0042] "Correlates with expression of a polynucleotide", as used herein, indicates that the detection of the presence of ribonucleic acid that is similar to and indicative of the presence of an mRNA encoding a polypeptide in a sample and thereby correlates with expression of the transcript from the polynucleotide encoding the protein.
[0043] "Deletion", as used herein, refers to a change made in either an amino acid or nucleotide sequence resulting in the absence one or more amino acids or nucleotides, respectively.
[0044] "Differentiated cell" as used herein refers to a cell which has substantially matured to perform one or more biochemical or physiological functions.
[0045] "Dwarf Plant" as used herein, refers to a plant that is much below the height or size of its kind or related species.
[0046] "Encapsidation" as used herein, refers to the process during virion assembly in which nucleic acid becomes incorporated in the viral capsid or in a head/ capsid precursor (e.g. in certain bacteriophages).
[0047] "Exon" as used herein, refers to a polynucleotide sequence in a nucleic acid that codes information for protein synthesis and that is copied and spliced together with other such sequences to form messenger RNA.
[0048] "Expression" as used herein is meant to incorporate one or more of transcription, reverse transcription and translation.
[0049] "Expressed sequence tag (EST)" as used herein refers to relatively short single-pass DNA sequences obtained from one or more ends of cDNA clones and RNA derived therefrom. They may be present in either the 5^{\prime} or the 3^{\prime} orientation. ESTs have been shown useful for identifying particular genes.
[0050] "Foreign gene" as used herein, refers to any sequence that is not native to the virus.
[0051] "Fusion protein" as used herein, refers to a protein containing amino acid sequences from each of two distinct proteins; it is formed by the expression of a recombinant gene in which two coding sequences have been joined together such that their reading frames are in phase. Hybrid genes of this type may be constructed in vitro in order to label the product of a particular gene with a protein which can be more readily assayed (e.g. a gene fused with lacZ in E. coli to obtain a fusion protein with β-galactosidase activity). Alternatively, a protein may be linked to a signal peptide to allow its secretion by the cell. The products of certain viral oncogenes are fusion proteins.
[0052] "Gene" as used herein, refers to a discrete nucleic acid sequence responsible for a discrete cellular product and/or performing one or more intercellular or intracellular functions. The term "gene", as used herein, refers not only to the nucleotide sequence encoding a specific protein, but also to any adjacent 5^{\prime} and 3^{\prime} non-coding nucleotide sequence involved in the regulation of expression of the protein encoded by the gene of interest. These non-coding sequences include terminator sequences, promoter sequences, upstream activator sequences, regulatory protein binding sequences, and the like. These non-coding sequence gene regions may be readily identified by comparison with previously identified eukaryotic non-coding sequence gene regions. Furthermore, the person of average skill in the art of molecular biology is able to identify the nucleotide sequences forming the noncoding regions of a gene using well-known techniques such as a site-directed mutagenesis, sequential deletion, promoter probe vectors, and the like.
[0053] "Growth cycle" as used herein is meant to include the replication of a nucleus, an organelle, a cell, or an organism.
[0054] "Half-life" as used herein, refers to the time required for half of something to undergo a process
(e.g. the time required for half the amount of a substance, such as a drug or radioactive tracer, in or introduced into a living system or ecosystem to be eliminated or disintegrated by natural processes.
[0055] "Heterologous" as used herein, refers to the association of a molecular or genetic element associated with a distinctly different type of molecular or genetic element.
[0056] "Host" as used herein, refers to a cell, tissue or organism capable of replicating a vector or plant viral nucleic acid and which is capable of being infected by a virus containing the viral vector or plant viral nucleic acid. This term is intended to include procaryotic and eukaryotic cells, organs, tissues or organisms, where appropriate.
[0057] "Homology" as used herein, refers to the degree of similarity between two or more nucleotide or aminoacid sequences. Homology may be partial or complete.
[0058] "Hybridization", as used herein, refers to any process by which a strand of nucleic acid binds with a complementary or partially complementary strand through base pairing.
[0059] "Hybridization complex", as used herein, refers to a complex formed between nucleic acid strands by virtue of hydrogen bonding, stacking or other noncovalent interactions between bases. A hybridization complex may be formed in solution or between nucleic acid sequences present in solution and nucleic acid sequences immobilized on a solid support (e.g., membranes, filters, chips, pins or glass slides to which cells have been fixed for in situ hybridization).
[0060] "Immunologically active" refers to the capability of a natural, recombinant, or synthetic gene product of interest, or any oligopeptide thereof, to bind with specific antibodies and induce a specific immune response in appropriate animals or cells
[0061] "Induction" and the terms "induce", "induction" and "inducible" as used herein, refer generally to a gene and a promoter operably linked thereto which is in some manner dependent upon an external stimulus, such as a molecule, in order to actively transcribed and/or translate the gene.
[0062] "Infection" as used herein refers to the ability of a virus to transfer its nucleic acid to a host or introduce a viral nucleic acid into a host, wherein the viral nucleic acid is replicated, viral proteins are synthesized, and new viral particles assembled. In this context, the terms "transmissible" and "infective" are used interchangeably herein. The term is also meant to include the ability of a selected nucleic acid sequence to integrate into a genome, chromosome or gene of a target organism.
[0063] "Insertion" or "Addition", as used herein, refers to the replacement or addition of one or more nucleotides or amino acids, to a nucleotide or amino acid sequence, respectively.
[0064] "In cis" as used herein, indicates that two sequences are positioned on the same strand of RNA or DNA.
[0065] "In trans" as used herein, indicates that two sequences are positioned on different strands of RNA or DNA.
[0066] "Intron" as used herein refers to a polynucleotide sequence in a nucleic acid that does not code information for protein synthesis and is removed before translation of messenger RNA.
[0067] "Isolated" as used herein refers to a polypeptide, polynucleotide molecules separated not only from other peptides, DNAs, or RNAs, respectively, that are present in the natural source of the macromolecule but also from other macromolecules and preferably refers to a macromolecule found in the presence of (if anything) only a solvent, buffer, ion or other component normally present in a solution of the same. "Isolated" and "purified" do not encompass either natural materials in their native state or natural materials that have been separated into components (e.g., in an acrylamide gel) but not obtained either as pure substances or as solutions.
[0068] "Kinase" as used herein, refers to an enzyme (e.g. hexokinase and pyruvate kinase) which catalyzes the transfer of a phosphate group from one substrate (commonly ATP) to another.
[0069] "Marker" or "Genetic Marker" as used herein, refers to a genetic locus which is associated with a particular, usually readily detectable, genotype or phenotypic characteristic (e.g., an antibiotic resistance gene).
[0070] "Metabolome" as used herein, indicates the complement of relatively low molecular weight molecules that is present in a plant, plant part, or plant sample, or in a suspension or extract thereof. Examples of such molecules include, but are not limited to: acids and related compounds; mono-, di-,and tri-carboxylic acids (saturated, unsaturated, aliphatic and cyclic, aryl, alkaryl); aldo-acids, keto-acids; lactone forms; gibberellins; abscisic acid; alcohols, polyols, derivatives, and related compounds; ethyl alcohol, benzyl alcohol, menthanol; propylene glycol, glycerol, phytol; inositol, furfuryl alcohol, menthol; aldehydes, ketones, quinones, derivatives, and related compounds; acetaldehyde, butyraldehyde, benzaldehyde, acrolein, furfural, glyoxal; acetone, butanone; anthraquinone; carbohydrates; mono-, di-, tri-saccharides; alkaloids, amines, and other bases; pyridines (including nicotinic acid, nicotinamide); pyrimidines (including cytidine, thymine); purines (including guanine, adenine, xanthines/hypoxanthines, kinetin); pyrroles; quinolines (including isoquinolines); morphinans, tropanes, cinchonans; nucleotides, oligonucleotides, derivatives, and related compounds; guanosine, cytosine, adenosine, thymidine, inosine; amino acids, oligopeptides, derivatives, and related compounds; esters; phenols and related compounds; heterocyclic compounds and derivatives; pyrroles, tetrapyrroles (corrinoids and porphines/porphyrins, w/w/o metal-ion); flavonoids; indoles; lipids (including fatty acids and triglycerides), derivatives, and related compounds; carotenoids, phytoene; and sterols, isoprenoids including terpenes.
[0071] "Modulate" as used herein, refers to a change or an alteration in the biological activity of a gene product
of interest. Modulation may be an increase or a decrease in protein activity, a change in binding characteristics, or any other change in the biological, functional or immunological properties of the gene product of interest.
[0072] "Movement protein" as used herein refers to a noncapsid protein required for cell to cell movement of replicons or viruses in plants.
[0073] "Multigene family" as used herein refers to a set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those which encode the histones, hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins.
[0074] "Non-Native" as used herein refers to any RNA or DNA sequence that does not normally occur in the cell or organism in which it is placed. Examples include recombinant plant viral nucleic acids and genes or ESTs contained therein. That is, a RNA or DNA sequence may be non-native with respect to a viral nucleic acid. Such a RNA or DNA sequence would not naturally occur in the viral nucleic acid. Also, a RNA or DNA sequence may be non-native with repect to a host organism. That is, such a RNA or DNA sequence would not naturally occur in the host organism. Conversely, the term non-native does not imply that a RNA or DNA sequence must be non-native with respect to both a viral nucleic acid and a host organism concurrently. The present invention specifically contemplates placing a RNA or DNA sequence which is native to a host organism into a viral nucleic acid in which it is nonnative.
[0075] "Nucleic acid sequence" as used herein refers to a polymer of nucleotides in which the 3 ' position of one nucleotide sugar is linked to the 5^{\prime} position of the next by a phosphodiester bridge. In a linear nucleic acid strand, one end typically has a free 5 ' phosphate group, the other a free 3^{\prime} hydroxyl group. Nucleic acid sequences may be used herein to refer to oligonucleotides, or polynucleotides, and fragments or portions thereof, and to DNA or RNA of genomic or synthetic origin which may be single- or double-stranded, and represent the sense or antisense strand. The term is intended to encompass all nucleic acids whether naturally occurring in a particular cell or organism or non-naturally occurring in a particular cell or organism.
[0076] "Operably Linked" refers to a juxtaposition of components, particularly nucleotide sequences, such that the normal function of the components can be performed. Thus, a coding sequence that is operably linked to regulatory sequences refers to a configuration of nucleotide sequences wherein the coding sequences can be expressed under the regulatory control i.e., transcriptional and/or translational control, of the regulatory sequences.
[0077] "Organism" and "host organism" as used herein is specifically intended to include animals (including humans), plants, viruses, fungi, and bacteria.
[0078] "Origin of Assembly" as used herein, refers to a sequence where self-assembly of the viral RNA and the viral capsid protein initiates to form virions.
[0079] "Outlier Peak" as used herein, indicates a peak of a chromatogram of a test sample, or the relative or absolute detected response data, or amount or concentration data thereof. An outlier peak: 1) may have a significantly different peak height or area as compared to a like chromatogram of a control sample; or 2) be an additional or missing peak as compared to a like chromatogram of a control sample.
[0080] "Phenotype" or "Phenotypic Trait(s)" as used herein, refers to an observable property or set of properties resulting from the expression or suppression of a gene or genes.
[0081] "Plant" as used herein refers to any plant and progeny thereof, and to parts of plants including parts of plants, including seed, cuttings, tubers, fruit, flowers, branches, leaves, plant cells and other parts of any tree or other plant used in forestry, ornamental horticultural plants, medicinal plants including any plants used to produce pharmaceutical products, and plants of the genus Nicotiana which are used for purposes other than for traditional tobacco products.
[0082] "Plant Cell" as used herein, refers to the structural and physiological unit of plants, consisting of a protoplast and the cell wall.
[0083] "Plant Organ" as used herein, refers to a distinct and visibly differentiated part of a plant, such as root, stem, leaf or embryo.
[0084] "Plant Tissue" as used herein, refers to any tissue of a plant in planta or in culture. This term is intended to include a whole plant, plant cell, plant organ, protoplast, cell culture, or any group of plant cells organized into a structural and functional unit.
[0085] "Portion" as used herein, with regard to a protein (i.e. "a portion of a given protein") refers to fragments of that protein. The fragments may range in size from four amino acid residues to the entire amino acid sequence minus one amino acid.
[0086] "Positive-sense inhibition" as used herein refers to a type of gene regulation based on cytoplasmic inhibition of gene expression due to the presence in a cell of an RNA molecule substantially homologous to at least a portion of the mRNA being translated.
[0087] "Production Cell" as used herein, refers to a cell, tissue or organism capable of replicating a vector or a viral vector, but which is not necessarily a host to the virus. This term is intended to include prokaryotic and eukaryotic cells, organs, tissues or organisms, such as bacteria, yeast, fungus and plant tissue.
[0088] "Promoter" as used herein, refers to the 5'-flanking, non-coding sequence substantially adjacent a coding sequence which is involved in the initiation of transcription of the coding sequence.
[0089] "Protoplast" as used herein, refers to an isolated plant cell without cell walls, having the potency for regeneration into cell culture or a whole plant.
[0090] "Purified" as used herein when referring to a peptide or nucleotide sequence, indicates that the molecule is present in the substantial absence of other biological macromolecular, e.g., polypeptides, polynucleic acids, and the like of the same type. The term "purified" as used herein preferably means at least 95\% by weight, more preferably at least 99.8% by weight, of biological macromolecules of the same type present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 can be present). The term "pure" as used herein preferably has the same numerical limits as "purified" immediately above.
[0091] "Substantially purified" as used herein, refers to nucleic or amino acid sequences that are removed from their natural environment, isolated or separated, and are at least 60% free, preferably 75% free, and most preferably 90% free from other components with which they are naturally associated.
[0092] "Recombinant Plant Viral Nucleic Acid" as used herein, refers to a plant viral nucleic acid which has been modified to contain non-native nucleic acid sequences. These non-native nucleic acid sequences may be from any organism or purely synthetic, however, they may also include nucleic acid sequences naturally occurring in the organism into which the recombinant plant viral nucleic acid is to be introduced.
[0093] "Recombinant Plant Virus" as used herein, refers to a plant virus containing a recombinant plant viral nucleic acid.
[0094] "Regulatory region" or "Regulatory sequence" as used herein in reference to a specific gene refers to the non-coding nucleotide sequences within that gene that are necessary or sufficient to provide for the regulated expression of the coding region of a gene. Thus the term regulatory region includes promoter sequences, regulatory protein binding sites, upstream activator sequences, and the like. Specific nucleotides within a regulatory region may serve multiple functions. For example, a specific nucleotide may be part of a promoter and participate in the binding of a transcriptional activator protein.
[0095] "Replication origin" as used herein, refers to the minimal terminal sequences in linear viruses that are necessary for viral replication.
[0096] "Replicon" as used herein, refers to an arrangement of RNA sequences generated by transcription of a transgene that is integrated into the host DNA that is capable of replication in the presence of a helper virus. A replicon may require sequences in addition to the replication origins for efficient replication and stability.
[0097] "Sample", as used herein, is used in its broadest sense. A biological sample suspected of containing a nucleic acid or fragments thereof may comprise a tissue, a cell, an extract from cells, chromosomes isolated from a cell (e.g., a spread of metaphase chromosomes), genomic DNA (in solution or bound to a solid support such as for Southern analysis), RNA (in solution or bound to a solid support such as for northern analysis), cDNA (in solution or bound to a solid support), and the like.
[0098] "Silent mutation" as used herein, refers to a mutation which has no apparent effect on the phenotype of the organism.
[0099] "Site-directed mutagenesis" as used herein, refers to the in-vitro induction of mutagenesis at a specific site in a given target nucleic acid molecule.
[0100] "Specific binding" or "specifically binding", as used herein, in reference to the interaction of an antibody and a protein or peptide, mean that the interaction is dependent upon the presence of a particular structure (i.e., the antigenic determinant or epitope) on the protein; in other words, the antibody is recognizing and binding to a specific protein structure rather than to proteins in general.
[0101] "Stringent conditions", as used herein, is the "stringency" which occurs within a range from about $\left(\mathrm{T}_{\mathrm{m}}-5\right)^{\circ} \mathrm{C}$. (i.e. 5 degrees below the melting temperature, T_{m}, of the probe) to about 20° to $25^{\circ} \mathrm{C}$. below T_{m}. As will be understood by those of skill in the art, the stringency of hybridization may be altered in order to identify or detect identical or related polynucleotide sequences. Also as known in the art, numerous equivalent conditions may be employed to comprise either low or high stringency conditions. Factors such as the length and nature (DNA, RNA, base composition) of the sequence, nature of the target (DNA, RNA, base composition, presence in solution or immobilization, etc.), and the concentration of the salts and other components (e.g., the presence or absence of formamide, dextran sulfate and/or polyethylene glycol) are considered and the hybridization solution may be varied to generate conditions of either low or high stringency different from, but equivalent to, the above listed conditions.
[0102] "Subgenomic Promoter" as used herein, refers to a promoter of a subgenomic mRNA of a viral nucleic acid.
[0103] "Substantial Sequence Homology" as used herein, denotes nucleotide sequences that are substantially functionally equivalent to one another. Nucleotide differences between such sequences having substantial sequence homology will be de minimus in affecting function of the gene products or an RNA coded for by such sequence.
[0104] "Substitution", as used herein, refers to a change made in an amino acid of nucleotide sequence which results in the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.
[0105] "Systemic Infection" as used herein denotes infection throughout a substantial part of an organism including mechanisms of spread other than mere direct cell inoculation but rather including transport from one infected cell to additional cells either nearby or distant.
[0106] "Transcription" as used herein, refers to the production of an RNA molecule by RNA polymerase as a complementary copy of a DNA sequence.
[0107] "Transcription termination region" as used herein, refers to the sequence that controls formation of the 3^{\prime} end of the transcript. Self-cleaving ribozymes and
polyadenylation sequences are examples of transcription termination sequences.
[0108] "Transformation" as used herein, describes a process by which exogenous DNA enters and changes a recipient cell. It may occur under natural or artificial conditions using various methods well known in the art. Transformation may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method is selected based on the host cell being transformed and may include, but is not limited to, viral infection, electroporation, lipofection, and particle bombardment. Such "transformed" cells include stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome. They also include cells which transiently express the inserted DNA or RNA for limited periods of time.
[0109] "Transposon" as used herein refers to a nucleotide sequence such as a DNA or RNA sequence which is capable of transferring location or moving within a gene, a chromosome or a genome.
[0110] "Transgenic plant" as used herein refers to a plant which contains a foreign nucleotide sequence inserted into either its nuclear genome or organellar genome.
[0111] "Transcription" as used herein refers to the production of an RNA molecule by RNA polymerase as a complementary copy of a DNA sequence or subgenomic mRNA.
[0112] "Variants" of a gene product of interest, as used herein, refers to a sequence resulting when the gene product is altered by one or more amino acids. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties, e.g., replacement of leucine with isoleucine. More rarely, a variant may have "nonconservative" changes, e.g., replacement of a glycine with a tryptophan. Variants may also include sequences with amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art.
[0113] "Vector" as used herein, refers to a self-replicating DNA or RNA molecule which transfers a DNA or RNA segment between cells.
[0114] "Virion" as used herein, refers to a particle composed of viral RNA and viral capsid protein.
[0115] "Virus" as used herein, refers to an infectious agent composed of a nucleic acid encapsidated in a protein. A virus may be a mono-, di-, tri- or multipartite virus.

THE INVENTION

[0116] Identification and Analysis of cDNAs
[0117] The invention is based on the discovery of 122 cDNAs, identified by the polynucleotide sequences SEQ ID NO: 1-122, that may be used to create transfected or
transgenic plants exhibiting a dwarf phenotype. Table 1 lists the source organism for all 122 cDNAs of the invention (as identified by its SEQ ID NO).

TABLE 1-continued

$\begin{aligned} & \text { SEQ ID } \\ & \text { NO. } \end{aligned}$	Source	Sense or Antisense Configuration
69	Arabidopsis thaliana	A
70	Arabidopsis thaliana	A
71	Arabidopsis thaliana	A
72	Arabidopsis thaliana	A
73	Arabidopsis thaliana	A
74	Arabidopsis thaliana	A
75	Arabidopsis thaliana	A
76	Arabidopsis thaliana	A
77	Arabidopsis thaliana	A
78	Arabidopsis thaliana	A
79	Arabidopsis thaliana	A
80	Arabidopsis thaliana	A
81	Arabidopsis thaliana	A
82	Arabidopsis thaliana	A
83	Arabidopsis thaliana	A
84	Arabidopsis thaliana	A
85	Arabidopsis thaliana	A
86	Arabidopsis thaliana	A
87	Arabidopsis thaliana	A
88	Arabidopsis thaliana	A
89	Arabidopsis thaliana	A
90	Arabidopsis thaliana	A
91	Arabidopsis thaliana	A
92	Arabidopsis thaliana	A
93	Arabidopsis thaliana	A
94	Arabidopsis thaliana	A
95	Arabidopsis thaliana	A
96	Arabidopsis thaliana	A
97	Arabidopsis thaliana	S
98	Arabidopsis thaliana	A
99	Arabidopsis thaliana	n.d.
100	Arabidopsis thaliana	n.d.
101	Arabidopsis thaliana	n.d.
102	Arabidopsis thaliana	n.d.
103	Arabidopsis thaliana	n.d.
104	Arabidopsis thaliana	n.d.
105	Arabidopsis thaliana	n.d.
106	Arabidopsis thaliana	n.d.
107	Arabidopsis thaliana	n.d.
108	Arabidopsis thaliana	n.d.
109	Arabidopsis thaliana	n.d.
110	Arabidopsis thaliana	n.d.
111	Arabidopsis thaliana	n.d.
112	Arabidopsis thaliana	A
113	Nicotiana benthamiana	A
114	Nicotiana benthamiana	A
115	Nicotiana benthamiana	A
116	- Nicotiana benthamiana	S
117	Oryza japonica	S
118	Oryza japonica	S
119	Oryza indica	S
120	Oryza indica	S
121	Papaver rhoeas	S
122	Oryza japonica	S

[0118] The 122 cDNAs of the invention were identified by phenotypic screening and bioinformatic analysis of libraries of over 8000 cDNAs from Arabidopsis, Nicotiana, Oryza and Papaver constructed in the GENEWARE® vector. Table 1 lists whether the cDNA insert is in the sense (S) or antisense (A) configuration in the GENEWARE® vector used for the phenotypic screening. The use of the GENEWARE® vector in the field of genomics has been described in PCT WO 99/36516 published Jul. 22, 1999, which is herein incorporated by reference for all purposes. The general phenotypic screening method (described in greater detail below) involves constructing a GENEWARE® viral nucleic acid vector from each clone of
a normalized cDNA library of interest. Each GENEWARE® vector is then used to create an infectious viral unit which is applied to the individual plants of interest. Inoculation with GENEWARE® viral nucleic acid vectors results in a high rate of systemic infection of plants. The TMV based viral vector identified as PBSG1057 which has the ablility to transfect plants has been deposited under the Budapest Treaty at the AFCC and is designated ATCC \#203981. Infected (and uninfected) plants are grown under identical conditions and an automated visual phenotypic analysis is conducted of each plant. The phenotypic data including descriptive of various parts of each plant is entered into a matrix-style database created using LIMS software. Once in the database, the phenotypic results are linked to the sequence data and bioinformatic analysis associated with each of the GENEWARE® vector (i.e. each cDNA in the library).
[0119] Out of over 8000 Nicotiana benthamiana plants infected by the GENEWARE®, 111 were discovered that exhibited a dwarf phenotype. Sequence analysis of these cDNAs (as described in greater detail below) yielded the identifying nucleic acid sequences SEQ. ID. NOs. 1-111. Bioinformatic analysis of these sequences using BLAST and other methods (described in greater detail below) yielded E.C. annotations for a large number of these sequences.
[0120] Further bioinformatic analysis of the 111 polynucleotide sequences identified an additional 34 cDNAs that may also function to cause dwarf phenotype in plants. Pfam analysis (described in greater detail below) of the 111 cDNAs identified SEQ ID NO:95 and 102 as members of the transketolase functional family, and the pfkb carbohydrate kinase family, respectively. Using this information, the 11 additional sequences (identified by SEQ ID NO: 112-122) were discovered in the LSBC GENEWARE® libraries that are either a member of the transketolase having the same metabolic activity as SEQ ID NO. 95, or a member pfkb carbohydrate kinase families having the same metabolic activity as SEQ ID NO. 102.
[0121] Following the identification of plants exhibiting the dwarf phenotype, biochemical analyses of tissue may be carried out in order to ascertain further details of the expressed cDNAs function. Methods including GC/MS analysis and Maldi-TOF analysis of the tissue have been carried out (described in greater detail below) and yield information on the profile of metabolites and proteins present in the infected plant's tissue. The results of these biochemical analyses are linked to the phenotype, sequence, and other bioinformatic data associated with each of the GENEWARE® vector. Using these biochemical analysis methods, and associated data processing techniques, the identification of at least one variation in the metabolome of an infected (versus an uninfected) plant may ascribe a function to the cDNA of interest.
[0122] According to the present invention, the dwarf phenotype may be created in a wide variety of plants or plant cell systems using the cDNAs identified by SEQ ID NO:1122 and the various transformation methods described. In preferred embodiments, target plants and plant cells for engineering include, but are not limited to, monocotyledonous and dicotyledonous plants, including horticultural and ornamental plants (e.g., the grass and turfgrass species, and flowering plants such as petunia, rose, chrysanthemum),
conifers and pine trees (e.g., pine, fir, spruce species, and including Abies sp., Acer glabrum, Pinus sp., Alnus sp., Arbutus arizonica, Betula occidentalis, Cedrus sp., Cryptomeriajaponica, Cupressus sp., Eucalyptus sp., Ginkgo biloba, Juniperus sp., Libocedrus decurrens, Liriodendron tulipifera, Lithocarpus densiflora, Metasequoia glyptostroboides, P. ponderosa var. scopulorum, Picea sp., Platanus sp., Populus sp., Pseudotsuga sp., Purshia tridentata, Quercus sp., Sequoia sp., Taxus brevifolia, Thuja sp., Torreya californica, Tsuga heterophylla, Umbellularia californica); plants used in phytoremediation (e.g., heavy metal accumulating plants), medicinal plants (e.g. Solanaceae, Atropa belladonna, Duboisia myoporides, Hyoscymus niger, Scopolina atropoides, Solanum tuberosum, Eschscholtzia californica, Berberis stolonifera, Papaver somniferum) and plants used for experimental purposes (e.g., Arabidopsis thaliana, Nicotiana sp.).
[0123] For a more complete listing of medicinal plants see Table 2. Another treatment of medicinal herbs can be found in, "1999 PDR for Herbal Medicines" 2nd edition, editors, Joerg Gruenwald et al.,, Medical Economics Company, Montvale, N.J., which is herein incorporated by reference for all purposes.

TABLE 2

Medicinal Plant	Medicinal Plant
Abies lasiocarpa	Juglans major
Abies excelsa	Juniperus communis
Abronia wootonï	Juniperus monosperna
Acacia arabica	Juniperus sibirica
Acacia catechu	Kallstroemia grandiffora
Acacia constricta	Kallstroemia spp.
Acacia greggii	Kalmia angustifolia
Acacia senegal	Kalmia latifolia
Acalypha californica	Kalmia microphylla
Acalypha lindheimeri	Kalmia polifolia
Achillea lanulosa	Karvinskia humboldtiana
Achillea millefolium	Krameria grayi
Achlys triphylla	Krameria lanceolata
Aconitum columbianum	Krameria parvifolia
Acorus calamus	Lactuca serriola
Actaea alba	Lamium amplexicaule
Actea rubra	Larrea tridentata
Adiantum capillus-veneris	Ledum glandulosum
Adiantum jordanii	Ledum groenlandicum
Adiantum pedatum	Leonurus cardiaca
Adoxa moschatellina	Leonurus sibirica
Aesculus californica	Lepechinia calycina
Aesculus glabra	Lepidium montanum
Aesculus hippocastanum	Lespedeza violacea
Aesculus pavia	Leucophyllum frutescens
Agastache urticifolia	Levisticum ligusticum
Agave chisoensis	Lewisia rediviva
Agave parryi	Liatris punctata
Agrimonia gryposepala	Liatris squarrosa
Agrimonia striata	Ligusticum filicinum
Agropyron repens	Ligusticum grayi
Alchemilla mollis	Ligusticum porteri
Alchemilla vulgaris	Lilium grayi
Aletris farinosa	Lilium philadelphicum
Alhagi camelorum	Linaria canadensis
Allium cernum	Linaria dalmatica
Allium geyeri	Linaria vulgaris
Allium schoenoprasum	Linnaea borealis
Alnus incana	Linum lewisii
Aloe spp.	Linum medium
Aloe vera	Linum usitatissimum
Althea officinalis	Liquidambar orientalis
Amaranthus hybridus	Liquidamber styraciflua
Ambrosia ambrosioides	Lithospermum arvense

TABLE 2-continued

Medicinal Plant	Medicinal Plant
Ambrosia artemisiifolia	Lithospermum multiforum
Ambrosia trifida	Lithospermum ruderale
Amelanchier alnifolia	Lobelia cardinalis
Amsinckia intermedia	Lobetia cardinalis,
Amsonia hirtella	Lobelia cardinalis,
Amygdalus persica	Lobelia inflata
Anaphalis margaritacea	Lobelia kalmii
Anemone deltoidea	Lobelia siphilitica
Anemone globosa	Lomatium cous
Anemone halleri	Lomatium dissectum
Anemone occidentalis	Lophocereus (Pachycereus)
Anemone patens	Lycium fremontii
Anemone patens,	Lycium pallidum
Anemone quinquefolia	Lycopodium clavatum
Anemone tuberosa	Lycopus americanus
Anemopsis californica	Lycopus asper
Anethum graveolens	Lycopus uniflorus
Angelica sp.	Lycopus virginicus
Angelica archangelica	Lysichitum americanum
Angelica arguta	Lythrum salicaria
Angelica dawsonii	Macromeria viridiffora
Angelica genuffexa	Magnolia grandiflora
Angelica grayi	Mahonia aquifolia
Angelica hendersonii	Mahonia fremontii
Angelica lineariloba	Mahonia haematocarpa
Angelica pinnata	Mahonia nervosa
Angelica venenosa	Mahonia repens
Antennaria howellii	Mahonia trifoliata
Antennaria rosea	Mahonia wilcoxii
Apocynum androsaemifolium	Malus sylvestris
Apocynum cannabinum	Malva neglecta
Apocynum medium	Mammillaria arizonica
Aquilegia caerulea	Marah gilensis
Aquilegia chrysantha	Marrubium vulgare
Aralia californica	Matricaria chamomilla
Aralia nudicaulis	Matricaria matricarioides
Aralia racemosa	Medicago sativa
Aralia spinosa	Melampyrum lineare
Arbutus menziesii	Melilotus albus
Arctium minus	Menispermum canadense
Arctostaphylos pungens	Mentha arvensis
Arctostaphylos uva-ursi	Mentha pulegium
Argemone corymbosa	Mentha spicata
Argemone mexicana	Menyanthes trifoliata
Argemone platyceras	Mertensia ciliata
Argemone polyanthemos	Mimulus guttatus
Arisaema atrorubens	Mirabilis longiflora
Arisaema dracontium	Mirabilis multiflorum
Arisaema stewardsonii	Mitchella repens
Arisaema triphyllum	Monarda citriodora
Aristolochia californica	Monarda didyma
Aristolochia serpentaria	Monarda fistulosa
Aristolochia watsonii	Monarda media
Amica angustifolium	Monarda menthaefolia
Arnica cordifolia	Monarda mollis
Amica latifolia	Monarda pectinata
Arnica mollis	Monarda punctata
Amica montana	Monardella villosa
Artemisia douglasiana	Moneses uniflora
Artemisia filifolia	Monotropa hypopitys
Artemisia franserioides	Monotropa uniflora
Artemisia frigida,	Mortonia scabrella
Artemisia frigida	Myrica californica
Artemisia ludoviciana	Myrica cerifera
Artemisia tridentata	Myristica fragrans
Artemisia vulgaris	Nelumbo lutea
Asarum canadense	Nepeta cataria
Asarum caudatum	Nicotiana attenuata
Asclepias albicans	Nicotiana glauca
Asclepias asperula	Nicotiana repanda
Asclepias brachystephana	Nicotiana tabacum
Asclepias erosa	Nicotiana trigonophylla
Asclepias fascicularis	Nuphar luteum
Asclepias speciosa	Nymphaea odorata

TABLE 2-continued

Medicinal Plant	Medicinal Plant
Asclepias subulata	Ocimum basilicum
Asclepias syriaca	Oenothera biennis
Asclepias texana	Oenothera hookeri
Asclepias tuberosa	Oplopanax horridum
Asclepas viridis	Opuntia erinacea
Asclepias viridis	Opuntia phaeacantha
Asparagus officinale	Orobanche fasciculata
Aspidium filix-mas	Orobanche ludoviciana
Astragalus gummifer	Orobanche uniflora
Astragalus americanus	Osmorniza obtusa
Astragalus membranaceus	Osmorrhiza longistylis
Atriplex canescens	Osmorrhiza occidentalis
Avena fatua	Ourouparia gambir
Avena sativa	Oxatis cymosa
Balsamorhiza sagittata	Oxalis oregana
Baptisia australis	Oxalis metcalfe i
Baptisia leucantha	Paeonia brownii
Baptisia leucophaea	Paeonia californica
Baptisia sphaerocarpa	Panax quinquefolium
Baptisia tinctoria	Panax trifolium
Buddleya sp.	Papaver rhoeas
Berberis fendleri	Papaver somniferum
Berberis vulgaris	Parthenium incanum
Berberis -	Parthenocissus inserta
Besseya wyomingensis	Parthenocissus quinquefolia
Bidens frondosa	Passiffora foetida
Bidens pilosa	Passiffora incarnata
Bignonia capreolata	Passiflora lutea
Bouvardia temifolia	Passiflora sanguinea
Brassica arvensis	Paullinia cupana
Brickellia amplexicaulis	Pedicularis bracteosa
Brickellia californica	Pedicularis canadensis
Brickellia grandiffora	Pedicularis contorta
Brugmansia sp.	Pedicularis densiffora
Bryonia alba	Pedicularis grayii
Bupleurum americanum	Pedicularis groenlandica
Bursera microphylla	Pedicularis lanceolata
Bursera odorata	Pedicularis parryi
Cacalia decomposita	Pedicularis racemosa
Caesalpinia gilliessii	Peganum harmala
Caesalpinia pulcherrima	Peniocereus greggii
Caffea arabica	Penstemon cobaea
Calendula officinalis	Penstemon eatoni
Callirhoe involucrata	Penstemon lyallii
Caltha biflora	Perezia nana
Caltha leptosepala	Perezia wrightii
Caltha palustris	Perideridia gairdneri
Calypso bulbosa	Perilla frutescens
Camassia quamash	Petasites frigidus
Camissonia (Oenothera)	Petasites frigidus,
Campsis radicans	Petasites sagittatus
Cannabis sativa	Philadelphus lewisii
Capsella bursa-pastoris	Phoradendron flavescens
Capsicum annuum	Phoradendron juniperinum
Capsicum frutescens	Physalis crassifolia
Cardamine cordifolia	Physocarpus monogynus
Camegia gigantea	Physostigma venenosum
Cassia angustifolia	Phytolacca americana
Cassia covesii	Picea engelmanni
Cassia fasciculata	Pinus contorta
Cassia fistula	Pinus edulis
Cassia leptocarpa	Pinus palustris
Cassia marilandica	Pinus ponderosa
Cassia senna	Pinus strobus
Cassia wislizenii	Pinus taeda
Castanopsis chrysophylla	Piper sp
Castela emoryi	Piper cubeba
Castilleja sp.	Plantago lanceolata
Castilleja miniata	Plantago major
Caulophyllum thalictrioides	Plantago patagonica
Ceanothus americanus	Plantago rugeli
Ceanothus cuneatus	Pluchea camphorata
Ceanothus fendleri	Podophyllum peltatum
Ceanothus greggii	Polygala alba

TABLE 2-continued

Medicinal Plant	Medicinal Plant
Ceanothus herbaceum	Polygala lutea
Ceanothus spinosus	Polygala obscura
Ceanothus velutinus	Polygala paucifolia
Celastrus scandens	Polygala senega
Celtis occidentalis	Polygonatum biflorum
Centaurium venustum	Polygonatum canaliculatum
Cephaelis ipecacuanha	Polygonum bistortioides
Cephalanthus occidentalis	Polymnia spp
Cerastium arvense	Polymnia canadensis
Cercis occidentalis	Polypodium glycyrriza
Cercocarpus sp.	Polystichum munitum
Cetraria islandica	Populus balsamifera
Chamaelirium luteum	Populus fremontii
Chelidonium majus	Populus tremulioides
Chelone glabra	Portulaca oleracea
Chelone lyoni	Potentilla diversifolia
Chenopodium ambrosioides	Potentilla fruticosa
Chilopsis linearis	Potentilla palustris
Chimaphila umbellata	Potentilla strigosa
Chimaphila umbellata,	Potentilla tridentata
Chionanthus virginiana	Proboscidea parvifiora
Chlorogalum pomeridianum	Prosopis julifiora
Chondrus crispus	Prunella vulgaris
Choisya arizonica	Prunus americana
Chrysanthemum leucanthemum	Prunus avium
Chrysanthemum parthenium	Prunus laurocereus
Cichorium intybus	Prunus serotina
Cicuta douglasii	Prunus virginiana
Cimicifuga arizonica	Pseudotsuga menziesii
Cimicifuga elata	Psoralea escutenta
Cimicifuga racemosa	Ptelea pallida
Cinchona succirubra	Ptelea trifoliata
Cinnamomum camphora	Pulsatilla ludoviciana
Cirsium undulatum	Punica granatum
Citrullus colocynthis	Purshia tridentata
Citrus sinensis	Pyrola asarifolia
Claviceps purpurea	Pyrola minor
Claytonia lanceolata	Pyrola rotundifolia
Clematis columbiana	Pyrola secunda
Clematis hirsutissima	Prola virens
Clematis ligusticifolia	Quercus alba
Clematis pseudoalpina	Quercus gambelii
Clematis viorna	Quillaja saponaria
Clematis virginiana	Ratibida columnaris
Cleome serrulata	Rhamnus alnifolia
Cocculus sp.	Rhamnus betulifolia
Cola nitida	Rhamnus californica
Colchicum autumnate	Rhamnus frangula
Collinsonia canadensis	Rhamnus purshiana
Commandra umbellata	Rheum officinale
Conium maculatum	Rhus choriophylla
Conopholis alpina	Rhus glabra
Conopholis americana	Rhus microphylla
Convallaria majus	Rhus (Toxicodendron)
Convolvulus arvensis	Rhus trilobata
Convolvulus scammonia	Ribes aureum
Conyza canadense	Ricinus communis
Copaiba langsdorffi	Romneya coulteri
Coptis groenlandica	Rosa acicularis
Coptis laciniata	Rosa humilis
Coptis occidentalis	Rosa virginiana
Corallorhiza maculata	Rosa woodsii
Corallorrhiza striata	Rubus idaeus
Cordia boissieri	Rubus odoratus
Cornus canadensis	Rubus parviflorus
Cornus florida	Rudbeckia hirta
Cornus stolonifera	Rudbeckia laciniata
Corydalis aureus	Ruellia ciliosa
Corydalis sempervirens	Rumex acetosella
Crataegus spp.	Rumex crispus
Crataegus columbiana	Rumex hymenosepalus
Crataegus douglasii	Ruta graveolens
Crataegus mollis	Sabal texana
Crataegus rivularis	Sabatia angularis

Medicinal Plant	Medicinal Plant
Crataegus succulenta	Sabatia campestris
Cucurbita foetidissima	Sabatia stellaris
Cupressus anizonica	Sagittaria cuneata
Cupressus macrocarpa	Sagittaria latifolia
Curcuma sp.	salix sp.
Cuscuta gronovi	Salix discolor
Cymopterus fendleri	Salvia apiana
Cynanchum nigrum	Salvia azurea
Cynara sp.	Salvia clevelandii
Cynoglossum offcinale	Salvia columbariae
Cypripedium sp.	Salvia greggii
Cypripedium acaule	Salvia henryi
Cypripedium arietinum	Salvia lemmonii
Cypripedium calceolus	Salvia leucophylla
Cypripedium montanum	Salvia mellifera
Cypripedium parviforum	Salvia regla
Cypripedium reginae	Salvia reflexa
Cytisus scoparius	Salvia spathaceae
Dalea formosa	Sambucus canadensis
Darlingtonia californica	Sambucus mexicana
Datura ferox	Sambucus racemosa
Datura metelioides	Sanguinaria canadensis
Datura wrightii	Sanguisorba canadensis
Daucus carota	Sanicula marilandica
Delphinium barbeyi	Santalum album
Delphinium elongatum	Sanvitalia abertii
Dendromecon rigida	Sapindus saponaria
Dicentra canadensis	Saponaria officinalis
Dicentra cucullaria	Sarracenia psittacina
Dicentra formosa	Sarracenia purpurea
Dicentra spectabilis	Sarracenia rubra
Digitalis purpurea	Sassafras IL
Dionaea muscipula	Satureja douglasii
Dioscorea villosa	Saururus cernuus
Dipsacus sylvestris	Scopola camiolica
Dipsacus fullorum	Scrophularia californica
Dodecathion pulchellum	Scrophularia lanceolata
Dracocephalum moldavica	Scutellaria brittonii
Dracocephalum parviflorum	Scutellaria californica
Drosera linearis	Scutellaria drummondii
Drosera rotundifolia	Scutellaria epilobiifolia
Dyssodia papposa	Scuteliaria galericulata
Ecballium elaterium	Scutellaria incana
Echevaria rusbyi	Scutellaria integrifolia
Echinacea angustifolia	Scutellaria latifiora
Echinacea pallida	Scutellaria resinosa
Echinacea purpurea	Scutellaria serrata
Echinacea tennessiensis	Scutellaria tesselata
Elettaria carmamomum	Scutellaria wrightii
Encelia farinosa	Sedum rhodanthum
Ephedra californica	Sedum roseum
Ephedra nevadensis	Selenicereus spp.
Ephedra torreyana	Senecio aureus
Ephedra trifurca	Senecio cineraria
Ephedra viridis	Sequoia sempervirens
Epifagus virginianum	Serenoa repens
Epigaea repens	Shephardia argentea
Epilobium angustifolium	Shephardia canadensis
Epilobium hirsutum	Sida hederacea
Epipactis gigantea	Sidalcea neomexicana
Epipactis helleborine	Sidalcea malvaeflora
Equisetum arvense	Silphium laciniata
Equisetum pratense	Silphium perfoliatum
Eremocarpus setigerus	Silphium terebinthinaceum
Eriodictyon angustifolia	Silybum marianum
Eriodictyon californica	Simmondsia chinensis
Eriodictyon crassifolium	Smilacina racemosa
Eriodictyon glutinosa	Smilacina stellata
Eriogonum leptophyllum	Smilacina trifolia
Eriogonum umbellata	Smilax spp.
Eriogonum wrightii	Smilax californica
Erodium cicutarium	Smilax glauca
Eryngium leavenworthii	Smilax herbacea
Eryngium lemmonii	Smilax rotundifolia

TABLE 2-continued

Medicinal Plant	Medicinal Plant
Eryngium yuccafolium	Solanum carolinense
Erysimum capitatum	Solanum dulcamara
Erythronium grandiflorum	Solanum eleagnifolium
Erythronium montanum	Solanum nodiflorum
Erythroxylon coca	Solidago canadensis
Eschscholtzia californica	Sophora secundiflora
Eschscholtzia mexicana	Sorbus scopulina
Eschscholtzia minutiflora	Spartium junceum
Eucalyptus sp.	Sphaeralcea ambigua
Euonymus occidentalis	Sphaeralcea angustifolia
Eupatorium coelestinum	Sphaeralcea coccinea
Eupatorium greggii	Sphaeralcea fendleri
Eupatorium herbaceum	Sphaeralcea parviflora
Eupatorium maculatum	Sphenosciadium capitellatum
Eupatorium perfoliatum	Spigelia marilandica
Eupatorium purpureum	Spiraea alba
Eupatorium rugosum	Spiraea tomentosa
Eustoma grandiflorum	Stachys albens
Eysenhardtia polystachya	Stachys palustris
Fallugia paradoxa	Stachys rigida
Ferula foetida	Stellaria media
Ferula galbaniflua	Stenocereus thurberi
Flourensia cernua	Sticta PH
Fouquieria splendens	Stillingia sylvatica
Fragaria glauca	Streptopus amplexifolius
Fragaria ovalis	Strychnos nux-vomica
Fragaria virginiana	Swertia radiata
Frankenia grandiflora	Symphytum off cinalis
Frankenia palmeri	Symplocarpus foetidus
Fraxinus ormus	Tanacetum huronense
Fremontia californica	Tanacetum parthenium
Fritillaria atropurpurea	Tanacetum vulgare
Fritillaria pudica	Taraxacum sp.
Fucus vesiculosus	Taxus brevifolia
Fumaria officinalis	Tecoma stans
Gaillardia pinnatifida	Teucrium laciniatum
Galium aparine	Thalictrum fendleri
Galium borealis	Thamnosma texana
Garcinia hanburyi	Thamnosma montana
Garrya spp.	Thelesperma gracile
Garrya elliptica	Tephrosia virginiana
Garrya flavescens	Thermopsis montana
Garrya wrightii	Thuja plicata
Gaultheria procumbens	Thymus vulgaris
Gaultheria shallon	Tillandsia recurvata
Gaura lindheimeri	Tillandsia usnioides
Gaura parviflora	Toluifera balsamum
Gaylussacia brachycera	Toluifera pereirae
Gelsemium sempervirens	Toxicodendron radicans
Gentiana affinis	Toxicodendron vernix
Gentiana algida	Tradescantia occidentalis
Gentiana andrewsi	Tragopogon dubius
Gentiana calycosa	Trauvettaria carolinensis
Gentiana crinata	Tribulus terrestrus
Gentiana heterosepala	Trichostema lanatum
Gentiana parryi	Trifolium pratense
Gentiana saponaria	Trillium erectum
Gentiana simplex	Trillium grandifiorum
Gentiana thermalis	Trillium ovatum
Gentianella (Gentian)	Trillium sessile
Geranium maculatum	Trillium undulatum
Geranium richardsonii	Trollius laxus
Geranium viscosissimum	Tsuga mertensiana
Geum rivale	Turnera diffusa
Geum trifiorum	Umbellularia californica
Gigartina mamillosa	Urginea maritima
Gillenia trifoliata	Urtica dioica
Glecoma hederacea	Usnea barbata
Glycymiza glabra	Usnea hirsutissima
Glycyrrhiza lepidota	Vaccinium corymbosum
Gnaphallium sp.	Vaccinium myrtillus
Goodyera spp.	Vaccinium ovatum
Gossypium thurberi	Vaccinium oxycoccos
Grindelia aphanactis	Vaccinium parvifolium

TABLE 2-continued

Medicinal Plant	Medicinal Plant
Grindelia squarrosa	Vaccinium scoparium
Guaiacum angustifolium	Vaccinium tenellum
Guaiacum coulteri	Vaccinium uliginosum
Guaiacum sanctum	Vaccinium vitis-idaea
Gutierrezia sarothrae	Valeriana acutiloba
Habenaria blephariglottis	Valeriana arizonica
Habeneria fimbriata	Valeriana edulus
Habenaria (Plantanthera)	Valeriana officinalis
Hagenia abyssinica	Valeriana occidentalis
Hamamelis virginiana	Valeriana sitchensis
Haplopappus laricifolius	Vancouveria hexandra
Hedeoma hyssopifolium	Veratrum californicum
Hedeoma oblongifolia	Veratrum viride
Hedysarum alpinum	Verbascum blattaria
Helenium (Dugaldia)	Verbascum thapsus
Heliotropium convolvulaceum	Verbena bipinnatifida
Heracleum lanatum	Verbena bracteata
Heterotheca grandiflora	Verbena canadensis
Heterotheca psammophylla	Verbena ciliata
Heterotheca subaxillaris	Verbena gooddingii
Heuchera americanus	Verbena hastata
Heuchera micrantha	Verbena macdougalii
Heuchera parvifolia	Verbena stricta
Heuchera sanguinea	Verbena wrightii
Hibiscus moscheutos	Verbesina encelioides
Hibiscus oculiroseus	Veronica americana
Hierochloe odorata	Veronica chamaedrys
Holodiscus dumosus	Veronicastrum IM
Humulus americanus	Viburnum acerifolium
Humulus lupulus	Viburnum americanum
Hydrastis canadensis	Vibumum cassinoides
Hydrocotyle bonariensis	Viburnum edule
Hydrophyllum capitatum	Viburnum ellipticum
Hyocyamus niger	Viburnum opulus
Hypericum ascyron	Viburnum prunifolium
Hypericum aureum	Viburnum rufidulum
Hypericum formosum	Vigueria dentata
Hypericum perforatum	Vinca major
Hyptis emoryi	Viola sp
Hyssopus officinalis	Vola canadensis
Ilex vomitoria	Vola pedata
Impatiens biflora	Viola tricolor
Impatiens capensis	Vitex agnus-castus
Impatiens pallida	Xanthium spinosum
Indigofera sphaerocarpa	Xanthium strumarium
Inula helenium	Xerophyllum tenax
Ipomea arborescens	Yucca baccata
Ipomea jalapa	Yucca baileyi
Ipomea leptophylla	Yucca elata
Iris missouriensis	Yucca schottii
Iris prismatica	Zanthoxylum fagaria
Iris versicolor	Zauschneria latifolia
Jateorhiza palmata	Zigadenus elegans
Jatropha cardiophylla	Zigadenus venenosus
Jatropha dioica	Zingiber sp.
Jatropha macrorhiza	Zizia aptera
Jeffersonia diphylla	

[0124] The dwarf phenotype may be created using the cDNAs of the present invention in conjunction with a wide variety of plant virus expression vectors. The plant virus selected may depend on the plant system chosen and its known susceptibility to viral infection. Preferred embodiments of the plant virus expression vectors include, but are not limited to those in Table 3.

TABLE 3

Plant Viruses	Plant Viruses
Abelia latent tymovirus	Lucerne transient streak
Abutilon mosaic bigeminivirus	Lychnis ringspot hordeivirus
Ahlum waterborne carmovirus	Maclura mosaic macluravirus
Alfalfa 1 alphacryptovirus	Maize dwarf mosaic potyvirus
Alfalfa 2 betacryptovirus	Maize streak monogeminivirus
Alfalfa mosaic alfamovirus	Maracuja mosaic tobamovirus
Alsike clover vein mosaic virus	Marigold mottle potyvirus
Alstroemeria ilarviru	Melandrium yellow fleck
Alstroemeria mosaic potyvirus	Melilotus mosaic potyvirus
Alstroemeria streak potyvirus	Melon Ourmia ourmiavirus
Amaranthus leaf mottle potyvirus	Melothria mottle potyvirus
Amaryllis alphacryptovirus	Milk vetch dwarf nanavirus
Amazon lily mosaic potyvirus	Mulberry latent carlavirus
Apple mosaic ilarvirus	Muskmelon vein necrosis carlavirus
Apple stem grooving capillovirus	Myrobalan latent ringspot nepovirus
Arabis mosaic nepovirus	Nandina mosaic potexvirus
Arracacha A nepovirus	Narcissus late season yellows
Arracacha A nepovirus	Narcissus latent macluravirus
Arracacha B nepovirus	Narcissus mosaic potexvirus
Arracacha Y potyvirus	Narcissus tip necrosis carmovirus
Artichoke Italian latent nepovirus	Narcissus tip necrosis carmovirus
Artichoke latent potyvirus	Narcissus yellow stripe potyvirus
Artichoke latent S carlavirus	Neckar River tombusvirus
Artichoke mottled crinkle	Nerine potyvirus
Artichoke vein banding nepovirus	Nicotiana velutina mosaic furovirus
Artichoke yellow ringspot	Oat blue dwarf marafivirus
Asparagus 1 potyvirus	Oat blue dwarf marafivirus
Asparagus 2 ilarvirus	Oat golden stripe furovirus
Asparagus 3 potexvirus	Odontoglossum ringspot
Aster chlorotic stunt carlavirus	Okra leaf-curl bigeminivirus
Asystasia gangetica mottle	Okra mosaic tymovirus
Aucuba ringspot badnavirus	Olive latent 1 sobemovirus
Barley stripe mosaic hordeivirus	Olive latent 2 ourmiavirus
Barley stripe mosaic hordeivirus	Onion mite-borne latent potexvirus
Barley yellow dwarf luteovirus	Onion yellow dwarf potyvirus
Barley yellow streak mosaic virus	Orchid fleck rhabdovirus
Bean calico mosaic bigeminivirus	Panicum mosaic sobemovirus
Bean common mosaic potyvirus	Papaya mosaic potexvirus
Bean distortion dwarf	Papaya ringspot potyvirus
Bean leaf roll luteovirus	Paprika mild mottle tobamovirus
Bean pod mottle comovirus	Parietaria mottle ilarvirus
Bean yellow mosaic potyvirus	Parsnip leafcurl virus
Beet curly top hybrigeminivirus	Parsnip mosaic potyvirus
Beet leaf curl rhabdovirus	Parsnip yellow fleck sequivirus
Beet mild yellowing luteovirus	Passiflora ringspot potyvirus
Beet mosaic potyvirus	Passionfruit woodiness potyvirus
Beet necrotic yellow vein furovirus	Patchouli mosaic potyvirus
Beet pseudo-yellows closterovirus	Pea early browning tobravirus
Beet soil-borne furovirus	Pea enation mosaic enamovirus
Beet western yellows leuteovirus	Pea mild mosaic comovirus
Beet yellows closterovirus	Pea mosaic potyvirus
Belladonna mottle tymovirus	Pea seed-borne mosaic potyvirus
Bidens mosaic potyvirus	Pea streak carlavirus
Black raspberry necrosis virus	Peach enation nepovirus
Blueberry leaf mottle nepovirus	Peach rosette mosaic nepovirus
Blueberry necrotic shock ilarvirus	Peanut chlorotic streak caulimovirus
Bramble yellow mosaic potyvirus	Peanut clump furovirus
Broad bean mottle bromovirus	Peanut mottle potyvirus
Broad bean necrosis furovirus	Peanut stunt cucumovirus
Broad bean stain comovirus	Peanut yellow spot tospovirus
Broad bean true mosaic comovirus	Pelargonium flower break
Broad bean wilt fabavirus	Pelargonium line pattern
Brome mosaic bromovirus	Pelargonium vein clearing
Burdock yellow mosaic potexvirus	Pelargonium zonate spot
Cacao necrosis nepovirus	Pepino mosaic potexvirus
Cacao swollen shoot badnavirus	Pepper Indian mottle potyvirus
Cacao yellow mosaic tymovirus	Pepper mild mosaic potyvirus
Cactus 2 carlavirus	Pepper mild mottle tobamovirus
Cactus X potexvirus	Pepper Moroccan tombusvirus
Canavalia maritima mosaic	Pepper mottle potyvirus
Caper latent carlavirus	Pepper ringspot tobravirus
Caraway latent nepovirus	Pepper severe mosaic potyvirus
Carnation rhabdovirus	Pepper Texas bigeminivirus
Carnation rhabdovirus	Pepper veinal mottle potyvirus

TABLE 3-continued
Plant Viruses Plant Viruses
Carnation 1 alphacryptovirus
Carnation 2 alphacryptovirus

Petunia asteroid mosaic
Carnation etched ring caulimovirus Physalis mosaic tymovirus
Carnation Italian ringspot \quad Pineapple chlorotic leaf streak
Carnation latent carlavirus
Carnation mottle carmovirus
Carnation mottle carmovirus Carnation necrotic fleck Carnation ringspot dianthovirus Carnation vein mottle potyvirus Carnation yellow stripe necrovirus Carrot mosaic potyvirus
Carrot mottle mimic umbravirus Carrot mottle umbravirus
Carrot yellow leaf closterovirus Cassava African mosaic
Cassava brown streak potyvirus
Cassava brown streak-associated Cassava Caribbean mosaic
Cassava Colombian symptomless Cassava common mosaic
Cassava green mottle nepovirus Cassava Indian mosaic
Cassava Ivorian bacilliform
Cassava Ivorian bacilliform
Cassava X potexvirus
Cassia mild mosaic carlavirus
Cassia severe mosaic closterovirus
Celery latent potyvirus
celery mosaic potyvirus
Cherry leaf roll nepovirus
Chickpea bushy dwarf potyvirus
Chickpea chlorotic dwarf
Chickpea distortion mosaic
Chicory yellow mottle nepovirus
Chilli veinal mottle potyvirus
Chino del tomat, bigeminivirus
Citrus leaf rugose ilarvirus
Citrus ringspot virus
Clover mild mosaic virus
Clover wound tumor phytoreovit Rhynchosia mosaic bigeminivirus
rirus Ribgrass mosaic tobamovirus
eovirus Rice hoja blanca tenuivirus
Clover yellow mosaic potexvirus Rice stripe necrosis furovirus
Clover yellow vein potyvirus Rice stripe tenuivirus
Colocasia bobone disease Rose tobamovirus
Commelina X potexvirus
Cowpea chlorotic mottle
Cowpea mild mottle carlavirus
Cowpea mosaic comovirus
Cowpea mosaic comovirus Cowpea mottle carmovirus
Cowpea severe mosaic comovirus
Cowpea severe mosaic comovirus
Croton yellow vein mosaic
Cucumber green mottle mosaic
Cucumber leaf spot carmovirus
Cucumber mosaic cucumovirus
Cucumber mosaic cucumovirus Cucumber necrosis tombusvirus
Cycas necrotic stunt nepovirus
Cymbidium ringspot tombusvirus
Cynara nucleorhabdovirus
Dahlia mosaic caulimovirus
Dandelion yellow mosaic
sequivirus
Daphne Y potyvirus
Dasheen bacilliform badnavirus
Dasheen mosaic potyvirus
Datura Colombian potyvirus
Datura distortion mosaic potyvirus
Datura innoxia Hungarian mosaic
Datura mosaic potyvirus
Datura necrosis potyvirus
Datura shoestring potyvirus

Rubus Chinese seed-borne saguaro cactus carmovirus Scrophularia mottle tymovirus Shallot latent carlavirus Shallot mite-borne latent potexvirus Shallot yellow stripe potyvirus Silene X potexvirus Sint-Jan's onion latent carlavirus Sitke waterborne tombusvirus Solanum apical leaf curling Solanum nodiflorum mottle Solanum nodiflorum mottle Sonchus cytorhabdovirus Sonchus yellow net Sorghum mosaic potyvirus Sowbane mosaic sobemovirus Soybean crinkle leaf bigeminivirus Soybean dwarf luteovirus Soybean mild mosaic virus Soybean mosaic potyvirus Spinach latent ilarvirus Spinach temperate alphacryptovirus Spring beauty latent bromovirus Statice Y potyvirus
Strawberry latent ringspot Subterranean clover red leaf Sugarcane mosaic potyvirus Sunflower ringspot ilarvirus Sunn-hemp mosaic tobamovirus

TABLE 3-continued

Plant Viruses	Plant Viruses
Datura yellow vein	Sweet clover latent
Desmodium mosaic potyvirus	Sweet clover necrotic mosaic
Dioscorea green banding mosaic	Sweet potato feathery mottle
Dioscorea latent potexvirus	Sweet potato latent potyvirus
Dogwood mosaic nepovirus	Sweet potato mild mottle
Dulcamara mottle tymovirus	Sweet potato ringspot nepovirus
Eggplant green mosaic potyvirus	Sweet potato sunken vein
Eggplant mild mottle carlavirus	Tamarillo mosaic potyvirus
Eggplant mottled crinkle	Tamus latent potexvirus
Eggplant mottled dwarf	Telfairia mosaic potyvirus
Eggplant severe mottle potyvirus	Tobacco etch potyvirus
Elderberry carlavirus	Tobacco leaf curl bigeminivirus
Elderberry latent carmovirus	Tobacco mild green mosaic
Elm mottle ilarvirus	Tobacco mosaic satellivirus
Epirus cherry ourmiavirus	Tobacco mosaic tobamovirus
Erysimum latent tymovirus	Tobacco mottle umbravirus
Eucharis mottle nepovirus	Tobacco necrosis necrovirus
Euphorbia mosaic bigeminivirus	Tobacco necrosis satellivirus
Foxtail mosaic potexvirus	Tobacco necrotic dwarf luteovirus
Foxtail mosaic potexvirus	Tobacco rattle tobravirus
Foxtail mosaic potexvirus	Tobacco ringspot nepovirus
Frangipani mosaic tobamovirus	Tobacco streak ilarvirus
Furcraea necrotic streak	Tobacco stunt varicosavirus
Galinsoga mosaic carmovirus	Tobacco vein mottling potyvirus
Garlic common latent carlavirus	Tobacco vein-distorting luteovirus
Glycine mottle carmovirus	Tobacco wilt potyvirus
Grapevine A trichovirus	Tobacco yellow dwarf
Grapevine ajinashika disease	Tobacco yellow net luteovirus
Grapevine Algerian latent	Tobacco yellow vein umbravirus
Grapevine B trichovirus	Tobacco yellow vein assistor
Grapevine Bulgarian latent	Tomato aspermy cucumovirus
Grapevine chrome mosaic	Tomato Australian leafcurl
Grapevine chrome mosaic	Tomato black ring nepovirus
Grapevine corky bark-associated	Tomato black ring nepovirus
Grapevine fanleaf nepovirus	Tomato bushy stunt tombusvirus
Grapevine fleck virus	Tomato golden mosaic
Grapevine leafroll-associated	Tomato mild mottle potyvirus
Grapevine line pattern ilarvirus	Tomato mosaic tobamovirus
Grapevine stem pitting associated	Tomato mottle bigeminivirus
Grapevine stunt virus	Tomato Peru potyvirus
Groundnut chlorotic spot	Tomato ringspot nepovirus
Groundnut rosette umbravirus	Tomato spotted wilt tospovirus
Guar top necrosis virus	Tomato top necrosis nepovirus
Habenaria mosaic potyvirus	Tomato yellow leaf curl
Helenium S carlavirus	Tropaeolum 1 potyvirus
Henbane mosaic potyvirus	Tropaeolum 2 potyvirus
Heracleum latent trichovirus	Tulare apple mosaic ilarvirus
Hibiscus latent ringspot nepovirus	Tulip chlorotic blotch potyvirus
Hippeastrum mosaic potyvirus	Tulip halo necrosis virus
Honeysuckle latent carlavirus	Tulip X potexvirus
Hop American latent carlavirus	Turnip crinkle carmovirus
Hop latent carlavirus	Turnip mosaic potyvirus
Humulus japonicus ilarvirus	Turnip rosette sobemovirus
Hydrangea mosaic ilarvirus	Turnip yellow mosaic tymovirus
Impatiens latent potexvirus	Ullucus mild mottle tobamovirus
Impatiens necrotic spot tospovirus	Ullucus mosaic potyvirus
Iris fulva mosaic potyvirus	Vallota mosaic potyvirus
Ivy vein clearing cytorhabdovirus	Vanilla necrosis potyvirus
Johnsongrass mosaic potyvirus	Viola mottle potexvirus
Kalanchoe isometric virus	Viola mottle potexvirus
Konjak mosaic potyvirus	Watercress yellow spot virus
Kyuri green mottle mosaic	Watermelon mosaic 1 potyvirus
Lamium mild mottle fabavirus	Watermelon mosaic 2 potyvirus
Lato River tombusvirus	Weddel waterborne carmovirus
Leek yellow stripe potyvirus	Welsh onion yellow stripe
Lettuce big-vein varicosavirus	Wheat soil-borne mosaic furovirus
Lettuce infectious yellows	Wheat streak mosaic rymovirus
Lettuce mosaic potyvirus	White clover mosaic potexvirus
Lettuce necrotic yellows	Wild cucumber mosaic tymovirus
Lettuce speckles mottle umbravirus	Wild potato mosaic potyvirus
Lilac chlorotic leafspot capillovirus	Wild potato mosaic potyvirus
Lilac ring mottle ilarvirus	Wineberry latent virus
Lily X potexvirus	Wisteria vein mosaic potyvirus
Lisianthus necrosis necrovirus	Yam mosaic potyvirts

TABLE 3-continued

Plant Viruses	Plant Viruses
Lucerne Australian latent nepovirus	Zygocactus Montana X potexvirus
Lucerne Australian symptomless	
Lucerne enation nucleorhabdovirus	

[0125] A further listing of plants and plant viruses that may used with the methods of the invention is shown in Table 4. Additional examples of virus infections of plant species can be found at: http://image.fs.uidaho.edu/vide/. Additional virus accessions can be retrieved at: http://www.atcc.org.

TABLE 4

Plant or Virus Name	Plant or Virus Name
Cryptomeria japonica	Tulip band-breaking
Eucalyptus grandis	potyvirus
Eucalyptus nitens	Tulip breaking potyvirus
Eucalyptus urophylla	Tulip chlorotic blotch
Picea abies	potyvirus
Picea glauca	Tulip halo necrosis (?) virus
Pinus albicaulis	Tulip X potexvirus
Pinus aristata	Linum usitatissimum
Pinus armandii	Synonyms:
Pinus attenuata	Linum crepitans; Linum
Pinus ayacahuite	humile; Linum usitatissimum ssp.
Pinus balfouriana	transitorium; Linum usitatissimum
Pinus brutia	var. humile
Pinus bungeana	Common names:
Pinus canariensis	Flax; Linseed; Lino
Pinus cembroides	Susceptible to:
Pinus contorta	Alfalfa mosaic alfamovirus
Pinus culminicola	Beet curly top
Pinus durangensis	hybrigeminivirus
Pinus echinata	Beet pseudo-yellows (?)
Pinus edulis	closterovirus
Pinus elliotui	Oat blue dwarf marafivirus
Pinus engelmannii	Tobacco rattle tobravirus
Pinus flexilis	Hibiscus
Pinus gerardiana	Susceptible to:
Pinus griffithii	Abutilon mosaic
Pirus halepensis	bigeminivirus
Pinus hartwegii	Cotton leaf crumple
Pinus jefferyi	bigeminivirus
Pinus koraiensis	Hibiscus yellow mosaic (?)
Pinus lambertiana	tobamovirus
Pinus lumholtzii	Hibiscus cannabinus
Pinus massoniana	Common names:
Pinus monticola	Deccan-hemp; Indian-hemp;
Pinus mugo	Kenaf
Pinus palustris	Susceptible to:
Pinus pinaster	Cotton anthocyanosis (?)
Pinus pinceana	luteovirus
Pinus ponderosa	Cotton leaf crumple
Pinus pungens	bigeminivirus
Pinus radiata	Cotton leaf curl
Pinus resinosa	bigeminivirus
Pinus roxburghii	Hibiscus chlorotic ringspot
Pinus sabiniana	carmovirus
Pinus serotina	Hibiscus latent ringspot
Pinus strobus	nepovirus
Pinus sylvestris	Kenaf vein-clearing (?)
Pinus tabulaeformis	rhabdovirus
Pinus taeda	Malva vein clearing
Pinus thunbergii	potyvirus
Pinus torreyana	Okra mosaic tymovirus
Pinus virginiana	Ficus carica
Pinus wangii	Common names:
Pinus yunnanensis	Fig; Higo

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Populus deltoides	Susceptible to:
Populus tremuloides	Fig (?) potyvirus
Cryptomeria japonica	Fig S carlavirus
Eucalyptus grandis	Morus alba
Eucalyptus nitens	Synonyms:
Eucalyptus urophylla	Morus alba f. tatarica;
Picea abies	Morus alba var.
Picea glauca	constantinopolitana; Morus alba
Pinus albicaulis	var. multicaulis; Morus indica;
Pinus aristata	Morus multicaulis
Pinus armandii	Common names:
Pinus attenuata	White mulberry; Mora
Pinus ayacahuite	Susceptible to:
Pinus balfouriana	Citrus enation- woody gall
Pinus brutia	(?) luteovirus
Pinus bungeana	Mulberry latent carlavirus
Pinus canariensis	Mulberry ringspot
Pinus cembroides	nepovirus
Pinus contorta	Mirabilis jalapa
Pinus culminicola	Common names:
Pinus durangensis	Common four-o'clock
Pinus echinata	Susceptible to:
Pinus edulis	Mirabilis mosaic
Pinus elliottii	caulimovirus
Pinus engelmannii	Fraxinus excelsior
Pinus flexilis	Synonyms:
Pinus gerardiana	Fraxinus excelsior var.
Pinus griffthii	pendula
Pinus halepensis	Common names:
Pinus hartwegii	European ash
Pinus jefferyi	Susceptible to:
Pinus koraiensis	Arabis mosaic nepovirus
Pinus lambertiana	Jasminum officinale
Pinus lumholtzii	Common names:
Pinus massoniana	Poet's jasmine; Common
Pinus monticola	jasmine; Jessamine
Pinus mugo	Susceptible to:
Pinus palustris	Arabis mosaic nepovirus
Pinus pinaster	Ligustrum vulgare
Pinus pinceana	Synonyms:
Pinus ponderosa	Ligustrum insulare;
Pinus pungens	Ligustrum insulense
Pinus radiata	Common names:
Pinus resinosa	Common privet
Pinus roxburghii	Susceptible to:
Pinus sabiniana	Arabis mosaic nepovirus
Pinus serotina	Petunia asteroid mosaic
Pinus strobus	tombusvirus
Pinus sylvestris	Olea europaea
Pinus tabulaeformis	Common names:
Pinus taeda	Olive; Aceituna
Pinus thunbergii	Susceptible to:
Pinus torreyana	Cherry leaf roll nepovirus
Pinus virginiana	Olive latent ringspot
Pinus wangii	nepovirus
Pinus yunnanensis	Olive latent 1 (?)
Populus deltoides	sobemovirus
Populus tremuloides	Olive latent 2 (?)
Populus trichocarpa	ourmavirus
Pseudotsuga menziesii	Oenothera biennis
Taxus brevifolia	Synonyms:
Ulmus parvifolia	Oenothera biennis ssp.
Chamaecyparis lawsoniana	sulfurea; Oenothera chicagoensis;
Common names:	Oenothera muricata; Oenothera
Port Orford-cedar; Gingerpine; Oregon-cedar; Lawson's	suaveolens; Onagra biennis Common names:
cypress	Common evening-primrose;
Susceptible to:	German rampion
Arabis mosaic nepovirus	Insusceptible to:
Eucalyptus cloeziana	Carnation vein mottle
Common names:	potyvirus
Cloeziana gum; Gympie	Cymbidium
messmate	Susceptible to:
Populus balsamifera	Cymbidium mosaic

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Susceptible to:	potexvirus
Poplar mosaic carlavirus	Cymbidium ringspot
Poplar vein yellowing (?)	tombusvirus
nucleorhabdovirus	Cymbidium alexanderi
Populus candicans	Susceptible to:
Synonyms:	Odontoglossum ringspot
Populus balsamifera ssp.	tobamovirus
balsamifera; Populus tacamahacca	Odontoglossum grande
Common names:	Synonyms:
Balsam poplar; Tacamahac	Rossioglossum grande Susceptible to:
poplar, Balm of Gilead	Susceptible to:
Poplar mosaic carlavirus	tobamovirus
Populus deltoides subspecies	Cocos nucifera
angulata, monilifera,	Common names:
missouriensis	Coconut; Coconut palm;
Susceptible to:	Copra; Khopra; Nariyal; Coco
Poplar mosaic carlavirus	Susceptible to:
Ulmus americana	Coconut foliar decay
Common names:	nanavirus
American elm	Papaver nudicaule
Susceptible to:	Synonyms:
Cherry leaf roll nepovirus	Papaver miyabeanum
Ulmus glabra	Common names:
Synonyms:	Iceland poppy; Arctic poppy
Ulmus montana; Ulmus	Susceptible to:
scabra	Beet curly top
Common names:	hybrigeminivirus
Scotch elm; Wych elm	Tobacco mosaic
Susceptible to:	tobamovirus
Elm mottle ilarvirus	Tomato spotted wilt
Ulmus minor	tospovirus
Synonyms:	Turnip mosaic potyvirus
Ulmus campestris; Ulmus	Papaver somniferum
carpinifolia; Ulmus carpinifolia	Common names:
var. suberosa; Ulmus foliacea	Opium poppy
Ulmus foliacea var. suberosa;	Susceptible to:
Ulmus glabra var.	Bean yellow mosaic
suberosa; Ulmus nitens;	potyvirus
Ulmus suberosa	Papaver rhoeas
Susceptible to:	Common names:
Elm mottle ilarvirus	Corn poppy; Shirley poppy;
Subject: turf	Field poppy
Agropyron cristatum	Susceptible to:
Festuca arizonica	Beet western yellows
Agropyron cristatum x	clostreovirus
desertorum	Sesamum indicum
Festuca arundinacea	Synonyms:
Agropyron dasystachyum	Sesamum orientale
Festuca duriuscula	Common names:
Agropyron desertorum	Sesame; Benne seed
Festuca eliator	Susceptible to:
Agropyron elongatum	Abelia latent tymovirus
$F e s t u c a ~ e l i a t o r ~$	Apple stem pitting virus
arundinacea	Arracacha A nepovirus
Agropyron ineme	Asparagus 3 potexvirus
Festuca idahoensis	Asystasia gangetica mottle (?)
Agropyron intermedium	potyvirus
	Blackgram mottle (?)
Agropyron riparium	carmovirus
Festuca megalura	Cassia yellow spot
Agropyron sibericum	potyvirus
Festuca ovina	Cherry leaf roll nepovirus
Agropyron smithii	Citrus ringspot virus
Festuca nubra	Lisianthus necrosis (?)
Agropyron spicatum	necrovirus
Festuca rubra var. commutata	Malva veinal necrosis (?) potexvirus
Agropyron spicatum x repens	Melothria mottle (?) potyvirus
Festuca nubra var. rubra	Mulberry latent carlavirus
Agropyron trachycaulum	Mulberry ringspot
Hordeum brachyantherum	nepovirus
Agropyron trichophorum	Okra mosaic tymovirus

TABLE 4-continued

| Plant or Virus Name |
| :---: | :---: | :---: | :---: |
| Koeleria cristata | Patchouli mottle (?) | Buchloe dactyloides | tombusvirus |
| Agrostis alba | potyvirus | Sporobolus airoides | Dogwood mosaic (?) |
| Lolium multifiorum | Pea stem necrosis virus | Calamovilfa longifolia | nepovirus |
| Agrostis palustris | Peach enation (?) nepovirus | Sporobolus crypatandrus | Elm mottle ilarvirus |
| Lolium perenne | Peanut green mosaic | Cynodon dactylon | Melon Ourmia ourmiavirus |
| Agrostis temuis | potyvirus | LEGUMES | Okra mosaic tymovirus |
| Oryzopsis hymenoides | Peanut mottle potyvirus | Astragalus cicer | Poplar mosaic carlavirus |
| Alopecurus arundinaceus | Peanut stunt cucumovirus | Onobrychis viciaefolia | Prune dwarf ilarvirus |
| Phalaris arundinacea | Satsuma dwarf (?) | Coronilla varia | Ribgrass mosaic |
| Alopecurus pratensis | nepovirus | Trifolium hybridum | tobamovirus |
| Phleum alpinum | Soybean mild mosaic virus | Hedysarum boreale | Spinach latent ilarvirus |
| Arcatagrostis latifolia | Sweet potato yellow dwarf | Trifolium pratense | Strawberry latent ringspot |
| Phleum pratense | (?) ipomovirus | Lotus corniculatus | (?) nepovirus |
| Beckmannia syzigachne | Tobacco ringspot nepovirus | Trifolium repens | Sweet potato mild mottle |
| Phragmites australis | Watermelon mosaic 2 | Lupinus spp. | ipomovirus |
| Bromus biebersteinii | potyvirus | Trifolium repens L. | Tobacco ringspot nepovirus |
| Poa alpina | Phytolacca americana | Medicago sativa | Tobacco streak ilarvirus |
| Bromus carinatus | Synonyms: | Vicia villosa | Tomato spotted wilt |
| Poa ampla | Phytolacca decandra | Melilotus officinalis | tospovirus |
| Bromus catharticus | Common names: | Tritolium ambigium | Polypodium vulgare |
| Poa bulbosa | Pokeweed; Poke; | Astragalus glycyphyllos | Susceptible to: |
| Bromus inermis | Pigeonberry | Common names: | Fern (?) potyvirus |
| Poa canbyi | Susceptible to: | Liquorice milk-vetch | rimula malacoides |
| Bromus marginatus | Alfalfa mosaic alfamovirus | Susceptible to: | Susceptible to: |
| Poa compressa | Bean yellow mosaic | Alfalfa mosaic alfamovirus | Carnation mottle |
| Bromus mollis | potyvirus | Astragalus sinicus | carmovirus |
| Poa glauca | Beet curly top | Susceptible to: | Hydrangea ringspot |
| Dactylis glomerata | hybrigeminivirus | Bean leaf roll luteovirus | potexvirus |
| Poa palustris | Beet mosaic potyvirus | Milk vetch dwarf nanavirus | Primula mottle (?) potyvirus |
| Deschampsia caespitosa | Carnation mottle | Soybean dwarf luteovirus | Sweet potato mild mottle |
| Poa pratensis | carmovirus | Subterranean clover red leaf | ipomovirus |
| Viruses for Graminae: | Carnation ringspot | luteovirus | Viola mottle potexvirus |
| Maize streak monogeminivirus | dianthovirus | Subterranean clover stunt | Pteris 'Childsii' |
| Wheat streak mosaic rymovirus | Cucumber mosaic | nanavirus | Susceptible to: |
| Barley yellow dwarf luteovirus | cucumovirus | Watermelon mosaic 2 | Harts tongue fern (?) |
| Barley stripe mosaic hordeivirus | Cymbidium ringspot | potyvirus | tobravirus |
| Sugarcane mosaic potyvirus | tombusvirus | Coronilla varia | Ranunculus repens |
| Beet western yellows luteovirus | Pepper veinal mottle | Synonyms: | Common names: |
| Maize dwarf mosaic potyvirus | potyvirus | Securigera varia | Creeping buttercup |
| Foxtail mosaic potexvirus | Pokeweed mosaic potyvirus | Common names: | Susceptible to: |
| Johnsongrass mosaic potyvirus | Red clover necrotic mosaic | Crown-vetch; Trailing | Arabis mosaic nepovirus |
| Panicum mosaic (?) sobemovirus | dianthovirus | crown-vetch | Ranunculus repens |
| Rice stripe tenuivirus | Tobacco rattle tobravirus | Susceptible to: | symptomless (?) rhabdovirus |
| Rice hoja blanca tenuivirus | Tobacco ringspot nepovirus | Peanut stunt cucumovirus | Malus domestica |
| Wheat yellow leaf closterovirus | Tomato black ring | Trifolium hybridum | Synonyms: |
| Brome mosaic bromovirus | nepovirus | Common names: | Malus malus; Pyrus malus |
| Ribgrass mosaic tobamovirus | Turnip mosaic potyvirus | Alsike clover; Swedish | Common names: |
| Wheat soil-borne mosaic furovirus | Plantago major | clover; Trefle-hybride; Trefle- | Apple; Common apple |
| Deschampsia caespitosa (L.) | Common names: | batard; Schwedenklee; | Susceptible to: |
| Beauv. ssp. Beringensis | Common plantain; | Bastardklee; Trevo-hibrido; | Apple mosaic ilarvirus |
| Poa sandbergii | Broadleaf plantain; Great plantain | Trebol-hibrido | Insusceptible to: |
| Elymus angustus | Susceptible to: | Susceptible to: | Plum pox potyvirus |
| Poa trivialis | Carnation vein mottle | Alfalfa mosaic alfamovirus | Malus platycarpa |
| Elymus canadensis | potyvirus | Alsike clover vein mosaic | Susceptible to: |
| Puccinellia distans | Cherry rasp leaf nepovirus | virus | Apple chlorotic leaf spot |
| Elymus cinereus | Plantago 4 (?) caulimovirus | Bean leaf roll luteovirus | trichovirus |
| Secale cereale | Plantago mottle tymovirus | Bean yellow mosaic | Apple stem pitting virus |
| Elymus dahuricus | Ribgrass mosaic | potyvirus | Malus sylvestris |
| Sitanion hystrix | tobamovirus | Beet curly top | Common names: |
| Elymus glaucus | Phlox drummondii | hybrigeminivirus | Crab apple; Wild apple |
| Stipa comata | Common names: | Beet yellows closterovirus | Susceptible to: |
| Elymus junceus | Drummond phlox; Annual | Broad bean mottle | Apple chlorotic leaf spot |
| Stipa viridula | phlox | bromovirus | trichovirus |
| Elymus triticoides | Susceptible to: | Broad bean stain comovirus | Apple stem grooving |
| Triticum aestivum, spp. | Apple mosaic ilarvirus | Clover mild mosaic virus | capillovirus |
| WARM SEASON GRASSES | Arabis mosaic nepovirus | Clover yellow mosaic | Apple stem pitting virus |
| Andropogon geradii | Beet curly top | potexvirus | Cherry rasp leaf nepovirus |
| Distichlis stricta | hybrigeminivirus | Clover yellow vein | Horseradish latent |
| Andropogon hallii | Beet western yellows | potyvirus | caulimovirus |
| Panicum virgatum | luteovirus | Cucumber mosaic | Tomato ringspot nepovirus |
| Bouteloua curtipendula | Carnation ringspot | cucumovirus | Tulare apple mosaic |
| Schizachyrium scoparium | dianthovirus | Muskmelon vein necrosis | ilarvirus |
| Bouteloua gracillis | Cherry leaf roll nepovirus | carlavirus | Prunus avium |
| Sorghastrum nutans | Cymbidium ringspot | Pea early browning | Synonyms: |

TABLE 4-continued

Plant or Virus Name
tobravirus
Pea enation mosaic
enamovirus
Pea streak carlavirus
Peanut stunt cucumovirus
Red clover mottle
comovirus
Red clover vein mosaic
carlavirus
Soybean dwarf luteovirus
Subterranean clover red lea

Tomato ringspot nepovirus
Turnip mosaic potyvirus
White clover mosaic potexvirus
Lotus comiculatus
Synonyms:
Lotus corniculatus ssp. major; Lotus corniculatus var.
major; Lotus major
Common names:
Bird's-foot trefoil
Susceptible to:
Cucumber mosaic
cucumovirus
Lupinus albus
Common names:
White lupine; Egyptian
lupine
Susceptible to:
Alfalfa mosaic alfamovirus
Amaranthus leaf mottle
potyvirus
Bean common mosaic
potyvirus
Bean yellow mosaic
potyvirus
Beet western yellows
luteovirus
Bidens mosaic potyvirus
Broad bean mottle
bromovirus
Broad bean true mosaic
comovirus
Carnation yellow stripe (?)
necrovirus
Cassia mild mosaic (?)
carlavirus
Chicory yellow mottle nepovirus
Cowpea chlorotic mottle
bromovirus
Cucumber mosaic
cucumovirus
Dogwood mosaic (?)
nepovirus
Epirus cherry ourmiavirus
Glycine mottle (?)
carmovirus
Lucerne Australian latent
nepovirus
Lucerne transient streak sobemovirus
Pea enation mosaic
enamovirus
Pea streak carlavirus
Peanut mottle potyvirus
Peanut stunt cucumovirus
Pepper Moroccan
tombusvirus
Plum pox potyvirus
Prunus necrotic ringspot
ilarvirus

Plant or Virus Name
Cerasus avium var.
aspleniifolia; Prunus avium var.
aspleniifolia; Prunus cerasus var.
avium
Common names:
Mazzard cherry; Sweet
cherry
Susceptible to:
Arabis mosaic nepovirus
Cherry leaf roll nepovirus
Cherry mottle leaf (?)
trichovirus
Cherry rasp leaf nepovirus
Epirus cherry ourmiavirus
Myrobalan latent ringspot
nepovirus
Petunia asteroid mosaic
tombusvirus
Prunus domestica
Common names:
Plum
Susceptible to:
Apple chlorotic leaf spot
trichovirus
Arabis mosaic nepovirus
Citrus enation-woody gall
(?) luteovirus
Petunia asteroid mosaic
tombusvirus
Plum American line pattern
ilarvirus
Plum pox potyvirus
Prune dwarf ilarvirus
Sowbane mosaic
sobemovirus
Strawberry latent ringspot
(?) nepovirus
Prunus persica
Synonyms:
Amygdalus persica;
Amygdalus persica var.
camelliiftora; Amygdalus persica
var. densa; Persica vulgaris;
Prunus persica var. camelliiffora;
Prunus persica var. densa
Common names:
Peach; Melocotonero;
Abridor; Durazno
Susceptible to:
Apple chlorotic leaf spot
trichovirus
Arabis mosaic nepovirus
Cherry leaf roll nepovirus
Cherry mottle leaf (?)
trichovirus
Cherry rasp leaf nepovirus
Myrobalan latent ringspot
nepovirus
Peach enation (?) nepovirus
Peach rosette mosaic
nepovirus
Peach yellow leaf (?)
closterovirus
Plum American line pattern
ilarvirus
Plum pox potyvirus
Prune dwarf ilarvirus
Prunus necrotic ringspot
ilarvirus
Strawberry latent ringspot
(?) nepovirus
Tomato ringspot nepovirus
Pyrus communis
Synonyms:

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Ribgrass mosaic	Pyrus asiae-mediae; Pyrus
tobamovirus	balansae; Pyrus bourgaeana;
Soybean dwarf luteovirus	Pyrus domestica; Pyrus elata;
Soybean mild mosaic virus	Pyrus medvedevil
Soybean mosaic potyvirus	Common names:
Subterranean clover red leaf	Pear, Pera
luteovirus	Susceptible to:
Turnip mosaic potyvirus	Apple chlorotic leaf spot
Watermelon mosaic 2	trichovirus
potyvirus	Apple stem pitting virus
Wisteria vein mosaic	Rosa
potyvirus	Susceptible to:
Medicago sativa	Apple mosaic ilarvirus
Synonyms:	Arabis mosaic nepovirus
Medicago caerulea var. panciffora; Medicago	Citrus enation - woody gall (?) luteovirus
karatschaica; Medicago lavrenkoi,	Prunus necrotic ringspot
Medicago pauciflora; Medicago	ilarvirus
sativa var. pilifera	Rose (?) tobamovirus
Susceptible to:	Strawberry latent ringspot
Alfalfa 1 alphacryptovirus	(?) nepovirus
Alfalfa 2 (?) betacryptovirus	Rubus fruticosus
Alfalfa mosaic alfamovirus	Synonyms:
Bean leaf roll luteovirus	Rubus plicatus; Rubus
Bean yellow mosaic	affinis
potyvirus	Common names:
Beet curly top	Blackberry; Bramble;
hybrigeminivirus	European blackberry
Broad bean mottle	Susceptible to:
bromovirus	Black raspberry necrosis
Carnation mottle	virus
carmovirus	Raspberry leaf curl (?)
Carrot mosaic (?) potyvirus	luteovirus
Cassia mild mosaic (?) carlavirus	Strawberry latent ringspot (?) nepovirus
Chickpea distortion mosaic	Rubus idaeus
potyvirus	Synonyms:
Clover yellow mosaic	Rubus buschii; Rubus
potexvirus	idaeus var. vulgatus; Rubus
Clover yellow vein	vulgatus var. buschii
potyvirus	Common names:
Cucumber mosaic	European red raspberry;
cucumovirus	Red raspberry
Lucerne Australian latent	Susceptible to
nepovirus	Arabis mosaic nepovirus
Lucerne Australian	Black raspberry necrosis
symptomless (?) nepovirus	virus
Lucerne enation (?)	Cherry leaf roll nepovirus
nucleorhabdovirus	Cole latent (?) carlavirus
Lucerne transient streak sobemovirus	Raspberry bushy dwarf idaeovirus
Milk vetch dwarf nanavirus	Raspberry leaf curl (?)
Narcissus mosaic potexvirus	luteovirus
Pea enation mosaic enamovirus	Raspberry ringspot nepovirus
Pea seed-borne mosaic potyvirus	Raspberry vein chlorosis (?) nucleorhabdovirus
Pea streak carlavirus	Rubus yellow net (?)
Peanut stunt cucumovirus	badnavirus
Red clover mottle comovirus	Strawberry latent ringspot (?) nepovirus
Red clover necrotic mosaic	Thimbleberry ringspot virus
dianthovirus	Tomato ringspot nepovirus
Red clover vein mosaic	Citrus limon
carlavirus	Synonyms:
Subterranean clover stunt	Citrus limonum; Citrus
nanavirus	medica var. limon
Tobacco ringspot nepovirus	Common names:
Tobacco streak ilarvirus	Lemon; Limonero;
Tobacco yellow dwarf	Limoniere; Citronnier;
monogeminivirus	Zitronenbaum
Watermelon mosaic 2	Susceptible to:
potyvirus	Citrus enation - woody gall
White clover mosaic	(?) luteovirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
potexvirus	Citrus leaf rugose ilarvirus
Melilotus albus	Citrus ringspot virus
Synonyms:	Citrus tatter leaf capillovirus
Melilotus albus var. annuus;	Citrus tristeza closterovirus
Melilotus leucanthus	Citrus variegation ilarvirus
Common names:	Citrus paradisi
White sweet-clover; White melilot; Hubam	Common names: Grapefruit; Pomelo; Toronja
Susceptible to:	Susceptible to:
Alfalfa mosaic alfamovirus	Citrus enation - woody gall
Apple mosaic ilarvirus	(?) luteovirus
Bean common mosaic potyvirus	Citrus leaf rugose ilarvirus Citrus ringspot virus
Bean yellow mosaic potyvirus	Citrus tristeza closterovirus Pepper veinal mottle
Beet curly top	potyvirus
hybrigeminivirus	Citrus sinensis
Broad bean mottle	Synonyms:
bromovirus	Citrus aurantium var.
Broad bean necrosis furovirus	sinensis; Citrus macracantha Common names:
Broad bean stain comovirus	Sweet orange; Naranja
Broad bean true mosaic comovirus	Susceptible to: Citrus enation - woody gall
Clover yellow mosaic potexvirus	(?) luteovirus Citrus leaf rugose ilarvirus
Clover yellow vein potyvirus	Citrus leprosis (?) rhabdovirus
Cucumber mosaic	Citrus ringspot virus
cucumovirus	Citrus tatter leaf capillovirus
Galinsoga mosaic carmovirus	Citrus tristeza closterovirus Sambucus canadensis
Milk vetch dwarf nanavirus	Common names:
Muskmelon vein necrosis carlavirus	American elder; American elderberry; Sweet elder
Pea enation mosaic	Susceptible to:
enamovirus	Elderberry carlavirus
Pea mild mosaic comovirus	Elderberry latent (?)
Pea streak carlavirus	carmovirus
Peanut clump furovirus	Dodonaea viscosa
Peanut stunt cucumovirus	Common names:
Plum pox potyvirus	Hop shrub
Prune dwarf ilarvirus	Susceptible to:
Prunus necrotic ringspot ilarvirus	Dodonaea yellowsassociated virus
Red clover mottle	Antirrhinum majus
comovirus	Common names:
Red clover vein mosaic	Snapdragon
carlavirus	Susceptible to:
Subterranean clover stunt	Alfalfa mosaic alfamovirus
nanavirus	Arabis mosaic nepovirus
Sweet clover latent (?)	Asystasia gangetica mottle
nucleorhabdovirus	$(?)$ potyvirus
Sweet clover necrotic	Broad bean wilt fabavirus
mosaic dianthovirus	Carnation mottle
Tobacco etch potyvirus	carmovirus
Tobacco rattle tobravirus	Carnation ringspot
Tobacco ringspot nepovirus	dianthovirus
Tobacco streak ilarvirus	Cherry leaf roll nepovirus
Turnip mosaic potyvirus	Clover yellow vein
Watermelon mosaic 2	potyvirus
potyvirus	Cowpea mosaic comovirus
White clover mosaic potexvirus	Cucumber mosaic cucumovirus
Trifolium dubium	Cymbidium ringspot
Synonyms:	tombusvirus
Trifolium filiforme var.	Dogwood mosaic (?)
dubium; Trifolium minus;	nepovirus
Trifolium parviflorum; Trifolium	Elm mottle ilarvirus
procumbens	Groundnut eyespot
Common names:	potyvirus
Small hop clover; Suckling	Maracuja mosaic (?)
clover; Lesser yellow trefoil; Low	tobamovirus
hop clover; Yellow clover;	Marigold mottle potyvirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Shamrock	Papaya mosaic potexvirus
Susceptible to:	Pea streak carlavirus
Alfalfa mosaic alfamovirus	Peanut clump furovirus
Bean leaf roll luteovirus	Pepper Moroccan
Peanut stunt cucumovirus	tombusvirus
Soybean dwarf luteovirus	Plantago mottle tymovirus
Subterranean clover stunt	Poplar mosaic carlavirus
nanavirus	Prune dwarf ilarvirus
WETLAND - RIPARIAN	Prunus necrotic ringspot
Agrostis alba	ilarvirus
Glyceria occidentalis	Red clover necrotic mosaic
Alopecurus arundinaceus	dianthovirus
Glyceria striata	Red clover vein mosaic
Alopecurus pratensis	carlavirus
Hordeum brachyantherum	Rubus Chinese seed-borne
Beckmannia syzigachne	(?) nepovirus
Phalaris arundinacea	Scrophularia mottle
Deschampsia caespitosa	tymovirus
Poa palustris	Soybean mild mosaic virus
WILDFLOWERS AND	Soybean mosaic potyvirus
FORBES	Spinach latent ilarvirus
Achillea millefolium	Strawberry latent ringspot
Lupinus albicalus	(?) nepovirus
Cheiranthus allionii	Tamus latent (?) potexvirus
Lupinus perennis	Tobacco necrosis necrovirus
Coreopsis lanceolata	Tobacco rattle tobravirus
Papaver rhoeas	Tobacco ringspot nepovirus
Echinacea purpurea	Tobacco streak ilarvirus
Ratibida columnaris	Tomato black ring
Eschscholtzia californica	nepovirus
Rudbeckia hirta	Tomato bushy stunt
Linum lewisii	tombusvirus
Lupinus luteus	Viola mottle potexvirus
Common names:	White clover mosaic
European yellow lupine;	potexvirus
Yellow lupine	Scrophularia nodosa
Susceptible to:	Common names:
Bean yellow mosaic	Figwort; Figwort herb
potyvirus	Susceptible to:
Clover yellow vein potyvirus	Scrophularia mottle tymovirus
Dogwood mosaic (?)	Capsicum annuum
nepovirus	Synonyms:
Peanut stunt cucumovirus	Capsicum cordiforme
Cheiranthus cheiri	Common names:
Synonyms:	Pimiento; Bell pepper;
Erysimum cheiri	Cayenne pepper; Chili pepper;
Common names:	Common garden pepper; Green
Wallflower	pepper; Mango pepper; Paprika
Susceptible to:	pepper
Alfalfa mosaic alfamovirus	Susceptible to:
Beet western yellows	Alfalfa mosaic alfamovirus
luteovirus	Bean distortion dwarf (?)
Chicory yellow mottle	bigeminivirus
nepovirus	Beet western yellows
Cucumber mosaic	luteovirus
cucumovirus	Cassia mild mosaic (?)
Tobacco rattle tobravirus	carlavirus
Tobacco ringspot nepovirus	Celery latent (?) potyvirus
Tomato spotted wilt tospovirus	Chilli veinal mottle (?) potyvirus
Turnip crinkle carmovirus	Chino del tomat,
Turnip mosaic potyvirus	bigeminivirus
Turnip yellow mosaic tymovirus	Cucumber mosaic cucumovirus
Coreopsis lanceolata	Datura distortion mosaic
Susceptible to:	potyvirus
Bidens mosaic potyvirus	Eggplant mosaic tymovirus
Papaver thoeas	Eggplant mottled dwarf
Common names:	nucleorhabdovirus
Corn poppy; Shirley poppy;	Eggplant severe mottle (?)
Field poppy	potyvirus
Susceptible to:	Henbane mosaic potyvirus
Beet western yellows	Marigold mottle potyvirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
clostrovirus	Melon Ourmia ourmiavirus
Linum grandiflorum	Paprika mild mottle
Synonyms:	tobamovirus
Linum rubrum	Peanut stunt cucumovirus
Common names:	Pelargonium vein clearing (?)
Flowering flax	cytorhabdovirus
Susceptible to:	Pepper hausteco
Beet pseudo-yellows (?)	bigeminivirus
closterovirus	Pepper Indian mottle
Oat blue dwarf marafivirus	potyvirus
Linum usitatissimum	Pepper mild mosaic (?)
Synonyms:	potyvirus
Linum crepitans; Linum	Pepper mild mottle
humile; Linum usitatissimum ssp.	tobamovirus
transitorium; Linum usitatissimum	Pepper mild tigr, (?)
var. humile	bigeminivirus
Common names:	Pepper Moroccan
Flax; Linseed; Lino	tombusvirus
Susceptible to:	Pepper mottle potyvirus
Alfalfa mosaic alfamovirus	Pepper ringspot tobravirus
Beet curly top hybrigeminivirus	Pepper severe mosaic potyvirus
Beet pseudo-yellows (?) closterovirus	Pepper Texas bigeminivirus
closterovirus	Pepper veinal mottle Potyvirus
Tobacco rattle tobravirus	Physalis mosaic tymovirus
ORNAMENTAL GRASSES	Pittosporum vein yellowing
Acorus Gramineus	nucleorhabdovirus
Acorus Calamus	Potato aucuba mosaic
Acorus Gramineus	potexvirus
Alopecurus Pratensis	Potato mop-top furovirus
Andropogon Scoparius	Potato Y potyvirus
Andropogon Gerardii	Red pepper 1 (?)
Arrhenatherum Elatius	alphacryptovirus
Arundo Formosana	Red pepper 2 (?)
Briza Media	alphacryptovirus
Calamagrostis Acutiflora	Ribgrass mosaic
Calamagrostis Arundinacea	tobamovirus
Calamagrostis Acutiflora	Serrano golden mosaic
Calamagrostis Acutifora	bigeminivirus
Carex Glauca	Sweet potato ringspot (?)
Carex Siderostica	nepovirus
Carex Albula	Tobacco etch potyvirus
Carex Nigra	Tobacco leaf curl
Carex Muskingumensis	bigeminivirus
Carex Riparia	Tobacco mild green mosaic
Carex Evergold	tobamovirus
Carex Comans	Tobacco mosaic satellivirus
Cortaderia Selloana	Tobacco rattle tobravirus
Cortaderia Selloana Rosea	Tobacco streak ilarvirus
Deschampsia Cespitosa	Tomato bushy stunt
Elymus Arenarius	tombusvirus
Erianthus Ravennae	Tomato mosaic tobamovirus
Ovina Gigantea	Tomato Peru potyvirus
Ovina Glauca	Tomato spotted wilt
Glyceria Maxima	tospovirus
Hakonechloa Macra	Lycopersicon esculentum
Hakonechloa Macra	Common names:
Helictotrichon Sempervirens	Tomato; Tomate
Holcus Variegated	Susceptible to:
Hystrix Patula	Abelia latent tymovirus
Imperata Red Baron	Abutilon mosaic
Juncus Effusus	bigeminivirus
Juncus Ensifolius	Alfalfa mosaic alfamovirus
Juncus Filiformis	Arabis mosaic nepovirus
Juncus Inflexus	Arracacha A nepovirus
Koeleria Cristata	Arracacha B (?) nepovirus
Koeleria Glauca	Beet curly top
Luzula Sylvatica	hybrigeminivirus
Melica Ciliata	Beet western yellows
Melica Nutans	luteovirus
Miscanthus Sinensis	Blueberry leaf mottle
Molinia Caerulea	nepovirus
Virgatum Rotstrahlbusch	Brinjal mild mosaic (?)

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Pennisetum Alopecuroides	potyvirus
Pennisetum Ruppelianum	Carnation mottle
Pennisetum Alopecuroides	carmovirus
Pennisetum Alopecuroides	Carrot mosaic (?) potyvirus
Pennisetum Alopecuroides	Cassava green mottle
Pennisetum Setaceum	nepovirus
Pennisetum Setaceum	Cassia mild mosaic (?)
Pennisetum Cassian	carlavirus
Phalaris Arundinacea	Chickpea chlorotic dwarf (?)
Phalaris Arundinacea	monogeminivirus
Phalaris Arundinacea	Chino del tomat,
Sesleria Autumnalis	bigeminivirus
Sesleria Caerulea	Clover wound tumor
Sporobolus Helerolepsis	phytoreovirus
Stipa Capillata	Commelina X potexvirus
Stipa Extremiorientalis	Cowpea mild mottle (?)
Stipa Gigantea	carlavirus
Stipa Tenuissima	Croton yellow vein mosaic
Stipa Grandis	bigeminivirus
Stipa Pennata	Cucumber mosaic
Stipa Ucrainica	cucumovirus
Impatiens	Cymbidium ringspot
Impatiens necrotic spot tospovirus	tombusvirus
Carnation mottle carmovirus	Datura distortion mosaic
Helenium S carlavirus	potyvirus
Impatiens latent (?) potexvirus	Datura innoxia Hungarian
Aster chlorotic stunt (?) carlavirus	mosaic (?) potyvirus
Dasheen mosaic potyvirus	Datura mosaic (?) potyvirus
Aglaonema	Datura necrosis potyvirus
Alocasia	Datura yellow vein
Amorphophallus	nucleorhabdovirus
Arisaema	Dogwood mosaic (?)
Caladium hortulanum	nepovirus
Chenopodium amaranticolor	Dulcamara mottle
Chenopodium ambrosioides	tymovirus
Chenopodium quinoa	Eggplant green mosaic
Colocasia esculenta	potyvirus
Cryptocoryne	Eggplant mosaic tymovirus
Cyrtosperma	Eggplant mottled dwarf
Dieffenbachia picta	nucleorhabdovirus
Nicotiana benthamiana	Eggplant severe mottle (?)
Philodendron selloum	potyvirus
Philodendron verrucosum	Elderberry latent (?)
Richardia	carmovirus
Saponaria vaccaria	Elm mottle ilarvirus
Spathiphyllum	Epirus cherry ourmiavirus
Tetragonia tetragonioides	Foxtail mosaic potexvirus
Xanthosoma caracu	Groundnut eyespot
Zantedeschia (no species name provided)	potyvirus Henbane mosaic potyvirus
Zantedeschia elliottiana	Lettuce necrotic yellows
Colocasia bobone disease (?)	cytorhabdovirus
rhabdovirus	Maracuja mosaic (?)
Dasheen bacilliform (?)	tobamovirus
badnavirus	Marigold mottle potyvirus
Dasheen mosaic potyvirus	Melilotus mosaic (?)
Colocasia esculenta	potyvirus
Konjak mosaic (?) potyvirus	Melon Ourmia ourmiavirus
Philodendron	Nerine X potexvirus
oxycardium	Okra leaf-curl bigeminivirus
Philodendron selloum	Ononis yellow mosaic
Abelia latent tymovirus	tymovirus
Abelia grandiflora	Parietaria mottle ilarvirus
Abelmoschus esculentus	Parsnip yellow fleck
Acer palmatum	sequivirus
Amaranthus caudatus	Pea streak carlavirus
Atropa belladonna	Peanut clump furovirus
Brassica campestris ssp.	Peanut stunt cucumovirus
pekinensis	Pelargonium line pattern (?)
Catharanthus roseus	carmovirus
Celosia argentea	Pelargonium zonate spot
Chenopodium amaranticolor	ourmiavirus
Chenopodium murale	Pepino mosaic potexvirus
Chenopodium quinoa	Pepper Indian mottle

TABLE 4-continued

Plant or Virus Name
Datura metel
Datura stramonium
Glycine max
Gomphrena globosa
Gossypium hirsutum

Hordeum vulgare
Lobelia erinus
Lycopersicon esculentum
Momordica balsamina
Nicotiana clevelandii
Nicotiana glutinosa
Nicotiana rustica
Petunia x hybrida
Physalis peruviana
Sesamum indicum
Solanum melongena
Solanum tuberosum
Tetragonia tetragonioides
Tithonia speciosa
Torenia fournieri
Vicia faba
Allium
Susceptible to:
Onion yellow dwarf
potyvirus
Allium ampeloprasum var.
holmense
Garlic common latent (?)
carlavirus
Allium ampeloprasum var. sectivum
Susceptible to:
Sint-Jan's onion latent (?)
carlavirus
Allium cepa
Synonyms:
Allium ascalonicum; Allium
cepa var. aggregatum; Allium
cepa var. solaninum
Common names:
Onion; Shallot; Tama-negi;
Eschalot; Potato onion; Multiplier onion; Cebolla; Spanish onion Susceptible to:
Leek yellow stripe potyvirus
Onion mite-borne latent (?)
potexvirus
Onion yellow dwarf
potyvirus
Pepper venial mottle
potyvirus
Shallot latent carlavirus
Shallot mite-borne latent (?)
potexvirus
Shallot yellow stripe (?)
potyvirus
Sint-Jan's onion latent (?)
carlavirus
Tobacco rattle tobravirus
Welsh onion yellow stripe (?)
potyvirus
Amaranthaceae
Susceptible to:
Apple stem grooving
capillovirus
Insusceptible to:
Voandzeia necrotic mosaic tymovirus
Amaranthus bicolor
Insusceptible to:
Onion mite-borne latent (?)
potexvirus
Amaranthus caudatus
Synonyms:

Plant or Virus Name
potyvirus
Pepper mild tigr, (?)
bigeminivirus
Pepper Moroccan
tombusvirus
Pepper mottle potyvirus
Pepper ringspot tobravirus
Pepper severe mosaic
potyvirus
Pepper Texas bigeminivirus
Pepper veinal mottle
potyvirus
Physalis mosaic tymovirus
Pittosporum vein yellowing
nucleorhabdovirus
Plantain X potexvirus
Plum pox potyvirus
Potato 14R (?) tobamovirus
Potato Andean latent
tymovirus
Potato Andean mottle
comovirus
Potato aucuba mosaic
potexvirus
Potato black ringspot
nepovirus
Potato leafroll luteovirus
Potato M carlavirus
Potato mop-top furovirus
Potato U nepovirus
Potato V potyvirus
Potato Y potyvirus
Potato yellow mosaic
bigeminivirus
Raspberry ringspot
nepovirus
Red clover necrotic mosaic
dianthovirus
Ribgrass mosaic
tobamovirus
Rose (?) tobamovirus
Rubus Chinese seed-borne (?)
nepovirus
Serrano golden mosaic
bigeminivirus
Solanum apical leaf curling (?)
bigeminivirus
Soybean crinkle leaf (?)
bigeminivirus
Soybean mild mosaic virus
Strawberry latent ringspot (?)
nepovirus
Sunflower ringspot (?)
ilarvirus
Sweet potato mild mottle
ipomovirus
Tamarillo mosaic potyvirus
Tamus latent (?) potexvirus
Tobacco etch potyvirus
Tobacco leaf curl
bigeminivirus
Tobacco mild green mosaic
tobamovirus
Tobacco mosaic satellivirus
Tobacco mosaic
tobamovirus
Tobacco mottle umbravirus
Tobacco necrosis necrovirus
Tobacco necrotic dwarf
luteovirus
Tobacco rattle tobravirus
Tobacco ringspot nepovirus
Tobacco streak ilarvirus
Tobacco stunt varicosavirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Amaranthus caudatus ssp.	Tobacco vein-distorting (?)
mantegazzianus; Amaranthus	luteovirus
caudatus var. alopecurus;	Tobacco vein mottling
Amaranthus dussii; Amaranthus	potyvirus
edulis; Amaranthus	Tobacco yellow dwarf
mantegazzianus	monogeminivirus
Common names:	Tobacco yellow net (?)
Inca wheat; Love-lies-	luteovirus
bleeding; Tassel-flower; Kiwichi; Coimi	Tobacco yellow vein assistor (?) luteovirus
Susceptible to:	Tobacco yellow vein (?)
Abelia latent tymovirus	umbravirus
Alfalfa mosaic alfamovirus	Tomato aspermy
Amaranthus leaf mottle	cucumovirus
potyvirus	Tomato Australian leafcurl
Amaranthus mosaic (?)	bigeminivirus
potyvirus	Tomato black ring
Arracacha A nepovirus	nepovirus
Arracacha B (?) nepovirus	Tomato bushy stunt
Bean yellow mosaic	tombusvirus
potyvirus	Tomato chlorotic spot (?)
Beet curly top	tospovirus
hybrigeminivirus	Tomato golden mosaic
Beet mosaic potyvirus	bigeminivirus
Cactus X potexvirus	Tomato infectious chlorosis (?)
Carnation mottle	closterovirus
carmovirus	Tomato mild mottle (?)
Carnation ringspot	potyvirus
dianthovirus	Tomato mosaic tobamovirus
Carnation vein mottle potyvirus	Tomato mottle bigeminivirus
Celery latent (?) potyvirus	Tomato Peru potyvirus
Chicory yellow mottle nepovirus	Tomato pseudo curly top (?) hybrigeminivirus
Clover yellow mosaic	Tomato ringspot nepovirus
potexvirus	Tomato spotted wilt
Clover yellow vein	tospovirus
potyvirus	Tomato top necrosis (?)
Cucumber mosaic	nepovirus
cucumovirus	Tomato vein clearing
Cymbidium ringspot	nucleorhabdovirus
tombusvirus	Tomato yellow leaf curl
Dahlia mosaic caulimovirus	bigeminivirus
Elderberry carlavirus	Tomato yellow mosaic
Grapevine fanleaf nepovirus	bigeminivirus
Heracleum latent trichovirus	Tulip chlorotic blotch
Humulus japonicus ilarvirus	potyvirus
Iris fulva mosaic potyvirus	Tulip X potexvirus
Lamium mild mottle	Turnip crinkle carmovirus
fabavirus	Ullucus mild mottle
Lettuce mosaic potyvirus	tobamovirus
Maclura mosaic macluravirus	White clover mosaic potexvirus
Marigold mottle potyvirus	Wild potato mosaic
Peanut stunt cucumovirus	potyvirus
Plantain X potexvirus	Wineberry latent virus
Potato 14R (?) tobamovirus	Nicotiana benthamiana
Potato Andean latent	Susceptible to:
tymovirus	Ahlum waterborne (?)
Potato black ringspot	carmovirus
nepovirus	Alstroemeria (?) ilarvirus
Potato leafroll luteovirus	Alstroemeria mosaic
Red clover necrotic mosaic	potyvirus
dianthovirus	Alstroemeria streak (?)
Ribgrass mosaic	potyvirus
tobamovirus	Amazon lily mosaic (?)
Telfairia mosaic potyvirus	potyvirus
Tobacco etch potyvirus	Apple mosaic ilarvirus
Tobacco necrosis necrovirus	Arracacha Y potyvirus
Tobacco rattle tobravirus	Artichoke latent potyvirus
Tobacco ringspot nepovirus	Artichoke latent S (?)
Tobacco streak ilarvirus	carlavirus
Tomato black ring nepovirus	Artichoke mottled crinkle tombusvirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Tomato spotted wilt tospovirus	Artichoke vein banding (?) nepovirus
Turnip mosaic potyvirus	Asparagus 3 potexvirus
Ullucus mild mottle tobamovirus	Asystasia gangetica mottle (?) potyvirus
Viola mottle potexvirus	Barley yellow streak mosaic
Watermelon mosaic 2 potyvirus	virus Bean calico mosaic
Zygocactus Montana X (?) potexvirus	bigeminivirus Bean common mosaic
Amaranthus tricolor	potyvirus
Synonyms:	Beet curly top
Amaranthus gangeticus;	hybrigeminivirus
Amaranthus gangeticus var. melancholicus; Amaranthus	Blueberry leaf mottle nepovirus
mangostanus; Amaranthus	Blueberry necrotic shock
polygamus; Amaranthus	ilarvirus
tricolor ssp. mangostanus;	Caper latent carlavirus
Amaranthus tricolor ssp. tristis	Caraway latent (?)
Common names:	nepovirus
Chinese amaranth;	Carrot mottle mimic
Tampala; Ganges amaranth	umbravirus
Susceptible to:	Carrot mottle umbravirus
Amaranthus leaf mottle potyvirus	Carrot yellow leaf (?) closterovirus
Amaranthus mosaic (?) potyvirus	Cassava African mosaic bigeminivirus
Apple mosaic ilarvirus	Cassava brown streak-
Amaryllis	associated (?) carlavirus
Susceptible to:	Cassava brown streak
Amaryllis (?)	potyvirus
alphacryptovirus	Cassava Caribbean mosaic (?)
Narcissus	potexvirus
Susceptible to:	Cassava Colombian
Narcissus yellow stripe potyvirus	symptomless (?) potexvirus Cassava common mosaic (?)
Insusceptible to:	potexvirus
Silene X (?) potexvirus	Cassava green mottle
Narcissus jonquilla	nepovirus
Common names:	Cassava Indian mosaic
Jonquil	bigeminivirus

Jonquil
Susceptible to:
Strawberry latent ringspot
(?) nepovirus
Insusceptible to:
Ornithogalum mosaic
potyvirus
Narcissus poeticus
Common names:
Narcissus; Pheasant's-eye;
Poet's narcissus
Susceptible to:
Narcissus tip necrosis (?)
carmovirus
Narcissus pseudonarcissus
Common names:
Daffodil; Common daffodil
Susceptible to:
Arabis mosaic nepovirus
Narcissus late season
yellows (?) potyvirus
Narcissus latent
macluravirus
Narcissus mosaic potexvirus
Narcissus tip necrosis (?)
carmovirus
Raspberry ringspot
nepovirus
Tobacco rattle tobravirus
Tomato black ring
nepovirus
Yucca
Susceptible to:
Furcraea necrotic streak (?)

Artichoke vein banding (?)
nepovirus
Asparagus 3 potexvirus
(?) potyvirus
Barley yellow streak mosaic
virus
Bean calico mosaic
Bean common mosaic
potyvirus
Beet curly top
Blucbery leaf mott
Blacbery lear motle
Blueberry necrotic shock
Caper latent carlavirus
Caraway latent (?)
Carrot mottle mimic
umbravirus
Carrot mottle umbravirus
Carrot yellow leaf (?)
Cassava African mosaic
bigeminivirus
Cassava brown streak-
Cand (.) carlavir
potyvirus
Cassava Caribbean mosaic (?)
otervius
symptomless (?) potexvirus
Cassava common mosaic (?)
Cassava green mottle
nepovirus
Cassava Indian mosaic
Cassava Ivorian bacilliform
ourmiavirus
Cassava X potexvirus
Cherry leaf roll nepovirus
Chickpea bushy dwarf
potyvirus
Chickpea chlorotic dwarf (?)
monogeminivirus
Chickpea distortion mosaic potyvirus
Chicory yellow mottle
nepovirus
Chino del tomat,
bigeminivirus
Citrus ringspot virus
Cowpea chlorotic mottle
bromovirus
Croton yellow vein mosaic
bigeminivirus
Cucumber necrosis
tombusvirus
Cymbidium ringspot
tombusvirus
Cynara (?)
nucleorhabdovirus
Dandelion yellow mosaic
sequivirus
Dasheen mosaic potyvirus
Desmodium mosaic
potyvirus
Dioscorea green banding
mosaic potyvirus
Dioscorea latent (?)

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
dianthovirus	potexvirus
Chlorophytum comosum	Dogwood mosaic (?)
Common names:	nepovirus
Spider plant; Spider-ivy;	Eggplant green mosaic
Ribbon plant	potyvirus
Insusceptible to:	Eggplant mottled dwarf
Onion mite-borne latent (?)	nucleorhabdovirus
potexvirus	Eggplant severe mottle (?)
Shallot mite-borne latent (?)	potyvirus
potexvirus	Elderberry latent (?)
Sint-Jan's onion latent (?) carlavirus	carmovirus Epirus cherry ourmiavirus
Tradescantia-Zebrina	Euphorbia mosaic
Catharanthus roseus	Grapevine A (?) trichovirus
Synonyms:	Grapevine Algerian latent
Ammocallis rosea;	tombusvirus
Lochnera rosea; Vinca rosea	Grapevine Bulgarian latent
Common names:	nepovirus
Bright-eyes; Madagascar periwinkle; Old-maid; Rose	Grapevine chrome mosaic nepovirus
periwinkle; Rosy periwinkle	Grapevine fanleaf nepovirus
Susceptible to:	Groundnut chlorotic spot (?)
Abelia latent tymovirus	potexvirus
Alfalfa mosaic alfamovirus	Groundnut rosette
Apple mosaic ilarvirus	umbravirus
Bean pod mottle comovirus	Hibiscus latent ringspot
Beet curly top	nepovirus
hybrigeminivirus	Hydrangea mosaic ilarvirus
Belladonna mottle tymovirus	Ivy vein clearing (?) cytorhabdovirus
Cacao yellow mosaic	Kalanchoe isometric virus
tymovirus	Lato River tombusvirus
Carnation mottle	Lettuce big-vein
carmovirus	varicosavirus
Cassava green mottle	Lettuce mosaic potyvirus
nepovirus	Lilac chlorotic leafspot
Cherry leaf roll nepovirus	capillovirus
Citrus leaf rugose ilarvirus	Lily X potexvirus
Citrus ringspot virus	Lucerne Australian
Clover wound tumor phytoreovirus	symptomless (?) nepovirus Maracuja mosaic (?)
Clover yellow mosaic	tobamovirus
potexvirus	Melon Ourmia ourmiavirus
Cowpea severe mosaic comovirus	Melothria mottle (?) potyvirus
Cucumber mosaic cucumovirus	Nandina mosaic (?) potexvirus
Dogwood mosaic (?) nepovirus	Narcissus latent macluravirus
Dulcamara mottle tymovirus	Narcissus tip necrosis (?) carmovirus
Elm mottle ilarvirus	Neckar River tombusvirus
Erysimum latent tymovirus	Nerine potyvirus
Foxtail mosaic potexvirus	Nicotiana velutina mosaic (?)
Humulus japonicus ilarvirus	furovirus
Lilac ring mottle ilarvirus	Oat golden stripe furovirus
Nandina mosaic (?)	Okra mosaic tymovirus
potexvirus	Olive latent 1 (?)
Narcissus mosaic potexvirus	sobemovirus
Okra mosaic tymovirus	Olive latent 2 (?)
Pea seed-borne mosaic	ourmiavirus
potyvirus	Paprika mild mottle
Peach enation (?) nepovirus	tobamovirus
Peanut stunt cucumovirus	Parsnip yellow fleck
Pepper ringspot tobravirus	sequivirus
Pepper veinal mottle potyvirus	Passiflora ringspot potyvirus
Plum American line pattern ilarvirus	Peanut chlorotic streak caulimovirus
Poplar mosaic carlavirus	Peanut clump furovirus
Potato 14R (?) tobamovirus	Peanut green mosaic
Potato black ringspot	potyvirus
nepovirus	Peanut yellow spot

TABLE 4-continued

Plant or Virus Name
Potato T trichovirus
Prune dwarf ilarvirus
Prunus necrotic ringspot
ilarvirus
Scrophularia mottle
tymovirus
Spring beauty latent
bromovirus
Tobacco mosaic satellivirus
Tobacco necrosis necrovirus

Tobacco necrosis necrovirus
Tobacco rattle tobravirus
Tobacco ringspot nepovirus
Tobacco streak ilarvirus
Tobacco stunt varicosavirus
Tomato spotted wilt tospovirus
Tulare apple mosaic
ilarvirus
Turnip crinkle carmovirus
Watermelon mosaic 2
potyvirus
Wild cucumber mosaic
tymovirus
Hedera helix
Common names:
English ivy
Susceptible to:
Ivy vein clearing (?)
cytorhabdovirus
sparagus officinalis
Synonyms:
Asparagus longifolius
Common names:
Garden asparagus;
Asparagus; Esparrag
Susceptible to:
Arabis mosaic nepovirus
Asparagus 1 potyvirus
Asparagus 2 ilarvirus
Strawberry latent ringspot (?)
nepovirus
Tobacco streak ilarvirus
Dryopteris filix-mas
Common names:
Male fern
Susceptible to:
Fern (?) potyvirus
Polystichum falcatum
Susceptible to:
Harts tongue fern (?)
tobravirus
Phyllitis scolopendrium
Synonyms:
Asplenium scolopendrium
Common names:
Hart's-tongue fern
Susceptible to:
Harts tongue fern (?)
tobravirus
Aucuba japonica
Synonyms:
Aucuba japonica var.
variegata
Common names:
Spotted-laurel; Japanese-
laurel
Susceptible to:
Aucuba ringspot (?)
badnavirus
Cycas necrotic stunt
nepovirus
Begonia elatior
Susceptible to:
Carnation mottle

Plant or Virus Name
tospovirus
Pelargonium vein clearing (?)
cytorhabdovirus
Pepper Moroccan
tombusvirus
Pepper mottle potyvirus
Pepper ringspot tobravirus
Pepper Texas bigeminivirus
Pepper veinal mottle
potyvirus
Physalis mosaic tymovirus
Pittosporum vein yellowing
nucleorhabdovirus
Plantain 6 (?) carmovirus
Plantain 7 (?) potyvirus
Plantain X potexvirus
Plum American line pattern
ilarvirus
Plum pox potyvirus
Poinsettia mosaic (?)
tymovirus
Potato 14R (?) tobamovirus
Potato Andean latent
tymovirus
Potato Andean mottle
comovirus
Potato black ringspot
nepovirus
Potato mop-top furovirus
Potato T trichovirus
Prune dwarf ilarvirus
Prunus necrotic ringspot
ilarvirus
Red clover necrotic mosaic
dianthovirus
Rice stripe necrosis (?)
furovirus
Rubus Chinese seed-borne (?)
nepovirus
Silene X (?) potexvirus
Sitke waterborne (?)
tombusvirus
Solanum apical leaf curling (?)
bigeminivirus
Solanum nodiflorum mottle
sobemovirus
Sonchus yellow net
nucleorhabdovirus
Soybean mosaic potyvirus
Sweet potato feathery
mottle potyvirus
Sweet potato latent (?)
potyvirus
Sweet potato mild mottle
ipomovirus
Sweet potato ringspot (?)
nepovirus
Sweet potato sunken vein (?)
closterovirus
Tamus latent (?) potexvirus
Telfairia mosaic potyvirus
Tobacco mosaic satellivirus
Tobacco mosaic
tobamovirus
Tobacco rattle tobravirus
Tobacco streak ilarvirus
Tobacco stunt varicosavirus
Tomato Australian leafcurl
bigeminivirus
Tomato bushy stunt
tombusvirus
Tomato golden mosaic
bigeminivirus
Tomato mild mottle (?)

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
carmovirus	potyvirus
Begonia x tuberhybrida	Tomato mosaic tobamovirus
Common names:	Tomato mottle
Hybris tuberous begonia	bigeminivirus
Insusceptible to:	Tomato ringspot nepovirus
Aster chlorotic stunt (?) carlavirus	Tomato yellow leaf curl bigeminivirus
Catalpa bignonioides	Tomato yellow mosaic
Synonyms:	bigeminivirus
Catalpa bignonioides f .	Tropaeolum 1 potyvirus
aurea	Tropaeolum 2 potyvirus
Common names:	Tulip chlorotic blotch
Catawba; Common catalpa;	potyvirus
Indian-bean; Southern catalpa;	Tulip halo necrosis (?) virus
Cigartree; Smoking-bean	Tulip X potexvirus
Susceptible to:	Ullucus mild mottle
Scrophularia mottle	tobamovirus
tymovirus	Ullucus mosaic potyvirus
Acer palmatum	Vanilla necrosis potyvirus
Abelia latent tymovirus	Watercress yellow spot
Betula	virus
Susceptible to:	Watermelon mosaic 2
Cherry leaf roll nepovirus	potyvirus
Ceiba pentandra	Weddel waterborne (?)
Synonyms:	carmovirus
Bombax pentandrum; Ceiba casearia; Eriodendron	Wild potato mosaic potyvirus
anfractuosum	Yam mosaic potyvirus
Common names:	Nicotiana tabacum
Ceiba; Kapok; Silk-cotton-	Synonyms:
tree; White silk-cotton-tree;	Nicotiana chinensis;
Kapokbaum; Kapokier; Arbe-	Nicotiana tabacum var.
Susceptible to:	Common names:
Cacao swollen shoot	Tobacco
badnavirus	Susceptible to:
Cacao yellow mosaic	Abutilon mosaic
tymovirus	bigeminivirus
Okra mosaic tymovirus	Alfalfa mosaic alfamovirus
Myosotis sylvatica	Alstroemeria (?) ilarvirus
Synonyms:	Alstroemeria mosaic
Myosotis alpestris;	potyvirus
Myosotis oblongata	Amaranthus leaf mottle
Common names:	potyvirus
Garden forget-me-not;	Arabis mosaic nepovirus
Wood forget-me-not	Arracacha A nepovirus
Susceptible to:	Arracacha B (?) nepovirus
Arabis mosaic nepovirus	Arracacha Y potyvirus
Carnation ringspot dianthovirus	Artichoke Italian latent nepovirus
Cymbidium ringspot tombusvirus	Artichoke yellow ringspot nepovirus
Tobacco rattle tobravirus	Asparagus 2 ilarvirus
Tobacco ringspot nepovirus	Asparagus 3 potexvirus
Tomato black ring nepovirus	Asystasia gangetica mottle (?) potyvirus
Ananas comosus	Barley stripe mosaic
Synonyms:	hordeivirus
Ananas duckei; Ananas	Bean distortion dwarf (?)
sativus; Ananas sativus var.	bigeminivirus
duckei; Bromelia ananas;	Bean yellow mosaic
Bromelia comosa	potyvirus
Common names:	Beet curly top
Pineapple; Pina	hybrigeminivirus
Susceptible to:	Beet pseudo-yellows (?)
Pineapple chlorotic leaf	closterovirus
streak (?) nucleorhabdovirus	Belladonna mottle
Pineapple wilt-associated	tymovirus
(?) closterovirus	Bidens mosaic potyvirus
Tomato spotted wilt	Blueberry leaf mottle
Buxus sempervirens	Blueberry necrotic shock
Synonyms:	ilarvirus
Buxus colchica	Bramble yellow mosaic (?)

TABLE 4-continued

Plant or Virus Name
Common names:
Boxwood; Common
boxwood; Turkish boxwood
Susceptible to:
Arabis mosaic nepovirus
Cactaceae family
Including:
Austrocylindropuntia cylindrica
Cactaceae
Carnegiea gigantea (syn. Cereus
giganteus)
Saguaro; Giant cactus
Cereus
Chamaecereus sylvestrii
Echinocereus procumbens
Echinopsis
Epiphyllum
Ferocactus acanthodes (syn.
Echinocactus acanthodes)
Opuntia engelmannii

Plant or Virus Name
potyvirus
Broad bean wilt fabavirus
Burdock yellow mosaic (?)
potexvirus
Cacao necrosis nepovirus
Cacao yellow mosaic
tymovirus
Carnation ringspot
dianthovirus
Cassava African mosaic
bigeminivirus
Cassava green mottle
nepovirus
Cassava Indian mosaic
bigeminivirus
Cassava Ivorian bacilliform
ourmiavirus
Cassia mild mosaic (?)
carlavirus
Cassia severe mosaic (?)
closterovirus
Celery latent (?) potyvirus
Cherry leaf roll nepovirus
Chickpea chlorotic dwarf (?)
monogeminivirus
Chicory yellow mottle
nepovirus
Chilli veinal mottle (?)
potyvirus
Chino del tomat,
bigeminivirus
Citrus ringspot virus
Clover wound tumor
phytoreovirus
Clover yellow vein
potyvirus
Commelina X potexvirus
Cowpea chlorotic mottle
bromovirus
Cowpea mosaic comovirus
Cowpea mottle (?)
carmovirus
Cowpea severe mosaic
comovirus
Croton yellow vein mosaic
bigeminivirus
Cucumber green mottle
mosaic tobamovirus
Cucumber mosaic
cucumovirus
Cucumber necrosis
tombusvirus
Cymbidium ringspot
tombusvirus
Datura Colombian potyvirus
Datura distortion mosaic
potyvirus
Datura innoxia Hungarian
mosaic (?) potyvirus
Datura mosaic (?) potyvirus
Datura necrosis potyvirus
Datura shoestring potyvirus
Datura yellow vein
nucleorhabdovirus
Dioscorea latent (?)
potexvirus
Dogwood mosaic (?)
nepovirus
Eggplant green mosaic
potyvirus
Eggplant mild mottle (?)
carlavirus
Eggplant mottled crinkle tombusvirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
posoposa; Papaya carica	Eggplant mottled dwarf
Common names:	nucleorhabdovirus
Papaya; Pawpaw	Eggplant severe mottle (?)
Susceptible to:	potyvirus
Croton yellow vein mosaic bigeminivirus	Elderberry latent (?) carmovirus
Papaya mosaic potexvirus	Elm mottle ilarvirus
Papaya ringspot potyvirus	Epirus cherry ourmiavirus
Watermelon mosaic 1 potyvirus	Eucharis mottle (?) nepovirus
Dianthus barbatus	Foxtail mosaic potexvirus
Common names:	Frangipani mosaic
Sweet William	tobamovirus
Susceptible to:	Galinsoga mosaic
Alfalfa mosaic alfamovirus	carmovirus
Arabis mosaic nepovirus	Grapevine Bulgarian latent
Beet curly top	nepovirus
hybrigeminivirus	Grapevine chrome mosaic
Beet mosaic potyvirus	nepovirus
Carnation latent carlavirus	Grapevine fanleaf nepovirus
Carnation mottle	Guar top necrosis virus
carmovirus	Henbane mosaic potyvirus
Carnation necrotic fleck closterovirus	Hibiscus latent ringspot nepovirus
Carnation (?) rhabdovirus	Hippeastrum mosaic
Carnation ringspot	potyvirus
dianthovirus	Hop American latent
Carnation vein mottle potyvirus	carlavirus Humulus japonicus ilarvirus
Carnation yellow stripe (?) necrovirus	Ivy vein clearing (?) cytorhabdovirus
Clover wound tumor	Kalanchoe isometric virus
phytoreovirus	Kyuri green mottle mosaic
Melon Ourmia ourmiavirus	tobamovirus
Okra mosaic tymovirus	Lamium mild mottle
Peanut stunt cucumovirus	fabavirus
Pelargonium line pattern (?) carmovirus	Lilac chlorotic leafspot capillovirus
Potato black ringspot nepovirus	Lilac ring mottle ilarvirus Lisianthus necrosis (?)
Potato M carlavirus	necrovirus
Silene X (?) potexvirus	Lucerne Australian latent
Strawberry latent ringspot (?)	nepovirus
(?) nepovirus	Lucerne Australian
Tobacco ringspot nepovirus	symptomless (?) nepovirus
Tomato bushy stunt tombusvirus	Lucerne transient streak sobemovirus
Viola mottle potexvirus	Lychnis ringspot
Dianthus caryophyllus	hordeivirus
Common names:	Maclura mosaic
Carnation; Clavel	macluravirus
Susceptible to:	Maracuja mosaic (?)
Alfalfa mosaic alfamovirus	tobamovirus
Arabis mosaic nepovirus	Marigold mottle potyvirus
Beet curly top	Melandrium yellow fleck
hybrigeminivirus	bromovirus
Carnation 1	Melilotus mosaic (?)
alphacryptovirus	potyvirus
Carnation 2 (?)	Melon Ourmia ourmiavirus
alphacryptovirus	Milk vetch dwarf nanavirus
Carnation etched ring caulimovirus	Myrobalan latent ringspot nepovirus
Carnation Italian ringspot tombusvirus	Narcissus latent macluravirus
Carnation latent carlavirus	Neckar River tombusvirus
Carnation mottle	Nerine potyvirus
carmovirus	Nicotiana velutina mosaic (?)
Carnation necrotic fleck	furovirus
Closterovirus	Odontoglossum ringspot
Carnation (?) rhabdovirus	tobamovirus
Carnation ringspot	Okra leaf-curl bigeminivirus
dianthovirus	Olive latent 1 (?)
Carnation vein mottle	sobemovirus
Potyvirus	Olive latent 2 (?)

TABLE 4-continued

Plant or Virus Name
Carnation yellow stripe (?)
necrovirus
Lettuce infectious yellows
(?) closterovirus
Melandrium yellow fleck
bromovirus
Potato M carlavirus
Tobacco stunt varicosavirus
Gypsophila elegans
Common names:
Baby's-breath
Susceptible to:
Belladonna mottle
tymovirus
Lychnis ringspot
hordeivirus
Tobacco etch potyvirus
Tobacco necrosis necroviru

Tobacco necrosis necrovirus
Tobacco rattle tobravirus
Tobacco ringspot nepovirus
Tomato bushy stunt
tombusvirus
Euonymus europaeus
Synonyms:
Euonymus vulgaris
Common names:
European spindletree;
Spindletree
Susceptible to:
Arabis mosaic nepovirus
Strawberry latent ringspot (?) nepovirus
Euonymus japonica
Susceptible to:
Euonymus fasciation (?)
rhabdovirus
Euonymus (?) rhabdovirus
Beta vulgaris
Common names:
Beet
Susceptible to:
Alfalfa mosaic alfamovirus
Arabis mosaic nepovirus
Arracacha A nepovirus
Asparagus 2 ilarvirus
Asparagus 3 potexvirus
Barley stripe mosaic
hordeivirus
Beet 1 alphacryptovirus
Beet 2 alphacryptovirus
Beet 3 alphacryptovirus
Beet curly top
hybrigeminivirus
Beet distortion mosaic virus
Beet leaf curl (?)
rhabdovirus
Beet mild yellowing
luteovirus
Beet mosaic potyvirus
Beet necrotic yellow vein furovirus
Beet pseudo-yellows (?)
closterovirus
Beet soil-borne furovirus
Beet western yellows
luteovirus
Beet yellow net (?)
luteovirus
Beet yellow stunt
closterovirus
Beet yellows closterovirus
Broad bean wilt fabavirus
Butterbur mosaic (?)
carlavirus

Plant or Virus Name
ourmiavirus
Orchid fleck (?) rhabdovirus
Paprika mild mottle
tobamovirus
Parietaria mottle ilarvirus
Parsnip yellow fleck
sequivirus
Passionfruit woodiness
potyvirus
Patchouli mosaic potyvirus
Pea early browning
tobravirus
Pea mosaic potyvirus
Pea streak carlavirus
Peach enation (?) nepovirus
Peach rosette mosaic
nepovirus
Peanut chlorotic streak caulimovirus
Peanut clump furovirus
Peanut stunt cucumovirus
Pelargonium line pattern (?)
carmovirus
Pelargonium vein clearing
(?) cytorhabdovirus
Pelargonium zonate spot
ourmiavirus
Pepino mosaic potexvirus
Pepper Indian mottle
potyvirus
Pepper mild mosaic (?)
potyvirus
Pepper mild mottle
tobamovirus
Pepper Moroccan
tombusvirus
Pepper mottle potyvirus
Pepper ringspot tobravirus
Pepper severe mosaic potyvirus
Pepper Texas bigeminivirus
Pepper veinal mottle
potyvirus
Physalis mosaic tymovirus
Pittosporum vein yellowing
nucleorhabdovirus
Plantain X potexvirus
Plum American line pattern
ilarvirus
Plum pox potyvirus
Poinsettia mosaic (?)
tymovirus
Poplar mosaic carlavirus
Potato 14R (?) tobamovirus
Potato A potyvirus
Potato Andean mottle
comovirus
Potato aucuba mosaic potexvirus
Potato black ringspot
nepovirus
Potato mop-top furovirus
Potato \mathbf{T} trichovirus
Potato U nepovirus
Potato V potyvirus
Potato X potexvirus
Potato Y potyvirus
Potato yellow dwarf
nucleorhabdovirus
Primula mosaic potyvirus
Primula mottle (?) potyvirus
Prune dwarf ilarvirus
Radish mosaic comovirus
Raspberry ringspot

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Cacao necrosis nepovirus	nepovirus
Cacao yellow mosaic tymovirus	Red clover necrotic mosaic dianthovirus
Cactus X potexvirus	Red clover vein mosaic
Caraway latent (?)	carlavirus
nepovirus	Rhynchosia mosaic
Carnation latent carlavirus	bigeminivirus
Carnation mottle	Ribgrass mosaic
carmovirus	tobamovirus
Carnation vein mottle	Rose (?) tobamovirus
potyvirus	Rubus Chinese seed-borne
Celery latent (?) potyvirus	(?) nepovirus
Cherry leaf roll nepovirus	Silene X (?) potexvirus
Chickpea chlorotic dwarf (?) monogeminivirus	Solanum nodiflorum mottle sobemovirus
Chicory yellow blotch (?)	Sonchus cytorhabdovirus
carlavirus	Sowbane mosaic
Clover yellow mosaic	sobemovirus
potexvirus	Soybean crinkle leaf (?)
Clover yellow vein	bigeminivirus
potyvirus	Soybean mild mosaic virus
Cowpea chlorotic mottle	Soybean mosaic potyvirus
bromovirus	Spinach latent ilarvirus
Cowpea mild mottle (?) carlavirus	Strawberry latent ringspot (?) nepovirus
Croton yellow vein mosaic bigeminivirus	Sunn-hemp mosaic tobamovirus
Cucumber mosaic cucumovirus	Sweet clover necrotic mosaic dianthovirus
Cucumber soil-borne carmovirus	Sweet potato latent (?) potyvirus
Cycas necrotic stunt nepovirus	Sweet potato mild mottle ipomovirus
Cymbidium ringspot tombusvirus	Sweet potato ringspot (?) nepovirus
Dogwood mosaic (?)	Tamarillo mosaic potyvirus
nepovirus	Telfairia mosaic potyvirus
Elderberry carlavirus	Tobacco etch potyvirus
Elderberry latent (?)	Tobacco leaf curl
carmovirus	bigeminivirus
Elm mottle ilarvirus	Tobacco mild green mosaic
Epirus cherry ourmiavirus	tobamovirus
Foxtail mosaic potexvirus	Tobacco mosaic satellivirus
Grapevine Bulgarian latent nepovirus	Tobacco mosaic tobamovirus
Grapevine fanleaf nepovirus	Tobacco mottle umbravirus
Groundnut eyespot	Tobacco necrosis necrovirus
potyvirus	Tobacco necrosis
Helenium S carlavirus	satellivirus
Heracleum latent trichovirus	Tobacco necrotic dwarf
Humulus japonicus ilarvirus	1uteovirus
Impatiens latent (?)	Tobacco rattle tobravirus
potexvirus	Tobacco ringspot nepovirus
Lettuce infectious yellows	Tobacco streak ilarvirus
(?) closterovirus	Tobacco stunt varicosavirus
Lettuce mosaic potyvirus	Tobacco vein-distorting (?)
Lettuce speckles mottle	luteovirus
umbravirus	Tobacco vein mottling
Lilac chlorotic leafspot	potyvirus
capillovirus	Tobacco wilt potyvirus
Marigold mottle potyvirus	Tobacco yellow dwarf
Mulberry latent carlavirus	monogeminivirus
Odontoglossum ringspot	Tobacco yellow net (?)
tobamovirus	luteovirus
Parsnip leafcurl virus	Tobacco yellow vein
Parsnip yellow fleck	assistor (?) luteovirus
sequivirus	Tobacco yellow vein (?)
Pea seed-borne mosaic	umbravirus
potyvirus	Tomato aspermy
Peanut clump furovirus	cucumovirus
Peanut stunt cucumovirus	Tomato Australian leafcurl
Pelargonium line pattern (?)	bigeminivirus
carmovirus	Tomato black ring
Pepper ringspot tobravirus	nepovirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Physalis mild chlorosis (?) luteovirus	Tomato bushy stunt tombusvirus
Potato 14R (?) tobamovirus	Tomato golden mosaic
Potato black ringspot	bigeminivirus
nepovirus	Tomato mild mottle (?)
Potato M carlavirus	potyvirus
Potato mop-top furovirus	Tomato mosaic tobamovirus
Potato T trichovirus	Tomato mottle
Potato U nepovirus	bigeminivirus
Radish mosaic comovirus	Tomato Peru potyvirus
Raspberry ringspot nepovirus	Tomato ringspot nepovirus Tomato spotted wilt
Red clover necrotic mosaic	tospovirus
dianthovirus	Tomato top necrosis (?)
Ribgrass mosaic	nepovirus
tobamovirus	Tomato yellow leaf curl
Rubus Chinese seed-borne	bigeminivirus
(?) nepovirus	Tomato yellow mosaic
Sowbane mosaic	bigeminivirus
sobemovirus	Tulare apple mosaic
Soybean dwarf luteovirus	ilarvirus
Spinach latent ilarvirus	Tulip chlorotic blotch
Strawberry latent ringspot	potyvirus
(?) nepovirus	Tulip halo necrosis (?) virus
Subterranean clover red leaf	Turnip mosaic potyvirus
luteovirus	Turnip rosette sobemovirus
Sunn-hemp mosaic tobamovirus	Ullucus mild mottle tobamovirus
Sweet potato mild mottle	Ullucus mosaic potyvirus
ipomovirus	Watermelon mosaic 2
Tobacco etch potyvirus	potyvirus
Tobacco mosaic tobamovirus	Wild potato mosaic potyvirus
Tobacco necrosis necrovirus	Wisteria vein mosaic
Tobacco rattle tobravirus	potyvirus
Tobacco ringspot nepovirus	Petunia x hybrida
Tobacco streak ilarvirus	Common names:
Tobacco stunt varicosavirus	Common garden petunia;
Tobacco yellow dwarf	Garden petunia
monogeminivirus	Susceptible to:
Tomato black ring	Abelia latent tymovirus
nepovirus	Alfalfa mosaic alfamovirus
Tulip halo necrosis (?) virus	Alstroemeria (?) ilarvirus
Tulip X potexvirus	Alstroemeria mosaic
Turnip mosaic potyvirus	potyvirus
Viola mottle potexvirus	Amaranthus leaf mottle
Spinacia oleracea	potyvirus
Common names:	Amaranthus mosaic (?)
Spinach	potyvirus
Susceptible to:	Aquilegia (?) potyvirus
Alfalfa mosaic alfamovirus	Arabis mosaic nepovirus
Amaranthus leaf mottle	Arracacha A nepovirus
potyvirus	Arracacha B (?) nepovirus
Arabis mosaic nepovirus	Artichoke latent potyvirus
Asparagus 3 potexvirus	Artichoke vein banding (?)
Barley stripe mosaic	nepovirus
hordeivirus	Artichoke yellow ringspot
Bean yellow mosaic potyvirus	nepovirus Asparagus 2 ilarvirus
Beet curly top	Bean yellow mosaic
hybrigeminivirus	potyvirus
Beet leaf curl (?)	Beet curly top
rhabdovirus	hybrigeminivirus
Beet mild yellowing	Beet western yellows
luteovirus	luteovirus
Beet mosaic potyvirus	Bidens mottle potyvirus
Beet necrotic yellow vein	Black raspberry necrosis
furovirus	virus
Beet pseudo-yellows (?) closterovirus	Brinjal mild mosaic (?) potyvirus
Beet soil-borne furovirus	Broad bean V (?) potyvirus
Beet western yellows	Broad bean wilt fabavirus
luteovirus	Butterbur mosaic (?)
Beet yellows closterovirus	carlavirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Black raspberry necrosis	Cacao necrosis nepovirus
virus	Caper latent carlavirus
Broad bean wilt fabavirus	Carnation mottle
Canavalia maritima mosaic	carmovirus
(?) potyvirus	Cassava green mottle
Carnation mottle	nepovirus
carmovirus	Cassava Indian mosaic
Carnation ringspot	bigeminivirus
dianthovirus	Cassava Ivorian bacilliform
Carnation vein mottle	ourmiavirus
potyvirus	Celery latent (?) potyvirus
Celery latent (?) potyvirus	Cherry leaf roll nepovirus
Cherry leaf roll nepovirus	Chicory yellow mottle
Clover yellow mosaic	nepovirus
potexvirus	Chrysanthemum B
Clover yellow vein	carlavirus
potyvirus	Citrus ringspot virus
Cowpea mild mottle (?)	Cowpea chlorotic mottle
Carlavirus	bromovirus
Cowpea mosaic comovirus	Cowpea mosaic comovirus
Croton yellow vein mosaic bigeminivirus	Cowpea severe mosaic comovirus
Cumcumber leaf spot carmovirus	Croton yellow vein mosaic bigeminivirus
Cucumber mosaic cucumovirus	Cucumber leaf spot carmovirus
Cycas necrotic stunt nepovirus	Cymbidium ringspot tombusvirus
Cymbidium ringspot tombusvirus	Datura distortion mosaic potyvirus
Dandelion yellow mosaic sequivirus	Datura innoxia Hungarian mosaic (?) potyvirus
Daphne Y potyvirus	Datura mosaic (?) potyvirus
Dogwood mosaic (?) nepovirus	Dogwood mosaic (?) nepovirus
Elderberry latent (?) carmovirus	Eggplant green mosaic potyvirus
Elm mottle ilarvirus	Eggplant mosaic tymovirus
Epirus cherry ourmiavirus	Eggplant mottled dwarf
Foxtail mosaic potexvirus	nucleorhabdovirus
Galinsoga mosaic carmovirus	Elderberry latent (?) carmovirus
Habenaria mosaic (?)	Elm mottle ilarvirus
potyvirus	Epirus cherry ourmiavirus
Heracleum latent trichovirus	Galinsoga mosaic
Lettuce infectious yellows	carmovirus
(?) closterovirus	Grapevine chrome mosaic
Lettuce mosaic potyvirus	nepovirus
Lettuce necrotic yellows	Grapevine fanleaf nepovirus
cytorhabdovirus	Groundnut eyespot
Lettuce speckles mottle	potyvirus
umbravirus	Guar top necrosis virus
Lucerne Australian latent	Henbane mosaic potyvirus
nepovirus	Hibiscus latent ringspot
Lucerne Australian	nepovirus
symptomless (?) nepovirus	Hibiscus yellow mosaic (?)
Lucerne transient streak	tobamovirus
sobemovirus	Hippeastrum mosaic
Lychnis ringspot	potyvirus
hordeivirus	Honeysuckle latent
Melon Ourmia ourmiavirus	carlavirus
Melothria mottle (?)	Humulus japonicus ilarvirus
potyvirus	Kyuri green mottle mosaic
Milk vetch dwarf nanavirus	tobamovirus
Mulberry latent carlavirus	Lamium mild mottle
Nandina mosaic (?)	fabavirus
potexvirus	Lettuce infectious yellows
Nicotiana velutina mosaic	(?) closterovirus
(?) furovirus	Lettuce necrotic yellows
Oat blue dwarf marafivirus	cytorhabdovirus
Okra mosaic tymovirus	Lilac chlorotic leafspot
Parietaria mottle ilarvirus	capillovirus
Parsnip leafcurl virus	Lilac mottle carlavirus
Parsnip mosaic potyvirus	Lisianthus necrosis (?)

TABLE 4-continued

Plant or Virus Name
Parsnip yellow fleck

sequivirus
Patchouli mosaic potyvirus
Pea early browning
tobravirus
Pea streak carlavirus
Peanut chlorotic streak caulimovirus
Peanut clump furovirus
Peanut mottle potyvirus
Peanut stunt cucumovirus
Pelargonium flower break carmovirus
Pelagonium line pattern (?) carmovirus
Pepper Moroccan
tombusvirus
Pepper ringspot tobravirus
Petunia asteroid mosaic
tombusvirus
Physalis mild chlorosis (?)
luteovirus
Potato 14R (?) tobamovirus
Potato T trichovirus
Potato U nepovirus
Radish mosaic comovirus
Raspberry ringspot neprovirus
Red clover necrotic mosaic
dianthovirus
Ribgrass mosaic
tubamovirus
Rose (?) tobamovirus
Sowbane mosaic
sobemovirus
Soybean mild mosaic virus
Spinach latent ilarvirus
Spinach temperate
alphacryptovirus
Statice Y potyvirus
Strawberry latent ringspot
(?) nepovirus
Sunflower ringspot (?)
ilarvirus
Sunn-hemp mosaic
tobamovirus
Sweet potato mild mottle
ipomovirus
Tobacco necrosis necrovirus Tobacco necrotic dwarf luteovirus
Tobacco rattle tobravirus
Tobacco ringspot nepovirus
Tobacco streak ilarvirus
Tobacco stunt varicosavirus
Tomato black ring
nepovirus
Tomato bushy stunt
tombusvirus
Tomato spotted wilt
tospovirus
Tulip halo necrosis (?) virus
Tulip X potexvirus
Turnip mosaic potyvirus
Vallota mosaic potyvirus
Viola mottle potexvirus
Watermelon mosaic 2
potyvirus
Wineberry latent virus
Wisteria vein mosaic
potyvirus
Cleome spinosa
Synonyms:
Cleome hassleriana; Cleome

Plant or Virus Name
necrovirus
Lucerne Australian
symptomless (?) nepovirus
Lucerne transient streak
sobemovirus
Lychnis ringspot
hordeivirus
Marigold mottle potyvirus
Melandrium yellow fleck
bromovirus
Melilotus mosaic (?)
potyvirus
Melon Ourmia ourmiavirus
Narcissus mosaic potexvirus
Neckar River tombusvirus
Olive latent ringspot
nepovirus
Olive latent 2 (?)
ourmiavirus
Paprika mild mottle
tobamovirus
Parietaria mottle ilarvirus
Parsnip yellow fleck
sequivirus
Passionfruit Sri Lankan
mottle (?) potyvirus
Passionfruit woodiness
potyvirus
Pea early browning
tobravirus
Pea seed-borne mosaic
potyvirus
Peach enation (?) nepovirus
Peanut chlorotic streak
caulimovirus
Peanut clump furovirus
Peanut green mosaic
potyvirus
Peanut stunt cucumovirus
Peanut yellow spot
tospovirus
Pelargonium line pattern (?)
carmovirus
Pelargonium vein clearing (?)
cytorhabdovirus
Pepper mild mottle
tobamovirus
Pepper Moroccan
tombusvirus
Pepper ringspot tobravirus
Pepper severe mosaic
potyvirus
Pepper veinal mottle
potyvirus
Petunia asteroid mosaic
tombusvirus
Petunia vein clearing (?)
caulimovirus
Physalis mosaic tymovirus
Pittosporum vein yellowing
nucleorhabdovirus
Plantago mottle tymovirus
Plantain X potexvirus
Plum American line pattern
ilarvirus
Plum pox potyvirus
Poplar mosaic carlavirus
Potato 14R (?) tobamovirus
Potato Andean latent
tymovirus
Potato aucuba mosaic
potexvirus
Potato black ringspot
nepovirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
arborea; Cleome pungens	Potato mop-top furovi
Common names:	Potato U nepovirus
Spider-flower	Potato yellow mosaic
Susceptible to:	bigeminivirus
Turnip yellow mosaic	Primula mosaic potyvi
tymovirus	Prune dwarf ilarvirus
Gloriosa rothschildiana	Prunus necrotic ringsp
Synonyms:	ilarvirus
Gloriosa superba; Gloriosa	Raspberry ringspot
abyssinica; Gloriosa homblei;	nepovirus
Gloriosa hybrid; Gloriosa simplex;	Ribgrass mosaic
Gloriosa speciosa; Gloriosa	tobamovirus
virescens	Rose (?) tobamovirus
Common names:	Rubus Chinese seed-b

Common names:
Flame lily; Glory lily;
Climbing lily; Creeping lily
Susceptible to:
Gloriosa fleck (?)
nucleorhabdovirus
Tradescantia zebrina
Synonyms:
Tradescantia pendula;
Zebrina pendula
Common names:
Wandering-jew
Susceptible to:
Tradescantia-Zebrina
potyvirus
Chrysanthemum morifolium
Synonyms:
Dendranthema x
grandifforum; Anthemis
grandifforum; Anthemis
stipulacea; Chrysanthemum
sinense; Chrysanthemum
stipulaceum;
Dendranthema x
morifolium; Matricaria morifolia
Common names:
Florist's chrysanthemum;
Mum; Chrisanthemum
Susceptible to:
Chrysanthemum B
carlavirus
Cucumber mosaic
cucumovirus
Oat blue dwarf marafivirus
Tomato aspermy
cucumovirus
Helianthus annuus
Synonyms:
Helianthus annuus var.
macrocarpus; Helianthus
lenticularis
Common names:
Common annual sunflower;
Sunflower; Hopi sunflower;
Common sunflower; Girasol
Susceptible to:
Alfalfa mosaic alfamovirus
Artichoke curly dwarf (?)
potexvirus
Artichoke latent potyvirus
Beet western yellows
luteovirus
Bidens mosaic potyvirus
Bidens mottle potyvirus
Cassia mild mosaic (?)
carlavirus
Cherry leaf roll nepovirus
Citrus ringspot virus
Clover yellow mosaic
potexvirus
Clover yellow vein
P
potexvirus
potyvirus
Theobroma cacao
(?) nepovirus
Solanum nodifl
Solanum nodiflorum mottle
sobemovirus
Sonchus cytorhabdovirus
Soybean crinkle leaf (?)
bigeminivirus
Soybean mild mosaic virus
Soybean mosaic potyvirus
Spinach latent ilarvirus
Sunflower ringspot (?)
ilarvirus
Sunn-hemp mosaic
tobamovirus
Sweet potato mild mottle
ipomovirus
Tamarillo mosaic potyvirus
Tobacco etch potyvirus
Tobacco leaf curl
bigeminivirus
Tobacco mild green mosaic
tobamovirus
Tobacco rattle tobravirus
Tobacco ringspot nepovirus
Tobacco streak ilarvirus
Tobacco stunt varicosavirus
Tobacco yellow vein (?)
umbravirus
Tomato black ring
nepovirus
Tomato bushy stunt
tombusvirus
Tomato golden mosaic
bigeminivirus
Tomato infectious chlorosis (?)
closterovirus
Tomato mosaic tobamovirus
Tomato mottle
bigeminivirus
Tomato Peru potyvirus
Tomato ringspot nepovirus
Tomato spotted wilt
tospovirus
Tomato top necrosis (?)
nepovirus
Tomato vein clearing
nucleorhabdovirus
Tomato yellow mosaic
bigeminivirus
Tulip chlorotic blotch
potyvirus
Tulip halo necrosis (?) virus
Turnip mosaic potyvirus
Ullucus mild mottle
tobamovirus
Ullucus mosaic potyvirus
White clover mosaic

TABLE 4-continued

Plant or Virus Name
potyvirus
Cucumber mosaic
cucumovirus
Cymbidium ringspot
tombusvirus
Elm mottle ilarvirus
Galinsoga mosaic
carmovirus
Humulus japonicus ilarvirus

Plant or Virus Name

Synonyms:
Theobroma sativa
Common names:
Cacao; Chocolate-tree
Susceptible to:
Cacao necrosis nepovirus
Cacao swollen shoot
badnavirus
Cacao yellow mosaic
tymovirus
Cowpea mild mottle (?)
carlavirus
Okra mosaic tymovirus
Tetragonia tetragonioides
Susceptible to:
Abelia latent tymovirus
Alfalfa mosaic alfamovirus
Alstroemeria (?) ilarvirus
Alstroemeria mosaic
potyvirus
Alstroemeria streak (?)
potyvirus
Amaranthus leaf mottle
potyvirus
Apple stem pitting virus
Arabis mosaic nepovirus
Arracacha A nepovirus
Arracacha B (?) nepovirus
Arracacha latent (?)
carlavirus
Arracacha Y potyvirus
Asparagus 1 potyvirus
Asparagus 3 potexvirus
Asystasia gangetica mottle
(?) potyvirus
Bean common mosaic
potyvirus
Bean yellow mosaic
potyvirus
Beet leaf curl (?)
rhabdovirus
Beet mild yellowing
luteovirus
Beet mosaic potyvirus
Beet necrotic yellow vein
furovirus
Beet western yellows
luteovirus
Beet yellows closterovirus
Broad bean necrosis
furovirus
Cacao necrosis nepovirus
Cacao yellow mosaic
tymovirus
Carnation mottle
carmovirus
Carnation ringspot
dianthovirus
Carnation vein mottle potyvirus
Cassava green mottle
nepovirus
Cassava Ivorian bacilliform
ourmiavirus
Cassia mild mosaic (?)

carlavirus

Celery latent (?) potyvirus
Chickpea distortion mosaic potyvirus
Chrysanthemum B
carlavirus
Clover wound tumor
phytoreovirus
Clover yellow vein

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Kalanchoe blossfeldiana	potyvirus
Synonyms:	Commelina X potexvirus
Kalanchoe globulifera var. coccinea	Cowpea mild mottle (?) carlavirus
Susceptible to:	Cucumber mosaic
Kalanchoe latent carlavirus	cucumovirus
Kalanchoe mosaic (?) potyvirus	Cycas necrotic stunt nepovirus
Kalanchoe top-spotting badnavirus	Cymbidium ringspot tombusvirus
Brassica napus var. napus	Dasheen mosaic potyvirus
Synonyms:	Dioscorea latent (?)
Brassica campestris f.	potexvirus
annua; Brassica campestris f. biennis; Brassica napus f. annua;	Dogwood mosaic (?) nepovirus
Brassica napus f. biennis; Brassica napus ssp. oleifera;	Eucharis mottle (?) nepovirus
Brassica napus var. annua;	Foxtail mosaic potexvirus
Brassica napus var. biennis;	Groundnut eyespot
Brassica napus var. oleifera	potyvirus
Common names:	Habenaria mosaic (?)
Rape; Colza; Bird rape;	potyvirus
Canola	Helenium S carlavirus
Susceptible to:	Heracleum latent trichovirus
Watercress yellow spot virus	Hibiscus latent ringspot nepovirus
Brassica nigra	Hypochoeris mosaic (?)
Synonyms:	furovirus
Brassica nigra var.	Impatiens latent (?)
abyssinica; Sinapis nigra	potexvirus
Common names:	Iris mild mosaic potyvirus
Black mustard	Kalanchoe isometric virus
Susceptible to:	Kalanchoe latent carlavirus
Beet western yellows luteovirus	Lamium mild mottle
luteovirus Ribgrass mosaic	fabavirus I ettuce big-vein
tobamovirus	varicosavirus
Turnip mosaic potyvirus	Lettuce mosaic potyvirus
Turnip yellow mosaic tymovirus	Lilac chlorotic leafspot capillovirus
Citrullus vulgaris	Lily X potexvirus
Synonyms:	Lisianthus necrosis (?)
Citrullus lanatus var.	necrovirus
lanatus; Citrullus aedulis; Citrullus	Lucerne Australian latent
lanatus var. caffer; Colocynthis	nepovirus
citrullus; Cucurbita citrullus	Lychnis ringspot
Common names:	hordeivirus
Watermelon	Maclura mosaic
Susceptible to:	macluravirus
Cucumber green mottle mosaic tobamovirus	Malva veinal necrosis (?) potexvirus
Cucumber vein yellowing	Marigold mottle potyvirus
virus	Melandrium yellow fleck
Telfairia mosaic potyvirus	bromovirus
Watermelon chlorotic stunt bigeminivirus	Melilotus mosaic (?) potyvirus
Wild cucumber mosaic tymovirus	Melon Ourmia ourmiavirus Narcissus latent
Cucurbita maxima	macluravirus
Common names:	Narcissus mosaic potexvirus
Squash; Pumpkin	Narcissus tip necrosis (?)
Susceptible to:	carmovirus
Apple mosaic ilarvirus	Nerine potyvirus
Bean yellow mosaic	Nerine X potexvirus
potyvirus	Odontoglossum ringspot
Beet curly top	tobamovirus
hybrigeminivirus	Okra mosaic tymovirus
Cherry leaf roll nepovirus	Ornithogalum mosaic
Clover yellow mosaic	potyvirus
potexvirus	Parietaria mottle ilarvirus
Cucumber leaf spot	Parsnip leafcurl virus
carmovirus	Parsnip yellow fleck
Cucumber mosaic	sequivirus
cucumovirus	Patchouli mottle (?)

TABLE 4-continued

Plant or Virus Name
Daphne X potexvirus
Elm mottle ilarvirus
Eucharis mottle (?)
nepovirus
Grapevine fanleaf nep
Humulus japonicus il
Kyuri green mottle m
tobamovirus
Lettuce infectious yel
(?) closterovirus
Lisianthus necrosis (?)
necrovirus
Maracuja mosaic (?)
tobamovirus

Melandrium yellow fleck bromovirus
Melon leaf curl
bigeminivirus
Melothria mottle (?)
potyvirus
Papaya ringspot potyvirus
Pea seed-borne mosaic potyvirus
Peanut stunt cucumovirus
Poplar mosaic carlavirus
Prune dwarf ilarvirus
Prunus necrotic ringspot ilarvirus
Radish mosaic comovirus
Sowbane mosaic
sobemovirus
Squash leaf curl
bigeminivirus
Squash mosaic comovirus
Strawberry latent ringspot
(?) nepovirus
Sunflower ringspot (?)
ilarvirus
Tobacco necrosis necrovirus
Tobacco ringspot nepovirus
Tobacco streak ilarvirus
Tomato bushy stunt
tombusvirus
Watermelon curly mottle
bigeminivirus
Watermelon mosaic 1
potyvirus
Watermelon mosaic 2
potyvirus
Wild cucumber mosaic
tymovirus
Zucchini yellow fleck
potyvirus
Zucchini yellow mosaic potyvirus
Cycas revoluta
Common names:
Sago cycas; Sotesu-nut
Susceptible to:
Cycas necrotic stunt
nepovirus
Dioscorea alata
Synonyms:
Dioscorea rubella
Common names:
Yam; Greater yam; Water
yam; Winged yam; White yam;
Guyana arrowroot; Ten-months
yam; Name-de-Agna
Susceptible to:
Dioscorea alata potyvirus
Dioscorea trifida (?)
potyvirus
Yam internal brown spot (?)

Plant or Virus Name

potyvirus

Pea early browning
tobravirus
Pea mosaic potyvirus
Pea seed-borne mosaic potyvirus
Peach enation (?) nepovirus
Peanut clump furovirus
Peanut green mosaic
potyvirus
Peanut stunt cucumovirus
Pelargonium flower break
carmovirus
Pelargonium line pattern (?)
carmovirus
Pepino mosaic potexvirus
Pepper ringspot tobravirus
Plantago mottle tymovirus
Poplar mosaic carlavirus
Potato 14R (?) tobamovirus
Potato black ringspot
nepovirus
Potato mop-top furovirus
Potato U nepovirus
Primula mosaic potyvirus
Red clover necrotic mosaic
dianthovirus
Ribgrass mosaic
tobamovirus
Solanum nodiflorum mottle
sobemovirus
Soybean dwarf luteovirus
Spinach latent ilarvirus
Strawberry latent ringspot
(?) nepovirus
Sweet clover necrotic
mosaic dianthovirus
Sweet potato mild mottle
ipomovirus
Sweet potato ringspot (?)
nepovirus
Tamus latent (?) potexvirus
Telfairia mosaic potyvirus
Tobacco etch potyvirus
Tobacco necrosis necrovirus
Tobacco ringspot nepovirus
Tobacco stunt varicosavirus
Tomato black ring
nepovirus
Tomato bushy stunt
tombusvirus
Tomato vein clearing
nucleorhabdovirus
Tulip chlorotic blotch
potyvirus
Tulip halo necrosis (?) virus
Tulip X potexvirus
Turnip crinkle carmovirus
Turnip mosaic potyvirus
Ullucus C comovirus
Ullucus mild mottle
tobamovirus
Ullucus mosaic potyvirus
Vallota mosaic potyvirus
Viola mottle potexvirus
Watermelon mosaic 2
potyvirus
Wineberry latent virus
Wisteria vein mosaic
potyvirus
Camellia japonica
Synonyms:
Camellia japonica var.
hortensis; Camellia japonica var.
hozanensis; Camellia japonica var.

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
badnavirus	spontanea; Thea japonica
Yam mosaic potyvirus	Common names:
Vaccinium corymbosum	Common camellia
Synonyms:	Susceptible to:
Vaccinium constablaei	Camellia yellow mottle (?)
Common names:	varicosavirus
Highbush blueberry;	Thunbergia alata
Blueberry; American blueberry;	Common names:
Swamp blueberry	Black-eyed-Susan-vine;
Susceptible to:	Ojitos-negros
Blueberry leaf mottle	Susceptible to:
nepovirus	Datura yellow vein
Blueberry necrotic shock	nucleorhabdovirus
ilarvirus	Prune dwarf ilarvirus
Blueberry red ringspot	Daphne cneorum
caulimovirus	Common names:
Blueberry scorch carlavirus	Rose daphne; Garland
Blueberry shoestring	flower
sobemovirus	Susceptible to:
Croton bonplandianus	Daphne S (?) carlavirus
Synonyms:	Daphne X potexvirus
Croton sparsiflorus	Daphne Y potyvirus
Susceptible to:	Corchorus olitorius
Croton yellow vein mosaic	Common names:
bigeminivirus	Nalta jute; Tossa jute; Tussa
Euphorbia marginata	jute
Synonyms:	Susceptible to:
Euphorbia variegata	Okra mosaic tymovirus
Common names:	Tropaeolum majus
Snow-on-the-mountain	Common names:
Susceptible to:	Garden nasturtium; Indian-
Beet curly top	cress; Mastuerzo
hybrigeminivirus	Susceptible to:
Dulcamara mottle	Alfalfa mosaic alfamovirus
tymovirus	Apple mosaic ilarvirus
Poinsettia mosaic (?)	Arabis mosaic nepovirus
tymovirus	Beet curly top
Watermelon mosaic 2	hybrigeminivirus
potyvirus	Beet western yellows
Quercus velutina	luteovirus
Common names:	Broad bean wilt fabavirus
Black oak	Cherry leaf roll nepovirus
Susceptible to:	Clover mild mosaic virus
Oak ringspot virus	Cucumber mosaic
Eustoma russellianum	cucumovirus
Synonyms:	Cymbidium mosaic
Bilamista grandiflora;	potexvirus
Eustoma grandiflorum;	Cymbidium ringspot
Lisianthius russellianus	tombusvirus
Common names:	Lamium mild mottle
Bluebells; Prairie-gentian	fabavirus
Susceptible to:	Lettuce infectious yellows
Bean yellow mosaic	(?) closterovirus
potyvirus	Melandrium yellow fleck
Lisianthus necrosis (?)	bromovirus
necrovirus	Nasturtium mosaic (?)
Pelargonium peltatum	potyvirus
Synonyms:	Okra mosaic tymovirus
Geranium peltatum	Pea early browning
Common names:	tobravirus
Ivy geranium; Hanging	Poplar mosaic carlavirus
geranium	Red clover necrotic mosaic
Susceptible to:	dianthovirus
Pelargonium flower break carmovirus	Ribgrass mosaic tobamovirus
Pelargonium line pattern (?) carmovirus	Strawberry latent ringspot (?) nepovirus
Pelargonium vein clearing (?) cytorhabdovirus	Sunn-hemp mosaic tobamovirus
Pelargonium x domesticum	Tobacco rattle tobravirus
Insusceptible to:	Tobacco ringspot nepovirus
Aster chlorotic stunt (?) carlavirus	Tomato black ring nepovirus
Carnation vein mottle	Tomato spotted wilt

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
potyvirus	tospovirus
Chrysanthemum B	Tropaeolum 2 potyvirus
carlavirus	White clover mosaic
Saintpaulia ionantha	potexvirus
Common names:	Anethum graveolens
African violet; Usambara	Synonyms:
violet	Anethum sowa;
Susceptible to:	Peucedanum graveolens
Carnation ringspot	Common names:
dianthovirus	Dill; Dill seed; Garden dill;
Saintpaulia leaf necrosis (?)	Eneldo; Aneto; Fenouil-batard;
rhabdovirus	Endro
Ribes nigrum	Susceptible to:
Common names:	Artichoke yellow ringspot
Black currant; Cassis	nepovirus
Susceptible to:	Carrot mottle umbravirus
Strawberry latent ringspot (?)	Carrot red leaf luteovirus
nepovirus	Celery mosaic potyvirus
Hypericum perforatum	Heracleum latent trichovirus
Common names:	Parsnip yellow fleck
Common St. John's-wort;	sequivirus
Klamathweed; St. John's-wort;	Foeniculum vulgare
Goatweed	Common names:
Insusceptible to:	Fennel; Florence fennel;
Carnation ringspot	Finocchio; Hinojo
dianthovirus	Susceptible to:
Hyacinthus orientalis	Coriander feathery red vein
Common names:	nucleorhabdovirus
Common hyacinth	Insusceptible to:
Sustibl	Celery yellow spat (?)

Common hyacinth
Susceptible to:
Hyacinth mosaic potyvirus
Crocus vernus
Susceptible to:
Iris severe mosaic potyvirus
Freesia refracta
Synonyms:
Freesia leichtlinii; Gladiolus
refractus
Susceptible to:
Freesia leaf necrosis
varicosavirus
Freesia mosaic potyvirus
Gladiolus
Susceptible to:
Artichoke Italian latent
nepovirus
Bean yellow mosaic
potyvirus
Cycas necrotic stunt
nepovirus
Narcissus latent
macluravirus
Iris
Susceptible to:
Iris mild mosaic potyvirus
Iris severe mosaic potyvirus
Juglans regia
Synonyms:
Juglans duclouxiana;
Juglans fallax; Juglans kamaonica; European grape; W
Juglans orientis; Juglans regia ssp.
kamaonica; Juglans regia var.
orientis; Juglans
regia var. sinensis; Juglans sinensis
Common names:
English walnut; Persian
walnut; Nogal
susceptible to:
Cherry leaf roll nepovirus
Leguminosae
Insusceptible to:
Voandzeia necrotic mosaic tymovirus

TABLE 4-continued

Plant or Virus Name	Plant or Virus Name
Mimosa pudica	nepovirus
Common names:	Grapevine corky bark-
Sensitive-plant; Touch-me-	associated (?) closterovirus
not; Shame plant	Grapevine fanleaf nepovirus
Insusceptible to:	Grapevine fleck virus
Mimosa mosaic virus	Grapevine leafroll-
Soybean mosaic potyvirus	associated (?) closteroviruses
Lilium	Grapevine line pattern (?)
Susceptible to:	ilarvirus
Lily mottle potyvirus	Grapevine stem pitting
Tomato aspermy	associated closterovirus
cucumovirus	Grapevine stunt virus
Tulip breaking potyvirus	Petunia asteroid mosaic
Tulipa	tombusvirus
Susceptible to:	Strawberry latent ringspot
Arabis mosaic nepovirus	(?) nepovirus
Tobacco rattle tobravirus	Zingiber offcinale
Tomato black ring	Synonyms:
nepovirus	Amomum zingiber
Tomato bushy stunt	Common names:
tombusvirus	Ginger; Jengibre
	Susceptible to:
	Ginger chlorotic fleck (?)
	sobemovirus

[0126] Overview of Bioinformatics Methods

[0127] A. Phred, Phrap and Consed
[0128] Phred, Phrap and Consed are a set of programs which read DNA sequencer traces, make base calls, assemble the shotgun DNA sequence data and analyze the sequence regions that are likely to contribute to errors. Phred is the initial program used to read the sequencer trace data, call the bases and assign quality values to the bases. Phred uses a Fourier-based method to examine the base traces generated by the sequencer. The output files from Phred are written in FASTA, phd or scf format. Phrap is used to assemble contiguous sequences from only the highest quality portion of the sequence data output by Phred. Phrap is amenable to high-throughput data collection. Finally, Consed is used as a "finishing tool" to assign error probabilities to the sequence data. Detailed description of the Phred, Phrap and Consed software and its use can be found in the following references which are hereby incorporated herein by reference: Ewing, B., Hillier, L., Wendl, M. C. and Green, P. (1998) "Base-calling of automated sequencer traces using Phred. I. Accuracy assessment."Genome Res. 8: 175-178; Ewing, B. and Green, P. (1998) "Base-calling of automated sequencer traces using Phred. II. Error probabilities."Genome Res. 8:186-194; Gordon, D., Abajian, C. and Green, P. (1998) "Consed: a graphical tool for sequence finishing."Genome Res. 8: 195-202.

[0129] B. BLAST

[0130] The BLAST ("Basic Local Alignment Search Tool") set of programs may be used to compare the large numbers of sequences and obtain homologies to known protein families. These homologies provide information regarding the function of newly sequenced genes. Detailed description of the BLAST software and its uses can be found in the following references which are hereby incorporated herein by reference: Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. (1990) "Basic Local Alignment Search Tool."J. Mol. Biol. 215: 403-410; Alts-
chul, S. F. (1991) "Amino acid subsitution matrices from an informatics theoretic perspective."J. Mol. Biol. 219: 555565.
[0131] Generally, BLAST performs sequence similarity searching and is divided into 5 basic programs: (1) BLASTP compares an amino acid sequence to a protein sequence database; (2) BLASTN compares a nucleotide sequence to a nucleic acid sequence database; (3) BLASTX compares translated protein sequences done in 6 frames to a protein sequence database; (4) TBLASTN compares a protein sequence to a nucleotide sequence database that is translated into all 6 reading frames; (5) TBLASTX compares the 6 frame translated protein sequence to the 6 -frame translation of a nucleotide sequence database. Programs (3)-(5) may be used to identify weak similarities in nucleic acid sequence.
[0132] The BLAST program is based on the High Segment Pair (HSP), two sequence fragments of arbitrary but equal length whose alignment is locally maximized and whose alignment meets or exceeds a cutoff threshold. BLAST determines multiple HSP sets statistically using "sum" statistics. The score of the HSP is then related to its expected chance of frequency of occurrence, E. The value, E , is dependent on several factors such as the scoring system, residue composition of sequences, length of query sequence and total length of database. In the output file will be listed these E values, these are typically in a histogram format, and are useful in determining levels of statistical significance at the user's predefined expectation threshold. Finally, the Smallest Sum Probability, $\mathrm{P}(\mathrm{N})$ is the probability of observing the shown matched sequences by chance alone and is typically in the range of $0-1$.
[0133] BLAST measures sequence similarity using a matrix of similarity scores for all possible pairs of residues and these specify scores for aligning pairs of amino acids. The matrix of choice for a specific use depends on several factors: the length of the query sequence and whether or not a close or distant relationship between sequences is suspected. Several matrices are available including PAM40, PAM120, PAM250, BLOSUM 62 and BLOSUM 50. Altschul et al. (1990) found PAM120 to be the most broadly sensitive matrix (i.e. point accepted mutation matrix per 100 residues). However, in some cases the PAM120 matrix may not find short but strong or long but weak similarities between sequences. In these cases, pairs of PAM matrices may be used, such as PAM40 and PAM 250, and the results compared. Typically, PAM 40 is used for database searching with a query of 9-21 residues long, while PAM 250 is used for lengths of 47-123.
[0134] The BLOSUM (Blocks Substitution Matrix) series of matrices are constructed based on percent identity between two sequence segments of interest. Thus, the BLOSUM62 matrix is based on a matrix of sequence segments in which the members are less than 62% identical. BLOSUM62 shows very good performance for BLAST searching. However, other BLOSUM matrices, like the PAM matrices, may be useful in other applications. For example, BLOSUM45 is particularly strong in profile searching.
[0135] C. FASTA
[0136] The FASTA suite of programs permits the evaluation of DNA and protein similarity based on local sequence alignment. The FASTA search algorithm utilizes Smith/

Waterman- and Needleman/Wunsch-based optimization methods. These algorithms consider all of the alignment possibilities between the query sequence and the library in the highest-scoring sequence regions. The search algorithm proceeds in four basic steps:
[0137] 1). The identities or pairs of identities between the two DNA or protein sequences are determined. The ktup parameter, as set by the user, is operative and determines how many consecutive sequence identities are required to indicate a match.
[0138] 2). The regions identified in step 1 are rescored using a PAM or BLOSUM matrix. This allows conservative replacements and runs of identities shorter than that specified by ktup to contribute to the similarity score.
[0139] 3). The region with the single best scoring initial region is used to characterize pairwise similarity and these scores are used to rank the library sequences.
[0140] 4). The highest scoring library sequences are aligned using the Smith-Waterman algorithm. This final comparison takes into account the possible alignments of the query and library sequence in the highest scoring region.
[0141] Further detailed description of the FASTA software and its use can be found in the following reference which is hereby incorporated herein by reference: Pearson, W. R. and Lipman, D. J. (1988) "Improved tools for biological sequence comparison."Proc.Natl.Acad. Sci. 85: 2444-2448.
[0142] D. Pfam
[0143] Despite the large number of different protein sequences determined through genomics-based approaches, relatively few structural and functional domains are known. Pfam is a computational method that utilizes a collection of multiple alignments and profile hidden Markov models of protein domain families to classify existing and newly found protein sequences into structural families. Detailed description of the Pfam software and its uses can be found in the following references which are hereby incorporated herein by reference: Sonhammer, E. L. L., Eddy, S. R. and Durbin, R. (1997) "Pfam: a comprehensive database of protein domain families based on seed alignments."Proteins: Structure, Function and Genetics 28: 405-420; Sonhammer, E. L. L., Eddy, S. R. Bimey, E., Bateman, A. and Durbin, R. (1998) "Pfam: multiple sequence alignments and HMMprofiles of protein domains."Nucleic Acids Res. 26: 320-322; Bateman, A., Birney, E., Durbin, R., Eddy, S. R. Finn, R. D. and Sonhammer, E. L. L. (1999) Nucleic Acids Res. 27: 260-262.
[0144] Pfam 3.1, the latest version, includes 54\% of proteins in SWISS_PROT and SP-TrEMBL-5 as a match to the database and includes expectation values for matches. Pfam consists of parts A and B. Pfam-A, contains a hidden Markov model and includes curated families. Pfam-B, uses the Domainer program to cluster sequence segments not included in Pfam-A. Domainer uses pairwise homology data from Blastp to construct aligned families.
[0145] Alternative protein family databases that may be used include PRINTS and BLOCKS, which both are based on a set of ungapped blocks of aligned residues. However,
these programs typically contain short conserved regions whereas Pfam represents a library of complete domains that facilitates automated annotation. Comparisons of Pfam profiles may also be performed using genomic and EST data with the programs, Genewise and ESTwise, respectively. Both of these programs allow for introns and frameshifting errors.

[0146] E. BLOCKS

[0147] The determination of sequence relationships between unknown sequences and those that have been categorized can be problematic because background noise increases with the number of sequences, especially at a low level of similarity detection. One recent approach to this problem has been tested that efficiently detects and confirms weak or distant relationships among protein sequences based on a database of blocks. The BLOCKS database provides multiple alignments of sequences and contains blocks or protein motifs found in known families of proteins.
[0148] Other programs such as PRINTS and Prodom also provide alignments, however, the BLOCKS database differs in the manner in which the database was constructed. Construction of the BLOCKS database proceeds as follows: one starts with a group of sequences that presumably have one or more motifs in common, such as those from the PROSITE database. The PROTOMAT program then uses a motif finding program to scan sequences for similarity looking for spaced triplets of amino acids. The located blocks are then entered into the MOTOMAT program for block assembly. Weights are computed for all sequences. Following construction of a BLOCKS database one can use BLIMPS to perform searches of the BLOCKS database. Detailed description of the construction and use of a BLOCKS database can be found in the following references which are hereby incorporated herein by reference: Henikoff, S. and Henikoff, J. G. (1994) "Protein family classification based on searching a database of blocks." Genomics 19: 97-10; Henikoff, J. G. and Henikoff, S. (1996) "The BLOCKS database and its applications." Meth. Enz. 266: 88-105.

[0149] F. PRINTS

[0150] The PRINTS database of protein family fingerprints can be used in addition to BLOCKS and PROSITE. These databases are considered to be secondary databases because they diagnose the relationship between sequences that yield function information. Presently, however, it is not recommended that these databases be used alone. Rather, it is strongly suggested that these pattern databases be used in conjunction with each other so that a direct comparison of results can be made to analyze their robustness.
[0151] Generally, these programs utilize pattern recognition to discover motifs within protein sequences. However, PRINTS goes one step further, it takes into account not simply single motifs but several motifs simultaneously that might characterize a family signature. Other programs, such as PROSITE, rely on pattern recognition but are limited by the fact that query sequences must match them exactly. Thus, sequences that vary slightly will be missed. In contrast, the PRINTS database fingerprinting approach is capable of identifying distant relatives due to its reliance on the fact that sequences do not have match the query exactly. Instead they are scored according to how well they fit each
motif in the signature. Another advantage of PRINTS is that it allows the user to search both PRINTS and PROSITE simultaneously. A detailed description of the use of PRINTS can be found in the following references which are hereby incorporated herein by reference:Attwood, T. K., Beck, M. E., Bleasly, A. J., Degtyarenko, K., Michie, A. D. and Parry-Smith, D. J. (1997) Nucleic Acids Res. 25: 212-216.
[0152] Related, Variant, Altered and Extended Nucleic Acid Sequences
[0153] In one embodiment, the invention provides a polypeptide comprising the amino acid sequence encoded by a cDNA identified by a polynucleotide sequence chosen from the group consisting of SEQ ID NO: 1-122. The invention also encompasses variant polypeptides which retain the functional activity of causing a dwarf phenotype in a plant. A preferred variant is one having at least 80%, more preferably 90%, and most preferably 95% amino acid sequence identity to the original polypeptide sequence.
[0154] It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of nucleotide sequences encoding the same polypeptide, some bearing minimal homology to the nucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of nucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the nucleotide sequence, and all such variations are to be considered as being specifically disclosed.
[0155] It may be advantageous to produce nucleotide sequences encoding polypeptide or its derivatives possessing a substantially different codon usage. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding a polypeptide and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.
[0156] The invention also encompasses production of DNA sequences having the function of causing a dwarf phenotype in a plant, or portions thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents that are well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into such a sequence or any portion thereof.
[0157] Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the polynucleotide sequences shown in SEQ ID NO: 1-122, under various conditions of stringency. Hybridization conditions are based on the melting temperature $\left(\mathrm{T}_{\mathrm{m}}\right)$ of the nucleic acid binding complex or probe, as taught in Wah1, G. M. and S. L. Berger (1987; Methods Enzymol. 152:399-407) and Kimmel, A. R. (1987; Methods Enzymol. 152:507-511), and may be used at a defined stringency.
[0158] Altered nucleic acid sequences causing a dwarf phenotype in a plant which are encompassed by the invention include deletions, insertions, or substitutions of different nucleotides resulting in a polynucleotide that is functionally equivalent. The encoded polypeptide may also contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and consequently remains functionally equivalent. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues as long as the functional activity is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
[0159] Also included within the scope of the present invention are alleles of the genes encoded by cDNAs identified by the polynucleotide sequences SEQ ID NO: $1-122$. As used herein, an "allele" or "allelic sequence" is an alternative form of the gene which may result from at least one mutation in the nucleic acid sequence. Alleles may result in altered mRNAs or polypeptides whose structure or function may or may not be altered. Any given gene may have none, one, or many allelic forms. Common mutational changes which give rise to alleles are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
[0160] Methods for DNA sequencing which are well known and generally available in the art may be used to practice any embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE® (US Biochemical Corporation, Cleveland, Ohio), TAQ® polymerase (U.S. Biochemical Corporation, Cleveland, Ohio), thermostable T7 polymerase (Amersham Pharmacia Biotech, Chicago, Ill.), or combinations of recombinant polymerases and proofreading exonucleases such as the ELONGASE® amplification system (Life Technologies, Rockville, Md.). Preferably, the process is automated with machines such as the MICROLAB® 2200 (Hamilton Company, Reno, Nev.), PTC200 DNA Engine thermal cycler (MJ Research, Watertown, Mass.) and the ABI 377^{TM} DNA sequencer (Perkin Elmer).
[0161] The nucleic acid sequences of the invention may be extended utilizing a partial nucleotide sequence and employing various methods known in the art to detect upstream sequences such as promoters and regulatory elements. For example, one method which may be employed, "restrictionsite" PCR, uses universal primers to retrieve unknown sequence adjacent to a known locus (Sarkar, G. (1993) PCR Methods Applic. 2:318-322). In particular, genomic DNA is first amplified in the presence of primer to linker sequence and a primer specific to the known region. The amplified sequences are then subjected to a second round of PCR with the same linker primer and another specific primer internal to the first one. Products of each round of PCR are transcribed with an appropriate RNA polymerase and sequenced using reverse transcriptase.
[0162] Inverse PCR may also be used to amplify or extend sequences using divergent primers based on a known region (Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186). The primers may be designed using OLIGO 4.06 primer analysis software (National Biosciences Inc., Plymouth, Minn.), or another appropriate program, to be 22-30 nucleotides in length, to have a GC content of 50% or more, and to anneal to the target sequence at temperatures about $68-72^{\circ} \mathrm{C}$. The method uses several restriction enzymes to generate a suitable fragment in the known region of a gene. The fragment is then circularized by intramolecular ligation and used as a PCR template.
[0163] Another method which may be used is capture PCR which involves PCR amplification of DNA fragments adjacent to a known sequence in human and yeast artificial chromosome DNA (Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119). In this method, multiple restriction enzyme digestions and ligations may also be used to place an engineered double-stranded sequence into an unknown portion of the DNA molecule before performing PCR.
[0164] Another method which may be used to retrieve unknown sequences is that of Parker, J. D. et al. (1991; Nucleic Acids Res. 19:3055-3060). Additionally, one may use PCR, nested primers, and PROMOTERFINDER ${ }^{\text {TM }}$ DNA Walking Kits libraries (Clontech, Palo Alto, Calif.) to walk in genomic DNA. This process avoids the need to screen libraries and is useful in finding intron/exon junctions.
[0165] When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. Also, random-primed libraries are preferable, in that they will contain more sequences which contain the 5 ' regions of genes. Use of a randomly primed library may be especially preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into the 5^{\prime} and 3^{\prime} non-transcribed regulatory regions.
[0166] Capillary electrophoresis systems which are commercially available (e.g. from PE Biosystems, Inc., Foster City, Calif.) may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different fluorescent dyes (one for each nucleotide) which are laser activated, and detection of the emitted wavelengths by a charge coupled devise camera. Output/light intensity may be converted to electrical signal using appropriate software (e.g. GENOTYPER® and SEQUENCE NAVIGATOR® from PE Biosystems, Foster City, Calif.) and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for the sequencing of small pieces of DNA which might be present in limited amounts in a particular sample.
[0167] Vectors, Engineering, and Expression of Sequences
[0168] In another embodiment of the invention, cDNA sequences or fragments thereof which have the function of causing a dwarf phenotype in a plant, or functional equivalents thereof, may be used in recombinant DNA molecules to direct expression of polypeptides in appropriate host cells.

Due to the inherent degeneracy of the genetic code, other polynucleotide sequences which encode substantially the same or a functionally equivalent polypeptide also may be produced and these sequences may be used to clone and express the polypeptide of interest.
[0169] As will be understood by those of skill in the art, it may be advantageous to produce polypeptide-encoding nucleotide sequences possessing non-naturally occurring codons. For example, codons preferred by a particular prokaryotic or eukaryotic host can be selected to increase the rate of protein expression or to produce a recombinant RNA transcript having desirable properties, such as a half-life which is longer than that of a transcript generated from the naturally occurring sequence.
[0170] The polynucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter their polypeptide encoding sequences for a variety of reasons, including but not limited to, introducing alterations which modify the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, site-directed mutagenesis may be used to insert new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, or introduce mutations, and so forth.
[0171] In another embodiment of the invention, natural, modified, or recombinant polynucleotide sequences having the function of causing a dwarf phenotype in a plant may be ligated to a heterologous sequence to encode a fusion protein. For example, to screen peptide libraries for inhibitors of the dwarf phenotype, it may be useful to encode a chimeric protein that can be recognized by a commercially available antibody. A fusion protein may also be engineered to contain a cleavage site located between the wild-type coding sequence and the heterologous protein sequence, so that the wild-type polypeptide may be cleaved and purified away from the heterologous moiety.
[0172] In another embodiment, polynucleotide sequences having the function of causing a dwarf phenotype in a plant may be synthesized, in whole or in part, using chemical methods well known in the art (see Caruthers, M. H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232). Alternatively, the polypeptide product may be produced using chemical methods to synthesize the amino acid sequence. For example, peptide synthesis can be performed using various solid-phase techniques (Roberge, J. Y. et al. (1995) Science 269:202-204) and automated synthesis may be achieved, for example, using the ABI $431 \mathrm{~A}^{\mathrm{TM}}$ peptide synthesizer (PE Corporation, Norwalk, Conn.).
[0173] The newly synthesized peptide may be substantially purified by preparative high performance liquid chromatography (see, e.g., Creighton, T. (1983) Proteins, Structures and Molecular Principles, WH Freeman and Co., New York, N.Y.). The composition of the synthetic peptides may be confirmed by amino acid analysis or sequencing (e.g., the Edman degradation procedure; or Creighton, supra). Additionally, the amino acid sequence, or any part thereof, may be altered during direct synthesis and/or combined using chemical methods with sequences from other proteins, or any part thereof, to produce a variant polypeptide.
[0174] In order to express a biologically active polypeptide, the encoding nucleotide sequences or their functional equivalents, may be inserted into appropriate expression vector, i.e., a vector which contains the necessary elements for the transcription and translation of the inserted coding sequence.
[0175] Methods which are well known to those skilled in the art may be used to construct expression vectors containing nucleic acid sequences and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. Such techniques are described in Sambrook, J. et al. (1989) Molecular Cloning, ALaboratory Manual, Cold Spring Harbor Press, Plainview, N.Y., and Ausubel, F. M. et al. (1989) Current Protocols in Molecular Biology, John Wiley \& Sons, New York, N.Y, both of which are hereby incorporated by reference herein.
[0176] A variety of expression vector/host systems may be utilized to contain and express sequences having the function of causing a dwarf phenotype in a plant. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV; brome mosaic virus) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
[0177] The "control elements" or "regulatory sequences" are those non-translated regions of the vector-enhancers, promoters, 5^{\prime} and 3^{\prime} translated regions-which interact with host cellular proteins to carry out transcription and translation. Such elements may vary in their strength and specificity. Depending on the vector system and host utilized, any number of suitable transcription and translation elements, including constitutive and inducible promoters, may be used. For example, when cloning in bacterial systems, inducible promoters such as the hybrid lacZ promoter of the BLUESCRIPT® phagemid (Stratagene, La Jolla, Calif.) or PSPORT1 ${ }^{\mathrm{TM}}$ plasmid (Life Technologies, Inc., Rockville, Md.) and the like may be used. The baculovirus polyhedrin promoter may be used in insect cells. Promoters or enhancers derived from the genomes of plant cells (e.g., heat shock, RUBISCO; and storage protein genes) or from plant viruses (e.g., viral promoters or leader sequences) may be cloned into the vector. In mammalian cell systems, promoters from mammalian genes or from mammalian viruses are preferable. If it is necessary to generate a cell line that contains multiple copies of the sequence, vectors based on SV40 or EBV may be used with an appropriate selectable marker.
[0178] In bacterial systems, a number of expression vectors may be selected depending upon the use intended for the resulting gene product. For example, when large quantities of gene product are needed for the induction of antibodies, vectors which direct high level expression of fusion proteins that are readily purified may be used. Such vectors include, but are not limited to, the multifinctional E.coli cloning and expression vectors such as BLUESCRIPT® phagemid (Stratagene, La Jolla, Calif.), in which a sequence may be ligated into the vector in frame with sequences for the amino-terminal Met and the subsequent 7 residues of β-ga-
lactosidase so that a hybrid protein is produced; pIN vectors (Van Heeke, G. and S. M. Schuster (1989) J. Biol. Chem. 264:5503-5509); and the like. pGEMX ${ }^{\text {TM }}$ vectors (Promega Corporation, Madison, Wis.) may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. Proteins made in such systems may be designed to include heparin, thrombin, or factor XA protease cleavage sites so that the cloned polypeptide of interest can be released from the GST moiety at will.
[0179] In the yeast, Saccharomyces cerevisiae, a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH may be used. For reviews, see Ausubel et al. (supra) and Grant et al. (1987) Methods Enzymol. 153:516-544.
[0180] In cases where plant expression vectors are used, the expression of sequences having the function of causing a dwarf phenotype in a plant may be driven by any of a number of promoters. In a preferred embodiment, plant vectors are created using a recombinant plant virus containing a recombinant plant viral nucleic acid, as described in PCT publication WO 96/40867 which is hereby incorporated herein by reference. Subsequently, the recombinant plant viral nucleic acid which contains one or more nonnative nucleic acid sequences may be transcribed or expressed in the infected tissues of the plant host and the product of the coding sequences may be recovered from the plant, as described in WO 99/36516, which is hereby incorporated herein by reference.
[0181] An important feature of this embodiment is the use of recombinant plant viral nucleic acids which contain one or more non-native subgenomic promoters capable of transcribing or expressing adjacent nucleic acid sequences in the plant host and which result in replication and local and/or systemic spread in a compatible plant host. The recombinant plant viral nucleic acids have substantial sequence homology to plant viral nucleotide sequences and may be derived from an RNA, DNA, cDNA or a chemically synthesized RNA or DNA. A partial listing of suitable viruses is described below.
[0182] The first step in producing recombinant plant viral nucleic acids according to this particular embodiment is to modify the nucleotide sequences of the plant viral nucleotide sequence by known conventional techniques such that one or more non-native subgenomic promoters are inserted into the plant viral nucleic acid without destroying the biological function of the plant viral nucleic acid. The native coat protein coding sequence may be deleted in some embodiments, placed under the control of a non-native subgenomic promoter in other embodiments, or retained in a further embodiment. If it is deleted or otherwise inactivated, a non-native coat protein gene is inserted under control of one of the non-native subgenomic promoters, or optionally under control of the native coat protein gene subgenomic promoter. The non-native coat protein is capable of encapsidating the recombinant plant viral nucleic acid to produce a recombinant plant virus. Thus, the recombinant plant viral nucleic acid contains a coat protein coding sequence, which may be native or a nonnative coat protein coding sequence,
under control of one of the native or non-native subgenomic promoters. The coat protein is involved in the systemic infection of the plant host.
[0183] Some of the viruses which meet this requirement include viruses from the tobamovirus group such as Tobacco Mosaic virus (TMV), Ribgrass Mosaic Virus (RGM), Cowpea Mosaic virus (CMV), Alfalfa Mosaic virus (AMV), Cucumber Green Mottle Mosaic virus watermelon strain (CGMMV-W) and Oat Mosaic virus (OMV) and viruses from the brome mosaic virus group such as Brome Mosaic virus (BMV), broad bean mottle virus and cowpea chlorotic mottle virus. Additional suitable viruses include Rice Necrosis virus (RNV), and geminiviruses such as tomato golden mosaic virus (TGMV), Cassava latent virus (CLV) and maize streak virus (MSV). However, the invention should not be construed as limited to using these particular viruses, but rather the method of the present invention is contemplated to include all plant viruses at a minimum.
[0184] Other embodiments of plant vectors used for the expression of sequences having the function of stunting a plant include, for example, viral promoters such as the 35 S and 19S promoters of CaMVused alone or in combination with the omega leader sequence from TMV (Takamatsu, N . (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs, S. or Murry, L. E. in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196.
[0185] An insect system may be used to express the polypeptides of the invention. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences encoding the gene product may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the sequence will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein. The recombinant viruses may then be used to infect, for example, S. frugiperda cells or Trichoplusia larvae in which the gene product may be expressed (Engelhard, E. K. et al. (1994) Proc. Nat. Acad. Sci. 91:32243227).
[0186] In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the nucleic acid sequences of the invention may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a nonessential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing the relevant gene product in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.
[0187] Specific initiation signals may also be used to achieve more efficient translation of the nucleic acid sequences of the invention. Such signals include the ATG initiation codon and adjacent sequences. In cases where a sequence, its initiation codon, and upstream sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a portion thereof, is inserted, exogenous translational control signals including the ATG initiation codon should be provided. Furthermore, the initiation codon should be in the correct reading frame to ensure translation of the entire insert. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers which are appropriate for the particular cell system which is used, such as those described in the literature (Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162).
[0188] In addition, a host cell strain may be chosen for its ability to modulate the expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to facilitate correct insertion, folding and/or function. Different host cells such as CHO, HeLa, MDCK, HEK293, and WI38, which have specific cellular machinery and characteristic mechanisms for such post-translational activities, may be chosen to ensure the correct modification and processing of the foreign protein.
[0189] For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express a specific gene product may be transformed using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The purpose of the selectable marker is to confer resistance to selection, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be proliferated using tissue culture techniques appropriate to the cell type.
[0190] Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1980) Cell 22:817-23) genes which can be employed in tk^{-}or aprt ${ }^{-}$ cells, respectively. Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection; for example, dhfr, which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. 77:3567-70); npt, which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150: 1-14); and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively (Murry, supra). Additional selectable genes have been described, for example, trpB, which allows cells to utilize
indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). Recently, the use of visible markers has gained popularity with such markers as anthocyanins, β-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131).
[0191] Although the presence/absence of marker gene expression suggests that the gene of interest is also present, its presence and expression may need to be confirmed. For example, if a nucleic acid sequence of the invention is inserted within a marker gene sequence, recombinant cells containing that specific sequence can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence of the invention under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
[0192] Alternatively, host cells which contain a nucleic acid sequence of the invention and which express its gene product may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein.
[0193] The presence of polynucleotide sequences of the invention can be detected by DNA-DNA or DNA-RNA hybridization or amplification using probes or portions or fragments of polynucleotide sequence of interest. Nucleic acid amplification based assays involve the use of oligonucleotides or oligomers based on the sequences of interest to detect transformants containing the relevant DNA or RNA. As used herein "oligonucleotides" or "oligomers" refer to a nucleic acid sequence of at least about 10 nucleotides and as many as about 60 nucleotides, preferably about 15 to 30 nucleotides, and more preferably about $20-25$ nucleotides, which can be used as a probe or amplimer.
[0194] A variety of protocols for detecting and measuring the expression of a cDNA, using either polyclonal or monoclonal antibodies specific for the protein are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on the protein is preferred, but a competitive binding assay may be employed. These and other assays are described, among other places, in Hampton, R. et al. (1990; Serological Methods, a Laboratory Manual, APS Press, St Paul, Minn.) and Maddox, D. E. et al. (1983; J. Exp. Med. 158:1211-1216)
[0195] A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to the polynucleotide sequences of the invention include oligonucleotide labeling, nick translation, end-labeling or PCR amplification using a labeled nucleotide. Alternatively, the sequences, or any portions thereof
may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits from Pharmacia \& Upjohn (Kalamazoo, Mich.), Promega Corporation (Madison, Wis.) and U.S. Biochemical Corp. (Cleveland, Ohio). Suitable reporter molecules or labels, which may be used, include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
[0196] Host cells transformed with a polynucleotide sequence of the invention may be cultured under conditions suitable for the expression and recovery of protein from cell culture. The protein produced by a recombinant cell may be secreted or contained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides of the invention may be designed to contain signal sequences which direct secretion of its corresponding polypeptide through a prokaryotic or eukaryotic cell membrane. Other recombinant constructions may be used to join polynucleotide sequences of the invention to a nucleotide sequence encoding a polypeptide domain which will facilitate purification of soluble proteins. Such purification facilitating domains include, but are not limited to, metal chelating peptides such as histidine-tryptophan modules that allow purification on immobilized metals, protein A domains that allow purification on immobilized immunoglobulin, and the domain utilized in the FLAGS ${ }^{\text {TM }}$ extension/affinity purification system (Immunex Corp., Seattle, Wash.). The inclusion of cleavable linker sequences such as those specific for Factor XA or enterokinase (available from Invitrogen, San Diego, Calif.) between the purification domain and polypeptide of interest may be used to facilitate purification. One such expression vector provides for expression of a fusion protein comprising a nucleic acid encoding 6 histidine residues preceding a thioredoxin or an enterokinase cleavage site. The histidine residues facilitate purification on IMIAC (immobilized metal ion affinity chromatography) as described in Porath, J. et al. (1992, Prot. Exp. Purif 3: 263-281,) while the enterokinase cleavage site provides a means for purifying polypeptide of interest from the fusion protein. A discussion of vectors which contain fusion proteins is provided in Kroll, D. J. et al. (1993; DNA Cell Biol. 12:441-453).
[0197] In addition to recombinant production, a fragment of a polypeptide of the invention may be produced by direct peptide synthesis using solid-phase techniques (Merrifield J. (1963) J. Am. Chem. Soc. 85:2149-2154). Protein synthesis may be performed using manual techniques or by automation. Automated synthesis may be achieved, for example, using the Applied Biosystems 431A peptide synthesizer (Perkin Elmer). Various peptide fragments may be chemically synthesized separately and combined using chemical methods to produce the full length molecule.
[0198] In additional embodiments, the nucleotide and amino acid sequences of the present invention may be incorporated into any molecular biology techniques yet to be developed, provided these new techniques rely on properties of nucleotide and amino acid sequences that are currently
known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
[0199] The following examples further illustrate the present invention. These examples are intended merely to be illustrative of the present invention and are not to be construed as being limiting. The examples are intended specifically to illustrate the various methods used to identify and characterize the cDNAs of the present invention and the method by which they can be used to cause a dwarf phenotype in a plant.

EXAMPLES

[0200] I. Construction and Characterization of a Normalized Arabidopsis cDNA library in GENEWARE® Vectors

[0201] A. Plant Tissue Generation:

[0202] Arabidopsis thaliana ecotype Columbia (0) seeds were sown and grown on PEAT LITE MIX (Speedling Inc., Sun City, Fla.) supplemented with NUTRICOTE fertilizer (Plantco Inc., Ontario, Canada). Plants were grown under a 16 -hour light/8-hour dark cycle in an environmental controlled growth chamber. The temperature was set at $22^{\circ} \mathrm{C}$. for daytime and $18^{\circ} \mathrm{C}$. for nighttime. The entire plant, root, leaves and all aerial parts were collected 4 weeks post sowing. Tissue was washed in deionized water and frozen in liquid nitrogen.

[0203] B. RNA Extraction:

[0204] High quality total RNA is isolated using a hot borate method. All solutions were made in DEPC-treated, double-deionized water and autoclaved. All glassware, mortars, pestles, spatulas, and glass rods were baked at $400^{\circ} \mathrm{C}$. for four hours. All plasticware was DEPC-treated for at least three hours and then autoclaved.
[0205] Thirty-five milliliters of XT buffer (0.2 M Na borate decahydrate, 30 mM EGTA, 1% SDS (w/v), 1% deoxycholate, sodium) per 10 grams of tissue was dispensed into 50 milliliter Falcon tubes. PVP-40, 000 was added to a final concentration of $2 \%(\mathrm{w} / \mathrm{v})$. NP- 40 was added to a final concentration of $1 \%(\mathrm{w} / \mathrm{v})$. Tubes were placed in an $80^{\circ} \mathrm{C}$. water bath. The mortar and pestles were then pre-cooled in liquid nitrogen. Proteinase $\mathrm{K}(0.5 \mathrm{mg} / \mathrm{ml}$ XT buffer) was dispensed into 250 ml centrifuge bottles and the bottles were then placed on ice.
[0206] The tissue was added to the pre-chilled mortar and pestle and ground to a fine powder. Working as quickly as possible, the tissue was transferred to a glass beaker using a spatula chilled in liquid nitrogen. DTT $(1.54 \mathrm{mg} / \mathrm{ml}$ XT buffer) was added to the XT buffer/PVP/NP-40 buffer and was immediately added to the ground tissue. The tissue was homogenized using a polytron at level 5 for one minute. The homogenate was decanted into the 250 ml centrifuge bottle containing the proteinase K . The homogenate was incubated at $42^{\circ} \mathrm{C}$., 100 rpm for 1.5 hours. Eighty microliters of 2 M $\mathrm{KCl} / \mathrm{ml}$ of XT buffer was added to the homogenate and gently swirled until mixed. The samples were then incubated on ice for one hour. The samples were centrifuged at $12,000 \times \mathrm{G}$ in a BECKAN® JA-14 rotor (Beckman Instruments, Inc., Fullerton, Calif.) for 20 minutes at $4^{\circ} \mathrm{C}$. to remove debris. The supernatant was then filtered through a funnel lined with sterile miracloth into a sterile 250 ml
centrifuge bottle. Eight molar LiCl was added to a final concentration of 2 M LiCl and the samples were incubated on ice overnight.
[0207] Precipitated RNA was pelleted by centrifugation at $12,000 \times \mathrm{G}$ in a BECKMAN® JA-14 rotor for 20 minutes (Beckman Instruments, Inc., Fullerton, Calif.) and the supernatant was discarded. The RNA pellet was washed in 5 milliliters of cold 2 M LiCl in 30 ml centrifuge tubes. Glass rods and gentle vortexing were used to break and disperse the RNA pellet. The pellets were centrifuged in a Beckman JA- 20 rotor for 10 krpm at $4^{\circ} \mathrm{C}$. for 10 minutes. The supernatant was decanted. This wash step was repeated 3 times until the supernatant was relatively colorless. The RNA pellet was resuspended in 5 milliliters of 10 Tris-Cl (pH 7.5). The insoluble material was pelleted in a JA-17 at 10 k rpm for 10 minutes at $4^{\circ} \mathrm{C}$. The supernatant was transferred to another 30 ml centrifuge tube and $0.1 \times$ volume of 2 M K -acetate (pH 5.5) was added. The samples were incubated on ice for 15 minutes and centrifuged in a BECKMAN® JA-17 rotor (Beckman Instruments, Inc., Fullerton, Calif.) at $10 \mathrm{k} \mathrm{rpm}, 4^{\circ} \mathrm{C}$., for 10 minutes to remove polysaccharides and insoluble material. The supernatant was transferred to a sterile 30 ml centrifuge tube and RNA was precipitated by adding $2.5 \times$ volumes of 100% ethanol. The RNA was precipitated overnight at $-20^{\circ} \mathrm{C}$. The precipitated RNA was pelleted by centrifugation at $9 \mathrm{krpm}, 4^{\circ} \mathrm{C}$. for 30 minutes in a JA- 17 rotor. The RNA pellet was washed with 5 milliliters of cold 70% ethanol and centrifuged in a JA-17 rotor at $9 \mathrm{k} \mathrm{rpm}, 4^{\circ} \mathrm{C}$. for 10 minutes. The residual ethanol was removed using a BECKMAN® speed vac (Beckman Instruments, Inc., Fullerton, Calif.). The RNA pellet was resuspended in 3 milliliters of DEPC- $\mathrm{ddH}_{2} \mathrm{O}+1 \mathrm{mM}$ EDTA. The RNA was precipitated with $0.1 \times$ volumes of 3 M Na acetate pH 6.0 and $2 \times$ volumes of cold 100% ethanol. The RNA was put at -80° C. for storage. A BECKMAN® spectrophotometer (Beckman Instruments, Inc., Fullerton, Calif.) was used to measure absorbance (A) at A_{260} and A_{280}. The A_{260} was used to determine concentration ($40 \mu \mathrm{~g}$ RNA $\mathrm{ml}=1 \mathrm{~A}_{260}$ absorbance unit) and the $\mathrm{A}_{260} / \mathrm{A}_{280}$ ratio was used to determine the initial quality of the RNA (1.8 to 2.0 is good).
[0208] The yield of total RNA from 60 g of tissue is ~ 15 mg . Then, mRNA was isolated from total RNA using oligo $(\mathrm{dT})_{25}$ DYNABEADS® (Dynal, Inc., Lake Success, N.Y.). Typically, 1% of total RNA population can be recovered as mRNA in Arabidopsis thaliana whole plant and from $5 \mu \mathrm{~g}$ of poly A^{+}RNA, approximate $4.5 \mu \mathrm{~g}$ of single strand cDNA and $6.7 \mu \mathrm{~g}$ of double strand cDNA was synthesized.
[0209] C. cDNA Synthesis:
[0210] Poly A^{+}RNA was purified from total RNA using the oligo (dT) ${ }_{25}$ DYNABEADS® kit (Dynal, Inc., Lake Success, N.Y.) according to manufacturer's instructions. Briefly, DYNABEADS ${ }^{\circledR}$ was resuspended by mixing on a roller and transfer $600 \mu \mathrm{l}$ to an RNase free tube. The beads were further equilibriated with $2 \times$ binding buffer (20 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,1 \mathrm{M} \mathrm{LiCl}, 2 \mathrm{mM}$ EDTA) twice and resuspended in 200μ of $2 \times$ binding buffer. Total RNA 1 mg ($200 \mu \mathrm{l}$) was heated at $70^{\circ} \mathrm{C}$. for 5 minutes and incubated with the above oligo $(\mathrm{dT})_{25}$ DYNABEADS $®$ for 10 min at RT. The supernatant containing unbound rRNA and tRNA was subsequently removed by magnetic stand and washed twice with $1 \times$ wash buffer (10 mM Tris- $\mathrm{HCl}, \mathrm{pH} 7.5,0.15 \mathrm{M}$

LiCl, 1 mM EDTA). The mRNA was eluted from the DYNABEADS® in $\mathrm{ddH}_{2} \mathrm{O}$ and used as the starting material for double strand cDNA synthesis.
[0211] Double strand cDNA was synthesized either with NotI-(dT) ${ }_{25}$ primer or on oligo $(\mathrm{dT})_{25}$ DYNABEADS® based on the manufacturer's instruction (Gibco-BRL superscript system). Typically, $5 \mu \mathrm{~g}$ of poly A ${ }^{+}$RNA was annealed and reverse transcribed at $37^{\circ} \mathrm{C}$. with SUPERSCRIPT II reverse transcriptase (Stratagene, La Jolla, Calif.). For the non-normalized cDNA library, double stranded cDNAs were ligated to a 500 to 1000 -fold molar excess SalI adaptor, restriction enzyme NotI digested and size-selected by column fractionation. Those cDNAs were then cloned directionally into the XhoI-NotI sites of the TMV expression vector, 1057 N/P.

[0212] D. Normalization Procedure:

[0213] For the normalized cDNA preparation, the supernatant was removed from the DYNABEADS® and the cDNA containing beads were washed twice with $1 \times$ TE buffer. To carry out the normalization process, the second strand cDNA were eluted from the beads. $100 \mu \mathrm{l}$ of TE buffer was added to the beads and heated at $95^{\circ} \mathrm{C}$. for 5 min and the supernatant was then collected on magnetic stand. The above procedure was repeated once to ensure complete elution. The yield of second strand cDNA was quantitated using a UV spectrophotometer.
[0214] First strand cDNA beads is combined with second strand cDNA in $4 \times$ SSC, $5 \times$ Denhardt's and 0.5% SDS for multiple rounds of short hybridization. Since the second strand cDNA was synthesized using the first strand cDNA as the template, approximately the same amount of first and second strand cDNAs were present in the hybridization reaction. Nine $\mu \mathrm{g}$ of second strand cDNA in $200 \mu \mathrm{l}$ of $1 \times$ TE buffer was added to the cDNA driver (first strand cDNA on beads) in a screw cap tube. The reaction was heated at 95° C. for 5 min , then $60 \mu \mathrm{l}$ of $20 \times \mathrm{SSC}, 30 \mu \mathrm{l}$ of $50 \times$ Denhardt's (1% of Ficoll, 1% of polyvinylpyrrolidone and 1% of bovine serum albumin) and $15 \mu \mathrm{l}$ of 10% SDS were added and the reaction was brought to $65^{\circ} \mathrm{C}$. for 8 hours.
[0215] The beads and supernatant were separated at $65^{\circ} \mathrm{C}$. by magnet. The supernatant was transferred to a fresh tube and kept at $65^{\circ} \mathrm{C}$. The beads were regenerated by adding $200 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O}$ and heated at $95^{\circ} \mathrm{C}$. for 5 min . We collected the beads for the next round of hybridization and kept the solution containing the bound second strand cDNA for further analysis. The partially normalized second strand cDNA solution was added back to the regenerated beads and a return to another round of hybridization of 8 hours. This procedure was repeated 4-5 times.
[0216] E. Slot Blot Analysis:
[0217] To follow the process of cDNA normalization a rapid slot blot procedure was developed. Following sequencing of 960 cDNAs, 46 cDNAs were selected to follow the representation of various classes of cDNAs through the normalization procedure. Based on their frequency of appearance in the sequence, these clones represent transeripts of different expression levels (high, moderate and low). Ten nanograms of each cDNA were deposited onto a HYBOND ${ }^{\mathrm{TM}}-\mathrm{N}^{+}$membrane (Amersham Pharmacia Biotech, Chicago, Ill.) along with control vector (pBS) and water controls. DNA was denatured, neutralized, and sub-
sequently crosslinked into the membrane using UV-STRATALINKER ${ }^{\text {TM }} 2400$ (Stratagene, La Jolla, Calif.).
[0218] cDNAs from either the non-normalized or normalized pool were labelled with ${ }^{32} \mathrm{P}$ and hybridized on the slot blot membrane overnight at $65^{\circ} \mathrm{C}$. in 1% bovine serum albumin, 1 mM ethylenediaminetetraacetic acid (EDTA), 0.5 M sodium phosphate (pH 7.2), and 7% sodium dodecyl sulfate (SDS). Then, blots were washed once in $1 \times \mathrm{SSC} /$ 0.2% SDS for 20 min at room temperature followed by two washes in $0.2 \times \mathrm{SSC} / 0.2 \% \mathrm{SDS}$ for 20 min . at $65^{\circ} \mathrm{C}$. The resulting membranes were then developed using a PHOSPHORIMAGER ${ }^{\text {TM }}$ (Amersham Pharmacia Biotech, Chicago, Ill.) and quantitated using available software.
[0219] F. Conversion of Single-Stranded Normalized cDNAs to Double-Stranded Form:
[0220] Second strand normalized cDNA in hybridization solution was purified by QIAQUICK ${ }^{\mathrm{TM}}$ column (QIAGEN GmbH , Hilden, Germany) and eluted in $88 \mu \mathrm{l}$ of $\mathrm{ddH}_{2} \mathrm{O}$ (total $1.2 \mu \mathrm{~g}$ of DNA is recovered). One $\mu \mathrm{l}(3 \mu \mathrm{~g})$ of NotI-oligo dT primer was added and heated at $95^{\circ} \mathrm{C}$. for 5 min followed by cool down to $37^{\circ} \mathrm{C}$. The first strand cDNA was extended with T7 DNA polymerase (Amersham Pharmacia Biotech, Chicago, Ill.) in the presence of dNTP in 120 $\mu \mathrm{l}$ reaction at $37^{\circ} \mathrm{C}$. for 1 hour. T4 DNA polymerase (NEB) was then used to polish the ends following the extension reaction for 5 min at $16^{\circ} \mathrm{C}$. The resulting double strand cDNA was ethanol precipitated and ligated with 500- to 1 000 -fold molar excess of Sall adaptor followed by NotI digestion. The resulting cDNAs were size-fractionated using a Clontech spin column 400 and the first two fractions that contained the cDNAs were pooled and used for the subsequent cloning process.
[0221] G. Construction of cDNA Libraries in GENEWARE® Vectors:
[0222] (+) Sense cDNA clones were prepared as follows. The Tobacco Mosaic Virus expression vector, 1056 GTN AT9 was linearized with NotI and XhoI and a 900 bp stuffer DNA was removed. The presence of the stuffer DNA in between those two sites is to ensure the complete digestion by restriction enzymes and thus achieve the high cloning efficiency. The digested vector was gel purified and then used to set up ligation reaction with normalized cDNA SalI-NotI fragments to generate $(+)$ sense cDNA clones.
[0223] (-) Sense cDNA clones were prepared as follows. The Tobacco Mosaic Virus expression vector 1057 NP also linearized with NotI and XhoI and a stuffer DNA fragment was removed. The digested vector was gel purified and used to set up ligation reaction to generate (-) sense strand library.
[0224] Each ligation was transformed into chemically competent E. coli cells, DH5 α according to manufacturer's instruction (Life Technologies, Rockville, Md.). Preliminary analysis of cloning efficiency was measured by plating of a small portion of the transformation, while archiving the majority for future applications. Vector-only ligations gave $\sim 2 \times 10^{4}$ cfu $/ \mu \mathrm{g}$ vector and ligations with cDNA insertions gave $\sim 5 \times 10^{5} \mathrm{cfu} / \mu \mathrm{g}$.
[0225] H. Analysis of Normalized cDNA Populations:
[0226] With each successive round of kinetic re-association, the total cDNA population is depleted thereby confirming the removal of a population of the cDNA from the
mixture at each step. To further understand the consequences of this depletion and measure the relative normalization in cDNA representation following various stages of the kinetic re-association method, slot blots of 46 genes of varying representations were hybridized with probes made from non-normalized and normalized cDNA preparations. The resulting blots were then analyzed for representation by PHOSPHORIMAGER® analysis. The hybridization pattern of non-normalized cDNA to the gene array reveals a quite asymmetric representation with some genes hybridizing with great intensity while others showing no hybridization at all. The variance among hybridization intensities for each spot within the filter was measured by standard deviation and found to be 649. In order to analyze the cDNA fraction depleted from the mixture, the first strand magnetic bead matrix was eluted, a radioactive probe was generated and hybridized to a replica of the slot blot described above. The resulting hybridization intensities indicated that primarily those cDNAs of higher copy number were bound and removed from the normalized cDNA population, confirming that the depletion phenomenon correlated with removal of primarily high copy number cDNAs. The cDNA population not bound to first strand magnetic beads after 5 serial passages was collected, radioactive probe was generated and hybridized to a replica slot blot of known gene set described above. The resulting hybridization pattern (i.e. the relative intensity of the slots on the blot) was in striking contrast to that of the non-normalized cDNA and to that of the bound cDNA fraction. Assuming that the majority of the hybridization signal to the slot blot for the non-normalized cDNA blot results from hybridization to high abundance genes, an initial comparison can be made between the number of bound counts on the normalized versus non-normalized slot blots. This comparison is possible since each probe added to the blots was derived from the same quantity of cDNA material and an equal number of probe counts were applied to the blots. The non-normalized blot contained 17,898 counts while the normalized blot contained only 1494 counts. This represents a 12 -fold reduction in overall signal indicating a significant reduction in high gene copy number in the normalized cDNA population.
[0227] When the hybridization intensity of the non-normalized cDNA probe to each gene is plotted against the relative number of counts (following subtraction of the pBS vector control intensity from each sample), there is almost a $4-\log$ difference in sequence representation in the cDNA population and an overall variance in standard deviation of 649 -fold. In contrast, the hybridization of normalized cDNA probe to each gene revealed an average of only 32 -fold difference. This represents both a reduction in high copy cDNAs and an increased representation in low copy cDNAs by >3 logs. The variance between the most highly represented cDNA and lowest represented cDNA within the normalized cDNA population was ~ 1.5 logs. The above values characterizing the degree of library normalization are equivalent to those achieved by Soares, et al. (1994).

[0228] I. Analysis of GENEWARE® Clones:

[0229] To ascertain the cloning efficiency of normalized cDNA into each vector and the average insert size, 96 random colonies were picked and grown by standard methods. DNA was isolated from bacteria using a BIOROBOT ${ }^{\text {TM }}$ 9600 (QIAGEN GmbH, Hilden, Germany). DNA was digested with Not I and BsiWI restriction endonucleases
(recognition sites flank the cDNA insertion). The digestions were separated on agarose gels and visualized by ethidium bromide staining. The digestions revealed a vector religation background of $\sim 4 \%$. Ligations giving $>75 \%$ insertions were passed as to quality control and more colonies were picked. Approximently 600 independent clones were analyzed by restriction digestion as described above. Interestingly, a similar percentage of vector background was detected $\sim 4 \%$ and the average insert size in the vector was $\sim 1 \mathrm{~kb}$, with many inserts with 2 kb or greater sized inserts. Following analysis of DNA by restriction mapping, DNA was subjected to sequencing and further analysis.
[0230] J. Sequence Analysis of the Normalized Arabidopisis Library in GENEWARE®:
[0231] Initial analysis of non-normalized Arabidopsis cDNA library required the sequencing of 1709 independent clones. Three 96-well plates of randomly picked normalized Arabidopsis library in GENEWARE®[(-) sense] were initially sequenced by primer TP6 to yield 2625^{\prime} sequences and passed sequence quality control. Initially, internal cluster analysis was performed to identify identical sequences in this sequence subset. Analysis using BLASTN algorithm showed that of the 262 sequences analyzed, 252 were unique and only 10 were found to cluster into five two-member clusters. We then identified the redundancy of the sequences against the larger public databases. For cluster analysis, we used a very low BLASTX score criteria ($e=10^{-6}$) and compared all sequences against the GENBANK® nr database (United States Department of Health and Human Services). In this manner, we could derive the most information concerning the redundancy, gene type found and open reading frame status of all clones simultaneously. The low BLASTX score was used to allow all possible protein homologues to be identified. The clustering analysis revealed that of the 262 sequences there were 252 single member sequence clusters and five two-gene clusters. This represents 96% singletons from this sample size. The genes appearing more than once in the library varied from two different chlorophyll a / b binding proteins, lipid transport proteins to ferrodoxin-thioredoxin reductases. This result compares quite favorably to the 4 redundant clones (of one gene type) identified by Soares, et al. (1994) from 187 randomly picked clones from one normalized library.
[0232] Further analysis of the sequences from the GENEWARE® normalized cDNA library revealed that of the 262 sequences subjected to BLASTX search of the GENBANK® nr database, 29% of the sequences failed to show significant homology to any characterized protein or open reading frame (ORF). Of the 252 singletons in the library, 179 showed single hit to an identified ORF, while 73 showed no hit. These results suggest that, in spite of the well characterized nature of the sequence database quality libraries can still contain a high proportion of new expressed sequences.
[0233] The excellent representation and extremely low redundancy observed in these initial plates of normalized Arabidopsis cDNAs in GENEWARE® prompted us to sequence additional clones. This was important because there is often a significant bias in small sample sizes with regard to representation. A total of 1,151 sequences passed sequence quality control. Internal cluster analysis showed that -260 multi-sequence clusters were present, with the
highest representation at 6 members and the majority with only 2 members (~ 150). About 600 unique clusters were identified from the total of 856 clusters from the 1151 sequences. Therefore, from the 1151 sequences analyzed, 1,010 unique genes were identified, or a 87.7% gene discovery rate. In contrast, internal cluster analysis of the non-normalized Arabidopsis cDNA sequences revealed ~ 840 multi-gene clusters with the highest represented cluster containing 27 members. Cluster analysis of the 1709 nonnormalized Arabidopsis cDNAs revealed clusters of 27 members and many other highly populated clusters, a dramatic difference from the normalized cDNAs.
[0234] Further comparison of 1,151 randomly chosen nonnormalized sequences for redundancy with the results from the 1,151 normalized population clearly indicated the positive effects of normalization and the greater number of unique genes identified from this normalized population. Many genes that have representations of >12 in the nonnormalized library have been reduced to 1-4 members in the normalized population. One chlorophyll a / b binding protein gene exhibited a reduction from 15 members in the nonnormalized population to 1 in the normalized library, whereas a gene encoding a distinct chlorophyll a / b binding protein showed less reduction in the normalized gene population. This observation is consistent with the conclusion that certain genes do not undergo the same degree of normalization compared with other genes.
[0235] Additional sequences from the normalized Arabidopsis library were obtained by sequence analysis. BLASTN analysis of the 1,343 normalized sequences revealed that 858 were represented in the Arabidopsis EST database, while the remaining 485 sequences were apparently unique, with no obvious homologue in the database. Of those sequences showing BLASTN hits, 43.6% showed coverage of the first through tenth base in the longest EST in the database. Furthermore, 242 of the $858(28 \%)$ showed 5 ' sequences that were at the first base of the longest EST or longer. These data show that the cDNAs cloned into GENEWARE® are of significant quality and represent, in many cases, the longest 5^{\prime} sequences obtained to date. To further ascertain the proportion of cDNAs containing fulllength protein open reading frames, we employed the ORF finder program used to analyze the ABRC library for sense clones. This algorithm checks for ATG sequences in the first 70 bases of a sequence and then scans for sequences lacking an in-frame stop codon for at least 300 nt downstream in the same frame. To understand the number of quality ORFs in a library, we used the ABRC library as a benchmark. Analysis of 11,957 sequences within the ABRC library with the ORF finder program revealed 3,207 hits (26.8%) with putative open reading frames. From the 1,343 sequences of the normalized Arabidopsis cDNA library in GENEWARE®, 907 (67.5\%) were hits using the ORF finder program. Coupling the number of cDNAs that represent near the 5 ' end of the known RNA sequence (43.6%) with the number of clones that contain putative intact ORFs (67.5%) testifies to the quality and integrity of the cDNAs in the GENEWARE® vector. These data clearly indicate a high proportion of full-length clones.
[0236] K. Quantity of Normalized Arabidopsis cDNAs Cloned into GENEWARE® Vectors:
[0237] As previously described, the normalized Arabidopsis cDNA population was cloned into GENEWARE® vec-
tors in both the positive (+) and negative (-) sense direction to allow for both overexpression and gene knockout analysis. The total number of clones in the 1057 PN vector in negative orientation was 20,160 . These were arrayed into 210 96-well glycerol stock plates. Likewise, 20,160 clones from the ligation of normalized Arabidopsis cDNA in sense orientation into 1056 GTN vector have been arrayed in 210 96 -well glycerol stock plates. These numbers clearly show that the GENEWARE® vectors can be used as primary cloning vectors and that very complex libraries can be obtained in two orientations from a single pool on nonamplified normalized cDNA.
[0238] II. Construction of Tissue-Specific N. benthamiana cDNA Libraries
[0239] A. mRNA Isolation:
[0240] Leaf, root, flower, meristem, and pathogen-challenged leaf cDNA libraries were constructed. Total RNA samples from $10-5 \mu \mathrm{~g}$ of the above tissues were isolated by TRIZOL reagent (Life Technologies, Rockville, Md.). The typical yield of total RNA was 1 mg . PolyA+RNA was purified from total RNA by DYNABEADS® oligo $(T)_{25}$. Purified mRNA was quantified by UV absorbance at OD_{260}. The typical yield of mRNA was 2% of total RNA. The purity was also determined by the ratio of $\mathrm{OD}_{260} / \mathrm{OD}_{280}$. The integrity of the samples has OD values of 1.8-2.0.
[0241] B. cDNA Synthesis:
[0242] cDNA was synthesized from mRNA using the SUPERSCRIPT® plasmid system (Life Technologies, Rockville, Md.) with cloning sites of NotI at the 3^{\prime} end and Sall at the 5^{\prime} end. After fractionation through a gel column to eliminate adapter fragments and short sequences, cDNA was cloned into both GENEWARE® vector p 1057 NP and phagemid vector PSPORT ${ }^{\text {TM }}$ in the multiple cloning region between NotI and XhoI sites. Over 20,000 recombinants were obtained for all of the tissue-specific libraries.
[0243] C. Library Analysis:
[0244] The quality of the libraries was evaluated by checking the insert size and percentage from representative 24 clones. Overall, the average insert size was above 1 kb , and the recombinant percentage was $>95 \%$.
[0245] III. Construction of Normalized N. benthamiana cDNA Library in GENEWARE® Vectors

[0246] A. cDNA Synthesis.

[0247] A pooled RNA source from the tissues described above was used to construct a normalized cDNA library. Total RNA samples were pooled in equal amounts first, then polyA+RNA was isolated by DYNABEADS® oligo (dT) 25 . The first strand cDNA was synthesized by the Smart III system (Clontech, Palo Alto, Calif.). During the synthesis, adapter sequences with Sfi1a and Sfilb sites were introduced by the polyA priming at the 3^{\prime} end, and 5^{\prime} end by the template switch mechanism (Clontech, Palo Alto, Calif.). Eight $\mu \mathrm{g}$ first strand cDNA was synthesized from $24 \mu \mathrm{~g}$ mRNA. The yield and size were confirmed by UV absorbance and agarose gel electrophoresis
[0248] B. Construction of Genomic DNA Driver.
[0249] Genomic DNA driver was constructed by immobilizing biotinylated DNA fragments onto streptavidin-
coated magnetic beads. Fifty $\mu \mathrm{g}$ genomic DNA was digested by EcoR1 and BamH1 followed by fill-in reaction using biotin-21-dUTP. The biotinylated fragments were denatured by boiling and immobilized onto DYNABEADS® by the conjugation of streptavidin and biotin.
[0250] C. Normalization Procedure.
[0251] Six $\mu \mathrm{g}$ of the first strand cDNA was hybridized to $1 \mu \mathrm{~g}$ of genomic DNA driver in $100 \mu \mathrm{l}$ of hybridization buffer ($6 \times \mathrm{SSC}, 0.1 \%$ SDS, $1 \times$ Denhardt's buffer) for 48 hours at $65^{\circ} \mathrm{C}$. with constant rotation. After hybridization, the cDNA bound on genomic DNA beads was washed 3 times by $20 \mu \mathrm{l} 1 \times \mathrm{SSC} / 0.1 \% \mathrm{SDS}$ at $65^{\circ} \mathrm{C}$. for 15 min and one time by $0.1 \times \mathrm{SSC}$ at room temperature. The bounded cDNA on the beads was then eluted in $10 \mu \mathrm{l}$ of fresh-made 0.1 N NaOH from the beads and purified by using a QIAGEN DNA purification column (QIAGEN GmbH, Hilden, Germany), which yielded 110 ng of normalized cDNA fragments. The normalized first strand cDNA was converted to double strand cDNA in 4 cycles of PCR with Smart primers annealed to the 3^{\prime} and 5^{\prime} end adapter sequences.
[0252] D. Evaluation of Normalization Efficiency.
[0253] Ninety-six non-redundant cDNA clones selected from a randomly sequenced pool of 500 clones of a previously constructed whole seedling library were used to construct a nylon array. One hundred ng of the normalized cDNA fragments vs. the non-normalized fragments were radioactively labeled by ${ }^{32} \mathrm{P}$ and hybridized to DNA array nylon filters. Hybridization images and intensity data were acquired by a PHOSPHORIMAGER® (Amersham Pharmacia Biotech, Chicago, Ill.). Since the 96 clones on the nylon arrays represent different abundance classes of genes, the variance of hybridization intensity among these genes on the filter were measured by standard deviation before and after normalization. These results indicated that by using this type of normalization approach, we could achieve a 1000 -fold reduction in variance among this set of genes.
[0254] E. Cloning of Normalized cDNA into GENEWARE® Vector.
[0255] The normalized cDNA fragments were digested by Sfi1 endonuclease, which recognizes 8-bp sites with variable sequences in the middle 4 nucleotides. After size fractionation, the cDNA was ligated into GENEWARE® vector p1057 NP in antisense orientation and transformed into DH5 α cells. Over 50,000 recombinants were obtained for this normalized library. The percentage of insert and size were evaluated by Sfi digestion of randomly picked 96 clones followed by electrophoresis on 1% of agarose gel. The average insert size was 1.5 kb , and the percentage of insert was 98% with vector only insertions of $>2 \%$.
[0256] F. Sequence Analysis of Normalized cDNA Library.
[0257] As of the date of this report, 2 plates of 96 randomly picked clones have been sequenced from the 5^{\prime} end of cDNA inserts. One hundred ninety-two quality sequences were obtained after trimming of vector sequences and other standard quality checking and filtering procedure, and subjected to BLASTX search in DNA and protein databases. Over 40% of these sequences had no hit in the databases. Clustering analysis was conducted based on
accession numbers of BLASTX matches among the 112 sequences that had hits in the databases. Only three genes (tumor-related protein, citrin, and rubit) appeared twice. All other members in this group appeared only once. This was a strong indication that this library is well-normalized. Sequence analysis also revealed that 68% of these 192 sequences had putative open reading frames using the ORF finder program (as described above), indicating possible full-length cDNA.

[0258] IV. DNA Preparation

[0259] A. High Throughput Clone Preparation.
[0260] Arraying of the ABRC library into GENEWARE® vectors occurred as previously discussed to obtain $\sim 5,000$ antisense and $\sim 3,000$ sense clones with minimal redundancy. The ligations were between highly purified and quality controlled GENEWARE® cloning vector plasmids and the corresponding fragments from each individual pool of ABRC clones. Cloning efficiencies were in the range of 1×10^{5} to 5×10^{5} per $\mu \mathrm{g}$ of plasmid. Colonies were picked using a Flexys Colony Picker (The Sanger Centre, England) and manual methods. Colonies were applied to deep-well cell growth blocks (DWBs) and grown from 18-26 hours at $37^{\circ} \mathrm{C}$. at $\sim 500 \mathrm{rpm}$ in the presence of ampicillin concentrations of $500 \mu \mathrm{~g} / \mathrm{ml}$. From the almost 9,000 colonies picked by the Flexys, $>97 \%$ of the cultures successfully grew. DNA was prepared using the QIAGEN BIOROBOT 9600 DNA robots and QIAGEN 96-well manifolds (manual preparation) at a rate of 2,000 DNA preparations per day. The final throughput, during campaign production, estimated for each system was ~ 20 plates of 96 samples per day, per production line-robotic or manual. Such throughput could be sustained to generate $20-40,000$ samples in a matter of one to two weeks of effort. During one ten day period, one hundred four (140) 96-well plates of DNA were produced.
[0261] B. Quality Control Methods:
[0262] DNA samples were subjected to quality control (QC) analysis by at least one of two methods: 1) restriction endonuclease digestion and analysis by agarose gel electrophoresis (all plates) or 2) UV spectroscopy to determine DNA quantitation for all 96 samples of a plate (statistical sampling of each days output). For UV analysis, an aliquot of the DNA samples from each plate was taken and measured using a Molecular Dynamics UV spectrometer in 96-well format (Molecular Dynamics, Sunnyvale, Calif.). DNA concentrations of 0.05-0.2 μ l with OD 260/280 ratios of $1.7+0.2$ are expected. For DNA sequencing purposes (a downstream method to be used to analyze all "hit" samples), DNA quantity of $0.04-0.2 \mu \mathrm{~g} / \mu \mathrm{l}$ is desired. In general, plates that contain $>25 \%$ of samples not conforming to this metric are rejected and new DNA for the plate must be generated once again. For conformation of the presence of insertions and full-length GENEWARE® vector, agarose gel electrophoresis of restriction endonuclease fragments was used. Aliquots of sixteen samples from each 96-well DNA plate were targeted for restriction digestion using Nco I and BstE II restriction endonucleases. Samples were separated on 1% agarose gels. Generally, plates that showed $>25 \%$ of samples that were not full length or did not contain insertions were rejected. From a total of 14096 -well DNA plates prepared, 112 passed QC and were made available for generation of infectious units.
[0263] V. High-Throughput DNA Sequencing and Sequence Analysis Protocols
[0264] A. Generation of Raw Sequence Data and Filtering Protocols:
[0265] High-throughput sequencing was carried out using the PCT200® and TETRAD® PCR machines (MJ Research, Watertown, Mass.) in 96-well plate format in combination with two ABI 377^{TM} automated DNA sequencers (PE Corporation, Norwalk, CT). The throughput at present is six 96 -well plates per day.
[0266] The electropherogram generated from sequencer by ABI Sequencing Analysis (version 3.3) was used to generate sequence in the text format using "Phred," which also gives a confidence score for each base call that reflect the error probability and the quality for that base. Cross_match was used to mask the vector sequence. The low quality portion of the sequence (i.e. phred score lower than 20) was removed. The vector and the polyA or polyT were also removed from the raw sequence. The high quality, processed sequences with the processing information were stored in the database. Sequences were used for further bioinformatic analysis.

[0267] B. Sequence Data Analysis and Bioinformatics:

[0268] Once the filtering and the vector sequence removal steps are completed, the resulting sequences are subjected to database search. First, low sensitivity methods such as BLASTN and BLASTX can be used. For those sequences that have no hit, more sensitive methods, such as Blimps and Pfam can be used. To speed up the analysis process, appropriate filters may be used. For example, for EST sequences from a given cDNA library sequenced from the 5^{\prime} end, an ATG filter can be used to make sure that only full-length cDNA will be analyzed. The filtered sequence can be translated in one frame rather than six frames for Pfam analysis.
[0269] The results from the database search are stored in the relational database and can be used for further analysis. For example, all the BLAST results can be stored in a relational table that contains Query, Score, pValue, Hit, Length, Annotation, Frame, Identity, Homology, Query Length, Subject Length, Database Queried and Method used to analyze. Any result can be queried and analyzed by the fields mentioned. A database link between the analysis result database and the laboratory information management system (LIMS) has been created so that the analysis result can be related to the experimental data.

[0270] C. Metabolic Pathway Analysis:

[0271] Many metabolic pathway databases have been constructed that group proteins based on their roles in a metabolic pathway. The basic identifiers for these proteins are E.C. numbers; therefore, the position of a given enzyme in a metabolic pathway may be determined based on its E.C. number. The E.C. number of a protein can be obtained by its Genbank ID. This approach can be used to assign the corresponding E.C. number to the hits found for each cDNA sequence. By querying the metabolic pathway using the E.C. number of a hit, a potential link between this cDNA sequence and the metabolic pathway may be established. Each link can be used as a building block for a plant metabolic pathway. This potential link between cDNA
sequence and metabolic pathway provides a starting point to analyze the gene's role in a metabolic pathway.
[0272] In addition, we have created an interactive, queriable relational prokaryotic and eukaryotic metabolic pathway database. This metabolic pathway database was created by accessing all public sequences that have associated E.C. numbers, running HMMs (hidden Markov models) and other proprietary LSBC algorithms against these sequences, and classifying these sequences into protein families based on conserved domains (Pfam database assignments). Pfam is a database of multiple alignments of protein domains or conserved protein regions. It is assumed that they represent some evolutionary conserved structure which has implications for the protein's function. Pfam is actually formed in two separate ways. Pfam-A are accurate human crafted multiple alignments whereas Pfam-B is an automatic clustering of the rest of SWISSPROT and TrEMBL derived from the Prodom (http://www.toulouse.inra.fr/prodom.html) database. Each protein family has the following data: 1). A seed alignment which is a hand edited multiple alignment representing the domain; 2). A Hidden Markov Model (HMM) derived from the seed alignment which can be used to find new members of the domain and also take a set of sequences to realign them to the model; 3). A full alignment which is a automatic alignment of all the examples of the domain using the HMM to find and then align the sequences; and 4). An annotation file which contains a brief description of the domain, some parameters for Pfam methods, and links to other databases.
[0273] We have run HMMs and other LSBC algorithms against the LSBC Sequence Database and classified these sequences into protein families based on conserved domains, and relate these sequences back to public sequences for E.C. mapping to metabolic pathways. We have run HMMs and other LSBC algorithms against all sequenced microbial genomes and classified these sequences into protein families based on conserved domains, and relate these sequences back to public sequences for E.C. mapping to metabolic pathways. We further related the Arabidopsis, N. benthamiana, and Oryza clones to specific sites on metabolic pathways.
[0274] D. Sequence Analysis of Library Created from GENEWARE® Vectors
[0275] Five hundred sixty-eight (568) independent clones were sequenced from the virus expression library and the clones from this library were analyzed by vector, N filters and BLAST analysis. Of the 568 initial sequences submitted for analysis, 131 were eliminated by the N -filter indicating that $\sim 15 \%$ of the sequence were undetermined Ns. The remaining 437 sequences were then subjected to analysis for duplication within each set of submitted plates. Fifty-five (55) sequences were removed due to this duplication filter. These sequences were BLASTN searched against 539 sequences from the AtwpLNLH library in Lambda Zap II. Thirty percent (30%) of the sequences (i.e., 132 sequences) found a match in both libraries. From the original set of GENEWARE® clones, 305 were found to be unique with respect to the Lambda Zap II library. These sequences were then BLASTX-searched against non-redundant GENBANK . From the 305 submitted sequences, 173 sequences found solid hits in protein coding sequence as determined by hit criteria and 132 were found to be unique. Further BLASTN
analysis showed a range of sequence homology, but many represented hits to BAC or chromosomal sequences. A wide range of sequences were found including, ribosomal proteins, photosystem reaction center proteins, fumarase and other general metabolism proteins, transcription factors, kinase homologs, omega-6 fatty acid desaturase and various hypothetical proteins. These results strongly suggest that little or no bias is introduced during the construction of cDNA libraries in GENEWARE®.

[0276] VI. Preparation of Infectious Units

[0277] DNA plates that pass QC testing were then moved to the next stage of the cycle, the generation of infectious units. In vitro RNA transcriptions have been optimized to produce maximal amounts of RNA in smaller volumes to reduce costs and increase the lifetime of a DNA preparation. A transcription mixture containing a 6 -to- 1 RNA cap struc-ture-to-rGTP ratio, Ambion mMessage Machine buffer and enzyme mix (Ambion, Inc., Austin, Tex.) is delivered to a 96 -well plate by the TECAN liquid handling robot (TECAN, Research Triangle Park, N.C.). To this reaction mix, the Robbins Scientific HYDRA 96 -sample pipeting robot (Robbins Scientific, Sunnyvale, Calif.) delivers $2 \mu \mathrm{l}$ of DNA solution. This final transcription reaction is incubated at 37° C. for 1.5 hours. Following incubation, the TECAN robot delivers $95 \mu \mathrm{l}$ of a $100 \mathrm{mM} \mathrm{Na} / \mathrm{K} \mathrm{PO}_{4}$ buffer containing TMV coat protein (devoid of all infectious RNA) to the transcription plate and it is incubated overnight. This incubation generates encapsidated transcripts, which are very stable at room temperature or $4^{\circ} \mathrm{C}$. and amplified with regard to number of infectious units per $\mu \mathrm{g}$ of RNA transcript. The generation of infectious materials is measured by inoculation of GFP-expressing virus to systemic host or Nicotiana tabacum NN lines, incubation at permissive temperatures and counting of developing local lesions on inoculated leaves. Before addition of the TMV coat protein mixture, $0.5 \mu \mathrm{l}$ from 8 wells of each transcription plate is removed and analyzed by agarose gel electrophoresis. The presence of an RNA band of ~ 1.6 to 3.5 kb is strong evidence for a successful transcription. If $>25 \%$ contain only lower molecular weight RNA bands, or if the band is diffuse $<500 \mathrm{bp}$ of dsDNA marker, the transcription plate is considered to have failed and removed from the stream of plates prepared for inoculation. During a two week period, 112 plates were transcribed and 108 plates were passed for plant inoculation in growth rooms and in the field.
[0278] VII. Plant Inoculation with Encapsidated RNA Transcripts
[0279] In order to prepare for plant inoculation, $90 \mu \mathrm{l}$ of each encapsidated RNA transcript sample and 90μ of FES transcript inoculation buffer (0.1 M glycine, 0.06 M $\mathrm{K}_{2} \mathrm{HPO}_{4}, 1 \%$ sodium pyrophosphate, 1% diatomaceous earth and 1% silicon carbide) were combined in the wells of a new 96 -well plate. The 96 well plate was then placed on ice.
[0280] Nicotiana benthamiana plants 14 days post sowing were removed from the greenhouse and brought into the laboratory. Humidity domes were placed over the plants to retain moisture. The RNA transcript sample was mixed by pipetting the solution prior to application to ensure that the silicon carbide and the diatomaceous earth were resuspended. The entire sample, $180 \mu \mathrm{l}$, was drawn up and pipetted in equal aliquots (approximately $30 \mu \mathrm{l}$), onto the
first two true leaves of three separate Nicotiana benthamiana plants. The mixture was spread across the leaf surface using a Texwipe ${ }^{\text {TM }}$ Cleanfoam ${ }^{\text {TM }}$ swab (The Texwipe Co, Upper Saddle River, N.J.). The wiping action caused by the swab together with the silicon carbide in the buffer sufficiently abrades the leaves so as to allow the encapsidated RNA transcript to enter the plant cell structure. Other methods used for inoculation have included pipeting of encapsida-tion-FES mixture onto leaves and rubbing by hand, cotton swab or nylon inoculation wand. Alternatively, nylon inoculation wands may be incubated in the transcript-FES mixture for ~ 30 min to soak up $\sim 15 \mu \mathrm{l}$ and then rubbed directly onto the leaves.
[0281] Once an entire 32 plant flat was inoculated, the plants were misted with deionized water and the humidity domes were replaced over them. The inoculated plants were retained in the laboratory for 6 hours and then returned to the greenhouse. Once in the greenhouse, the humidity domes were removed and the plants were misted a second time with deionized water.

[0282] VIII. Inoculated Plant Growth

[0283] Plants inoculated with encapsidated virus were grown in a greenhouse. Day length was set to 16 hours and shade curtains (33% transmittance) were used to reduce solar intensity. Whenever ambient light fell below $250 \mu \mathrm{~mol}$ $\mathrm{m}^{2} \mathrm{~s}^{-1}$, a $50: 50$ mixture of metal halide and sodium halide lamps (Sylvania), delivering an irradiance of approximately $250 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~s}^{-1}$, were used to provide supplemental lighting. Evaporative cooling and steam heat were used to regulate temperature, with a daytime set point of $27^{\circ} \mathrm{C}$. and a nighttime set point of $22^{\circ} \mathrm{C}$. The plants were irrigated with Hogland's fertilizer mix as required. Drainage water was collected and treated with 0.5% sodium hypochlorite for 10 minutes before discharging into the municipal sewer.
[0284] To allow space for increased plant size, the inoculated N. benthamiana were repositioned at seven days postinoculation (dpi) so that they occupied twice their original area. At 13 dpi , the plants were examined visually for symptoms of TMV infection and were assigned a numerical score to indicate the extent of viral infection ($0=$ no infection, $1=$ possible infection, $2=$ limited/late infection, 3=typical infection, $4=$ severe infection). At the same time, the plants were assigned a fate for harvest (typically the highest quality plant in each triplicate was assigned to metabolic screens and the second highest quality plant was assigned to focused screens). In cases where plant symptoms deviated substantially from those of plants inoculated with control vectors, a description of plant phenotype was recorded (as described below). At 14 dpi infected plants were harvested.

[0285] IX. Infectivity Analysis

[0286] The method to measure the infectivity of the transcript encapsidations was to inoculate a set of 96 -well plates from both positive and negative sense clones and look for systemic virus movement and phenotype development. Of the 8,352 plants inoculated with unique encapsidated transcriptions, 6,266 became systemically infected for an infection rate of 76%. Overall, the majority of plates generated showed very good infection rates. As shown in a graph of the number of systemically infectious constructs per each individual plate plotted against plate number. The majority of plates had systemic rates $>70 \%$ with one at 100%. Approxi-
mately 25 plates had infection rates ranging between 40 and 70% while only 6% (>5 plates) showed infection rates <45\%.
[0287] A population of constructs did not show systemic infection on Nicotiana benthamiana plants. Analysis using the LIMS revealed a substantial correlation between a subset of inoculators and the transcription plates showing poor infection rates. These results strongly suggest that inoculation technique is critical for good infectivity although other possible causes could include poor DNA or transcription quality, or simply inoculation error. In some cases the constructs may be restricted to inoculated leaves by way of adverse influence of the gene insertion on virus replication and movement. For example, one observed healthy inoculated Nicotiana benthamiana plant exhibited clear chlorotic spots on inoculated leaves, yet no systemic symptoms. Other plants, not scored as infected in our LIMS, were observed to have subliminal infections in source tissues. It was clear that the properties of the genetic insertion had differing effects on virus phenotypic symptoms. Eighty-two of those constructs exhibiting poor systemic infection were re-inoculated into Nicotiana tobacum NN plants to test for local lesions. The presence of local lesions indicated infectious viral vectors. From this data, a statistical calculation can be made to determine the percentage of non-systemic infective constructs that are locally infectious. Plants were scored 6 days post-inoculation for the presence of localized necrotic lesions resulting from infection and localized movement of virus vectors on the inoculated leaves of the plants. Of the 82 constructs analyzed, 50 showed local lesions indicating the presence of infectious viral vectors. Based on the infection rate observed in Nicotiana benthamiana and NN tobacco plants, we estimate that $1,181(-61 \%)$ of the constructs not showing systemic infection on Nicotiana benthamiania plants were still infectious and amenable to biochemical analysis.

[0288] X. Phenotypic Evaluation

[0289] At 13 dpi a visual examination was made to identify plants whose phenotype deviates substantially from plants infected with a GENEWARE® control. The phenotypically different plants were divided into regions (for example: shoot apical region, infected phloem source leaves, stem) and descriptive terms were applied to each region to document the visual observation. Additionally, a confirmation was made as to whether or not the operator considered the plant to be a "hit" and a numerical score was applied to document the phytotoxic/herbicide effect of the RNA insert ($1=$ possible effect, $2=$ mild, $3=$ moderate, $4=$ severe).
[0290] A matrix-style phenotypic database was created using the LIMS software. The LIMS software allows all descriptive terms to be used for any major part of the plant and the capacity of sub-parts to be described. Notable phenotypic events are captured by description of individual plant parts. The matrix is configured in a Web-based page that allows one to score infection and phenotyping using a graphic replicated of the physical arrangement of plants in the growth room. This approach is rapid, allowing 96 plants to be described in detail as being infected, not infected with a detailed phenotype in $\sim 15 \mathrm{~min}$. Editing of output files can occur rapidly in MS Excel if desired. The output file is then loaded as CSV files into the LIMS where it is immediately available to Boolean query as to phenotype descriptors with
"and, or, not" statements. Images of infected plants are linked to the SeqIDs in the database so that the plant tray bar code (for infection), well position, SeqID, phenotype and picture all link together when a query is made. This is linked back to the sequence database for sequence annotation data. Using this system, 8,352 phenotypic observations were made in the period of two days and entered into the LIMS. Hundreds of interesting visual phenotypes were observed.

[0291] XI. Field-Scale Genomics

[0292] The effects of gene overexpression and gene silencing in plants may have dramatic differences when grown under different conditions. The Kentucky field test plots available to Biosource provides an opportunity to subject plants to substantially different growth conditions and thereby broaden the chances of detecting various types of "bits" in a genomics screen. To compare the ability of virus vectors to be applied under field conditions and under controlled growth room conditions, we inoculated, in duplicate, 960 positive-sense constructs on Nicotiana benthamiana plants grown in the field test plot in Owensboro, Ky. This activity was concurrent with inoculations and screens performed in Vacaville, Calif. Complete encapsidated transcription reactions were prepared at Large Scale Biology Corporation in Vacaville, Calif. and following incubation with TMV coat protein, FES buffer was added to each well. All samples in column 12 of each plate contained encapsidated transcripts of 1057 vector containing the GFP gene. The mixture was then overnight-mailed to Owensboro, Ky. where it was inoculated onto $4-5$ week post-sowing plants by rubbing cotton swabs, pre-wetted by incubation with encapsidated transcript-FES mixture, on plant leaves. Plants were inoculated in duplicate. Plants were allowed to remain in the field for 4 weeks post-inoculation and then subjected to phenotypic analysis. Photographic documentation of the plants both pre- and post-inoculation was prepared. Plants were scored by visual evaluation as to number of infected plants compared with total number of plants inoculated. Of the 1920 plants inoculated, 1,712 (88%) showed systemic infections. More than 100 new phenotypes were noted in the field. Each was compared with the phenotype of the same construct inoculated into plants in Vacaville, Calif. growth rooms. Two new phenotypes are particularly noteworthy: two independent plants showed survival phenotypes under anaerobic conditions, whereas all neighbors had succumbed to root rot in a low spot in the field.
[0293] In order to evaluate the effect of gene silencing in Nicotiana tabacum plants, mRNA from Arabidopsis thaliana whole plants was subjected to fragment normalization such that small cDNA fragments were produced. The cDNA population showed high degree of normalization by hybridizations with known genes of variable expression and by comparison with non-normalized cDNA fragments. The average size of the normalized fragments in the GENEWARE® vectors was between $400-500 \mathrm{bp}$ allowing facile movement of the recombinant viruses systemically in field Nicotiana tabacum c.v. MD609 plants. A total of 11 plates of DNA constructs (1056) were prepared, transcribed and encapsidated with GFP constructs integrated at every 12 position. These were mixed with FES and overnightmailed to Owensboro, Ky. These 1056 constructs were inoculated in duplicate (2112 total) on MD609 tobacco plants 11 weeks post-sowing. One set of the replicates (1056 plants) were scored by visual evaluation as to number of
infected plants compared with total number of plants inoculated. Of the 1056 plants inoculated, 808 showed systemic infections, or 76.5% infection rate. "Hits" were determined by unusual visual symptoms and corresponding constructs will be characterized by DNA sequencing.
[0294] An uncharacterized GENEWARE® library comprised of 20,000 Arabidopsis thaliana normalized fragment cDNAs and 10,000 of Nicotiana benthamiana genomic DNA fragments was prepared and sprayed as a population on Nicotiana tabacum c.v. MD609 plants. The Arabidopsis cDNA library, $\sim 10,000$, was constructed by ligation into prepared GENEWARE® vectors and purified from pooled bacterial transformants and followed by pooled transcription. The remaining $10,000 \mathrm{cDNA}$ fragments were individual clones prepared and transcribed independently and then mixed in a pooled encapsidation. The Nicotiana library was a prototype cell-free cloning library from restriction endonuclease fragmented gDNA of $<500 \mathrm{bp}$ in size. The number of clones corresponds to an approximation of the amount of DNA undergoing complete ligation. Transcriptions from each non-encapsidated library were inoculated separately into Nicotiana tabacum protoplasts and allowed to incubate for three days. Cells were lysed and libraries combined. The pool of cell lysates and encapsidated transcriptions containing viral libraries were shipped to Owensboro, KY where they were inoculated onto Nicotiana tabacum c.v. MD609 plants at $1,1 / 10,1 / 100$ and $1 / 000$ dilution of the mixed virion preparation (using $60 \mathrm{ml}, 6 \mathrm{mls}, 0.6 \mathrm{mls}$ and 0.06 mls of the library respectively). Eight hundred (800) plants were spray-inoculated with each library virion dilution. Plants were visually scored and of the 3,200 plants inoculated, 1,304 showed visual symptoms 3 weeks postinfection. The infectivity rate varied from $\sim 60 \%$ for the most concentrated inoculum to $\sim 20 \%$ for the most dilute as would be expected due to dilution. Analysis will continue to define "Hits" by unusual visual symptoms and PCR amplification and DNA sequencing will characterize corresponding construct.

[0295] XII. GC/MS Metabolite Analysis

[0296] A. Harvest and Preparation of Tissues for Metabolic Screening
[0297] Fourteen dpi infected plants to be harvested were moved from the greenhouse to the laboratory. Plants were scanned and identified by a bar-code that linked the infected plant to the tissue sample. The infected tissue was cut off of the plant and placed in a corresponding centrifuge tube. A tungsten carbide ball was placed on top of the infected tissue sample. The tungsten carbide ball facilitates pulverization of plant tissue. The tubes and sample were stored on dry ice during the harvesting procedure. The samples were then stored at $-70^{\circ} \mathrm{C}$. Before conducting a metabolic screen, the tissue samples must be pulverized. The sample tubes were loaded into a KLECO pulverizer and pulverized to create a fine powder of the tissue sample. The tissue sample powder was then weighed out into a metabolic extraction vial.
[0298] B. FAME Analysis Procedure for FAME Screen.
[0299] Nicotiana benthamiana plants expressing genes of interest in RNA vectors were grown for 14 dpi as described above. Three leaf disks (0.5 cm in diameter) were placed in cell wells of a borosilicate 96 -deepwell plate (Zinsser). 500 μl of heptane was added to each well using a Biomek 2000

Laboratory Automation Workstation. The heptane/tissue samples were stirred on a Bodine magnetic stirrer. After 30 minutes, $50 \mu \mathrm{l}$ of 0.5 N sodium methoxide in methanol was added to each well using the Biomek 2000. After 30 minutes of stirring, $10 \mu \mathrm{l}$ of water was added to each well. Injections were made directly from the 96 -deepwell plate into a Hewlett Packard gas chromatograph (GC) using a LEAP auto injector. The GC method involved a $2 \mu \mathrm{l}$ injection into a split/splitless injection port using a DB 23 narrow bore column ($15 \mathrm{M}, 0.25$ I.D.). The oven temperature was isothermic at $170^{\circ} \mathrm{C}$. The injector temperature was $230^{\circ} \mathrm{C}$. and the detector (flame ionization) temperature was $240^{\circ} \mathrm{C}$. The run time was 5 minutes, with an equilibration time of 0.5 minutes. The split ratio was $20: 1$ and the helium flow rate was held at a constant pressure of 19 psi . This GC method allowed for separation and quantification of fatty acid methyl esters which included C16:0,C16:1,C18:0,C18:1, C18:2, and C18:3. Using a dual column GC, four 96 -well plates could be sampled in less than 24 hours.
[0300] The following sequences exhibited a positive FAME result (had altered levels of the fatty acids assayed): SEQ ID NOs: 7, 53, and 92. The result of the FAME analysis for SEQ ID NO:92 is shown in Table 5. Table 5 shows the relative percent amounts of fatty acids found in plants transfected with a viral vector comprising SEQ ID NO: 92. An increase in 16:0 fatty acids was observed in 3 of the 5 samples assayed. Table 6 shows the relative percent amounts of fatty acids found in plants transfected with SEQ ID NOs: 7 and 53.

International) wells containing 3 ml of 2% agar. Using a small paintbrush to handle insects, 2 first-instar larvae of tobacco hornworm (Manduca sexta) were placed in each well and trays were sealed using vented covers. Trays were then incubated at 28 C with 48% humidity for 72 hours with a 12 -hour photoperiod. Following incubation, samples were scored for mortality and leaf damage according to the following criteria: mortality, $0=0$ dead $/ 2$ alive; $1=1$ dead $/ 1$ alive; $2=2$ dead $/ 0$ alive; leaf damage, $0=0$ to 20% leaf consumed; $1=21$ to 40% leaf consumed; $2=41$ to 60% leaf consumed; $3=61$ to 80% leaf consumed; and $4=81$ to 100% leaf consumed. Following scoring, insects were weighed on an analytical balance and photographed using a digital camera.
[0304] The following sequences exhibited a positive insect control phenotype: SEQ ID NOs: 3, 5, 7, 27, 32, 37, $59,80,92,103,106,108,109,110$, and 111.

[0305] D. Carbohydrate Screen.

[0306] The dry residue was transferred from the extracting cartridge ($10-20 \mathrm{mg}$) into a $100 \times 13 \mathrm{~mm}$ glass tube containing 0.5 ml of 0.5 N HCI in methanol and 0.12 ml of methyl acetate and then sealed (Teflon coated screw cap) under nitrogen and heated for 16 hours at $80^{\circ} \mathrm{C}$. The liquid phase was then transferred using an 8 -channel pipetter (Matrix) to a glass insert supported by a 96 well aluminum block plate (Modem Metal Craft) and evaporated to dryness (Concentrator Evaparray). The methyl-glycosides and methyl-gly-

TABLE 5

Sample	16:0	16:1	unk	FAME Profile			18:1	18:2	18:3	unk
				16:3	unk	18:0				
1	24.7	3.4	1.1	3.2	2.6	2.6	3.3	9.2	47.8	2.0
2	20.1	2.9	0.8	4.6	2.9	3.5	7.1	9.2	46.7	2.3
3	17.6	1.8	1.0	3.5	2.9	2.2	6.0	11.8	50.4	2.7
4	23.3	1.9	1.0	3.1	4.6	3.8	8.9	10.6	37.6	5.3
5	23.0	2.6	0.7	3.5	1.6	2.3	3.8	8.1	52.9	1.6
control	19.6	2.8	1.1	3.3	1.8	1.8	3.1	12.0	53.6	1.0
control	18.4	2.7	1.1	3.3	1.7	1.7	3.1	11.3	55.4	1.3

[0301]

TABLE 6

Sample	16:0	16:1	unk	FAME Profile			18:1	18:2	18:3	unk
				16:3	unk	18:0				
SEQ ID	23.0	3.5	1.9	2.6	1.7	2	3.3	11.7	49.1	1.3
NO: 53										
SEQ ID	25.7	3.4	1.3	1.8	0.8	2.3	2.1	8	54.7	0
NO: 7 control	18.7	2.8	1.2	3.8	1.4	1.5	4.2	10.7	55	0.6

[0302] C. Insect Control Bioassays.

[0303] Nicotiana benthamiana plants expressing genes of interest in RNA viral vectors were grown for 14 dpi as described previously. Fresh leaf tissue (sample size -2.5 cm diameter) was excised from the base of infected leaves using a scalpel and placed in insect-rearing tray (Bio RT32, C-D
coside methyl esters were silylated in 0.1 ml pyridine and $0.1 \mathrm{ml} \mathrm{BSTFA}+1 \%$ TMCS at room temperature for one hour. The sample generated was analyzed on a DB 1 capillary column (15 meters) with an 11 minute program temperature (from $160^{\circ} \mathrm{C}$. to $190^{\circ} \mathrm{C}$. at $5^{\circ} \mathrm{C}$./min and $190^{\circ} \mathrm{C}$. to 298° C. at $36^{\circ} \mathrm{C}$./minute and hold 2 minutes) and 3 minutes equilibration time. The following components of the plant
cell wall were identified in the tobacco sample: arabinose, rhamnose, xylose, galactose, galacturonic acid, mannose, glucuronic acid and glucose.

[0307] E. GC/MS Metabolite Analysis:

[0308] A 3 mm tungsten carbide ball bearing was placed into each well of a 96 -well deep well block and $300 \mu \mathrm{l}$ of grinding buffer ($2 \mathrm{mM} \mathrm{NaOH}, 1 \mathrm{mM}$ PMSF, 10 mM beta-mercaptoethanol, and deuterium-labeled compounds) was added to each well. A 13 mm circle $(\sim 20 \mathrm{mg})$ leaf disc plug from ~ 4 week old Nicotiana benthamiana (2 week post-inoculation) apical leaves were placed into the 96 -well microtiter deepwell plate. The plate was tightly sealed and placed on a mechanical shaker (paint mixer, up to four at a time) for 2 min , then rotated 180° and shaken for an additional 2 min . Subsequently, the samples were spun for 10 min at 3200 RPM in a refrigerated $\left(15^{\circ} \mathrm{C}\right.$.) centrifuge equipped for microtiter plates. Following centrifugation, the 96 -well plate containing the homogenized samples was placed on a TECAN GENESIS RSP 200 (TECAN, Research Triangle Park, N.C.) liquid handler/robotics system. Both Logic and Gemini software were used to control the TECAN liquid handler. Approximately $200 \mu \mathrm{l}$ was transferred to a pre-conditioned (1 ml MeOH followed by 1 ml of distilled deionized $\mathrm{H}_{2} \mathrm{O}$) Waters 96 -well Oasis HLB solid phase extraction (SPE) plate by the TECAN liquid handler for metabolite analysis by GC/MS. The Waters Extraction Plate Manifold Kit and a vacuum not greater than 5 mm Hg was used to aspirate plant samples from SPE plate into a waste reservoir. The SPE plate was then washed with 1 ml of 5% MeOH in $\mathrm{H}_{2} \mathrm{O}$ by aspirating into waste reservoir and compounds eluted from SP resin with $350 \mu 1$ of MeOH into a 96 -well collection plate. Samples were then transferred to GC autosampler vials, capped and stored in the freezer at $80^{\circ} \mathrm{C}$. for metabolite analysis.
[0309] An internal standard solution was prepared by making a stock solution at a concentration of $1 \mu \mathrm{l}$ (using compound density). Grinding buffer (2 mM NaOH above) with the internal standard was prepared at a concentration of $10 \mathrm{ng} / \mu \mathrm{l}$ for each $(3,000 \mathrm{ng} / 300 \mu \mathrm{l})$ to yield a concentration equivalent of approximately $150 \mathrm{ng} / \mathrm{mg}$ wet weight of plant tissue. Following extraction of plant material, this solution was transferred to the SPE plate by the TECAN liquid handler and extracted with $350 \mu \mathrm{l}$ of MeOH . Approximately $20 \mu \mathrm{l}$ of the sample will be injected onto a $30 \mathrm{~m} \times 0.32 \mathrm{~mm}$ DB-WAX ($1 \mu \mathrm{~m}$ film thickness) GC column with a large volume injector during the preliminary study. The GC column oven was temperature held at 35 C for 5 min , then programmed at $2.5^{\circ} \mathrm{C} . / \mathrm{min}$ to $250^{\circ} \mathrm{C}$. and held for 15 min .
[0310] Samples that contained peaks that were present in altered levels relative to control samples as identified from chromatograms were further analysis using mass spectroscopy. Samples that were transfected with the following nucleic acid sequences were found to have altered metabolic profiles: SEQ ID NO: $43,50,81,85$, and 92 . Table 7 shows the retention time and $\%$ change in peaks relative to controls for several sequences. Table 7 also shows the identity of the peaks as determined by mass spectroscopy.

TABLE 7

	Metabolic Profiles		
	RT (MIN)	$\%$	Change

[0311] A 3 mm tungsten carbide ball bearing was placed into each well of a 96 -well deep well block and $300 \mu \mathrm{l}$ of grinding buffer ($2 \mathrm{mM} \mathrm{NaOH}, 1 \mathrm{mM}$ PMSF, 10 mM beta-mercaptoethanol, and deuterium-labeled compounds) was added to each well. A 13 mm circle $(\sim 20 \mathrm{mg})$ leaf disc plug from ~ 4 week old Nicotiana benthamiana (2 week post-inoculation) apical leaves were placed into the 96 -well microtiter deepwell plate. The plate was tightly sealed and placed on a mechanical shaker (paint mixer, up to four at a time) for 2 min , then rotated 180° and shaken for an additional 2 min . Subsequently, the samples were spun for 10 min at 3200 RPM in a refrigerated $\left(15^{\circ} \mathrm{C}\right.$.) centrifuge equipped for microtiter plates. Following centrifugation, the 96-well plate containing the homogenized samples was placed on a TECAN GENESIS RSP 200 (TECAN, Research Triangle Park, N.C.) liquid handler/robotics system. Both Logic and Gemini software were used to control the TECAN liquid handler. Approximately $200 \mu \mathrm{l}$ was transferred to a pre-conditioned (1 ml MeOH followed by 1 ml of distilled deionized $\mathrm{H}_{2} \mathrm{O}$) Waters 96 -well Oasis HLB solid phase extraction (SPE) plate by the TECAN liquid handler for metabolite analysis by GC/MS. The Waters Extraction Plate Manifold Kit and a vacuum not greater than 5 mm Hg was used to aspirate plant samples from SPE plate into a waste reservoir. The SPE plate was then washed with 1 ml of 5% MeOH in $\mathrm{H}_{2} \mathrm{O}$ by aspirating into waste reservoir and compounds eluted from SP resin with $350 \mu \mathrm{l}$ of MeOH into a 96 -well collection plate. Samples were then transferred to GC autosampler vials, capped and stored in the freezer at $-80^{\circ} \mathrm{C}$. for metabolite analysis.

[0312] XIII. Protein Profiling by MALDI-TOF

[0313] Approximately 14 days post-inoculation, 960 different N. benthamiana leaf plugs transfected with encapsidated virion from a GENEWARE® expression library from growth rooms and 38 from N. benthamiana infected in Owensboro, Ky. were collected and the soluble proteins
extracted with a high throughput micro-extraction technique described below. An aliquot of this solution was automatically diluted with matrix by a liquid handler in preparation for analysis by MALDI-TOF mass spectrometry for proteins.
[0314] A. Sample Preparation by High Throughput MicroExtraction:
[0315] A 3 mm tungsten carbide ball bearing was placed into each well of a 96 -well deep well block and $300 \mu \mathrm{l}$ of grinding buffer ($2 \mathrm{mM} \mathrm{NaOH}, 1 \mathrm{mM}$ PMSF, 10 mM beta-mercaptoethanol, and deuterium-labeled compoundsGC/MS analysis) was added to each well. A 13 mm circle $(\sim 20 \mathrm{mg})$ leaf disc plug from ~ 4 week old Nicotiana benthamiana (2 week post-inoculation) apical leaves were placed into the 96 -well microtiter deepwell plate. The plate was tightly sealed and placed on a mechanical shaker (paint mixer, up to four at a time) for 2 min , then rotated 180° and shaken for an additional 2 min . Subsequently, the samples were spun for 10 min at 3200 RPM in a refrigerated $\left(15^{\circ} \mathrm{C}\right.$.) centrifuge equipped for microtiter plates. Following centrifugation, the 96 -well plate containing the homogenized samples was placed on a TECAN GENESIS RSP 200 (TECAN, Research Triangle Park, N.C.) liquid handler/ robotics system. Both Logic and Gemini software were used to control the TECAN liquid handler. Samples were diluted by the TECAN liquid handler in a round bottom 96 -well plate for MALDI-TOF analysis by adding 18μ of sinapinic acid matrix and 2μ of plant extract to each well. Samples were mixed well by aspirating/dispensing $10 \mu 1$ volumes five times. A 2μ aliquot of each sample was spotted onto a 100 sample MALDI plate. In addition, a $5.0 \mu \mathrm{l}$ aliquot of each sample was transferred to a 96 -well microtiter plate for PCR and/or MALDI backup analysis and stored at $-80^{\circ} \mathrm{C}$. Two plant trays containing 96 individually infected each were extracted each day for 5 days.

[0316] B. MALDI-TOF Mass Spectrometry Analysis:

[0317] An aliquot of the homogenized plant samples were diluted $1: 10$ with sinapinic acid (Aldrich, Milwaukee, Wis.) matrix, $2 \mu \mathrm{l}$ applied to a stainless steel MALDI plate surface and allowed to air dry for analysis. The sinapinic acid was prepared at a concentration of $10 \mathrm{mg} / \mathrm{ml}$ in $0.1 \% \mathrm{TFA}$ acetonitrile (70/30) by volume. MALDI-TOF mass spectra were obtained with a PerSeptive Biosystems Voyager DEPRO operated in the linear mode. A pulsed nitrogen laser operating at 337 nm was used in the delayed extraction mode for ionization. An acceleration voltage of 25 kV with a 90% grid voltage and a 0.1% guide wire voltage was used. Approximately 150 scans were acquired and averaged over the mass range of $2000-156,000 \mathrm{Da}$. with a low mass gate of 2000. Ion source and mirror pressures were approximately 2.2×10^{-7} and 8×10^{-8} Torr, respectively. All spectra were mass calibrated with a single-point fit using horse apomyoglobin (16,952 Da).

[0318] C. Results:

[0319] This study describes a method that was developed using the high-throughout capabilities of MALDI-TOF MS to detect changes in total protein profiles of crude plant extracts derived from a GENEWARE® cDNA library. As many as 192 samples per day were extracted and analyzed for protein profiling using MALDI-TOF mass spectrometry. In addition, the method has been optimized in house for
detection of a wide range of protein masses from one MALDI-TOF scan. More than 50 proteins were routinely detected in a MALDI profile spectrum ranging from approx. 3,000 to $110,000 \mathrm{Da}$. In addition to the coat protein ($\sim 17,500$ Da), both small ($\sim 14,500 \mathrm{Da}$) and large ($\sim 52,750 \mathrm{Da}$) subunits of RuDP carboxylase were routinely detected in the plant samples. Several other proteins were common to most of the plants analyzed. The most abundant proteins were observed at around $3,386,3,970,4,408,5,230,7,280$ (doubly charged ion for small sub-unit of RuDP carboxylase), $8,334,9,350,10,450$ (most abundant protein overall), $14,020,18,006,19,628,20,286,21,173,24,014,25,124$ and 29,140 (dimer of small sub-unit) daltons. A series of less abundant proteins were also detected. Up-regulated or novel proteins were detected in 17.3% of the 960 spectra that were analyzed. This data was entered into the LIMS database.
[0320] XIV. ABRC Library Construction in GENEWARE Expression Vectors
[0321] Expressed sequence tag (EST) clones were obtained from the Arabidopsis Biological Resource Center (ABRC; The Ohio State University, Columbus, Ohio 43210). These clones originated from Michigan State University (from the labs of Dr. Thomas Newman of the DOE Plant Research Laboratory and Dr. Chris Somerville, Carnegie Institution of Washington) and from the Centre National de la Recherche Scientifique Project (CNRS project; donated by the Groupement De Recherche 1003, Centre National de la Recherche Scientifique, Dr. Bernard Lescure and colleagues). The clones were derived from cDNA libraries isolated from various tissues of Arabidopsis thaliana var Columbia. A clone set of 11,982 clones was received as glycerol stocks arrayed in 96 well plates, each with an ABRC identifier and associated EST sequence.
[0322] An ORF finding algorithm was performed on the EST clone set to find potential full-length genes. Approximately 3,200 full-length genes were found and used to make GENEWARE constructs in the sense orientation. Five thousand of the remaining clones (not full-length) were used to make GENEWARE constructs in the antisense orientation.
[0323] Full-length clones used to make constructs in the sense orientation were grown and DNA was isolated using Qiagen (Qiagen Inc., Valencia, Calif. 91355) mini-preps. Each clone was digested with NotI and Sse 8387 eight base pair enzymes. The resultant fragments were individually isolated and then combined. The combined fragments were ligated into pGTN P/N vector (with polylinker extending from PstI to NotI -5^{\prime} to 3^{\prime}). For each set of 96 original clones approximately 192 colonies were picked from the pooled GENEWARE ligations, grown until confluent in deep-well 96 -well plates, DNA prepped and sequenced. The ESTs matching the ABRC data was bioinformatically checked by BLAST and a list of missing clones was generated. Pools of clones found to be missing were prepared and subjected to the same process. The entire process resulted in greater than 3,000 full-length sense clones.
[0324] The negative sense clones were processed in the same manner, but ligated into pGTN N/P vector (with polylinker extending from NotI to PstI -5^{\prime} to 3^{\prime} '). For each set of 96 original clones approximately 192 colonies were picked from the pooled geneware ligations and DNA prepped. The DNA from the GENEWARE ligations was subjected to RFLP analysis using TaqI 4 base cutter. Novel
patterns were identified for each set. The RFLP method was applied and only applicable for comparison within a single ABRC plate. This procedure resulted in greater than 6,000 negative sense clones.
[0325] The identified clones were re-arrayed, transcribed, encapsidated and used to inoculate plants.
[0326] XV. Inoculation of Plants
[0327] A. Plant Growth.
[0328] N. benthamiana seeds were sown in 6.5 cm pots filled with Redi-earth medium (Scotts) that had been prewetted with fertilizer solution (prepared by mixing 147 kg Peters Excel 15-5-15 Cal-Mag (The Scotts Company, Marysville Ohio), 68 kg Peters Excel 15-0-0 Cal-Lite (15% Ca), and 45 kg Peters Excel $10-0-0 \mathrm{MagNitrate}(10 \% \mathrm{Mg})$ in hot tap water to 596 liters total volume and then injecting this concentrate into irrigation water using an injection system (H. E. Anderson, Muskogee Okla.), at a ratio of 200:1). Seeded pots were placed in the greenhouse for 1 d , transferred to a germination chamber, set to $27^{\circ} \mathrm{C}$., for 2 d (Carolina Greenhouses, Kinston, N.C.), and then returned to the greenhouse. Shade curtains (33% transmittance) were used to reduce solar intensity in the greenhouse and artificial lighting, a $1: 1$ mixture of metal halide and high pressure sodium lamps (Sylvania) that delivered an irradiance of approximately $220 \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, was used to extend day length to 16 h and to supplement solar radiation on overcast days. Evaporative cooling and steam heat were used to regulate greenhouse temperature, maintaining a daytime set point of $27^{\circ} \mathrm{C}$. and a nighttime set point of $22^{\circ} \mathrm{C}$. At approximately 7 days post sowing (dps), seedlings were thinned to one seedling per pot and at 17 to 21 dps , the pots were spaced farther apart to accommodate plant growth. Plants were watered with Hoagland nutrient solution as required. Following inoculation, waste irrigation water was collected and treated with 0.5% sodium hypochlorite for 10 minutes to neutralize any viral contamination before discharging into the municipal sewer.

[0329] B. Innoculation.

[0330] For each GENEWARE ${ }^{\text {TM }}$ clone, $180 \mu \mathrm{~L}$ of inoculum was prepared by combining equal volumes of encapsidated RNA transcript and FES buffer (0.1 M glycine, 0.06 M $\mathrm{K}_{2} \mathrm{HPO}_{4}, 1 \%$ sodium pyrophosphate, 1% diatomaceous earth (Sigma), and either 1% silicon carbide (Aldrich), or 1% Bentonite (Sigma)). The inoculum was applied to three greenhouse-grown Nicotiana benthamiana plants at 14 or 17 days post sowing (dps) by distributing it onto the upper surface of one pair of leaves of each plant ($30 \mu \mathrm{~L}$ per leaf). Either the first pair of leaves or the second pair of leaves above the cotyledons was inoculated on 14 or 17 dps plants, respectively. The inoculum was spread across the leaf surface using one of two different procedures. The first procedure utilized a Cleanfoam swab (Texwipe Co, N.I.) to spread the inoculm across the surface of the leaf while the leaf was supported with a plastic pot label ($3 / 4 \times 52 \mathrm{M} / \mathrm{RL}$, White Thermal Pot Label, United Label). The second implemented a $3^{\prime \prime}$ cotton tipped applicator (Calapro Swab, Fisher Scientific) to spread the inoculum and a gloved finger to support the leaf. Following inoculation the plants were misted with deionized water.
[0331] C. Infection.
[0332] At 13 days post inoculation (dpi), the plants were examined visually and a numerical score was assigned to each plant to indicate the extent of viral infection symptoms. $0=$ no infection, $1=$ possible infection, $2=$ infection symptoms limited to leaves<50-75\% fully expanded, 3=typical infection, $4=$ atypically severe infection, often accompanied by moderate to severe wilting and/or necrosis.

[0333] XVI: Phenotypic Evaluation

[0334] At 13 dpi plants were examined and in cases where a plant's visual phenotype deviated substantially from the phenotypes of control plants, a controlled vocabulary utilizing a five-part phrase was used to describe the plants. Phrase: plant region/sub-part/modifier (optional)/symptom/ severity. Plant regions: sink leaves (the upper region of the plant considered to be primarily phloem sink tissue at the time of evaluation), source leaves (expanded, fully-infected leaves considered to be phloem source tissue at the time of evaluation), bypassed leaves (leaves [three and four] that display little or no infection symptoms), inoculated leaves (leaves one and two), stem. Subparts: blade, entire, flower, foci, intervein, leaf, lower, major vein, margin, minor vein, node, petiole, shoot apex, upper, vein, viral path. Modifiers: apical, associated, banded, basal, blotchy, bright, central, crinkled, dark, epinastic, flecked, glossy, gray, hyponastic, increased, intermittent, large-spotted, light, light-colored, light-green, mottled, narrowed, orange, patchy, patterned, radial, reduced, ringspot, small-spotted, smooth, spotted, streaked, subtending, uniform, unusual, white. Symptoms: bleaching, chlorosis, color, contortion, corrugation, curling, dark green, elongation, etching, hyperbranching, mild symptoms, necrosis, patterning, recovery, stunting, texture, trichomes, wilting. Severity: 1-extremely mild/trace, 2 -mild symptom ($<30 \%$ of subpart affected), 3-moderate symptom ($30 \%-70 \%$ of subpart affected), 4-severe symptom ($>70 \%$ of subpart affected). Based on the symptoms a phenotypic hit value (PHV) and a herbicide hit value (HHV) were assigned to each plant phenotyped. Phenotype Hit Value: 1-no predicted value; do not request for repeat analysis, 2-of uncertain value, 3-of potential value; strong phenotype, 4-highly unusual phenotype. Herbicide Hit Value: 1-no predicted value; do not request for repeat analysis, 2-of uncertain value, 3-moderate chlorosis (especially in apical region) or necrosis, 4-Severe phytotoxicity/herbicide mode of action. Comments were added if additional information was required to complete the plant characterization. Results are presented in Table 8.

TABLE 8

SEQ ID NO	Library	Summary of Visual Phenotype
SEQ ID NO:12	ABRC	Stunting
SEQ ID NO:27	ABRC	Stunting
SEQ ID NO:48	ABRC	Stunting
SEQ ID NO:49	ABRC	Stunting
SEQ ID NO:59	ABRC	Stunting
SEQ ID NO:60	ABRC	Stunting
SEQ ID NO:71	ARAB	Stunting
SEQ ID NO:84	ABRC	Stunting
SEQ ID NO:99	ABRC	Stunting
SEQ ID NO:100	ABRC	Stunting
SEQ ID NO:102	ABRC	Stunting
SEQ ID NO:103	ABRC	Stunting
SEQ ID NO:105	ABRC	Stunting

TABLE 8-continued

SEQ ID NO	Library	Summary of Visual Phenotype
SEQ ID NO:106	ABRC	Stunting
SEQ ID NO:107	ABRC	Stunting
SEQ ID NO:108	ABRC	Stunting
SEQ ID NO:109	ABRC	Stunting
SEQ ID NO:110	ABRC	Stunting

[0335] XVII: Metabolic Screens

[0336] A. Sample Generation.
[0337] Individual dwarf tobacco nicotiana benthamiana, (Nb) plants were manually transfected with an unique DNA sequence at 14 or 17 days post sowing using the GENEWARETM viral vector technology (1). Plants were grown and maintained under greenhouse conditions. At 13 days after infection, an infection rating of $0,1,2,3$, or 4 was assigned to each plant. The infection rating documents the degree of infection based on a visual observation. A score of 0 indicates no visual infection. Scores of 1 and 2 indicate varying degrees of partial infection. A score of 4 indicates a plant with a massive overload of infection, the plant is either dead or near death. A score of 3 indicates optimum spread of systemic infection.
[0338] Samples were grouped into sets of up to 96 samples per set for inoculation, harvesting and analysis. Each sample set (SDG) included 8 negative control (reference samples), up to 80 unknown (test) samples, and 8 quality control samples.
[0339] B. Harvesting.
[0340] At 14 days after infection, infected leaf tissue, excluding stems and petioles, was harvested from plants with an infection score of 3 . Infected tissue was placed in a labeled, 50 -milliliter (mL), plastic centrifuge tube containing a tungsten carbide ball approximately 1 cm in diameter. The tube was immediately capped, and dipped in liquid nitrogen for approximately 20 seconds to freeze the sample as quickly as possible to minimize degradation of the sample due to biological processes triggered by the harvesting process. Harvested samples were maintained at -80 C between harvest and analysis. Each sample was assigned a unique identifier, which was used to correlate the plant tissue to the DNA sequence that the plant was transfected with. Each sample set was assigned a unique identifier, which is referred to as the harvest or meta rack ID.
[0341] C. Extraction.
[0342] Prior to analysis, the frozen sample was homogenized by placing the centrifuge tube on a mechanical shaker. The action of the tungsten carbide ball during approximately 30 seconds of vigorous shaking reduced the frozen whole leaf tissue to a finely homogenized frozen powder. Approximately 1 gram of the frozen powder was extracted with 7.5 mL of a solution of isopropanol (IPA):water 70:30 (v:v) by shaking at room temperature for 30 minutes.

[0343] D. Fractionation.

[0344] A 1200 microliter ($\mu \mathrm{L}$) aliquot of the IPA:water extract was partitioned with $1200 \mu \mathrm{~L}$ of hexane. The hexane
layer was removed to a clean glass container. This hexane extract is referred to as fraction 1 (F1). A $90 \mu \mathrm{~L}$ aliquot of the hexane extracted IPA:water extract was removed to a clean glass container. This aliquot is referred to as fraction 4 (F4). The remaining hexane extracted IPA:water extract is referred to as fraction 3 (F3). A $200 \mu \mathrm{~L}$ aliquot of the IPA:water extract was transferred to a clean glass container and referred to as fraction 2 (F2). Each fraction for each sample was assigned a unique aliquot ID (sample name).
[0345] E. Sample Preparation \& Data Generation
[0346] Fraction 1:
[0347] The hexane extract was evaporated to dryness under nitrogen at room temperature. The sample containers were sealed and stored at 4 C prior to analysis, if storage was required. Immediately prior to capillary gas chromatographic analysis using flame ionization detection (GC/FID), the F1 residue was reconstituted with $120 \mu \mathrm{~L}$ of hexane containing pentacosane and hexatriacontane which were used as internal standards for the F1 analyses. The chromatographic data files generated following GC separation and flame ionization detection were named with the fraction 1 aliquot ID for each sample and stored in a folder named after the harvest rack (sample set) ID. FIG. 1 a summarizes the GC/FID parameters used to analyze fraction 1 samples.

[0348] Fraction 2:

[0349] The F2 aliquot was evaporated to dryness under nitrogen at room temperature and reconstituted in heptane containing 2 internal standards, C11:0 and C24:0. In general, fraction 2 is designed to analyze esterified fatty acids, such as phospholipids, triacylglycerides, and thioesters. In order to analyze these compounds by GC/FID, they were transmethylated to their respective methyl esters by addition of sodium methoxide in methanol and heat. Excess reagent was quenched by the addition of a small amount of water, which results in phase separation. The fatty acid methyl esters (FAMEs) were contained in the organic phase. FIG. $1 b$ summarizes the GC/FID parameters used to analyze fraction 1 samples.
[0350] Fraction 3:
[0351] The F3 aliquot was evaporated to dryness under nitrogen at 40 C . In general, the metabolites in this fraction are highly polar and water-soluble. In order to analyze these compounds by GC/FID, the polar functional groups on these compounds were silylated through a 2 -step derivatization process. Initially, the residue was reconstituted with $400 \mu \mathrm{~L}$ of pyridine containing hydroxylamine hydrochloride (25 $\mathrm{mg} / \mathrm{ml}$) and the internal standard, n-octyl- β-D-glucopyranoside (OXIME solution). The derivatization was completed by the addition of $400 \mu \mathrm{~L}$ of the commercially available reagent (N, O-bis[Trimethylsily] trifluoroacetamide) $+1 \%$ Trimethylchlorosilane (BSTFA $+1 \%$ TMCS). The chromatographic data files generated following GC separation and flame ionization detection were named with the fraction 3 aliquot ID for each sample and stored in a folder named after the harvest rack (sample set) ID. FIG. $1 c$ summarizes the GC/FID parameters used to analyze fraction 1 samples.
[0352] Fraction 4:
[0353] The F4 aliquot was diluted with $90 \mu \mathrm{~L}$ of distilled water and $20 \mu \mathrm{~L}$ of an 0.1 N hydrochloric acid solution containing norvaline and sarcosine, which are amino acids
that are used as internal standards for the amino acids analysis. Immediately prior to high performance liquid chromatographic analysis using fluorescence detection (HPLC/FLD), the amino acids in F4 are mixed in the HPLC injector at room temperature with buffered orthophtaldehyde solution, which derivatizes primary amino acids, followed by fluorenyl methyl chloroformate, which derivatizes secondary amino acids. Following HPLC separation and fluorescence detection, chromatographic data files were generated for each sample, named with a sequential number which can be tracked back to the F4 aliquot ID, and stored in a folder named after the harvest rack (sample set) ID. FIG. $1 d$ summarizes the GC/FID parameters used to analyze fraction 1 samples.
[0354] F. Data Analysis \& Hit Detection.
[0355] Two complementary methods were used to identify modifications in the metabolic profile of test samples from reference samples. These data analysis methods are called automated data analysis (ADA) and quantitative data analysis. Each fraction from each sample was analyzed by one or both of these methods to identify hits. If either method identified a fraction as a hit, the sample was called a hit for that fraction. Therefore a sample could be a hit for 1 through 4 fractions.
[0356] ADA employs a qualitative pattern recognition approach using ABNORM (U.S. Pat. No. 5,592,402), which is a proprietary software utility of the Dow Chemical Company. ADA was performed on chromatograms from all 4 fractions. The ADA process developed a statistical model from chromatograms that ideally depict unaltered (reference) metabolic profiles. This model was then used to identify test sample chromatograms that contain statistically significant differences from the normal (control) chromatograms. Updated models for each fraction were generated for each sample set. Chromatograms identified as hits by ADA, were manually reviewed and the data quality visually verified.
[0357] Quantitative data analysis is based on individual peak areas. Quantitative data analysis was applied to specific compounds of interest in fraction 2, fatty acids, and fraction 4, amino acids. The peak areas corresponding to these compounds in these fractions were generated. For fraction 2, the relative percent of the peak areas for the compounds in Table 9 were calculated for each sample. The average ($\overline{\mathrm{x}}$) and standard deviation (STD) of the relative \% of the peak areas for the individual compounds were calculated from the reference sample chromatograms analyzed within the sample set. The average and STD were used to calculate a range for each compound. Depending on the compound, this range was typically $\bar{x}+/-3$ or 5 STDs. If the relative percent of the peak area from an unknown was outside this range, the compound was considered to be significantly different from the 'normal' level and the sample was identified as a hit for F2. For fraction 4, the concentration, in micrograms/gram was calculated for each of the amino acids listed in Table 9, from calibration standards analyzed at the same time as the test samples. The amino acid concentrations from reference samples were used to calculate the acceptable range from the \bar{x} and STD for each amino acid. If the amino acid concentration for an unknown falls outside this range, the amino acid was considered to be different from normal and sample was identified as a hit for F4.

TABLE 9

Tobacco Metabolites Monitored in Fractions 2 and 4 by Quantitative Analysis			
Fraction 2 (Fatty Acids)		Fraction 4 (Amino Acids)	
undecanoic acid methyl ester*	C11:0	Aspartic Acid	ASP
Pentadecanoic acid methyl ester**	C15:0	Glutamic Acid	GLU
Pentadecanoic acid ethyl ester**	C15:0	Serine	SER
palmitic acid methyl ester	C16:0	Histidine	HIS
palmitoleic acid methyl ester	C16:1	Glycine	GLY
iso methylpentadecanoic acid methyl ester	C16:0:Me	Threonine	THR
palmitoleic acid methyl ester	C16:2	Alanine	ALA
palmitolenic acid methyl ester	C16:3	Arginine	ARG
iso methylhexadecanoic acid methyl ester	C17:0Me	Tyrosine	TYR
Stearic acid methyl ester	C18:0	Cystine	CY2
Oleic acid methyl ester	C18:1	Valine	VAL
Linoleic acid methyl ester	C18:2	Methionine	MET
Linolenic acid methyl ester	C18:3	Norvaline*	NVA
Arachidic acid methyl ester	C20:0	Tryptohane	TRP
Lignoceric acid methyl ester**	C24:0	Phenylalanine	PHE
		Isoleucine	ILE
		Leucine	LEU
		Lysine	LYS
		Sarcosine*	SAR
		Proline	PRO

*Internal Standard
**Surrogate Standard
**Surrogate Standard

[0358] Shipping Hits.

[0359] Any F1, F2, or F3 fractions identified as hits by ADA or quantitative analysis, and the most typical null for each fraction for each sample set as identified by ADA, were sent to the Function Discovery Laboratory (see Example 20) for structural characterization of the specific compounds identified. Samples were sealed, packaged on dry ice and shipped for overnight delivery.
[0360] XVIII: Identification of Metabolic Changes
[0361] This Example describes the identification of the chemical nature of genetic modifications made in tobacco plants using GENEWARE viral vector technology. The protocols involved the use of gas chromatography/mass spectrometry (GC/MS) for the analyses of three primary fractions obtained from extraction and fractionation processes.
[0362] A. Methods.
[0363] Major instruments and accessories used included Bioinformatics computer programs, mass spectral libraries, Biotech databases, Nautilus LIMS system (BLIMS; Dow), Biotech Database (eBRAD; Dow), HP Model 6890 capillary Gas Chromatograph (GC; Agilent Technologies), HP Model 5973 Mass Selective Detector (MSD; Agilent Technologies), Auto Sampler and Sample Preparation Station (Leap Technologies), Large Volume Injector system (APEX), Ultra Freezer (Revco), and model LS1006 Barcode Reader (Symbol Technologies).
[0364] Samples and corresponding References (also referred to as controls or nulls) were shipped via overnight mail. Samples were removed from the shipping container, inspected for damage, and then placed in a freezer until analysis by GC/MS.
[0365] Samples were received in vials or in titer plates with a bar-coded titer plate (TP) number, also referred to as a Rack Identification number that is used to track the sample in the BLIMS system. The barcode number is used by the FDL to extract from BLIMS pertinent information from ADA (Automated chromatographic pattern recognition Data Analysis) HIT reports and/or QUANT (a quantitative data analysis approach that makes use of individual peak areas of select peaks corresponding to specific compounds of interest in the fatty acid Fraction 2) HIT reports generated by the Metabolic Screening Laboratory. The information in these reports includes the well position of the respective HITs (Samples), the corresponding well position of the Reference, and other pertinent information, such as, aliquot identification. This information is used to generate ChemStation and Leap sequences for FDL analyses.
[0366] Samples were sequenced for analysis in the following order:

TABLE 10

Analysis Order	
	Solvent Blank
Instrument Performance Standard	
Samples and Associated Reference	
\cdot	
\cdot	
Performance Standard	
Solvent Blank	

[0367] Samples were analyzed on GC/MS systems using the following procedures. Fraction 1 samples were shipped dry and required a hexane reconstitution step. Fraction 2 and Fraction 3 samples were analyzed as received. Internal standards were added to the samples prior to analysis.
[0368] B. Fraction 1 Analysis.
[0369] The name of the GC/MS method used is BIONEUTx (where x is a revision number of the core GC/MS method). The method is retention-time locked to the retention time of pentacosane, an internal standard, using the ChemStation RT Locking algorithm.

Internal Standard(s)	
Pentacosane	
Hexatriacontane	
Chromatography	
Column:	J \& W DB-5MS
	$50 \mathrm{M} \times 0.320 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$ film
Mode: constant flow	
	Flow: $2.0 \mathrm{~mL} / \mathrm{min}$
	Detector: MSD
	Outlet psi: vacuum
Oven:	$40^{\circ} \mathrm{C}$. for 2.0 min
	$20^{\circ} \mathrm{C} . / \mathrm{min}$ to $350^{\circ} \mathrm{C}$., hold 15.0 min
	Equilibration time: 1 min
Inlet:	Mode: split
	Inj Temp: $250^{\circ} \mathrm{C}$.
	Split ratio: 50:1
	Gas Type: Helium
LEAP Injector:	
Injector:	Inj volume: optimized to pentacosane peak intensity (typically $20 \mu \mathrm{~L}$)

-continued	
	Sample pumps: 2
	Wash solvent A: Hexane
	Wash solvent B: Acetone
	Preinj Solvent A washes: 2
	Preinj Solvent B washes: 2
	Postinj Solvent A washes: 2
	Postinj Solvent B washes: 2
APEX Injector	
Method Name:	BIONEUTx (where x is a revision number of the core APEX method).
Modes:	Initial: Standby (GC Split)
	Splitless: (Purge Off) 0.5 min
	GC Split: (Standby) 4 min
	ProSep Split: (Flow Select) 23 min
Temps: $50^{\circ} \mathrm{C}$. for 0.0 min .	
	$300^{\circ} \mathrm{C} . / \mathrm{min}$ to $350^{\circ} \mathrm{C}$., hold for 31.5 min
Mass Spectrometer	
Scan: 35-800	Da at sampling rate 2 (1.96 scans $/ \mathrm{sec}$)
	Solvent delay: 4.0 min
Detector:	EM absolute: False
	EM offset: 0
Temps:	Transfer line: $280^{\circ} \mathrm{C}$.
	Ion source: $150^{\circ} \mathrm{C}$.
	MS Source: $230^{\circ} \mathrm{C}$.

[0370] C. Fraction 2 Analysis:

[0371] The name of the GC/MS method used is BIOFAMEx (where x is a revision number of the core GC/MS method). The method is retention-time locked to RT of undecanoic acid, methyl ester, an internal standard, using the ChemStation RT Locking algorithm.

[^0]-continued

	-Continued
Modes:	Initial: GC Split
	Splitless: 0.5 min
ProSep Split:	GC Split: 4 min
Temps:	21 min
	$60^{\circ} \mathrm{C}$. for 0.5 min.
	$300^{\circ} \mathrm{C} . /$ min to $250^{\circ} \mathrm{C} .$, hold for 20 min
Mass Spectrometer	$300^{\circ} \mathrm{C} . /$ min to $260^{\circ} \mathrm{C} .$, hold for 5 min
Scan: $35-800$	Da at sampling rate $2(1.96$ scans $/ \mathrm{sec})$
	Solvent delay: 4.5 min
Detector:	EM absolute: False
EM offset: 0	
Temps:	Transfer line: $200^{\circ} \mathrm{C}$.
	Ion source: $150^{\circ} \mathrm{C}$.
	MS Source: $230^{\circ} \mathrm{C}$.

[0372] D. Fraction 3 Analysis.
[0373] The name of the GC/MS method used is BIOAQUAx (where x is a revision number of the core GC/MS method). Method is retention-time locked to the RT of n-Octyl- β-D-Glucopyranoside, an internal standard, using the ChemStation RT Locking algorithm.

Internal Standard(s) n-Octyl- β-D-Glucopyranoside Chromatography	
	Chrompack 7454 CP-SIL 8
	$60 \mathrm{M} \times 0.320 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$ film
	Mode: constant flow
	Flow: $2.0 \mathrm{~mL} / \mathrm{min}$
	Detector: MSD
	Outlet psi: vacuum
Oven:	$40^{\circ} \mathrm{C}$. for 2.0 min
	$20^{\circ} \mathrm{C} . / \mathrm{min}$ to $350^{\circ} \mathrm{C}$., hold 10.0 min
	Equilibration time: 1 min
Inlet: Mode: split	
	Inj Temp: $250^{\circ} \mathrm{C}$.
	Split ratio: 50:1
	Gas Type: Helium
LEAP Injector:	
Injector:	Inj volume: Optimized to n-Octyl- β-D-
	Glucopyranoside peak intensity
(Typically $2.5 \mu \mathrm{~L}$)	
	Sample pumps: 2
	Wash solvent A: Hexane
	Wash solvent B: Acetone
	Preinj Solvent A washes: 2
	Preinj Solvent B washes: 2
	Postinj Solvent A washes: 2
	Postinj Solvent B washes: 2
APEX Injector	
Method Name:	BIQAQUAx (where x is a revision number of the core APEX method).
Modes:	Initial: GC Split
	Splitless: 0.5 min
	GC Split: 4 min
	ProSep Split: 20 min
Temps:	$60^{\circ} \mathrm{C}$. for 0.5 min . $300^{\circ} \mathrm{C} . / \mathrm{min}$ to $350^{\circ} \mathrm{C}$., hold for 21.1 min
Mass Spectrometer	
Scan: 35-800	Da at sampling rate $2(1.96 \mathrm{scans} / \mathrm{sec})$
	Solvent delay: 4.0 min
Detector:	EM absolute: False
EM offset: 0	
Temps:	Transfer line: $280^{\circ} \mathrm{C}$.
	Ion source: $150^{\circ} \mathrm{C}$.
	MS Source: $230^{\circ} \mathrm{C}$.

[0374] E. Performance Standard:
[0375] Two mixtures were used as instrument performance standards. One standard was run with Fraction 1 and 3 samples and the second was run with Fraction 2 samples. Below is the composition of the standards as well as approximate retention time values observed when run under the GC/MS conditions previously described. These retention time values are subject to change depending upon specific instrument and chromatographic conditions.

TABLE 11

	Fraction 1 and 3 Performance Standard
	Time
6.25	Compound
7.25	dimethyl malonate
8.15	dimethyl succinate
8.98	dimethyl glutarate
11.06	dimethyl adipate
11.42	dimethyl azelate
11.70	hexadecane
13.57	dimethyl sebacate
15.36	eicosane
16.88	tetracosane
18.26	octacosane
19.95	dotriacontane

[0376]

TABLE 12

	Fraction 2 Performance Standard
Time	Compound
8.82	undecanoic acid, methyl ester
9.32	dodecanoic acid, methyl ester
10.24	tetradecanoic acid, methyl ester
11.07	hexadecanoic acid, methyl ester
11.84	octadecanoic acid, methyl ester
11.90	oleic acid, methyl ester
12.14	linoleic acid, methyl ester
12.39	linolenic acid, methyl ester
12.60	eicosanoic acid, methyl ester
13.42	docosanoic acid, methyl ester

[0377] F. Data Analysis.
[0378] Sample and Reference data sets were processed using the Bioinformatics computer program Maxwell. The principal elements of the program are 1) Data Reduction, 2) two-dimensional Peak Matching, 3) Quantitative Peak Differentiation (Determination of Relative Quantitative Change), 4) Peak Identification, 5) Data Sorting, and 6) Customized Reporting.
[0379] The program queries the user for the filenames of the Reference data set and Sample data set(s) to compare against the Reference. A complete listing of user inputs with example input is shown below.

TABLE 13

Bioinformatics Analysis	
USER QUERY	EXAMPLE USER INPUT
Operator Name	M. Maxwell
Total number of data files to process	5
Which Fraction	3
Reference (Control) File Name	AAPR0020.D
Process a specific RT Range	Y
Specific RT range	6.5-23
Internal Standard Retention Time	14.902
+/- variation in Internal Std. RT	. 004
Variation in peak RI, ChemStation	. 005
Percent variation in peak RI, Biotech	. 010
Database	
Threshold for determining Area \% change	60
Spectral Matching Value (Threshold MSXCR for peaks to be a match)	. 95
Percent to determine LOP-PM* Value	1
Percent to determine LOP-SRT** Value	3
Quality Level for Library (Library match)	80
Subtract Background	Y
Time Range for Background	21.5-22.6
SHORT SUMMARY ($\mathrm{y} / \mathrm{n}, \mathrm{y}=\mathrm{no}$ chromatograms)	Y

*LOP-PM - Limit of Processing for Peak Matching
**LOP-SRT - Limit of Processing for Sorting
[0380] The program integrates the Total Ion Chromatogram (TIC) of the data sets using Agilent Technologies HP ChemStation integrator parameters determined by the analyst. The corresponding raw peak areas are then normalized to the respective Internal Standard peak area. It should be noted that before the normalization is performed, the program chromatographically and spectrally identifies the Internal Standard peak. Should the identification of the Internal Standard not meet established criteria for a given Fraction, then the data set will not be further processed and it will be flagged for analyst intervention.
[0381] Peak tables from the Reference and each Sample were generated. The peak tables are comprised of retention time (RT), retention index (RI) - the retention time relative to the Internal Standard RT, raw peak areas, peak areas normalized to the Internal Standard, and other pertinent information.
[0382] The first of two filtering criteria, established by the analyst was then invoked and must be met before a peak is further processed. The criterion is based upon a peak's normalized area. All normalized peaks having values below the Limit of Processing for Peak Matching (LOP-PM), were considered to be "background". These "peaks" were not carried forth for any type of mathematical calculation or spectral comparison.
[0383] In the initial peak-matching step, the Sample peak table was compared to the Reference peak table and peaks between the two were paired based upon their respective RI values matching one another (within a given variable window). The next step in the peak matching routine utilized mass spectral data. Sample and Reference peaks that have been chromatographically matched were then compared spectrally. The spectral matching was performed using a mass spectral cross-correlation algorithm within the Agilent Technologies HP ChemStation software. The cross-correlation algorithm generates an equivalence value based upon
spectral "fit" that was used to determine whether the chromatographically matched peaks are spectrally similar or not. This equivalence value is referred to as the MS-XCR value and must meet or exceed a predetermined value for a pair of peaks to be "MATCHED," which means they appear to be the same compound in both the Reference and the Sample. The MS-XCR value can also be used to judge peak purity. This two-dimensional peak matching process was repeated until all potential peak matches were processed. At the end of the process, peaks are categorized into two categories, MATCHED and UNMATCHED.
[0384] A second filtering criterion was next invoked, again based upon the normalized area of the MATCHED or UNMATCHED peak. For a peak to be reported and further processed, its normalized area must meet or exceed the predetermined Limit of Processing for Sorting (LOP-SRT).
[0385] Peaks that are UNMATCHED are immediately flagged as different. UNMATCHED peaks are of two types. There are those that are reported in the Reference but appear to be absent in the Sample (based upon criteria for quantitation and reporting). These peaks were designated in the Analyst Report with a percent change of " -100 percent" and the description "UNMATCHED IN SAMPLE." The second types of peaks are those that were not reported in the Reference (again, based upon criteria for quantitation and reporting) but were reported in the Sample, thus appearing to be "new" peaks. These peaks were designated in the Analyst Report with a percent change of " 100 percent" and the description "NEW PEAK UNMATCHED IN NULL."
[0386] MATCHED peaks were processed further for relative quantitative differentiation. This quantitative differentiation is expressed as a percent change of the Sample peak area relative to the area of the Reference peak. A predetermined threshold for change must be observed for the change to be determined biochemical and statistically significant. The change threshold is based upon previously observed biological and analytical variability factors. Only changes above the threshold for change were reported.
[0387] Peaks were then processed through the peak identification process as follows. The mass spectra of the peaks were first searched against mass spectral plant metabolite libraries. The equivalence value assigned to the library match was used as an indication of a proper identification.
[0388] To provide additional confirmation to the identity of a peak, or to suggest other possibilities, library hits were searched further against a Biotechnology database. The Biotechnology database is based on the Access database program from Accelrys (formerly Synopsis) and utilizes Accord for Access (also available from Accelrys) to incorporate chemical structures into the database.
[0389] The Chemical Abstract Services (CAS) number of the compound from the library was searched against those contained in the database. If a match was found, the CAS number in the database was then correlated to the data acquisition method for that record. If the method was matched, the program then compared the retention index (RI), in the Peak Table, of the component against the value contained in the database for that given method. Should the RI's match (within a given window of variability) then the peak identity was given a high degree of certainty. Components in the Sample that are not identified by this process
were assigned a unique identifier based upon Fraction Number and RI (example: F1-U0.555). The unique identifier was used to track unknown components. The program then sorts the data and generates an Analyst Report.
[0390] An Analyst Report is an interim report consisting of PBM algorithm match quality value (equivalence value), RT, Normalized Peak Area, RI (Sample), RI (database) Peak Identification status [peak identity of high certainty (peaks were identified by the program based on the pre-established criteria) or criteria not met (program did not positively identify the component)], Component Name, CAS Number, Mass Spectral Library (containing spectrum most closely matched to that of the component), Unknown ID (unique identifier used to track unidentified components), MS-XCR value, Relative \% Change, Notes (MATCHED UNMATCHED), and other miscellaneous information. The Analyst Report was reviewed manually by the analyst who determined what further analysis was necessary. The analyst also generated a modified report, for further processing by the program, by editing the Analyst Report accordingly.
[0391] For Fractions 2 and 3, derivatization procedures were performed prior to analysis to make the certain components more amenable to gas chromatography. Thus, the compound names in the modified analyst report (MAR) were those of the derivatives. To accurately reflect the true components of these fractions, the MAR was further processed using information contained in an additional database. This database cross-references the observed derivatized compound to that of the original, underivatized "parent" compound by way of their respective CAS numbers and replaces derivatives with parent names and information for the final report. In addition, any unidentified components were assigned a "999999-99-9" CAS number.
[0392] The Modified Analyst Report also contains a HIT Score of 0,1 , or 2 . The value is assigned by the analyst to the data set of the Sample aliquot based on the following criteria:
[0393] 0 No FDL data on Sample
[0394] 1 FDL data collected; Sample not FDL HIT
[0395] 2 FDL data collected; Sample is FDL HIT
[0396] An FDL HIT is defined as a reportable percent change (modification) observed in a Sample relative to Reference in a component of biochemical significance.
[0397] An electronic copy of the final report is entered into the Nautilus LIMS system (BLIMS) and subsequently into eBRAD (Biotech database). The program also generated a hardcopy of the pinpointed TIC and the respective mass spectrum of each component that was reported to have changed
[0398] "NQ" and "NEW" are two terms used in the final report. Both terms refer to UNMATCHED peaks whose percent changes cannot be reported in a numerically quantitative fashion. These terms are defined as follows:
[0399] " NQ " is used in the case where there was a peak reported in the Reference for which there was no match in the Sample (either because there was no peak in the Sample or, if there was, the area of the peak did not satisfy the Limit of Processing for Peak Matching). The percent change designation of " -100% " used in the Analyst report is replaced with "NQ".
[0400] "NEW" is used in those situations where a peak was reported in the Sample but for which there was no corresponding match in the Reference (either because there was no peak in the Reference or, if there was, the area of the peak did not satisfy the Limit of Processing for Peak Matching). For these situations, the percent change designation of " 100% " used in the Analyst Report is replaced with "NEW". The designation of "NEW" in the final report to a component that is present in the Sample but not in the Reference was necessary to eliminate any ambiguity with the appearance of " 100% " for MATCHED peaks. A " 100% " designation in the final report exclusively refers to a component with modification that doubled in the Sample relative to the Reference.
[0401] G. Results.
[0402] The results of the metabolic screening revealed that transfection with 55 of the inserts resulted in measurable metabolic changes.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 122
<210> SEQ ID NO 1
<211> LENGTH: 817
<212> TYPE: DNA
<213> ORGANISM: Nicotiana benthamiana
<400> SEQUENCE: 1
agcaatctta actccgcctt ctacctcgat ctcccaacag aggcaaccct tgcccaactt }6
ctctgaaaca cgcatcacca ttgcacctct ctgctctccg tactcacttg ggcagtatga 120
gaagcaatat gtttacgggg ttcacgaggc tttgcaaggg tcttgcggtt gtgcttgtgg 180
gcggtcacat tgttgtccag attcttcctt ctgctctttc ctatcttgct ctcatccctg 240
tcaagatgag gacgttgcat ggagctggag ggatggattt ctcccacctg atgatcatca 300
tctttaatat tctcaatttg tctacgagga gaggatgata tttcattagc ccagccttca 360
```

tttccgcat tggatattcg actctcctca ttactatatt gcgggtaact gcataataag	420
tgaaccgggg aggtaccatg caacggtgtg gccggtctgc tagagacagg ggtgttgttt	480
cccgatagcc ggccgtgttt cacccgcttt ttcgctgtgt tgtgccagct tctaagagct	540
gttgccacat tatcaccaaa gattataggt ttcattgatg ttcccatctg caaatttcac	600
caaatctctc agcactaatt tatctttata agagtttttg ttgtgaaaag ggaagactag	660
tttagttata gagtacctgt gtgaccaagg cataaagagg gagagtcaca tagctgcaat	720
ggacctgtat gatcaccctg aaacaagaaa caaaactat caatatagaa ggaattaaaa	780
tatgcatctt taattgttcg aacaaaaaaa aaaaaaa	817

```
<210> SEQ ID NO 2
<211> LENGTH: 813
<212> TYPE: DNA
<213> ORGANISM: Nicotiana benthamiana
<400> SEQUENCE: 2
```

tgctgatttt gggtatacaa ctgaaatgtt tgagaaggac atggagcttt ggcaacgaag
ggttgaacat tactggaatc tttaagtcc aaagatctct tcagacagtc tgagaaacat
catggatatg aaggccaatt tggggtcatt tgctgctgct ttgaaggaca aagatgtttg
ggtcatgaat gttgtatcca aagatggacc taacactctc aagattgtat atgaccgtgg
tttgatcggc acaactcatg actggtgtga agcattttcg acatatccta ggacctatga
tttggtccat gegtggagtg ttttctctga cattgaaaag aaaggttgca gcggtgagga
tctgttactc gagatagatc gcatactaag gcctagtggt tttgttatct tcaacgacaa
acaacatgtt attgactttg taaagaagta tttatcggca ttgcactggg aagcagtagc
tgatccaact tcagatccag accaagaagg agatgacatt gtttttatca tccaaaagaa
aatgtggctg acaagtgaaa gcatcagaga tacagagtaa ataaagtttg ccactaagta
cacttcttga ttcattttcc cettcctttt gggattaaga aatacacacc cctaaaggtt
tgggagatat cagtttgatt ttgtagtatt tatgatattt atttcttcct tttctcatt
aacttaattt caacttgttg tttcttttaa ttgataaaca aactcataga ctatatatgc
atttataggc tattctcgaa aaaaaaaaaa aaa

```
<210> SEQ ID NO 3
<211> LENGTH: 945
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 3
```

gaagcacgaa cggcgtcggg ttagtccgac ggaggaacca tgtcctcgtc tcttcttctc
tccggttcta ctgtatcttc ttcgtttatc gctccatcta agccttctct cgtacgaaat 120
tccagtaaga catcactgtt accatttcgt aatgtttcga gaagcttcaa aaccgtcaag 180
tgcaccgttg attcttcata tggaggcaat gttcccacgt tccctcggac gagagtttgg 240
gacccgtaca aacgtctagg agttagtcca tatgcttccg aggaagaaat ctgggcctct 300
cgtaactttc ttttacagca gtacgctgga catgaaagaa gcgaagagtc tatagaagga 360
gcctttgaga agcttctcat gtctagtttt atcagaagga agaagactaa aatcaatctt 420
aaatcaaagt tgaagaagaa agttgaggaa tctcctccgt ggctcaaagc tcttctcgat 480

ttcgttgaaa tgcctcccat ggacactatt ttcagaagac ttttcctctt tgccttcatg	540
ggtggttgga gtatcatgaa ctctgcagaa ggcggtcctg cgtttcaggt ggcggtatca	600
ttggctgcgt gcgtatattt tctgaatgag aagacaaaga gcttggggag agcttgctta	660
atcggaattg gagctttagt tgccgggtgg ttctgcggtt cgttaatcat tcccatgatt	720
ccgacgtttc tcattcagcc tacatggaca ctcgagctcc taacatcact ggtcgcttat	780
gtgtttttgt ttctttcttg tactttcctc aagtaagtta cgttgtggtt ttatccaaac	840
tctttttgtt cttttcgccc agacatttac agaacctttc ggaaaaatta gtgaaagttg	900
ttaagtgaaa aaaaaaaaaa aagggcggcc gcaccctagg ccagt	945

```
<210> SEQ ID NO 4
<211> LENGTH: 945
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 4
```

gaagcacgaa cggcgtcggg ttagtccgac ggaggaacca tgtcctcgtc tctctctc 60
tccggttcta ctgtatcttc ttcgtttatc gctccatcta agcettctct cgtacgaaat 120
tccagtaaga catcactgtt accatttcgt aatgtttcga gaagcttcaa aaccgtcaag 180
tgcaccgttg attcttcata tggaggcaat gttcccacgt tccctcggac gagagtttgg 240
gaccegtaca aacgtctagg agttagtcca tatgcttccg aggaagaaat ctgggcctct 300
cgtaactttc ttttacagca gtacgctgga catgaaagaa gcgaagagtc tatagaagga 360
gcctttgaga agcttctcat gtctagtttt atcagaagga agaagactaa aatcaatctt 420
aaatcaaagt tgaagaagaa agttgaggaa tctcctccgt ggctcaaagc tcttctcgat 480
ttcgttgaaa tgcctcccat ggacactatt ttcagaagac ttttcctctt tgccttcatg 540
ggtggttgga gtatcatgaa ctctgcagaa ggcggtcctg cgtttcaggt ggcggtatca 600
ttggctgcgt gcgtatattt tctgaatgag aagacaaaga gcttggggag agcttgctta 660
atcggaattg gagctttagt tgccgggtgg ttctgcggtt cgttaatcat tcccatgatt 720
ccgacgtttc tcattcagcc tacatggaca ctcgagctcc taacatcact ggtcgcttat 780
gtgtttttgt ttctttcttg tactttcctc aagtaagtta cgttgtggtt ttatccaaac 840
tctttttgtt cttttcgccc agacatttac agaacctttc ggaaaaatta gtgaaagttg 900
ttaagtgaaa aaaaaaaaa aagggcggcc gcaccctagg ccagt 945
$<210>$ SEQ ID NO 5
$<211>$ LENGTH: 934
$<212>$ TYPE: DNA
$<213>$ ORGANISM : Arabidopsis thaliana
$<400>$ SEQUENCE $: 5$
ctcaatggag tacaaacatt tcagccatcc acacactcta aaactccaac agattcagcc
acataaaagc tcagattctt cagtaatctg ctcaggttgt gaatcagcca tctctgaatc
cgaaaccgcg tatatctgtt caacatgtga cttcaatctt catgagcaat gtggtaacgc
agtgcgtggg atgcaacatc cttctcacgc tggtctccac cacttgactc tagtccctta

cacaacttac agcgctggta cottcctctg cagagcctgt ggctgcactg gaggtaaagg

gttctcttac tgttgtcctt tgtgtgactt tgaccttcat gttcaatgcg ctcacctgcc

tcaggtcttg gttcatgagt ctcatcctat gcatagtctt cttcttgtct acaacagtac	420
tcctcctatg tcttttactc agtttggttt cgggaatcag cttgtttgca atctttgtaa	480
tatgactatg gatggtaggt tttggtctta caactgttat gcttgtaact atcatattca	540
tgcttcatgt gctgtgaata agcccaatcc agtggctgct tctgctgaga actgtggggc	600
gagtgatgaa ggaaagacac cgactgctga atctgttcct gttcagggtt tggagactga	660
gcagacggaa caagtagctg caataacaga gcaagtggaa gatccagttt tgaggcaaca	720
gcttgagctt cagaagcttc agcttgagct agatatgagt tctgctctcg caaacatgat	780
tggttccttc aatctcagtt ctttcgtttg aagtgtcttt gtgtttcagt ttgtttgatt	840
ttatgcattt acatgtgttg aattgtctct gttcttgtgt tccctaatgt gcttctgatt	900
tgaataaata tatcctatct atttggttta aaaa	

```
<210> SEQ ID NO 6
<211> LENGTH: 761
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 6
```

aaaggatttg ctctgagggc tgggctcggg ggtcccagtt ccgaacccgt cggctgtcag
cggactgctc gagctgcttc cgcggcgaga gcgggtcgcc gcgtgccggc cgggggacgg
actgggaacg gctctctcgg gagctttccc cgggcgtcga acagtcagct cagaactggt
acggacaagg ggaatccgac tgtttaatta aacaaagca ttgcgatggt ccctgcggat
gctaacgcaa tgtgatttct gcccagtgct ctgaatgtca aagtgaagaa attcaaccaa
gcgcgggtaa acggcgggag taactatgac tctcttaagg tagccaaatg cctcgtcatc
taattagtga cgcgcatgaa tggattaacg agattcccac tgtccctgtc tactatccag
cgaaaccaca gccaagggaa cgggcttggc agaatcagcg gggaaagaag accctgttga
gcttgactct agtccgactt tgtgaaatga cttgagaggt gtaggataag tgggagcttc
ggcgcaagtg aaataccact acttttaacg ttattttact tactccgtga atcggaggcg
gggtacaacc cctgtttttg gtcccaagge tcgcttcggc gggtcgatcc gggcggagga
cattgtcagg tggggagttt ggctggggcg gcacatctgt taaaagataa cgcaggtgtc
ctaagatgag ctcaacgaga acagaaatct cgtgtggaac a
<210> SEQ ID NO 7
$<211>$ LENGTH: 727
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 7
ctctttcctt ctctcaccgc gagagtaacc gagagacatg attctgataa actctaattc
tccgacgcta atctcagccg ttagattcgt gggctcatct cogttcacca ctcgggggct

tccagctggg atttatgcta aggtgcatta tggaacatcg ttgtcgaatg ttgattggtt	480
acacggagga gctgaatcac ttcttgctct taccaatttg tttatcgtgt tgggtcttag	540
acaagctctg aggaagtctc aagatgatga tgatgataaa cttggtaatg atgatgaagt	600
tccaacaact caagaacaag ggaaatcttc agtgtagtaa aacaaatgta aattttttaa	660
ttatggagtt tcacttgttt tttaattaga ttatatatag tcgacgccca tctaattccc	720
attttag	727

$<210>$ SEQ ID NO 8
$<211>$ LENGTH: 288
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE : 8
tgactgatta ctactacttg tactaactct aatacattta caaaacaagt cctcctttcc 60
cccaagtata cagataaaga tttaccagaa ccggttttcc gccttcatct cacatggaaa 120
tcgtaaggag aagacgcata cacttgatct ggaaccacta gtggtaactt ctcaatgtac 180
ataaacaatc gtttctggtt ctctctagcg attgcagtga gattcactgt atcgttttgg 240
tccaaaaca tccagagatc acctgaatct actcttttaa ggctgtct 288

$<210>$ SEQ ID NO 9	
$<211>$ LENGTH: 452	
$<212>$ TYPE $:$ DNA	
$<213>$ ORGANISM: Arabidopsis thaliana	
$<400>$ SEQUENCE $: 9$	60
acctccagcc ctgatgatgg tgtatggaat accggaatca gccaagtatt gctcagcctt	120
tctcttccag accagaatgt tagcattgcc aatactattg agagggtgat taatgtttgt	180
tcctcccatc gacccaacca aaacaatctg cttaactcct gcagagacag ccttaaaaga	1840
gtagattcag gtgatctctg gatgtttttg gaccaaaacg atacagtgaa tctcactgca	240
atcgctagag agaaccagaa acgattgttt atgtacattg agaagttacc actagtggtt	300
ccagatcaag tgtatgcgtc ttctccttac gatttccatg tgagatgaag gcggaaaacc	360
ggttctggta aatctttatc tgtatacttg gggaaaagga ggacttgttt tgtaaatgta	420
ttagagttag tacaagtagt agtaatcagt ca	452

$<210>$ SEQ ID NO 10
$<211>$ LENGTH: 552
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 10$
aaaagccctc catgtcccac caggacttgc accatcaaaa tgggatactt gcagtgatgt
cgtgagtgaa cactggaatg actctccttc ctcggttcta aacatttacc acgagcttat
agctgctggg cttcgtatct gggttttcag tggggacgca gatgccgttg taccagtcac
atcaacccgg tacagtatcg atgcactaaa cottcgtcct ttgagtgcct atggtccttg
gtacttagat ggacaggtgg gagggtggag tcagcagtat gctggtctga actttgtgac

```
gtctgaactc gttagtgact cataatgagt tctgatttga tgtaatgtgt gatttggatt 480
ctcaatcaaa aactttccac ataggccgtt gaaataagaa gagggaaaga gaataaatca 540
gtgttttaag tg 552
```

$<210>$ SEQ ID NO 11
<211> LENGTH: 391
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE : 11
ttttgaatga ataaaagtct tataattatg atgtgtgtac aactacaaag ttttccttgg 60
agtatagttt gaggatttat ccagaagtag cagaagaagc agctacagac tcggagagtt 120
cttccatgag ttccttttgc tccaaagcag cacaagcctg cactgcgtcc tctaaagcac 180
cgtcaagaaa tgttgtaagc gcaaagttca tctttagcct atgatcagtc actctactgt 240
ccttataatt gtatgttctt atcttttctg aacgagctcc agtcccaacc tgagatttcc 300
tttcattcct tatctccct tgttgttccc ttactttat ttcatacagt tttgctcgca 360
gaagctggaa agcacgcgcc ttattcctaa t 391
$<210>S E Q$ ID NO 12
<211> LENGTH: 200
$<212>$ TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 12
ctgcagctgt gtgctcctta gctaaggtgg caatggcaga cgatgagcca aagagaggaa 60
cagaagctgc caagaagaag tatgctccag tctgtgtcac aatgcctacc gccaagatat 120
gccgtaactg agtttgctat ttaccagca actgtatcta tgtcgtataa ctattctcag 180
tgtggtttgt aaggatcata 200
$<210>$ SEQ ID NO 13
<211> LENGTH: 1063
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 13
ttttccagtc tgcaacatat ggaaaggttt tggttttgga tggagtgatt caactcactg
agagagatga atgtgcgtat caagaaatga tcactcatct tcctttgtgc tctatctcca 120
accccaaaaa ggtactggtg attggaggag gagatggagg agtcctgagg gaagtggcac 180
gtcatagttc tgttgagcag attgacattt gtgaaataga taaaatggtg gttgatgtgg 240
ctaagcagta tttccctaat gtagcagttg gatacgagga tcctcgtgtc aacctcatca 300
ttggcgatgg tgttgctttc ttgaagaacg ctgctgaagg aacctatgat gcagttattg 360
ttgattcatc tgatccaatc ggtccagcaa aagagctatt tgagaaacct ttctttgagt 420
cagtgaatag agctcttcgt cctggtggag ttgtgtgcac acaagctgaa agcttgtggc 480
ttcacatgga tatcattgaa gacattgttt ctaattgccg tgacatcttt aaaggatctg 540
ttaactacgc tggttctctg agattagtcc tatgtggcca ggagaagcac attctctcaa 600
ggtagagaag attctattcc aagggaaatc agattaccag gatgttattg ttggaccagt 660
gttccaactt acccgagtgg agtcattgga ttcatgcttt gttcatctga aggaccacaa 720

gtcgatttca agaagccagt gagtctaatc gatactgatg aaagctctat caaatcacac	780
tgtcccttga agtattacaa cgctgagatt cactcagctg ctttctgctt gccctctttt	840
gctaagaagg tgattgattc gaaagccaac tagaaaagag aagagaaatc atttgcttta	900
gagaaacttc atgtggaagt gataatatga tgatacaatg atcctttgga aaaaaataaa	960
gaagttttaa tttttagaat gtaatgttct ttcacctgca atgttatgtgactgcactga	1020
gctatcaatc tcttttata agcattacac atatttcaaa aaa	1063

```
<210> SEQ ID NO 14
<211> LENGTH: 1173
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 14
```

aaatccccaa attttcaaca aggataagag ccggaagctc atcgccggtg aacggaacta
gggtttcatt catccccaaa ttgataacaa gaaaatggct catgcttgcg tctctacatc
ggcttcttct ctcagattca cagctggatt cgtctccgct agtcccaatg gctcctcttt
cgattctccc aagctttctc ttccttcga gcctctccgt tcaaggaaga cgaataagtt
agttagcgat agaaagaatt ggaagaattc aactccgaaa gctgtatatt ccggcaatct
ctggacaccg gagattccgt ctcctcaagg agtttggtcc attagagatg atttacaagt
cccttcttcg cegtattttc ctgcttatge tcaaggacaa ggaccacctc ctatggtgca
agaacgtttc cagagtatca ttagtcagct cttccaatat aggattattc gctgtggtgg
tgctgtggat gacgatatgg caaacataat tgtagctcaa ctcctgtatc ttgatgctgt
tgatcctact aaggatattg tcatgtatgt taattctcct ggtggatcag ttacagctgg
catggctata ttcgatacta tgaggcacat coggcctgat gtgtccactg tttgtgttgg
tctagctgct agtatgggag cttttctgct tagtgctgga accaaaggaa aaagatacag
tctaccaaac tcaaggataa tgatccatca gccgcttggt ggagctcaag gtggccaaac
cgacattgac attcaggcaa atgaaatgct gcatcacaag gcaaacctaa acggttacct
cgcataccac actggtcaaa gcctggagaa gataaaccag gacacagacc gtgatttctt
catgagtgcc aaagaagcaa aagagtatgg acttatcgac ggtgttatca tgaaccctct
taaagctctc cagccacttg cagcagctta atcgcctaaa ggtagtggtt cagctttagc
acttgttctt ttttgggcct ttgatgaact gagattttcc atgaaatatg tttctattct
acaaggaaaa tcagatttgt ttgggatcaa actctgtagt tgatacatac atgaagacca
aagtaaagtt tcttactgtg ctgaaaaaaa aaa
$<210>$ SEQ ID NO 15
<211> LENGTH: 959
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400\rangle$ SEQUENCE : 15
agaaacgatg agttctcaga tttcggagat tgaacaagag cagctgatcg agaagcttga
gatcttcaag atccatggca gagacaaacg tggccgtaag atccttcgta ttatcggaaa 120
attcttccca gctcgatttc tgtcactgga tgtgttgaag aagtatctag aggagaagat 180
atttcctcga ttaggtagaa aaccattcgc cgtactctac gtccacaccg gcgtacagag 240

aagcgagaac ttcccaggta tctcagctct acgagcgatc tacgacgcaa ttccggtaaa	300
cgtcagagac aatcttcagg aggtttactt cctccatcca ggtcttcaat cacgtctctt	360
cctcgccacc tgcggccgat ttctattttc cggcgggttg tacgggaagc tgaggtacat	420
aagcagagtt gattatctgt gggaacatgt gaggaggaat gagatagaga tgccggagtt	480
tgtatacgat cacgatgatg atctggagta tcgtccgatg atggattacg gtcaagaaag	540
cgatcacgcg agggttttcg ccggagccgc cgtggattca tcagtctcaa gtttctccat	600
gaggtgtatc tcatagcgta aagggctaaa actccaccca ctagatatcg gatcgtatct	660
tataaccat ataatatacg aatacgatta ataatatatc aaaaagattg gaaataggtg	720
tgctttttga aattagtgag cgttttttat ggaaaagaaa agaaaagaaa gcagttggcg	780
tctggataaa gggaaggagg agaatcttta gattttttct ttaatctgtt tttcttttgt	840
cttgattagt tttttcttta gtggtggtgg ttgtgagtta gtgtgtaaaa tgtatattgt	900
catatgtgaa tttaataata agtccttttg taagatgatc aagggaaaaa aaaaaaaaa	959

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 250
$<212>$ TYPE: DNA
$<213>$ ORGANISM : Arabidopsis thaliana
$<400>$ SEQUENCE $: 16$
gcagcacttg tctgacccat ggcacaacac tattgtccaa accttcaact aaagagtgaa
gacagactta tgatctcata cctatctatc ttccatcact ttcatgtctg tctgtgagtg
tgtttcatct tagagttctt ggtttttgag cttgaattat tgttgaaccg ttgtagctcc
atgaacaaat ttggaatctt caatgtacag aggaactaag ttaatcaaca ttgttgtact
ctttaaaaa

$<210>$ SEQ ID NO 17
<211> LENGTH: 391
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE: 17
ttttgaatga ataaaagtct tataattatg atgtgtgtac aactacaaag ttttccttgg 60
agtatagttt gaggatttat ccagaagtag cagaagaagc agctacagac tcggagagtt 120
cttccatgag ttccttttgc tccaaagcag cacaagcctg cactgcgtcc tctaaagcac 180
cgtcaagaaa tgttgtaagc gcaaagttca tctttagcct atgatcagtc actctactgt 240
ccttataatt gtatgttctt atcttttctg aacgagctcc agtcccaacc tgagatttcc 300
tttcattcct tatcttctct tgttgttccc ttacttttat ttcatacagt tttgctcgca 360
gaagctggaa agcacgcgcc ttattcctaa t 391
$<210>$ SEQ ID NO 18
<211> LENGTH: 1004
$<212>$ TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 18
agaactagtc agtttctttg ttttagacaa caagaatctg tgaactaaca caaaaacatt
gaaagaatga tcttaacaat gaaacttgtt caccctctcc atcactcttt gtcttcctcc 120

| attccctttc cctcaagaaa aaggcaatcc aaaccgtacc ggtgctcgtt accttctccc | 180 |
| :--- | :--- | :--- |
| ggctgcgaaa aggtcatcag aacagagact gtcctgcctc cggcgccggt gagttgtgaa | 240 |
| gggagaaggg tcttacttgg atgtcttctc gctacagctt ctgggatttt gtcaactggt | 300 |
| tcagccgagg cagtaagcac cagtagaaga gctctacgtg catccaagtt accggaaagc | 360 |
| gatttcacga ctctccccaa tggtctcaag tactatgata taaaggttgg caatggagca | 420 |
| gaggctgtga aaggatctcg ggtcgcagtt cactatgttg caaaatggaa agggataacg | 480 |
| ttcatgacaa gtcgacaagg acttggtgtt ggaggtggaa cgccttatgg gtttgacgtt | 540 |
| ggtcaatcag agagaggcaa tgttctgaaa ggacttgatc ttggtgttga agggatgcgt | 600 |
| gtaggcggtc agagattggt gattgttcct cccgagctgg cttacgggaa gaaaggagtg | 660 |
| caagagattc ctccaaacgc tacgatagag cttgacattg agctgttatc aatcaagcag | 720 |
| agtcctttcg ggacgccagt gaagatagtt gaaggctaaa aggactaatg aagccaacat | 780 |
| tgtaccaaga ttttctgtgt acattcagta aaaaactata aaattgatca aagctatgga | 840 |
| agattcaact gtatgagaag aatctgttta atggattata ccggctagtc cggttttgta | 900 |
| accgctttat aactgtgtct catcactcaa ttcatacact tttggccgtt ttgcaaaaaa | 960 |
| aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaaaaaaa aaaa | |

$<210>$ SEQ ID NO 19
<211> LENGTH: 397
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 19
atagacatgt ttcttcgcgg tcaccacata gcaagcattc tcagcacaag aacactctct 60
actcttctca tgacaaatcc aggtcgaagc ggtcaaggtc cagatcaaga tccccccaca 120
ggcgccatcg taaatgaaca ctctagcaaa ctggtctgag actgtacccg ggacaatatt 180
gtgcgcggtg gatcacagga ttgggttaat gtactggacg gacatcgata taatcaaaaa 240
ctataaagtc accggtttgt gagcgaaata gtgcatagta aaccgctctt tccttagttc 300
ttcagaagaa atatccaaag atttttgact gacttgtttg acaatatcgt tggttggtta 360
agcgttccta tgtaaaattt tgttccctct gaaaaaa 397

```
<210> SEQ ID NO 20
<211> LENGTH: 442
\(<212\rangle\) TYPE: DNA
\(<213>\) ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 20
```

ttttttttaa taataatatt atattattat tgatattcga atgagtcaaa ttcaacagcg

```
<210> SEQ ID NO 21
<211> LENGTH: 813
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 21
ttaacaaata gtcataacaa taaaatatat aaaaataat aatattaata acaataataa}\quad6
taatgataat gggagaaaga aatccctaaa aaaaaattga aaatgggaga aagaaaacca 120
agaaggtttt gtttcatctc ctttcttccc ataagccttt ttcttgtatt gttcccttct 180
cttctctaaa taaaaaaaaa aaaaactgtt ttttgtgaaa attaattgac caaaaacaaa 240
gaaatcttct ttcttctctt ctcttctttg ttaatcttgt tacccttcta ccaccaccac 300
ctgtaaaaaa gaggttttta tctaccacat agagagacca gacaagaaca tgtgattctt 360
tggttaggtc tctcaattct gctgagccac aagctgatcg agctgcattt gctcaatcca }42
agcttctagc ccagcatgat ccattaccgg ttcaaccgga tttggctgct tcatcacgtg 480
ttcccctgag gaagatgttg ctgctttctc tttggcttct gctggagtct ccttcaccag 540
tgactggacc catgacacat caggctcatc accatcaaac gatgacgaag atctcaactt 600
accaagtgct tctgagctca ttccccaatc cggttgacca tttgaagatc cccattttga 660
tgaccatgtg ttgttgttta ccggtgaacc aacgattggg ctagagtttg ttctgagctc 720
tctggagcta aggctacgga actgatgttg ctgctgctgc tgctgctgtt gctgttgttg 780
ttgcttcacg cactgagcca acatggaaac ccg 813
```

$<210>$ SEQ ID NO 22
<211> LENGTH: 397
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 22
atagacatgt ttcttcgcgg tcaccacata gcaagcattc tcagcacaag aacactctct 60
actcttctca tgacaaatcc aggtcgaagc ggtcaaggtc cagatcaaga tccccccaca 120
ggcgccatcg taaatgaaca ctctagcaaa ctggtctgag actgtacccg ggacaatatt 180
gtgcgcggtg gatcacagga ttgggttaat gtactggacg gacatcgata taatcaaaaa 240
ctataaagtc accggtttgt gagcgaaata gtgcatagta aaccgctctt tccttagttc 300
ttcagaagaa atatccaag atttttgact gacttgtttg acaatatcgt tggttggtta 360
agcgttccta tgtaaaattt tgttccctct gaaaaaa 397
$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 625
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE : 23
tatgtgagag atatagtaac tacaactgaa tgaaaaatcc atgagacaaa aaagttcgca
atagaagaat attgattcgg taacaaagca cagcttataa gttttcttgt gttaaagatg
aaccaatttg aagcattaga ggataaactg gactaaactc tttgtcccct ctcgatctga

tcttcactgc ataatcatcc aaagttgctt ttatcccttt ccagatctga tcctctcttt

ggttatcaag ccacagtgag tactgtttag gacttagtct gttcttctgc atcggtgact

ctaactcgtc tgggcctctt gtgtagagat gatgtaggac gatgctcggt ggtagatcat	360
tgatgagagg agatgatccc atttgagatg tttccaggaa aaccaaaggc ctaaacgctc	420
taagagctct gtacggtgct cogagttgtt ccacgggaaa tagattctgt cccactgcta	480
gttccagctc ggccatgtct ttggccattc tgagttttcc ccattctgaa agtggtcgca	540
caagggatgc atgtctgatg tagaagatca aaacccttga cgccatttgt cttgtgagtc	600
ttgtgcagat cgattctgtt cotgc	625

```
<210> SEQ ID NO 24
<211> LENGTH: 959
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE : 24
```

agaaacgatg agttctcaga tttcggagat tgaacaagag cagctgatcg agaagcttga
gatcttcaag atccatggca gagacaaacg tggccgtaag atccttcgta ttatcggaaa 120
attcttccca gctcgatttc tgtcactgga tgtgttgaag aagtatctag aggagaagat 180
atttcctcga ttaggtagaa aaccattcgc cgtactctac gtccacaccg gcgtacagag 240
aagcgagaac ttcccaggta tctcagctct acgagcgatc tacgacgcaa ttccggtaaa 300
cgtcagagac aatcttcagg aggtttactt cctccatcca ggtcttcaat cacgtctctt 360
cctcgccacc tgcggccgat ttctattttc cggcgggttg tacgggaagc tgaggtacat 420
aagcagagtt gattatctgt gggaacatgt gaggaggaat gagatagaga tgccggagtt 480
tgtatacgat cacgatgatg atctggagta tcgtccgatg atggattacg gtcaagaaag 540
cgatcacgcg agggttttcg coggagccgc cgtggattca tcagtctcaa gtttctccat 600
gaggtgtatc tcatagcgta aaaggctaaa actccaccca ctagatatcg gatcgtatct 660
tataaaccat ataatatacg aatacgatta ataatatatc aaaagattg gaaataggtg 720
tgctttttga aattagtgag cgttttttat ggaaaagaaa agaaaagaaa gcagttggcg 780
tctggataaa gggaaggagg agaatcttta gattttttct ttaatctgtt tttcttttgt 840
cttgattagt tttttctta gtggtggtgg ttgtgagtta gtgtgtaaaa tgtatattgt 900
catatgtgaa tttaataata agtccttttg taagatgatc aaggggaaaa aaaaaaaa 959

$<210\rangle$ SEQ ID NO 25	
<211> LENGTH: 618	
<212> TYPE: DNA	
<213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE : 25	
ctttcatgtg agagagagag ttgaattttg cagatgagta tgagaagaag caaagcggaa 60	
gggaagagga gcttacgaga actgagtgag gaagaggaag aagaagaaga aactgaagat	120
gaagatactt ttgaagaaga agaggctttg gagaagaagc agaaaggtaa agctacaagt	180
agtagtggag tttgtcaggt cgagagttgt accgcggata tgagcaaagc caaacagtac	240
cacaaacgac acaaagtctg ccagtttcat gccaaagctc ctcatgttcg gatctctggt	300
cttcaccaac gtttctgcca acaatgcagc aggtttcacg cgctcagtga gtttgatgaa	360
gccaagcgga gttgcaggag acgettagct ggacacaacg agagaaggeg gaaaagcaca	420
actgactaaa gacggtgaaa cgtgtgagat cccggtttga aggttaatga aacaggcttt	480

```
gcttactctc ttctgtcagt ctcttttagc tccttgtaat cctctgtgtc tctgtctgtt
tctccatatt acctgtaatc aaagctatct gctaaaccta cgacatggtt aaataaatgc
attgagactt agtaaaaa618
```

$<210\rangle$ SEQ ID NO 26

<211> LENGTH: 1094

<212> TYPE: DNA

<213> ORGANISM: Arabidopsis thaliana

<400> SEQUENCE: 26
atcttatgca agaagttgct gtggagacat ttggtgctat ggcaaaaact gagaaaattg
catttatcct tgaacaagtt cgcttgtgct tggatcgtca agattttgtt cgtgcacaaa
tcttatctag gaagatcaat cctagagttt ttgacgcaga tacaaaaaaa gataagaaga
aacctaagga aggtgataac atggtagaag aggctcctgc tgatatacca accctttgg
agcttaagcg aatttactac gagcttatga ttcggtacta ttctcataac aatgagtaca
ttgaaatctg ccgtagctac aaggcgatat atgatatccc ttcagtaaaa gaaactccgg
agcagtggat tccggtcctg aggaagatct gctggttctt ggtcttggca cctcatgacc
caatgcaatc aagcttgctc aatgcaactc tggaagacaa gaatttatca gaaatccctg
atttcaagat gcttctaaaa caggtagtga caatggaggt tattcaatgg acatctctgt
ggaacaaata caaggatgag ttcgagaaag agaaaagcat gattggaggt tctttgggtg
acaaagctgg tgaagatctg aaactgagaa tcatcgaaca taatatcctc gttgtctcaa
agtactacgc aaggataacc ttaaagagac ttgccgagct tttatgcctg agcatggagg
aggcggagaa gcatctatcg gagatggtag tgtcaaage actgattgca aaaatagaca
gaccatctgg aattgtgtgc ttccagatcg caaaggacag caacgagatt ctaaactcgt
gggcagggaa tttggagaag cttctagatc ttgtggaaaa gagttgccac caaattcaca
aggaaaccat ggttcacaaa gccgctctca gaccttgaaa acatgcggtc ttcttcatga
aaacttttca ggatcttctt cgttgagtta ttagcatctt tatgtggtaa aaactcgaat
cagtgtttcc ttttaaaaat tgtactatgg atctgtacac taacgaagtg ttttgccact
tattggttaa aaaa
$<210>$ SEQ ID NO 27
<211> LENGTH: 367
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 27
ttttgaaaca taaacaaaac tcttatttat taaggacttg tgctaaatac atttagcctc
aaacatccaa aacttacatt ttcataaag acacgatgag gtgtggtgtt aacatgtatc 120
aacaaccaca ctctcatacg ctcgagggtt tttgtttgga atctattagt aaggagggaa 180
gaaagggatg gtggtctgga aggggcattc accaacttgc tggatcttgc aaatgttagg 240
caagtactta gctgtcttgt aaattttcct ggattggaat ggtccgtgtt gtccctggag 300
gctaacggcc ctggcagctt gtctcaaggt ggggcaaaca caaactggct cttcctggcg 360
aagctcg

$<210>$ SEQ ID NO 28	
$<211>$ LENGTH: 949	
$<212>$ TYPE: DNA	
$<213>$ ORGANISM: Arabidopsis thaliana	
$<400>$ SEQUENCE: 28	60
ctaatggaaa taccgaggcg aatgtagtgg aagctgtaga gaatgtaaag aaggataaga	60
agaagaagaa gaacaaggaa acaaaggtgg aggtaactga ggaagagaag gtcaaagaga	120
ctgatgctgt gattgaagat ggagttaagg agaagaagaa gaagaaggaa actaaggtga	180
aagtaaccga ggaggagaag gtcaaagaga ctgatgctgt gattgaagat ggagttaagg	240
agaaaaagaa gaagaagagc aagtcgaaat ctgttgaggc tgatgatgat aaggagaaag	300
tttcaaagaa aaggaaaaga tcagagcctg aagagactaa agaagagact gaggatgatg	360
atgaagaatc aaaacgtagg aagaaggaag agaatgtagt tgaaaacgat gagggtgttc	420
aagagacacc tgttaaggag actgaaacta aggaaaacgg aaatgctgag aaaagtgaga	480
caaagtcaac aaatcagaag tcaggaaaag ggctttctaa ctcaaaagag ccgaagaaac	540
cgtttcagag ggtgaacgtt gacgaaattg tgtacactga gaatagcaac tcgtactatt	600
caaagggtgg tgctgaaatt ggctatggtc ttaaagctca agaggttctc gggcaagtga	660
gaggaaggga tttccgacat gagaagacga agaagaaacg aggaagctac agaggaggat	720
tgatcgatca agagtcacat tcgactaagt ttaataactc agacgacgaa gaatgattga	780
ttgctttgat catttcaata cccgtaatag ggctcaagtt ttgtgtctgt gcactccttt	900

```
<210> SEQ ID NO 29
<211> LENGTH: 711
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 29
```

ttttttttt ctctcgcaaa cagaaattta tattgacttt taagaacaaa tacaaagtat 60
atctatcaca caactcacaa aagagatagg tacaaacata atgacaaatc acaatcagca 120
caccattaca ttaaaagtca aatttacctt tttaataaga agatacaaaa atatataaag 180
agaagaccaa gacaatttga cttgagtgat taggaggcat tgttggcctg taataatcca 240
tttcgaatct gcgttgccac gtcagcgacg gcgcctggac cgtgagggat aaacaccgcc 300
gaggctttag aagttgctcc gatatctctc attgtgtcaa agtactgagt catcatcacc 360
atgtccaaca catccttcgc tgacgtccct ggcacgtttc ctgcgaacce tagaacactg 420
tctctcagac cgtccacgat cgcttgtctc tgccgagega ttccgagtcc cgacaggtac 480
tttgactctg cttcaccctc tgctcttttg atctgaatga ttttctcagc ctctgctttt 540
tcgctcgctg ccactctcat cetcgccgeg gegttgattt cgttcatggc acgtttaacc 600
tgttgatcag gctcaatgtc gataattagg gtttgaagga tttcgtaacc ataagcagtc 660
atggctttgt ctagctcttc ttccacagat ttggcaattt cattcttctg c 711

<400> SEQUENCE: 30	
gaacatcaga aaaaggcatg taatattaat tcagccaaca tctgtggata tgcaggtgtt	60
gaagagaaac ggtacaaatt aaagttgatt tcttttactt tgttacagct acgtaccata	120
caatcaccea aacatacaaa accttaaag acaaaggttg gcatctctat cagttgggtt	180
ctagtcaatc ttcactgagg agtagatctt tctcacgaac cagaagcaag catagaaacc	240
gattgtgcca gttaggacga agaatgcgta agagatgata atcatgtacc cgaagtagag	300
cattcccgag actagctttg tgatctccag ctttgtgaag aagtagaaga ttgagtagag	360
gaagaggtag aaagcggatg agcccgcagt taagtaagct ctccaccacc agttgtagtc	420
ttcgctacaa agctggaagt agcagagcac cactgtgatc tctgcacagg tgacgatcaa	480
gatcaaaaa actataaaga ggaacccgaa gatgtagtag aactggttca gccatataga	540
tgtcaagatg aagaagagct cgatgaagac tgctccaac gggagaatgc ctccaattag	600
tatagagaaa actggtttca tgtaccacgg ctgctctggt acttgcctcg ggatcttgtt	660
tgttttgact ggatcttcaa ttgctggctt cttgtaaccc agatagctac caacgaagac	720
tagtgggact gagatgccaa accagaggca gaagagagca aacattgtac caaatggtat	780
ggctccagat gactgttctc cccaaataag ggcattcaga acaaagaaga tagcaaaaag	840
gataccggga aacatgaatg cagtcttcaa ggtcattctc ttccacttgt ttcctttgaa	900
cattttgtga aggcgagacg aggagtaacc agcgaatatg cccatgaaaa cccacaagag	960
aaccatggca gtcataagce ctcctctgtt ggatggagat aagaagceaa gcaacgcaaa	1020
catcattgta acaagtgaca ttccgaagat ctgaacacct gtaccaacat aaacacacaa	1080
taaaccagag ttcaccggtg gcctgaagac atctccgtgt acaagcttcc at	1132

$<210>$ SEQ ID NO 31
<211> LENGTH: 389
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE : 31
agtgaagcaa tggagtccag atggagtgac tcggattggt gtgattggga aatcggtata

```
<210> SEQ ID NO 32
<211> LENGTH: 711
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 32
```

gaagaagaag aagtaatggc ttcctctatg ctctcctctg cogctgtggt tacctccccg	60
gctcaagcca ccatggtcgc tccattcact ggtttgaagt catccgcttc tttcccggtc	120
acccgcaagg ccaacaacga cattacttcc atcacaagca atgggggaag agttagctgc	180

atgaaggtgt ggccaccaat cggaaagaag aagtttgaga ctctatctta cctccctgac	240
cttactgacg tcgaattggc taaggaagtt gactaccttc tccgcaacaa gtggattcct	300
tgtgttgaat tcgagttgga gcacggattt gtgtaccgtg agcacggaaa cactcccgga	360
tactacgatg gacggtactg gacaatgtgg aagcttccat tgttcggatg caccgactct	420
gctcaagtat tgaaggaagt tgaagaatgc aagaaggagt acccgggcgc cttcattagg	480
atcatcggat tcgacaacac cogtcaagtc cagtgcatca gtttcattgc ctacaagccc	540
ccaagcttca ctgatgctta aatccttttc tggaatattc aatgttgact atccggaacc	600
caattttgta tggtcaatgt aaatttaagt aattattttg ccaaagtgaa aaaactgaag	660
gtttgttttt ctatcatttc ctctataaaa atctctattc atatcacttc a	

```
<210> SEQ ID NO 33
<211> LENGTH: 607
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 33
```

agcaaccttt ctctgaattc ggggaaatag tgtctgtcaa gattcctgtt ggtaaaggat 60
gcggatttgt tcagtttgtt aacagaccaa atgcagagga ggctttggaa aaactcaatg 120
ggactgtaat tggcaaacaa acagtccggc tttcttgggg cogtaatcca gccaataagc 180
agcctagaga taagtatgga aaccaatggg ttgatccgta ctatggagga cagttttaca 240
atgggtatgg atacatggta cctcaacctg acccgagaat gtatcctgct gcaccttact 300
atccaatgta cggtggtcat cagcaacaag ttagctgagg aaactaaag cttaatctga 360
gcatctatct ataggacaac aaaactcac tcaggttagg tgatgttagg aggtataagg 420
caaaagtggt tggcttcttg tctctacttg agtttagggt ttatcatctt ttggacatcg 480
aattttggtg gaaatcatac agtaatttag gagacttgga tttgattgat taatttgatt 540
tgtttcttct gatctttttg actattgaac ttattgatca aagaagtgag ttgcaccaaa 600
aaaaaaa

$<210>$ SEQ ID NO 34	
$<211>$ LENGTH: 874	
$<212>$ TYPE: DNA	
$<213>$ ORGANISM: Arabidopsis thaliana	
$<400>$ SEQUENCE $: 34$	60
gtacaatgtc tcctatgtct accatgccct agatgcctac atcgagagag acaatgtcgg	120
cttgaaaggt ttcaccaagt cagtttcttt agtctaaagg aaaaccgtat ttgtgtctct	180
tcagctggtg gatcatcttt ttgttattgt tgagggttta acgctaatag gttctttaac	240
gattcaagtc ttgaagaacg aggttatgct gagaagttta tggagtatca gatgcattgt	300
ttgcgatgga gcttgcactg actttggaga aacttattaa tgaaaagctt ctgaagttac	360
aaagtgttgg tgtgaagaac aatgatgtta agctggttga ttttgtagaa tctgagtttc	30
taggcgagct ggtcgaagcc atcaagaaaa tctcagagta catagatgga acaaaaataa	420
ggtcaatgca gtggtgaagc tgagatcgga tgtttctgat ataagctggc aagtgaagat	480
ggagggtcaa agactaaccc aaggctggca aaagttcgca acaagccacg atctccgagt	540
cgtcgacata gttgttttca gacatgatgg agatttcttc tcaaaacttt gaattctttg	600

$<210>$ SEQ ID NO 35
$<211>$ LENGTH: 874
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE : 35
gtacaatgtc tcctatgtct accatgccct agatgcctac atcgagagag acaatgtcgg60
cttgaaaggt ttcaccaagt cagtttcttt agtctaaagg aaaaccgtat ttgtgtctct 120
tcagctggtg gatcatcttt ttgttattgt tgagggttta acgctaatag gttctttaac 180
gattcaagtc ttgaagaacg aggttatgct gagaagttta tggagtatca gatgcattgt 240
ttgcgatgga gcttgcactg actttggaga aacttattaa tgaaaagctt ctgaagttac 300
aaagtgttgg tgtgaagaac aatgatgtta agctggttga ttttgtagaa tctgagtttc 360
taggcgagct ggtcgaagcc atcaagaaaa tctcagagta catagatgga acaaaaataa 420
ggtcaatgca gtggtgaagc tgagatcgga tgtttctgat ataagctggc aagtgaagat 480
ggagggtcaa agactaaccc aaggctggca aaagttcgca acaagccacg atctccgagt 540
cgtcgacata gttgttttca gacatgatgg agatttcttc tcaaaacttt gaattctttg 600660720780
<210> SEQ ID NO 36
<211> LENGTH: 582
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 36
aaagaagct tcatgtatct gatgaagatt ttgccaagtg gaagtttgcg ttcatgtcaa 60
tggggcgtcc agagtacttg caggacacag atgttgttta taatcgcttc cagagaagag 120
atgtctatgg tgcttttgag cagtacctcg ggttggagca tgctgacact actcctaaga 180240
agccccaaaa catgaacaca aatgtcagga gacattgtgg cagcaacgtt ggaccaaggc 300
attgattgga ccaatgcatc gaataagaag ggaaagggcg agtgtgaggg tgtgatgatg 360420

<210> SEQ ID NO 37	
<211> LENGTH: 938	
$<212>$ TYPE: DNA	
<213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE : 37	
agttattaag cttttaaatt ttataaataa ttaattatta tcttaactaa tcttgatctt	60
ttttattttt tattttttg gttagctgga aaataaattg toggcaatta cagatcaaaa	120
tgaggcggag aaatatgtag atgtgattga cccaagggat attaagattg ggagcagaaa	180
attttataga tacattggat cacttactac tcctccttgt acgcaaaatg ttatttggac	240
cgtcgttaaa aaggtaaata ctcatcgtta ttttcttctc ttttttactt aatcaaacat	300
agcattaata gatcattaca aggtactaat agtgtgaata tccatatcca aaaggtttat	360
ccatctacat gttaactagg tctatttttc caattttaaa ttttgacttt ttattttaaa	420
atcattcgtt taaatttatt tggttggttt tttaggtaag gactgtgacg aaaaaccaag	480
tgaagctact cagagtggcg gttcacgatg taagttttac ttaaataatt tacttagtga	540
atttcacaac tatactatat cttagaagtt gaatgtatat tatatttgtt tattatcaaa	600
aatgtaaata tgattgaaaa ataaatttgc agaattcaga tacaaatgcg agaccagttc	660
aacctacaaa taagcgcgtg gtaaagttat acaaaccaaa atcactatga atcaaggcgt	720
cacatgaatc aaatacaatt aatttatttc aatttttac aaccacagtg tactatttat	780
ttaatttttt tgttcaccaa agtttttata tataacacga aaaatatatg atgtatgtgt	840
tttcctgagt atcctatggt gtcccatctt cctcctgtag tttcaagatc ttcaatccaa	900
tctaattcaa atataaaaa aaaaaaaaa aaaaaaa	938

$<210>$ SEQ ID NO 38
$<211>$ LENGTH: 1386
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 38$
gattctctct ctagcgatgt cgatcaaacc ggagaattct ccgattccgt tgattgggat
taataatacg tgtgaaatca tggtgtcttt gagttcatga agaacggagg ttaacctaat 120
cgaagatttg atttgggact gcgaatgaga gagaagacgt tgaaggctca aattggagat 180
ttctatgaat ttgttgattt gagagaagaa ttgaggctca ttcgtaacgg agggaaggtg 240
acggtgacgg cgatggtgaa tttatagttg tacacggagc tggaactcat caaggacaaa 300
gaaggcaaag ctactcatct acttaagttc tgctccaaag ctgaaatacg gagattcaga 360
tcctttgttc ccatgaatca actacagacg ctttaataat ctgagggaat cttccgtgcc 420
aatatggaga gatcatcatc atcatcatca tcatcatcat caacatcatc atcatcatca 480
ttatcatcat catcatcatc gtcatcgtca tcgtcatcat catcgtcatg tgatcaggta 540
atattgactg gatcagcaaa ttcgccgacg aattagagtg gaacctcaga gggaattttt 600
tttttacgat ttgtctaatc tgattcgaaa ttttgtctcg tggtgatgcc gatgaaatag 660
aagatgtgta cctttcatat cattcactct ggttttatgg gatcagaaga aattagcgag 720
agtaaaatct gtggacctgc accatgtaac ttgattatgg cactcagtcc gagtaaggtt 780
ctgacacatg ttatctcatt ctatgtttac atgcttgttc atcttcaggt ttggaatctt 840

ggtttacctt acccaacttt tacattggcc attgacgata agccctatct aaataccgtc	900
tctgatgatc actctgttaa ggtcaaaat gttgattgga tcagcaaact ccotgacgat	960
gtattgctca taatattatc gagactttcc acagaagaag ccataaggac gagtgttgtg	1020
tcgaagcgat gggaacatgt gtggagtcaa atgtctcatc tcgtcttgga catgcggaag	1080
aagattatca attccaacaa cacgcctgat ggttcgaatc cagttgctac attgattact	1140
caggttataa acaatcatcg tggacatcta gagagctgcg tgatcatgca tgtcccatat	1200
caaggtggaa atggaatgct caattcttgg attcgattac tgagttgcat gaaacgcacg	1260
aaagttctca cacttagaac cattatgata cttgggatcg aaagttcaaa acttttaact	1320
tttctcccga ctccttgtcc catccaagtc ttatgtcact ctcgctacat tcatactttc	1380
tcgaaa	

$<210>$ SEQ ID NO 39
$<211>$ LENGTH: 719
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE : 39
caatagtcat ggctagaaac cttgaagagg aatcaagtgg tgatacagag ttcattaaag

```
<210> SEQ ID NO 40
<211> LENGTH: 808
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 40
```

caaagaagaa gatttccaga gatacgatga gtcgtctgat tcaacattct acgaagctcc

aactggcgac gcagatcatg ctctcattgt tggatcatac tttcactacg coggaggatt	540
tgaagctcct caggccgttg atatatctcc aaatccaggg cgttcagatc ctatgtacgt	600
tgtttactct agaaactcc ccatggttta aacctgagat ccaagcacat catgtataca	660
catagtagag accgaggaaa ctaattcttc gattaagaca agggaacttc tgaaatcttg	720
tttataaaga atgtgccact ctctcaacac taataacaat gtcatataaa gaatctgaag	780
ccagattcgc aaatttgacg ataaaaa	808

```
<210> SEQ ID NO 41
<211> LENGTH: 626
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 41
```

tttttttgga agaaagtgta aatacttgaa acttttcaat ctaaaggttt tcacagttga 60
tgtgatctca aataacaaaa aaaggtaata cgaactcata aactgttgtt caaaaaggga 120
accagagaaa cattgtcaat ctaattcagt ttagatgaag aggctgcaaa acccgaactc 180
aatcttgtgt gtcgtttcac catcctcctt tgcagctgaa gttccctcag aatatgtgca 240
tcaagtcata agcaaatgtc cagaacagca caaacgacat aaggccacca agaaagccgt 300
caaaaggac ccgattccac gaatcaaagt acaagtcagc tgagaatcct gccttagcca 360
tgagcccaac agatgtgatc aacatcacca caagataaa tacaaaacca atcaagccat 420
tgaatccaat tattcctgct aagacaccag ctatgataga cagaaacgtc cggctgtttt 480
gaatgacttt caaattgttc tgcaaattct ctgcactgaa agttggtatg tcactcatga 540
tatcctttga tctcttctca gatgaaccca tttaagatag caacaataat tagaaacgag 600
$\begin{array}{ll}\text { agtagtaaga ggaagatcga agtagc } & 626\end{array}$
$<210>$ SEQ ID NO 42
<211> LENGTH: 261
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400 > SEQUENCE: 42
ttttttttt ttttccaaa aaggttcaaa atcataacac aaaacaaaag aaataaacag 60
gaagctcgag tgccaagtac ctcogccacc tccgatcaag aacccaattc cgagaattga 120
gctccgacgg agaataaacg aagcggtaac acaaacaacc aaccaaatac caaactacta 180
aagtaaagaa actaaaatag tccttcattt catcagcgga aagagttttg atgttcagag 240
ttcacttggc accettcttg a 261
$<210>$ SEQ ID NO 43
<211> LENGTH: 725
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 43
gatatgagta gccaaatcge tttgtcaccg gccatcgccg cegccattcg ccgtccgtcc 60
tctcacgact gtctatccgc ttccgccact actgctaccg ccacccccat ggctctcaaa 120
tcttgcatcg tcgcacctct ctcgctattc acctctcaat ctcaaatcaa acactcaagc 180
tcaagaaaaa cttctcgaac cacgattcga tgcgatgtag cgataaaatc cgcagattcg 240

ataaacgcag acgccaatcc ttcgtcctca ccgtcatcag aggaagaaat cgaagcggaa	300
gcgaaggcga agataggatc tagggttaga gtaactgcac cgttgaaggt ttatcatgta	360
aatcgagttc cagaggttga tttagaaggt atggaaggta aactcaaga ttacgttgct	420
gtttggaaag ggaaacgaat ctcagctaat cttccttata agattgagtt cttcaaagaa	480
attgaaggtc gtggtcttgt taaatttgtt tcacatctta aggaagatga gttcgagttc	540
attgatcagt gatgaaacaa gaaagacaat ttttgttttc ctttctcagt gtttgttttt	600
gtttgttgtg tttactggaa cctgggaatg gagaatgatt tgtatgtagt gtgatgtgta	660
ttcaaccttt agcaatcata tacataaggg tttcttcaaa aaaaaaaaa aaaaaaaaaa	720
aaaaa	

```
<210> SEQ ID NO 44
<211> LENGTH: 983
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 44
```

tctttcttct tcctgattgg aattttaggg cttttgaaag cacgaacgcg tgaagctcta 60
atcgagaaaa aaatggaggt tttggatagg agagacgatg agatcaggga ctcgggaaac 120
atggacagca tcaagtcaca ctatgttacc gactctgttt cogaggaacg ccgctctcgt 180
gagctcaagg atggtctcca tcctttacgg tacaagtttt cgatatggta cactcgtcgc 240
acaccagggg ttcggaacca gtcttatgaa gataacatca agaagatggt agaattcagc 300
acggttgaag gattttgggc ctgctactgt caccttgctc gttcttctct cttgcctagt 360
ccaacagatc ttcatttctt taaggatggg attcgtccat tgtgggagga tggtgccaac 420
tgcaatggag gaaagtggat catacgtttc tcaaagttg tatctgctcg cttctgggag 480
gatctgcttc ttgcgttggt aggcgaccag cttgatgatg ctgataacat atgtggggca 540
gtactgagtg tccgtttcaa cgaggacatc attagtgtat ggaatcgcaa tgcttctgac 600
catcaggcag tgatgggttt gagagactca atcaagcggc atttgaagtt gcctcatgca 660
tatgtcatgg aatacaagcc acacgatgct tctctccgcg acaactcttc ctacagaaac 720
acatggctga gaggataggc ccaaagtcga tgattgtatc atgtaatgtg gagaagattt 780
gggaagctca tctgcaacct gggaagatat ctggattgaa ccctgtatcc aataccatac 840
tgtaccggag gcttacaata tcagaaaaac aaaatccggg ctacttctgt gtcagtatgt 900
gttcatttcg tttttctttt acagtacatc ttgttaactt caatggtttg actcttgatc 960
aaaactataa gggttaattt tca 983
$<210>$ SEQ ID NO 45
<211> LENGTH: 693
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 45
aaagacgctg aagaagaact ttgccaacaa gggtcttaac gctaaagacc ttgtggttct
ctcagggggt cacaccattg gaatctctag ttgcgctctc gtcaacagtc gtctctacaa 120
cttcacagga aagggcgatt ctgacccatc catgaaccct agctacgtga gggaattgaa 180
gagaaagtgc ccgcctacag atttcagaac ctcactgaac atggacccag gcagtgcgtt 240

$<210>$ SEQ ID NO 47
$<211>$ LENGTH: 603
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 47$

gtaaccatgc cttctctcta cgaaaaatcg gaacttttct ctgtcacaga gaattttcta	60
aatccgagat tcacctggac cattcgggga ttctctacgc tgctaaaaaa cagttaccta	120
tcagaagtgt tctccatcgg aggaagaagt tggaatatac aaatcaatcc aagtggtctt	180
ggtacgggag agggaaaagc tttgtcgatg tatcttggcc ttaatgtgaa tgagatattc	240
agaccatatg agaagattta tgttcgagcc aagcttcgag ctcttaacca actcaatctc	300
agtaacatcg aaagggaact cgatatttgg tacaatggtc cgggatatgg agaatatagc	360

tggggtttcc ctgagtttat ctatttccct tatctcacag attcatcaaa gggtttcgtt	420
aagaacgatg tgttgatggt tcaagttgaa atggaggcca tttcttcaac caagtacttc	480
cogagttaga ttttctctaa gcaaagaact tgtacctacc tccatgtgtt tgatttgtta	540
tcaaatacta ataagaattt gattatgcat ttcaaataca attgtttctt tttcttaaaa	600
aaa	603

$<210\rangle$ SEQ ID NO 48
<211> LENGTH: 154
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 48
tttttttgt tataagaaag accgattgat ttatatgtaa caccaaaaca acatagagaa 60
aaccaaaagg aacaagcaag agcttcccac ggcagacatt ctagaaggat gatttactca 120
aagatatcat catcgtcatc ggggaggggt tgag 154

```
<210> SEQ ID NO 49
<211> LENGTH: 162
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 49
```

gaagaagcag ctgaagctgc taaatctgct tgaaaaacc cgctattgat ttatggtctc 60
ttccttgttg tttcctcgag atgttgttaa tctctgttat ttgttgctga accatcttgt 120
atttgttttt ctttggtgt aacactttc cttatcaagt aa 162
$<210>$ SEQ ID NO 50
$<211>$ LENGTH: 225
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 50$
ttttttaaaa tttaaaaaca tattttcaaa tcaatgtaaa atagaaacgt tgaagagaga

aacaactgaa gaatgggggc aaagcgccag aaacttgtaa aaacaagtaa aaggattggc
aaaagtaaga aagcacacca ctttaaaact aacattaagc tttggatgat gatgattctt

cttcgtcatc ttcatcaatg tcccaactta aatcttcatc ttcct
$<210>$ SEQ ID NO 51
<211> LENGTH: 1261
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 51
tgaaaccgga aatgtagtaa cttgacataa gtttttcaat ccgacaataa aagtgatccg 60
agttcgaatc tatcaaaac caacgacaa aaactaatca cgacgacata gcgttgttga 120
ctacaaacag ttacaacatc ctactttgat agagattgtg gatccactct tatcactcgt 180
cagctggtgg cgaacgagga gaccggctct tctgcattgg gctctctgca ccatcatacc 240
caccatcact gtctcttctt cctattgacc cagggctttc aacttggcca ttctcggggc 300
tagacctcga tctctctctc ctttcaatgg gactttcaac ttcaccaacc ccatttctcg 360
gactctcctt cttgaacggg ctgtgattag ggctcatcct ctctctcttg ttgttgggac 420

tgcggctgta cttagtaggg cttgcgactc tctccctcct gcgagggcta tcattgcctc	480
tgcggtcacg accatactcg ggactgccac gtcttgattt cttgtaagga cttgggctac	540
gtcttcgacc atagtcagga ctggtccttt cetttctgta ggcagcaaca ggactagctc	600
ctcggccata atcagggctt cctctttctc ttttgtaagg actaggtgat cgccttctcc	660
tttcaggtga cctatcacgg cgtctttcag gactgtgtcc atttcctcta gcatcatcat	720
ccttcacagc atactccacc gagatcacct tatccatcag cttactgtta tttgaagcat	780
ccaatgctct ggtggcatcc tcttgtgcct cgtactggat aaatgcaaaa ttcctcctga	840
tcctaacgtt tacgatcttt ccatacggct caaagtgttt ctctagatcc cgggtcctag	900
tattatccgc atcaaagtta atcacaaaga gagtcttgga aggtctcatg ctggatgagg	960
atctccttga accaccacca gatcttttat cacctccacg ttcactcttt gtccattcaa	1020
cacgaagtct gcgtccctta cgcccaaatt caaagcggtc aagtgctcgg atggcatctt	1080
ccgcatccct ttcatcttcc atgtatacaa aagcaaaccc agctttcata tcaaccotct	1140
caaccttgcc gtatttcctg aatagtcgtt ccaggtcacc ttcgcgcgca tcatactcaa	1200
agttcccaca gaagactggc ttcatgcttc ctgtagaatg attttggcag gcgtagtcgc	1260
g	1261

$<210>$ SEQ ID NO 52
$<211>$ LENGTH: 745
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 52$

acgataactc cgccgtctcc cgccgtcttg ctctcactct cctcgtcggc gcctgctgtt	60
ggttccaag tatctcctgc tgatgccgcc tacggtgaag ctgcaaacgt gtttgggaag	120
ccaaagacga acacagactt cttgccatac aatggagatg ggttcaaagt gcaggttcca	180
gcaaaatgga acccaagcaa agagattgag tatccaggac aagtccttag gttcgaagac	240
aacttcgatg ctactagcaa tctcaatgtc atggtcactc ctaccgacaa gaagtccatc	300
actgattacg gttctcccga agagttcctc tctcaggtta attacctcct agggaaacaa	360
gcttacttcg gtgagactgc ctctgaggga ggctttgaca acaatgcagt ggcaacagca	420
aacattctgg agtcatcatc tcaggaagtt ggtgggaaac cctactatta cttgtctgtg	480
ttgacaagaa cggctgatgg agacgaaggt gggaagcatc agctgatcac agcaaccgtg	540
aatggaggga agctttacat ctgcaaagca caagctggag acaagaggtg gttcaaggga	600
gccaggaaat ttgtcgagag cgcagccact tctttcagtg ttgcttgagt gaaagcaaca	660
caacgtaaca atgctctgct tgctttcttc atttgtctct tgtaaaaat ggaaaatgaa	720

$<210>$ SEQ ID NO 53
$<211>$ LENGTH $: 725$
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM : Arabidopsis thaliana
$<400>$ SEQUENCE $: 53$
gatatgagta gccaaatcgc tttgtcaccg gccatcgccg ccgccattcg ccgtccgtcc

tcttgcatcg tcgcacctct ctcgctattc acctctcaat ctcaaatcaa acactcaagc	180
tcaagaaaa cttctcgaac cacgattcga tgcgatgtag cgataaaatc cgcagattcg	240
ataaacgcag acgccaatcc ttcgtcctca ccgtcatcag aggaagaaat cgaagcggaa	300
gcgaaggcga agataggatc tagggttaga gtaactgcac cgttgaaggt ttatcatgta	360
aatcgagttc cagaggttga tttagaaggt atggaaggta aactcaaaga ttacgttgct	420
gtttggaaag ggaaacgaat ctcagctaat cttccttata agattgagtt cttcaaagaa	480
attgaaggtc gtggtcttgt taaatttgtt tcacatctta aggaagatga gttcgagttc	540
attgatcagt gatgaaacaa gaaagacaat tttgttttc ctttctcagt gtttgttttt	600
gtttgttgtg tttactggaa cctgggaatg gagaatgatt tgtatgtagt gtgatgtgta	660
ttcaaccttt agcaatcata tacataaggg tttcttcaaa aaaaaaaaaa aaaaaaaaaa	720
aaaaa	725

$<210>$ SEQ ID NO 54
$<211>$ LENGTH : 725
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 54$
gatatgagta gccaaatcge tttgtcaccg gccatcgccg cogccattcg cegtccgtcc 60
tctcacgact gtctatccge ttccgccact actgctaccg ccacccccat ggctctcaaa 120
tcttgcatcg tegcacctct ctcgctattc acctctcaat ctcaaatcaa acactcaagc 180
tcaagaaaaa cttctcgaac cacgattcga tgcgatgtag cgataaaatc cgcagattcg 240
ataaacgcag acgccaatcc ttcgtcctca cogtcatcag aggaagaaat cgaagcggaa 300
gcgaaggcga agataggatc tagggttaga gtaactgcac cgttgaaggt ttatcatgta 360
aatcgagttc cagaggttga tttagaaggt atggaaggta aactcaaaga ttacgttgct 420
gtttggaaag ggaaacgaat ctcagctaat cttccttata agattgagtt cttcaaagaa 480
attgaaggtc gtggtcttgt taaatttgtt tcacatctta aggaagatga gttcgagttc 540
attgatcagt gatgaaacaa gaaagacaat ttttgttttc ctttctcagt gtttgttttt 600
gtttgttgtg tttactggaa cctgggaatg gagaatgatt tgtatgtagt gtgatgtgta 660
ttcaaccttt agcaatcata tacataaggg tttctcaaa aaaaaaaaa aaaaaaaaa 720
aaaa $\quad 725$
$<210>$ SEQ ID NO 55
<211> LENGTH: 724
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 55
agtaacgag caaaagaaga agagaaacaa caagaagtag taatggcttc ctctatgctc 60
tcctccgccg ctgtggttac atccccggct caggccacca tggtcgctcc attcaccggc 120
ttgaagtcat cogctgcatt cocggtcacc cgcaagacca acaaggacat cacttccatc 180
gcaagcaacg ggggaagagt tagctgcatg aaggtgtggc caccaattgg aaagaagaag 240
tttgagactc tatcttacct ccctgacctt agtgacgtcg aattggctaa ggaagttgac 300
taccttctcc gcaacaagtg gattccttgt gttgaattcg agttagagca cggatttgtg 360

taccgtgagc acggaaacac tcccggatac tacgatggac ggtactggac aatgtggaag	420
cttccattgt tcggatgcac cgactccgct caagtgttga aggaagttga agaatgcaag	480
aaggagtacc cgggcgcctt cattaggatc atcggattcg acaacacccg tcaagtccaa	540
tgcatcagtt tcattgccta caagccccca agcttcaccg aagcttaatt tcttttctaa	600
aacattctta tgaattatct ctgctcattt catttcctat tgtctgtgtt ctttttctct	660
ttatgagaca atttctatcg gattgtcaaa tgtctgattt atgaatatgt aatttatata	720
aaaa	724

$<210>$ SEQ ID NO 56
<211> LENGTH: 416
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
$<400\rangle$ SEQUENCE : 56
agccaggaga atactctcct atgccacatc attcgtcttt atcgaccagt atgggaccat 60
catcgtacga aggcagagag cggaagagca gtagtatgat tcaacacgga ggttatcttg 120
aagagccaag catcagactt cttggaaaag aagcttccag caaaatggct cgtcgtgatc 180
ctgacccaat ctatgaccgt gaatgggaag acgacaagag gagagcagaa aggaagcgga 240
gagatcggaa gtagagagtg atgatttgca gatcctttgg tttgttcaac gaagagagag 300
acaaatactg gtattgaaca ctgcttatgt tgtacacgta ctattcaatg accgtgcggg 360
tctactttgt catttggctc cgccgagttt gataaatgac ttgccagact tcagat 416

```
\(<210>\) SEQ ID NO 57
<211> LENGTH: 145
\(<212>\) TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
\(<400\rangle\) SEQUENCE : 57
```

aatctttgtt gttgtaagat gttataagga tctcaagcac ctattattct taaatattat 60
tggttgatgt tgctagcaag aaaaattgaa tacaacctta aaaaaaaaaa aaaaaaaaaa 120
aaaaaaaaa aaaaaaaaaa aaaaa 145

$<210>$ SEQ ID NO 58
$<211>$ LENGTH: 299
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE : 58
gagatggctg catcgcataa ccggaagctt gttcaacctc ccgaaggaac tttcttctaa
tactctcaaa gcctaccttt gaggggcttc tccattgttg gtcttcaagc ttttctttcg
taccttaaag taaaaacaat ggtgtctgtc gatgaatgat gatgttcgat tgatcatctg
gagtttaaat ccttgtgtgc aaatatatct agacaacgct gtctcacgac ttcatcttct

```
\(<210>\) SEQ ID NO 59
<211> LENGTH: 450
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Arabidopsis thaliana
\(<400>\) SEQUENCE : 59
```

tttttagaga gtcaaattag aatcttgttt caaataccat cttcaaatgc aagagatagt	60
aagagagctc aaaaggttaa accaagaaag taaaatgaca ttattaaggt cgacgagaat	120
gtacaatcat caagaggatc agacgtagaa gctgaggtaa ttagcagtag aaagatccac	180
caaatgtgtt ctctccactg tatgtcatgt agagaaaccc gtcttcgtct ttgtgttctt	240
cgtagattgc agacatcaat gccgcagttg gtggtaatgt gttcttgaca aagacaaaga	300
tggctttttc agctccaagc ttgattcttt tcctcacaac gtacacaaat tggccaatgg	360
ttagatcagc tggtacaaga tacttcttct tgtcaatgtc aggaacatca ctctgtccag	420
cttttccaca atcacgggaa ctctttcagg	450

<210> SEQ ID NO 60
$<211>$ LENGTH: 429
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE: 60
<400> SEQUENCE: 60
ctatagagaa tcttcaagca ttagaaggat ttgtgaatca agcagatcat ctgaggcaac
aaactttgca acaaatggcg aagatcttaa cgacaagaca atcggctcga ggtttactag 120
ctttaggaga gtatcttcat agacttcgtg ctcttagttc tctttgggca gctcgtccac 180
aagaaccaac ttaaagagg aacttattaa aactttaaaa acaagaaaca gcagaatcaa 240
aagtcttgaa gaagcatact catcacaaag cttggaagga tgttttaaaa aagatctttg 300
ttaattaagt agagtgagat tctcttgatt agaactttat ggtttttgct ttatgaagta 360
tctctccaga gaagattgta aatttgggtt gaaactttgt aatatattta gatacaacaa 420
ataagtttg 429
$<210>$ SEQ ID NO 61
$<211>$ LENGTH: 1012
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 61$
ttttttgcg taatgtagtt tcctacgttg ttgtatctat aaatagtttg tttctcgagc 60
ttccatttca taattcctca tttccoggat ctctcccatc taaaaataac ccgacccatt 120
tacgcgaccc aaaccggatc aacccgcaat ggataagcca agcttcgtaa tccaatccaa 180
agaagcagaa tccgccgcga aacaactcgg cgtttccgtc attcagctcc tcccgtcgct 240
agtcaaacca gcacaatcct acgctcgaac tccgatttcg aaattcaacg tcgcagtcgt 300
cggactcgga tcatcaggtc ggatcttctt aggcgtcaat gtcgaattcc caaatctccc 360
tctccaccac tcaatccacg cogaacagtt cctcgtcacc aatctcacac tcaacggtga 420
acgtcacctc aatttcttcg cogtctccgc cgcaccatgt ggccattgce gtcaattcct 480
ccaagaaatt cgegacgcac ctgaaatcaa aatccttatc accgatccaa acaactccgc 540
cgattccgat tccgccgcog attcagacgg attcttacgt ctcggaagct tcttgccaca 600
cagattcggt cocgacgatc ttctcgggaa agatcatcct cttcttctcg aatctcacga 660
taaccatctc aaaatctcag atctggattc gatttgtaac ggaaacaccg attcatccgc 720
cgatttgaaa caaacggctt tagcggcggc gaatagatcg tacgcgccgt atagtttatg 780
tccatcggga gtttcgctgg tggattgtga cgggaaagtg tacagaggtt ggtatatgga 840

atcggcggcg tataatccta gtatgggacc agtacaggcg gcgttggttg attatgtggc	900
taatggtggt ggaggaggat acgagaggat cgtcggagcg gttctggtgg agaaagaaga	960
tgcggtggtg aggcaagage acacggcgag gttgttatta gagactatat cg	1012

```
<210> SEQ ID NO 62
<211> LENGTH: 605
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 62
```

caaacatcag aagccctaga gcttgagccg tcgaaaatgt cgaagcgagg acgtggagga
acgtctggta acaaattcag gatgtcactt ggtctgcccg ttgcagccac agtgaactgt
gcagacaaca ctggtgctaa gaacctttac atcatctctg ttaaaggaat caaaggtcgt 180
ctcaatcggt taccttctgc ttgtgttggt gacatggtta tggccactgt caagaaaggt 240
aaaccagacc tcaggaaaaa ggttcttcct gctgtgattg ttaggcaacg taagccatgg 300
cgccgaaagg acggtgtttt catgtacttt gaagataatg ctggagtgat tgtgaaccct 360
aagggagaaa tgaaaggttc tgcaattact ggacctattg ggaaagagtg tgcggatctc 420
tggccaagga ttgctagtgc tgctaacgcc attgtctgaa gatcatttat cacttttgct 480
ggttatgtat ctgtcttcaa cgaaacgcga aatagttggt gttttgagtg ttttaagtag 540
agacgacaat cttttgtgag cttcagacat atttccagtt tctaagagat tttgcttaga 600
ttaaa 605
$<210>$ SEQ ID NO 63
$<211>$ LENGTH $: 915$
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 63$
tttttttttt tttccaacca caacgagatg aattacacca cgactctaag tgaaatcatc

<210> SEQ ID NO 64	
<211> LENGTH: 429	
<212> TYPE: DNA	
<213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 64	
ctatagagaa tcttcaagca ttagaaggat ttgtgaatca agcagatcat ctgaggcaac	60
aaactttgca acaaatggcg aagatcttaa cgacaagaca atcggctcga ggtttactag	120
ctttaggaga gtatcttcat agacttcgtg ctcttagttc tctttgggca gctcgtccac	180
aagaaccaac ttaaaagagg aacttattaa aactttaaan acaagaaaca gcagaatcaa	240
aagtcttgaa gaagcatact catcacaaag cttggaagga tgttttaaaa aagatctttg	300
ttaattaagt agagtgagat tctcttgatt agaactttat ggtttttgct ttatgaagta	360
tctctccaga gaagattgta aatttgggtt gaaactttgt aatatattta gatacaacaa	420
ataagtttg	429
$<210\rangle$ SEQ ID NO 65	
<211> LENGTH: 574	
<212> TYPE: DNA	
<213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE : 65	
tttttttttt tttttttttt ttttttgagg agaaataatt ggtaaacttt tgcggtacat 60	
acggtttggg tcaagttaca aacggataaa coggtataga atacacagag tttttgaatt 120	
ctcccattta agctgcaact tcttcgacct catccaatgc atagttgttg gtcgatatgt 180	
tggcgtaatt gacttttgcg aaccggacca caaccgggta tcgagtctta gggtcctgat 240	
caacggcaac aactgatcca acgttcttga accaatagga ttctctcctt agaatcttga 300	
ccttagaccc tctcttagga ccaatcggtg gtggcttggg tttggtggca gtagctccat 360	
ccggagcagc ggcagctgcc ggagaatctt ttgaagaaga ggaagccgga gcaggatctt 420	
cggctgccct gactacgagc ctagaaccgg cgtttctcat cggcaagaaa gacacggagc 480	
tcctggacga cgaagcgccg gcgaccgagg tgacattggc cggtagaaca aataccgtag 540	
atgctgtcgt catcgccatc tctggttttc tttt 574	
$<210\rangle$ SEQ ID NO 66	
<211> LENGTH: 714	
<212> TYPE: DNA	
$<213>$ ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE : 66	
ttgttttttt tttgtttttt tttttttttt ttttttaaga aaggcgattt gctcaccata 60	
atcacaacat attcaagaac caaagacaac gaggtgacat aaaaaaacac caaaaaggg 120	
actcaaaaca tgaagaaaca aaagagaaga aacaagaaac ttgaagaaac aaggccatta 180	
actccgaatg cataagctcc tgagttagta gttgttaaa gagaatagce gccttccggt 240	
gtgtttgtag tgaggatgac aacaacccaa atatcaccag aaccaatacc aattccagtg	300
atcttagaat cattcaagtt cttgagtacg acactgttga aattgctcaa gtcagggttc	360
ttatcatgct taggaaaaca gacttgcatg atcacaccgt ctctgactac ggttgtgttg	420
agactgcatt tagcgaggag gttatttcca gggactggag ctgagttatt agtgtttgtg	480

cagggttggt tctttagttg gtctacgact tcgtctgcga gacattctgc gttttcgttc	540
tttgttaagg tttttaggtt tagtcctgtt ctgtatttgt tgaatactgt aagaagaagg	600
tcttcttctc catcggtgcc ggaagaaca agacgatgaa gggagagaaa gactgagaga	660
agacagagta gatggagttt ggaaatcgcc attgatgcag aggttttttt tttt	714
<210> SEQ ID NO 67	
<211> LENGTH: 780	
<212> TYPE: DNA	
<213> ORGANISM: Arabidopsis thaliana	
<400> SEQUENCE: 67	
agttacatcg agtaacgcag caacatttgg ggtcggggct attcaggtag tagcgactgc	60
aatatccact tggttggtgg acaaagcagg tcgtcggctt ctgcttacta tctcttcggt	120
tgggatgacg attagccttg taattgttgc agctgctttc tatcttaagg aatttgtgtc	180
tcctgattca gacatgtaca gttggctgag catattgtca gtagttggag ttgtggcaat	240
ggttgtcttt ttctcattgg gaatgggacc aataccgtgg ctcattatgt ctgagatcct	300
tcctgtgaac ataaagggtt tagctggaag tattgcaact ctagccaatt ggttcttttc	360
ttggttgatc accatgacag caaatttgct gttagcctgg agcagtggag gaactttcac	420
tctgtatgga ttggtttgtg cattcacagt ggtgttcgtg actctatggg ttcctgagac	480
caaaggcaaa actcttgaag aacttcaatc cttgttcaga tgaacaaatt gaaacaactt	540
cattctttgt caccctctct ctccctctct gttttggcca agaacaagaa gaaacaagag	600
attttccagc tttgttaatt gggctgagaa cgttactaag atttgtttgt ttgttcgttg	660
tgtgtcaata atcgcattat cttctatcac atgtatatca acatactaca ttcaagtatt	720
tgtaatttta ttgaactctt tacatagagc aaaggttttg ccaaaaaaaa aaaaaaaaaa	780

$<210>$ SEQ ID NO 68	
$<211>$ LENGTH: 641	
$<212>$ TYPE: DNA	
$<213>$ ORGANISM: Arabidopsis thaliana	
$<400>$ SEQUENCE: 68	
gaacattcag aacaagaact catcctactt tgtggaatgg atcccaaaca acgtcaagtc	60
cagtgtctgt gatattgcac caaagggttt gaaaatggcg tctactttca ttggtaactc	120
aacctcaatc caggagatgt ttaggcgtgt gagcgaacag ttcacagcta tgttcaggag	180
aaaggctttc cttcattggt acacaggaga aggcatggac gagatggagt tcactgaagc	240
agagagtaac atgaatgatc ttgtcgcaga gtaccagcag taccaagatg ctacagccgg	300
agaggaagag tacgaggagg aagaagagga gtacgagact taagatgttg tcaatggctc	360
cctcggattc gtaagctgtg taagcaagca gcattcactt tcttctttcc ccttatcctg	420
aatttttttc ttcgtaatat ctcttttatt gtttcgttca tgtgtgttcg tttttgttat	480
tgaaacccta tatcggttct ggatttgtta aacttttgcg tgtattgctt attgtttttg	540
tcggtgaaaa aaatattgct tttgttctct taagttttgt gttgccaaaa aaaaaaaaaa	600
aaaaaaaaa aaaaaaaaaa aaaaaaaaa aaaaaaaaa a	

```
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 69
```

ttttttttca gcccaagaa cactttttaa ttactagtaa agtttaacta acggttaata
aacttacatc agacaatatt acacttttta tcttggctgc ttcaatgtct ccgcatcgtt 120
cgttttaccg gtgaaagaag cttcttagct ttcctctttc aagcttctcg agaagcttat 180
cggcgcccat tacttccatc tcogacagct tcttcagata coctattgct cogtacgaca 240
ccatcatttt cttactcttc tegcttcccg acatccccaa cagccccgcc acggcgtact 300
tcttcgccgt gtttccaggg tttgaatcca ataacatcac caaattcgtc agaacgctct 360
tcccgtcttt cttcagttcc egtcgaatcc ttccttccge taccaatcca gcgatcgect 420
gagccgccgc ttctcgacat cogtttgact tcgattccag aagtttcacg atctccggga 480
tgcaaccgga ttctcccact agc 503
$<210>$ SEQ ID NO 70
$<211>$ LENGTH: 503
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 70$
ttttttttca gcccaaagaa cactttttaa ttactagtaa agtttaacta acggttaata 60
aacttacatc agacaatatt acacttttta tcttggctgc ttcaatgtct ccgcatcgtt 120
cgttttaccg gtgaaagaag cttcttagct ttcctctttc aagcttctcg agaagcttat 180
cggcgcccat tacttccatc tccgacagct tcttcagata ccctattgct cegtacgaca 240
ccatcatttt cttactcttc tegcttccog acatccccaa cagccccgcc acggcgtact 300
tcttcgccgt gtttccaggg tttgaatcca ataacatcac caaattcgtc agaacgctct 360
tcccgtcttt cttcagttcc cgtcgaatcc ttccttccgc taccaatcca gcgatcgect 420
gagcegccgc ttctcgacat cogtttgact tcgattccag aagtttcacg atctccggga 480
tgcaaccgga ttctcccact agc 503

```
<210> SEQ ID NO 71
<211> LENGTH: 578
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 71
```

gattcgataa gaagaatcta catggctcga catatcatgg agaagttcat cgtcgcagga 60
gcggaaatgg aattgaactt atctcataaa acccgacaag agatcttaac cactcaagat 120
ctaactcaca ctgatctctt caagaacgca ttaaacgaag tcatgcaatt gatcaagatg 180
aacttggtaa gagattactg gtcatccatc tacttcatca agttcaaaga agaagaaagc 240
tgccacgagg caatgcataa ggaaggatac agtttttcat ctccaagact gagttcagtt 300
caaggctctg atgatccttt ctatcaagaa catatgtcaa agagttccag atgcagtagt 360
cccggttaag gagtctaaaa ctggtactag accagaaccc aaaccaatgt tcatagcaat 420
ccaatccatg taatcttcct tcacatttct tgtacatgtc attttctctc ttgttatacc 480
taactgtaag agaaaatgtc cggttcggat tttggtttag ttttaaatgt gtataccgga 540
caaaactat ggaaccatac taattaatat ctcgaaga 578

$<210>$ SEQ ID NO 72	
$<211>$ LENGTH: 679	
$<212>$ TYPE $:$ DNA	
$<213>$ ORGANISM: Arabidopsis thaliana	
$<400>$ SEQUENCE $: 72$	60
tgggtttttg ttttgaactc tccttatgta ttaccgcctc gccggagact gatacagttt	120
cttctgtccc tcattgaaag aagaaaagaa aacaaaaata gaaaaaaaaa gaaagcagaa	180
aaaaagccta ggaggaacaa tgaatttaga aaaccaaacc atgacagaaa agtctgcggg	180
attctctggt tagctctagg tgatgatatg atcaagtttc gtcctcactg gctttgtatg	240
aagggaaaag aagataatct aaaagattcg ccaaaagaca cagatcgttc accgtgatgg	300
ctcgcctaca atatcgtggt aaaacaaaaa cgattgtact aagtagcaat tcctctgttt	360
ggttgtctct tgttcacact gtaactgcca acataacctg gagatgaact tctagctgaa	420
acatctgaag aaggaacccc tcctccaatc ccatagctaa aaggagcagg cccttctgtc	480
tcaggagttg gtgatctcca tgtagggtca ctataaactg caccattccc gtaaaactct	540
gcaagtcctg ctgtatcata acccgtgttg ttggttgctg aggcagaaga gaatgaagag	600
gatggtgctg cottgttagc ccctgggttt cttgctgcat aaccacctgt tcccaaccca	660

$<210>$ SEQ ID NO 73
$<211>$ LENGTH: 599
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 73$
ctcggtgagg ctgtcggtgt tgaagggctg gttgtcggtc tgcgcgctca gcgccagcag 60
cgcgcgccgc gagaagcagg taccgacacc ggccgacggc accatgccgg aaacactttc 120
gcgcaccacc agatccttgg catgccattc ggcgaactcg tccatgtaga cgccggccac 180
cagttcgtac cactcgcggt ccagcgaggt gaccggcaac tggatcatgt ccttgcgegg 240
caaaaggtag ttgtagaagc gcagttccat cgggtgcagc acgtcctcgc tgtcgtgcag 300
gatcaccccg gcgaactcga tgtcgtggcg cttctcgtaa tcgaagatgg ccaggatcag 360
ccagttcagg cagtcggcct tgctggtcgg cccgtcatgc ggcacttcca cgcggcgcag 420
gcgcttgtag cggcggcgca tgcgctccac ttcgtcgatg gtctgctggt cgttgggata 480
ggtgccgacg aacacgacgt actcgcggta atcgagtacg ttgatcatgt tctccaccat 540
ctgcgcgatg acgtcgtact ccatccacgc cggcaccatg atcgccagcg gctgttgcg 599
$<210>$ SEQ ID NO 74
<211> LENGTH: 997
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 74

ttgatttaaa aacagttggt ggaaagctta ctttgtacca aacgacccta tgcgagagaa	60
tctcagggga taacattgat ctcgggctag atctcgggtc tcaaagcttt ttgccaacat	120
acaacaaaaa tgacatccag ctgatatgct gtcaagctga tgcaagtgtt ttatggcttg	180
tccctgacac agttgtgacc agatttattc aatcccttga ctgggacaca gatatggaca	240

| tcacctttac ttgggttctt aacagagacc gccctaagg caaggagact gtgaaatatg | 300 |
| :--- | :--- | :--- |
| a aagaagtgt cgaccctctg gaccttccaa aacgctctga tatccaaatg gttctcaatg | 360 |
| ggtcgatgga tggatttaga gtgcataatt tgtacccaan gttcttccgt gttactggtt | 420 |
| ctggtgatgt caggtctttc gaggatcaga cggatgaagt gagtgcagac atactcatta | 480 |
| accatgcaaa tttcaagtgg tggtggtcat tccataatct taaagcgtct gaaaatatca | 540 |
| gcgcttgcga ggggatggat ggaccagttg ctatcataat gtctgaggaa acaccgccac | 600 |
| agggctttct gggtgacacc ctcagcaagt tcagtatatg gggactctat atcacatttg | 660 |
| tactagcggt ggggcgtttc atcaggcttc aatgctctga cctgcgtatg agaatacctt | 720 |
| acgagaacct gccttcgtgt gacagattaa tagccatatg cgaggacttg tacgcggcta | 780 |
| gagcagaggg tgagcttgga gtagaagaag ttctatactg gacgcttgtg aagatctata | 840 |
| gatccccgca catgctgctc gagtatacaa agctagacta tgatgcttag gtccaaaacc | 900 |
| agtctctcac actaaagaaa cactttgtca tatttgtaca tactgagcgg aatattctga | 960 |

```
<210> SEQ ID NO 75
<211> LENGTH: 329
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE:75
```

acgatgttga tcacaagggg caagagatgg taacaacagt ttgcatgaaa tgccacatgc 60
tggttatgtt gtgtacatca actcctgttt gtcccaactg caagttcatg cacccacacg 120
atcacagctc tacaaaactg tttaaaccat caaatttgct taggcttcta tgctaggctc 180
tttcaaggtt actgaatcta taaaatttgt acggcagata ataagccaag agactagata 240
tggacaaagt tatgtatata ctaaaagtac cagaaagttt gtattaattc tctgcttcta 300
tgaacgatca tgctttagat ctctaaaa 329
$<210>$ SEQ ID NO 76
$<211>$ LENGTH: 546
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 76$
cgctcgcgat ctagaactag gcttttacga acagagagcg agccagagag agtgagtaag 60
agagaatgac gagcgtgagt gggtgtggtt cagtgagtct gataactaac cgcagtgcgt 120
tcttgggaaa cggacttcaa caccgtgccg ttttccttaa accatggtcg tcttcttcgc 180
ttcagtctcg gtccatggtt gtcgaagcca aaaccaaaac cagcagcgaa gacagaatcg 240
cccgccactc tcgtatccgt aagaaggtta atggtacaac ggagaggcca aggctatgtg 300
ttttccgatc aacaagcat ctttatgttc aagtgattga tgataccaag atgcacacct 360
tagcttcagc ttccactaag cagaaaccaa tctctgaaga gttcgactac acctctggac 420
caaccattga ggtagcgaag aaagttgggg aagtgatagc aaaatcttgc ttggagaaag 480
gtatcacaaa ggtagccttt gaccgtggtg gttaccctta ccatggacgt attgaggctc 540
$\begin{array}{ll}\text { ttgctg } & 546\end{array}$

$<210>$ SEQ ID NO 77	
$<211>$ LENGTH: 678	
$<212>$ TYPE $:$ DNA	
$<213>$ ORGANISM: Arabidopsis thaliana	
$<400>$ SEQUENCE $: 77$	60
tttttattaa tagttatttt attaaatttt gaagtactat ttttgtcaat acaaaaattc	120
tgcaacacat tctgcttcag gaagaatgaa atcagtctcc caacaaacaa gttctttacg	180
aataccaagg ggagtgtcgg actgatgtta gccaagttga tttttttttt catcaagaaa	180
ctaaatgctt tctctgagtt tgacaggaag gtcaagatca ggttccgtgg gagtcaaggc	240
acagaagtaa tcatcaacca tgtcctctga tactttctcc aagctcggtg gatcccactt	300
tggtgcttca tccttgtcta tcaatcgagc tcgtactccc tcacaaaaat tgccggacat	360
tggcccgatt aatccttgta gcgacattct gtactctcgg attaagcatt ggtcaagtgt	420
ttgtaatctt ccttcccgga tctgttggat tcgttttaaa gaagagatct caatgccacc	480
ttcaaagata acggtgagct ttctttaagt ctacgtagag tcgtaatgca ccatgtatct	540
tttcttctac tagcctcgat ttccaaagaa tcaataattt cttctactgt gtcatggcta	600
aagcattttt caagtaaatc gatcctacga ataacaccag tcttttccgg atgggcaact	660
tctgcacatt tttctaag	678

$<210>$ SEQ ID NO 78
$<211>$ LENGTH $: 614$
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 78$
agttaaatgg tttgggattt aagaaagttt tcttcttata acagagttgg taaatttaaa 60
atacaacgga atataatcga aacaatcagt gaaactatag agatatattg atcacttttc 120
aattttcat gacccaaaac ctctcaattt ctccagcggt tcttcctggg atcctcccag 180
ctatcagttc ccacctttca tcaaataata acacacaaaa ttcagctttt actatggtgt 240
tacaattaaa ttattttcct acgaaatagt attcattatt agttaaaaga tcaaacctgt 300
caccgacaag cttatgcatt cgagagacca aatcttcttc ttcttgactc atgttcacaa 360
cttcccactc aagactactc acttctgttc cttgtcatca ccaaaattca gatttctcat 420
tatatataga taagtataaa aaacatgga aaaatgagaa aacgaaggtg tttaagtttt 480
cagcttacct tcagaagaag aagtaacgat ggagttggtc ttgggttgct tagtcctgcg 540
atggttatcc atgtcaaacg gcaccgtatt acaaagaaga agaagaaaga aactaagaga 600
gtactctgag agag 614
$<210>$ SEQ ID NO 79
<211> LENGTH: 578
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 79
gattcgataa gaagaatcta catggctcga catatcatgg agaagttcat cgtcgcagga 6
gcggaaatgg aattgaactt atctcataaa acccgacaag agatcttaac cactcaagat 120
ctaactcaca ctgatctctt caagaacgca ttaacgaag tcatgcaatt gatcaagatg 180
aacttggtaa gagattactg gtcatccatc tacttcatca agttcaaaga agaagaaagc 240

tgccacgagg caatgcataa ggaaggatac agttttcat ctccaagact gagttcagtt	300
caaggctctg atgatccttt ctatcaagaa catatgtcaa agagttccag atgcagtagt	360
cccggttaag gagtctaaaa ctggtactag accagaaccc aaaccaatgt tcatagcaat	420
ccaatccatg taatcttcct tcacatttct tgtacatgtc attttctctc ttgttatacc	480
taactgtaag agaaaatgtc cggttcggat tttggtttag ttttaaatgt gtataccgga	540
caaaactat ggaaccatac taattaatat ctcgaaga	578

$<210>$ SEQ ID NO 80
$<211>$ LENGTH: 668
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 80$
tatagaaatt atgcgtacgc tacaatcaat ggcattacaa tgaaccaacc tggtattcag

$<210>$ SEQ ID NO 82	
$<211>$ LENGTH: 809	
$<212>$ TYPE DNA	
$<213>$ ORGANISM: Arabidopsis thaliana	
$<400>$ SEQUENCE $: 82$	60
cgagcttcga cttcgagctg tggaaagtct gccgtgccac gtcagcaaca ccaagcctct	60
tcaagccgtt cagtgtagtg tcggtggacg ggaaaacctc atgctcagcc gtagacggcg	120
gtttggtgat gaacaatcca acagcagctg ccgtcacgca cgtgctacac aacaaacgag	180
atttcccgtc agtaaacggc gtagatgact tgcttgtact gtcgttggga aacggtccgt	240
cgaccatgtc atcatcacca gggaggaaac tccgtcgtaa cggagactat tcaacgtcaa	300
gtgtggtgga catagtggtt gacggcgttt ccgataccgt cgatcagatg ctggggaacg	360
ctttctgctg gaaccgtact gattacgtta gaatccaggc gaacggtttg acgagcggcg	420
gagcggagga gttgctgaaa gagagaggtg tggaaacggc gccgtttggg gtaaaacgga	480
tactaacgga gagtaacgga gaaagaatag agggtttcgt gcaacgtctt gttgcgtcag	540
gaaagtcaag tctacctcca agtccttgca aggaatctgc cgttaaccct ctcgctgacg	600
gccgttaagt ttcctttatt attataaccc tccccgtccg tgatgtaaga agtttgtaac	660
caaacccctg ggttaatttt ttaaccccag ccagcatctt cgagttaatt aattagcctt	720
tcttttttc taatgacttt agttgaggaa ttaataatgg ttaatgaatg atagtcttta	780
cttatttatc caaaaaaaaa aaaaaaaaa	809

$<210>$ SEQ ID NO 83
<211> LENGTH: 356
$<212>$ TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
$<400\rangle$ SEQUENCE : 83
tctccttgga atgtccaagc ttgataattc tcttgcttat ctcttcttct cecgctaggg
gctctgattc attgtctgcg gacgcgtggg tcgacccggg aattccggac cggtacctgc
agccattgga gctctgctgt taattgaaga caagatcaag acaagaggag tcttaaggcc
tctcgaagca gaggtgtatt tgccagcttt ggatatattg caagcatatg gtataaagct
gatggagaag gcagaatgat caaagaactc tgtatattgt ttctctctat aacttggagt 300
tggagacaaa gctgaagaag acagagacat tagaccagca aaaaaaaaaa aaaaaa 356

$<210>$ SEQ ID NO 84
$<211>$ LENGTH: 1113
$<212>$ TYPE: DNA
$<213>$ ORGANISM : Arabidopsis thaliana
$<400>$ SEQUENCE $: 84$
cttcttcagg gttcaggtgt gaaagctgac gccaccgtgg cagctgacgg tagcggtaca
tttaaaactg tggctgctgc ggttgccgcg gcccctgaaa atagtaataa gaggtatgtg
atacatataa aagccggagt ttacagagag aatgtggagg ttgctaagaa gaaaaagaat
ataatgttta tgggagatgg tcggacgaga actattatca ccggaagtcg aaacgttgta

| gtgggttctg atttctccgc cttctacaat tgcgacatgt tagcttatca agacactcta | 420 |
| :--- | :--- | :--- |
| tacgtccact ctaaccgtca attcttcgtc aaatgtctca tcgccggaac cgttgacttc | 480 |
| atcttcggaa acgccgccgt cgtgctccaa gactgtgaca tccacgctcg ccgccctaat | 540 |
| tccggtcaga aaaacatggt cacagctcag ggaagaacgg atcctaacca gaacacaggg | 600 |
| atcgttatcc agaaatgtag gatcggtgcc acgtcggatt tacagtcggt gaaaggtagt | 660 |
| tttccgacgt acttgggtcg gccatggaag gaatattcac aaacggtgat aatgcagtcg | 720 |
| gctatctccg acgtgatccg acccgaaggg tggtccgagt ggaccgggac ttttgcgttg | 780 |
| aacactctga cttacagaga gtattcgaac acaggagcag gggctggaac tgcaaataga | 840 |
| gtgaagtgga ggggctttaa ggtaattacg gctgctgctg aagctcaaaa atatacggct | 900 |
| ggtcagttta ttggtggtgg aggctggtta tcgtcgaccg gtttcccctt ctcgctcggt | 960 |
| ctttgagaga ttgttgtgta atgtgttcct acgtattgtt ggctacaaaa attattgatt | 1020 |
| aatattgtat gaagcaaatc gtgttgtcct ctttgttttg tttgggttgt gtactttctc | 1080 |
| tagatcatcg tagtattaga aacgagatga aaa | |

```
<210> SEQ ID NO }8
<211> LENGTH: }72
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 85
```

caggcaaaca agaccaagag gaagaagaag aagaaaaga gaaaaggccc tgtgatggac 60
aaacccatga gtgtagactg gtttgttagg gaaacttgta gacgcctcaa ggagaagaag 120
tcttacatga tatacacagc tgttgggtgt ctcggaattg ctgccttaag tgatcttgtc 180
aatgaggtgg tagcaattga gacctgtgga ggtcaggtga ctgctgatgg cactaggaaa 240
cggacaagtg gtggtgtatt gtggaacatc atcaaagcga gacagcctga agcttataga 300
gagataatga aaaagaccaa ggagtttgag aaacaattta ggcaaccaaa cacgagacca 360
aaatcagggc ccaaaagaga tcagggtagc tcctccgaag gagttgcctc tggaaatgta 420
tctgctgatg aagctctggt gagcgagatg tgtgttatgc cggtagctga ccagactgaa 480
tccaaaccgg aaaaggaaag gaaatctgtt catgagagga tcagggtacc tgtttcatat 540
gatgaccttt tcagagatgc acctttagat gattctctag cacatcattc ttctgcttaa 600
gctcattact ggatgacttc tcttgtggaa agcaattgtt ttgtcgagaa atggaaagca 660
ttgattttgt cgagaaatgc attgacaaaa ctatatatac caactaccaa gatttcttaa 720
atacacaa 728
$<210>$ SEQ ID NO 86
$<211>$ LENGTH: 871
$<212>$ TYPE: DNA
$<213>$ ORGANISM $:$ Arabidopsis thaliana
$<400>$ SEQUENCE $: 86$
caagaacatt ctcagcttct agaaggtttt ctcaccaacc cccaaattat gagaaaatta
cgaaattggc taaccaacta caaaagaatg attcaattca ccaaacgaat taaatgaagc
attaaattga gagtaaatga gttttcgtta gagtgaaact cacgtaagtg ttgagctgac
gaatgaagct tgagaaatta ttatgcttga agtattgagg aagaagatct ttagcaaact
<211>
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 86
caagaacatt ctcagcttct agaaggtttt ctcaccaacc cccaaattat gagaaaatta

ctgctgtttt ccacacgaca aaagctgttc cttcttcgtt ccatgaaacg acgtcgtctg	300
tgctatgatc atcaactagc tgatacgttt tgcttaaaa cggcgccgga actgatcttt	360
gcgcegccgt cacagcegtc atctccggcg aacttttttt attttaccac agaaaaataa	420
aactaaaat aatctaatac acaaagagaa gaagaaagat tggaaataga aagtcgaagg	480
aaaagaatc agcaactaaa aagcaagaga gcggtgagaa attcccaatc ccagcaataa	540
aagccagaga ggaaaacacg agaacggaga agatcggagt ttcgtttggt ttcttccatt	600
taaggaaaaa tctgatgatg gaggaagaag atgaagacga cgaccatact tcgcoggagc	660
taatccgtgt gattaaaag taaataaata taaggtcttt tttatttttg tgtgtatgtg	720
caaaacaagt aaaacaaata tataaacgag ttaagtgtta tgtogaaggg tctctatata	780
acgtagtagg aagatttata gatcacaaat gttggtccta cotttgtaag aaaattaaat	840
tataaaaacg gatgctgttt ctagaaaaaa a	871

```
<210> SEQ ID NO 87
<211> LENGTH: }96
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 87
```

gaagaagttc cgtataacat ctccattatt cagatcagta gagttttacc gtcggagact 60
gcggcggctc cgactcctgc tccggcggag atgaatctta ccggaataat gtcggctcat 120
ggatgcaaag tgtttgctga gactcttctc actaaccetg gagcttcaaa aacctatcag 180
gagagtttag aaggaggcat gacagtgttc tgtccaggag atgatgcaat gaaaggtttc 240
ttgcccaaat acaagaactt gacagctcca aagaagaag catttctcga tttcctcgct 300
gtcccgacat attactcaat ggcgatgcca aatccaacaa tggtccgatg aacacacttg 360
cgacagatgg agctaacaag tttgagctta ctgtacagaa cgatggagag aaggttaccc 420
tcaagacaag gatcaacact gtcaagatcg ttgatactct tattgatgag cagcctttag 480
ctatatatgc gactgataag gttttgttgc ctaaagagtt gtttaaggct tcggctgttg 540
aagctccggc tcctgctccg gcaccagagg atggtgatgt tgcggattct ccaaaagcgg 600
ctaaagggaa agcgaaagga aagaagaaga aggctgcacc gtcgccagat aatgatcctt 660
ttggtgactc ggattcgcct gccgaagggc ctgacggaga ggccgatgat gcgacggcag 720
atgatgctgg tgcggttagg atcatcggag gagctaaggc tggtttggtg gtgagcttgc 780
tctgcttgtt tgcttcttct tggcttctat agtttcactt cttgtttctt cgattcttcc 840
atgttttttt ttttttgtga atcttttatt tatggttttt gggggagagt aaatgaggat 900
tatttatttc cctctattgt tgagtttttt ttattattt aaagttggt tgtcgaatta 960
aa 962
$<210>$ SEQ ID NO 88
<211> LENGTH: 835
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 88
ggacaaggaa ggaatccctc cggatcagca gagacttatc tttgccggta agcagcttga
agacggaaga actcttgctg actacaacat tcaaagggag tcgacccttc atttggtgct 120

tcgtctcaga ggtggtatgc aaatctttgt caagaccctc actggtaaaa caatcaccct	180
tgaggttgag agttcagaca ccattgacaa tgtcaaagct aagatccaag ataaagaggg	240
aattcctccg gatcagcaga ggcttatctt tgccggtaag cagctcgaag atggacgcac	300
ccttgcagat tacaacatcc aaaaggagtc gacacttcat cttgtgcttc gtctccgtgg	360
tggtatgcag atctttgtga agacccttac cggaaagacc attactctgg aggttgaaag	420
ctcagacacc atcgataatg tcaaggctaa gattcaggac aaggaaggga tcccaccaga	480
ccaacagaga ctcatcttcg ctggaaaaca gcttgaggat ggtcgcacac ttgcagatta	540
caacatccag aaggagtcga ctcttcactt ggttcttcgt cttcgtggtg gaagcttcta	600
agctttttgt gatctgatga taagtggttg gttcgtgtct catgcacttg ggaggtgatc	660
tatttcacct ggtgtagttt gtgtttccgt cagttggaaa aacttatccc tatcgatttc	720
gttttcattt tctgcttttc ttttatgtac cttcgtttgg gcttgtaacg ggcctttgta	780
tttcaactct caataataat ccaagtgcat gttaaacaaa aaaaaaaaa aaaaa	

```
<210> SEQ ID NO }8
<211> LENGTH: 581
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 89
```

atacaaacac tagaagtctt ataaattcaa agtatgtctg agttttacaa cattagagag
aaagagaaca acacagaaac atttatagaa acatgattac acatgcgcta acaactttaa 120
gatttactga gccaaagcac ttgtgttgta cacaagaaga gcacctccgg caagaattcc 180
ggcgagagtt accgcccaaa ttgccaatcc ggtgactcct cocttgtaca cgtcaccact 240
cgctgaccac tcgttctcgt tgtaaatagg actgtatcca tcgacgttag ctccatactt 300
gtcgacgtac ttgtaaacac cgtatccott gccctttctg coggaggcgt cgacgccgtc 360
cctcaagtcc atgctgccgt taattccgaa gggcttgtcg gtcttgatct tcttgacgec 420
actggcgaca attttgaagg agggacgagc tcttgtgagc gacggtaatc ctctagccgc 480
cgtcttctcc accgtgaaac cagctggttt caatgtcacc gaagatagca tcactgaagc 540
agccattatt tttctcacaa gatgatcaaa ctattcttct c 581
$<210>$ SEQ ID NO 90
$<211>$ LENGTH : 884
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 90$
tttaatgctt ttctaatcaa taaatatcaa attatccacc agataaaat aataatttaa
aaagcgtatt ctcaaatcgt aacaaaaagg gatatttttg gtgtttgtca cccaaaagta 120
taacctatcc aatgagggta tgaagaaaat tgagtgaatc aaaatataaa agataaaaaa 180
aagggaagac gaagcaaaac tcttttgtat gtttcttctc attagcaaag gctggggtaa 240
aacttagaag ttgacttgaa agccactgcg tctgcgatga cotgcaccgc cttttgatct 300
gtttgagttt ctttcatatt ggtatcgcat ccccaaaccc ttaccgcaag cctacgacat 360
ttgggtgatg attctctgaa ataggttttg taccaactga tcacatcttt cttctgtata 420
cttcttagtt cttctgcttc tttgtgggag aaatcaaaca tgtacctttt gtcaacaatc 480

tgactccata agtcatttgt ctcggacaag agagagggat cottttccag caatctagca	540
atcataccac ttcggtaatc ttcataggat tcatcatcca gttgttccag aagcccttcg	600
atatctttta tgaaattgtc aactctcccc agcaaatgaa ctggaccgta cttagaagat	660
tgaacacaga aacagaaacc gtgcacacga tacgttaagc gagggccaca ctcgacaaca	720
taaccaagct gctcctttgt cotcaactga ttgaacaatg gctcttctat gatttcatga	780
aagagatcca gcacagcttt cgttctcgtt gattgagctt cttcaggctc gatttgatag	840
taagctcga ctactgagtt tgtttcagat ttgttcttca catt	

```
<210> SEQ ID NO 91
<211> LENGTH: 730
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 91
```

gtaggggcaa aacatattat accataagga ccacaaaca tcacaacaat gatattttca 60
acagagtact agtagagtat gtttataagg agggataggg aatttttttc aaacatagaa 120
cagattctct gagagagaat gttttcataa gagagtatta tatagctaac tctgatttca 180
gcaggtcaag agaggagatg aaccactgca tttgacatca gaagcatcag aaaggcgttg 240
tcttggagag agtgttgtaa tcgctgcaac atctacgtcg agattcacta tgagcttcct 300
cttctgcgac tctgttacac tgttccttct ctcttctgat cettcagcaa tgggactcaa 360
agtctgtgtc tctgctgctc caacgtcttc tccatctgct gcgtatagga ttcttttat 420
ggaaccaaca agaggtaagt gctctgtgtc tgggttttga cagagaatct ctacatctct 480
gagtttagag aaatagaaat ctctctcttt ctctaagctg tcaatgtaaa gtttcagttc 540
tgtgatcttt tcatcataag caggcactgg tttagattgt ttagctgatg gttttgaaga 600
gtggtggtga ttcccagttg aagaatggtg agtaccggtg ttgttggatt gtggctcatg 660
cttacgggtt ccatttgaag atgaaggtcg aggtggagct gaagaagacg aactcttgcc 720
tgattgttgt
$<210>$ SEQ ID NO 92
$<211>$ LENGTH: 1706
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 92$
aagaaaagta attctctgtt tgtgtagttt tctttaccgg tgaattttct cttcgttttg

caacctcatc accaaagatt ccaacaaatc ttcagatcgt gtatgcgatg tgtaccatga	660
tgttcctgct gtgttcttct ccactggtgg atacaccggt aacgtatacc acgagtttaa	720
cgacgggatt atccctttgt ttataacttc acagcattac aacaaaaag ttgtgtttgt	780
gatcgtcgag tatcatgact ggtgggagat gaagtatgga gatgtcgttt cgcagctctc	840
ggattatcct ctggttgatt tcaatggaga tacgagaaca cattgtttca aagaagcaac	900
cgttggatta cgtattcacg acgagttaac tgtgaattct tctttggtca ttgggaatca	960
aaccattgtt gacttcagaa acgttttgga taggggttac tcgcatcgta tccaaagctt	1020
gactcaggag gaaacagagg cgaacgtgac cgcactcgat ttcaagaaga agccaaaact	1080
ggtgattctt tcaagaaacg ggtcatcaag ggcgatatta aacgagaatc ttctcgtgga	1140
gctagcagag aaaacagggt tcaatgtgga ggttctaaga ccacaaaaga caacggaaat	1200
ggccaagatt tatcgttcgt tgaacacgag cgatgtaatg atcggtgtac atggagcagc	1260
aatgactcat ttcetttct tgaaaccgaa aaccgttttc attcagatca tcccattagg	1320
gacggactgg gcggcagaga catattatgg agaaccggcg aagaagctag gattgaagta	1380
cgttggttac aagattgcge cgaaagagag ctctttgtat gaagaatatg ggaaagatga	1440
ccctgtaatc cgagatccgg atagtctaaa cgacaaagga tgggaatata cgaagaaaat	1500
ctatctacaa ggacagaacg tgaagcttga cttgagaaga ttcagagaaa cgttaactcg	1560
ttcgtatgat ttctccatta gaaggagatt tagagaagat tacttgttac atagagaaga	1620
ttaagaatcg tgtgatattt tttttgtaaa gttttgaatg acaattaaat ttatttattt	1680
tattaagttt tttttggtaa aaaaaa	1706

$<210>$ SEQ ID NO 93
$<211>$ LENGTH: 737
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 93$
agaagaagtt aaagcaaaac acatacaaac gcagtcacct tctctgtcgc ctccttcttc 60 aatctcatcg caatcatgat catatccgag actaatcgce gtgagatctc caagtacctc 120 ttcaaagagg gtgttttgtt tgccaaaaag gatttcaatt taccacaaca tcctttgatt 180 gagagtgttc caaatctgca agttatcaag ttgatgcaga gtttcaaatc taaggaatat 240 gtgagagaga cctttgcttg gatgcattac tactggttcc tcacaaatga aggtattgac 300 tttcttagga cttaccttaa tctcccatct gagattgttc ctgctactct gaagaagcaa 360 cagaagcctc ttggtcgacc ttttggaggt ggtggtgacc gtccccgtgg ccctcctcgt 420 ggtgatggag agaggaggtt tggtgacaga gatggatacc gtggaggtcc taaatcaggt 480 ggagagtatg gtgacaaggc tggagcacct gctgattacc agcctggctt caggggtgga 540 gctagtggag caaggcaagg gtttggtcgt ggagctggtg gttttggtgg tggtgctggt600
ccagctgctg gatctgatct accttgaaaa ggactttctt gtttcttttt ggtcttattt 660
aaggttacat agcaccttat tgagaacgaa tgtgtctttt ggaactttgt ttctttctct 720
taaaccattt cacaaaa 737
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 94$

agaaaagaa caaaaccta atttcaagaa attcaataaa tatcatcctc cggataagtt	60
gttattgtac gtttaccaaa ttcaagaaca agaaaaact tttcctttga aacaaagaaa	120
catggatttc ttcaccgatc aagtaaagaa gaaattctcc gacaagaaac cggagagctc	180
tgatccggag ccaaaccaca acaaaaacaa acccggtcac acggagccaa caacacataa	240
acccggtcac ggcgagccaa caacacataa accggtctcc aacaccgatc caacaacaca	300
cagaccggct acgaacgctg agctcatggc tagtgccaag atcgtagccg aagctgctca	360
agccgctgct cgtcacgagt cagacaagct tgacaaagcc aaagtcgccg gagccaccgc	420
tgatatctta gacgccgctt ctagatacgg taagctcgat gaaaagagcg gtgttggtca	480
gtaccttgaa aaggctgaac aatatcttca caagtacgaa acttcccact ctcactcctc	540
caccggtgga actggaagcc acggtaatgt tggaggacac ggtggtggag ctggagcacc	600
ggcggctaag aaagaagatg agaagtccgg aggtggtcat gggtttggag attatgctaa	660
gatggctcaa ggttttatga agtgagtaat gttttagttt ctaaaaataa ttatgttagt	720
aattatcttc tataattact gttttagtaa gctgttgttt tttctgaatt attattaact	780
gttggatttg tcatttgtgt atgatggagg aaattatgat gttaaagatc atgtatcatg	840
ttgttgacca ctcgagattg cgttaatcaa atatttgtat aattagaacc gaactttaag	900

$<210>$ SEQ ID NO 95
$<211>$ LENGTH: 437
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE 95
atacaaggaa agtgttttgc catctgatgt atcagctaga gttagtatcg aagctggatc 60
gacttttgga tggggaaaga tcgtcggagg aaaagggaaa tcgattggaa ttgatacgtt 120
tggagcaagt gcaccagcag gaaagcttta taagagttt ggtatcacca ttgaagctat 180
ggttgaagca gccaagtcac ttatttaaaa aagtatctta caggtactac cgaggtttgc 240
atttgaagta agagacattc cataagcatt atcttctttg tccaaataaa aatatactcc 300
ttccaatctt tttataaatg atgtttaaag ctttcatttt ggtttttaaa taaatgatgt 360
tttaaatttt caatgcaaaa ttatttttat tggttgatta aataaatgat gttttaggct 420
tttatttata ttttaaa 437
$<210>$ SEQ ID NO 96
$<211>$ LENGTH: 413
$<212>$ TYPE: DNA
$<213>$ ORGANISM $:$ Arabidopsis thaliana
$<400>$ SEQUENCE $: 96$
cttgtcaaag agaagtgtgt ttgcgtcatc ttcgattagt gtggggaaaa acttggagga
tatgtcagcg tatattcatt tcttggcgtc tggatttgaa gcttccagaa cagcttttgg
tgctatacct ggaagcttgc agcccgatga agagttatgt agagatcttg gtttgtctct

caacactcct tccccaaata ctcgcaagca agattgacct gttttttaat ttatctttgt


```
<210> SEQ ID NO 97
<211> LENGTH: 1365
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 97
```

ttttttttt taagaagaag ttcgacttgt cattagaaag aaagagataa caggaacgga60
aacatagtag aacacttatt catcagggat tatacaaggc cccaaaacac aaaccaccaa 120
agttttacat gaaacgaaac attgaacttc ttaagcataa cagagacgag atttagaaac 180
caccacgaag acgcaggacc aagtgaagag tagactcctt ctggatgttg tagtcggcca 240
aagtacgtcc atcctcaagc tgctttccag cgaagatgag acgctgctgg tccggaggaa 300
taccttcctt gtcctggatc ttggccttga cgttgtcaat ggtgtcggag ctttccactt 360
caagggtgat ggtctttccg gtcaaagtct tgacgaagat ctgcatacct ccacgcagac 420
gcaacaccaa gtgaagggtc gactccttct ggatgttgta atccgccaaa gtacgaccat 480
cctccaattg ttttccggca aagatcaacc tctgctggtc cggagggatt ccttccttat 540
cctggatctt ggccttcacg ttgtcaatgg tgtcagagct ctctacctcc aaagtgatag 600
tctttccggt gagagtcttc acgaagatct gcatacctcc acgcagacgc aagaccaagt 660
gaagtgtgga ctccttctga atgttgtagt cggccaaagt tcttccatct tcaagttgct 720
ttccggcgaa gatcaatctc tgctggtcog gaggaatacc ctctttgtcc tggatcttgg 780
ctttcacgtt atcaatggtg tcagaactct ccacctccaa agtgatagtt ttcccagtca 840
acgtcttaac gaaaatctgc ataccaccac ggagcctgag aacaagatga agggtggact 900
ccttctggat attgtagtca gcaagagttc tgccatcctc caactgcttt ccggcgaaga 960
tcagcctctg ctggtccgga ggaataccct ctttgtcttg gatcttggcc ttgacgttgt 1020
cgatggtgtc agaactctcc acctcaagag taatcgtctt tcccgttagg gttttaacga 1080
aaatctgcat accaccacgg agcctgagga ccaagtggag ggtggattcc ttctggatat 1140
tgtaatcagc caacgtacgg ccatcctcta gctgcttgcc ggcgaaaata agcctctgct 1200
gatccggagg aatgccctcc ttatcctgga tcttggcctt aacgttgtcg atggtgtcgg 1260
agctttccac ctcgagggtg attgtctttc cggtgagagt cttaacaaag atctgcatct 1320
tgatcacggt agagagaatt gagagaaagt ttttaagatt ttgag 1365
$<210>$ SEQ ID NO 98
<211> LENGTH: 878
<212> TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 98
cgtttgtttg caactcttga tccaactacg agaagggttc agatgcaaaa cgggaaggaa

gtttcatcaa ttccaaatt ggtcgtgtgg aataaggttg atagagtgga tgatcctcaa	300
aacgtcaagc tggaagcaga ggaaactggg gatacaattt gtatatctgc tctgactgga	360
gaaggactag acgacttctg caatgctgtt catgagaagc tcaaggattc aatggtttgg	420
gttgaagccc ttttgccatt tgataaaggg gaccttctaa gcaccataca caaggttgga	480
atggtgaaag aaactgaata tacagagaat gggacactta tcagggcaca cgttccgcta	540
cgttttgcac agctgcttaa acctatgaga cacttggtca aagatacttc aataagccaa	600
agaggatgaa ccagaatcat agcaagaacc tgaaggcctg cctcttggtg agaatcggag	660
gctacgtgtg ctttgccaaa gcatccgaaa gcaaaaggaa ttcaaacaac cttctgatca	720
tacacaccac aaagaatgac agtcagacag taaagaatat tcgtagataa aaaggaatgc	780
agctagacac aagcaagata agcttgaacc tacttcacat cgtgaactga cactggaaat	840
gttatttcaa cagtgataag tgataaccct tttgtaa	

```
<210> SEQ ID NO 99
<211> LENGTH: 476
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: }9
```

aacataacat taaactgctt tcacatagaa agcaaaagtc ttaaacaaca ttacattaac 60
tcctttcaca taaacagaaa agtcttaaac aacattacat aaactccttt cacacagaca 120
caaaaggctc tttcttgctc aacgcatcaa cactcttagt tcaagatttc acctgtaatg 180
ggtgaaacat gttggctcgt agacttctgc ccattttttg aaccgaccac taccataggc 240
tttggtggta tcaaaccggc cotgaaaagc atgctttcca ctgtgtctgt tggttgagct 300
ccaacagata accagtactt gattctgtcg aatttgaggc tcactctatc cgcatcttct 360
ttgccttgga gtggatcata aaagcctaac acctcgattt gtttaccgtc cctgcgcgat 420
ttttcatcgg cgacaactac acgatagaag ggtcggtgtt tacaaccaag acgcgc 476
$<210\rangle$ SEQ ID NO 100
<211> LENGTH: 713
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 100
gattatgccc ctctcgtcac caaggccaag ggccgtaaac tcacggctga ggaactctgg 60
tcagagctcg atgcttccgc cgccgacgac ttctggggtt tctattccac ctccaaactc 120
catcccacca accaagttaa cgtgaaagag gaggcagtga agaaggagca ggcaacagag 180
ccggggaaac ggaggaagag gaagaatgtt tatagaggga tacgtaagcg tccatgggga 240
aaatgggcgg ctgagattcg agatccacga aaaggtgtta gagtttggct tggtacgttc 300
aacacggcgg aggaagctgc catggcttat gatgttgcgg ccaagcagat ccgtggtgat 360
aaagccaagc tcaacttccc agatctgcac catcctcctc ctcctaatta tactcctccg 420
cogtcatcgc cacgatcaac cgatcagcct coggcgaaga aggtctgcgt tgtctctcag 480
agtgagagcg agttaagtca gccgagtttc ccggtggagt gtataggatt tggaaatggg 540
gacgagtttc agaacctgag ttacggattt gagceggatt atgatctgaa acagcagata 600
tcgagcttgg aatcgttcct tgagctggac ggtaacacgg cggagcaacc gagtcagctt 660


```
<210> SEQ ID NO 102
<211> LENGTH: 663
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 102
```

gcaacatacg tcttttctaa atcattacat ttgaagaaga gaaacaaaaa cagagcggaa
tgccgaattt gtttctcttc tcgattcaac catccgaaaa caagaataca aaaagagaag
ataatcgcgg aaacagatta cgtaatagaa gcttgagttg ttttgtttct atttctttc180240300360
ttcttttgat ggccacagag gctccctgag gtttgggtca taggaaagaa gagctcctgc 660
gcg 663
$<210>$ SEQ ID NO 103<211> LENGIH: 68<212> TYPE: DNA$<213>$ ORGANISM: Arabidopsis thaliana$<400\rangle$ SEQUENCE: 103aagcgaagag tctgaaagcg actaaatgta cattataag aaacagattt tgattttgaa60
agatctagta acaaaaacaa atttccgtta tccccatgtt cttatgcagc catgggcaca 120
gcttctgatg gtgctgcagc agctgcgtct gggacgtacc aaccatggtg aatttcaacg 180240300360420480540600660688
$<210>$ SEQ ID NO 104

<211> LENGTH: 111

$<212>$ TYPE: DNA

<213> ORGANISM: Arabidopsis thaliana

$<400>$ SEQUENCE: 104
gtcttcttat gattaccctc tcttccctaa ttacatggct aatactcagt cttctaaagc

tccatcagtt tccttactat tttactggtt agttgttacc tatcttgttc ttctattaaa	1020
cattttttt gatatattat tgtttgttga gatgtaagag agtgatcatc acagaaacac	1080
acaacagtca tggtagaatt tgcttcacgc g	1111

$<210>$ SEQ ID NO 105
$<211>$ LENGTH: 612
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE: 105
tgcatgttcc ctaagttaac agaggagaca aaagatgatg ataagttaca ttttagaaca 60
caaccatatt tcctcttcag actcgccaca caaacctcta taagcgagag aaagaagctg 120
aaaaaacca ctctctttct ttatttagta agagttttgc cagagctgct gctgagattg 180
attcgacggt tgaccagcct gagacccagc accatcccta gggttttgct gctggcgctc 240
gagtgacatt tcggtctgag actgataata atttgggtat ccatgagatc cataatgctg 300
ttgttgctga gcttggcgat accctcccgc tgcttgctga gcctgctgtt gttgttgctg 360
gtgttgtagt tgcagttgtt gttgtgcttg gaggttgtaa tacgtgttag tcgggacacc 420
tgacatggtt ctggaaccat gaccctgatg ccacatcgcc gagttttcgt tctgttgttg 480
atgttgctgt tgttgctgct gctgctgaag tgccaacaga tgattctctt tgtattgaga 540
actaagaaca tcgtcataac caagcgttgt accggtagta gcagactgtt ggttaagagg 600
gaagtttccg cg 612

$<210>$ SEQ ID NO 106	
$<211>$ LENGTH: 703	
$<212>$ TYPE $:$ DNA	
$<213>$ ORGANISM $:$ Arabidopsis thaliana	
$<400>$ SEQUENCE $: 106$	60
actgagttcg ataggatact attgttcgaa caaattcgtc aagacgccga aaatacctac	120
aagtcaaatc ctttagatgc cgataatctg actagatggg gaggagtttt actcgagtta	180
tctcagtttc atagcatctc agatgcaaag caaatgattc aagaggccat cacaaagttt	240
gaagaggcat tgttgattga cccaaagaaa gatgaagcgg tttggtgtat tgggaatgca	200
tacacttcat ttgcgtttct gactcctgac gagactgaag ctaaacataa ctttgactta	300
gctactcagt tctttcaaca agctgtggat gagcaaccag ataatacaca ctacctgaaa	360
tcactcgaaa tgacggccaa ggctccacag ctgcacgcag aagcttacaa acaaggctta	420
ggctcacaac caatgggtcg cgttgaagct ccagcaccgc cgagctcaaa ggcagtgaag	480
aataagaaaa gtagtgatgc caagtatgat gctatgggtt gggtgattct agccattggt	540
gttgttgctt ggatcagttt cgcgaaagct aatgtgcctg tctctcctcc tcgttaagta	600
gactcgttag gagactttga tgaagttttt caatttttga ggttttgaca gttggagctt	660

[^1]| gggacgtcaa ggagagagag ttagattgta tgttcgtgga acagtcctcg gttacaagag | 60 |
| :--- | :--- |
| gtccaagtcg aaccaatacc ctaacacttc tctcgtccag attgaaggtg tgaacactca | 120 |
| agaggaggtt aattggtaca agggtaagcg tttggcttac atctacaagg caaagacaaa | 180 |
| gaagaacggt tctcactacc gttgcatttg gggcaaagtc actaggcctc atggtaacag | 240 |
| tggtgttgtc cgttctaagt tcacttcaaa cctaccaccc aagtcaatgg gagctagagt | 300 |
| cagagtcttc atgtacccta gcaacatatg aggaggctag atttcaacaa gtatcggaag | 360 |
| gaatcgccat tatcatttct caggagctgt agttttatct attcactttt attctagact | 420 |
| ctctgttggt tttgatttta tcttgagacg aagtaaaaca ttttttttct tgagatcata | 480 |
| tactatcgag tattaatgga acttgagaaa agcg | |

```
<210> SEQ ID NO 108
<211> LENGTH: 801
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 108
```

ttcttacagc attctatcct gaagatcact gaatatacta gaggcaaatg ttcccagctt 60
attctttgtt tcctcagcta agttagcaat agatgacata tcttgctgcg cctggaaaga 120
aattcggttg atgagatcgc ttgcagtgat atcgatgttg gaatcatctg gtccgtggcc 180
aaaagatca gaacttgaaa tagctgctga acccgagaac ttctgaaggg tagcttttga 240
gtcaagatcg gcatctctgt tctgatttcc gaaaattgg gcagaggaaa tcgatttggc 300
gtttgaaaac ttctttcttg cttcatctgt ttctcaacc tgagctttgg atgagcttga 360
gcttgacttc ttggggaaag cactgtccat tccaaattca ttaaagaaat ttgatgactt 420
tggtggagca acatggctaa gcacccgtgt gccactttgc ccaccagatt gctcatcatc 480
aaagtactca aatcgagagg caaatgatga tccagctgct gatgtgtcat tggttggaga 540
agcagcagga atcacaggta caggttcttc aggcttctgc tcatagaggt tatcctttga 600
cttagtagta agcttacgag caccaagacc accagtcttc ccagactttc gcgaaacaag 660
aggtttctta aacgtactag caacaacttt ctgagaagct tttggtgaag agacaacagc 720
tgcttcttgc ttcaaagaac tctctttcgg agattcagaa gtaaacccat tttcagatga 780
$\begin{array}{ll}\text { ttccactggc tgagaagcgc } g & 801\end{array}$
$<210\rangle$ SEQ ID NO 109
<211> LENGTH: 745
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 109
gcaaccttcg attttcgttt attcgcatcc atcggagaga gaaaacaatc aataagcgac 60
catgttggtg taccaagatc ttctcaccgg tgatgagctt ctgtctgact ctttccctta 120
caaggagatt gagaatggaa tcctctggga agtagaagga aagtgggtta ctgtgggagc 180
tgtagatgtt aacattggtg ccaatccatc tgctgaagaa ggtggtgagg atgaaggtgt 240
tgatgactct actcaaaagg ttgttgacat tgtcgacacc ttcagacttc aggagcaacc 300
aacttatgac aagaagggat tcatcgctta cattaagaaa tacattaagc ttttgacacc 360
caagctcagc gaagaagatc aagctgtctt caagaagggt attgagggag ctaccaagtt 420

tttgctcccc aggctcagtg acttccaatt ctttgttggg gagggtatgc atgatgacag	480
cactttggtc tttgcttact acaaggaggg ttcaactaac ccaacatttt tgtacttcgc	540
tcatggtttg aaggaggtca agtgctgaga gagaagctct cgttgggtta ctgtggtcgg	600
tcgcagcgac tctctaagtt tatgtttctt tatattgtcc tgtgtttcgt cgtcgtcccc	660
tattaaatt acctgccagt ttacttttct ctcttcttgt tttctgtgtt ggaagattct	720
caagttattt attccgcaaa aagcg	

$<210>$ SEQ ID NO 110
$<211>$ LENGTH: 572
$<212>$ TYPE : DNA
$<213>$ ORGANISM: Arabidopsis thaliana
$<400>$ SEQUENCE $: 110$
gacaaattct tccattagaa gaagaagatg gctcttctct gcttcaattc tctcccttct
ctctcttctc tttcttctcc ttcttcctcg cgccttctcc aatctccgtc tttcgctcct 120
ccagttttga gccttaacc caacgctgtc gagtccaaga acagagtctc tctcagtgct 180
tacagcttga actctagcca tggaagaatt gtggtgaagg cggctgcttc tggcgtggac 240
ggggctgagc ctgagagcaa ggaggaacca aagactgttg ttgctgctgt tccagtggat 300
aaactaccgt tggaatcgaa agaagctaaa gagaaactgc tcttggaatt gaggctgaag 360
atgaagctgg ccaaaagat taggctacgc aggaaacgtc tggttcgtaa gcgtaagatg 420
aggaagaagg gtcgatggcc accttccaag atgaagaaaa acaagaatgt ctaagtgact 480
caactgtttg ctgcttttcg tattcgtttt ttgtaatgtt ctttttggtg ttcaaagacc 540
attaatgtac ttcaaatgca accattgttt tt 572

```
<210> SEQ ID NO 111
<211> LENGTH: 630
<212> TYPE: DNA
<213> ORGANISM: Arabidopsis thaliana
<400> SEQUENCE: 111
```

gtcgatgtgt acgtccgtgt aaccggagga gaagtgggag ccgccagttc tctagctcca
aagatcggtc ctctcggtct cgcaccaaag aagatcggag aagacatcgc gaaagagacg 120
gccaaagaat ggaaaggact tcgtgtcacc gtgaagctga cggttcagaa tcgtcaagct 180
aaggtaaccg tggttccatc tgctgcagct ctcgtcatca aggcgttgaa ggagccagag 240
agagaccgta agaaggtgaa gaacattaag cataacggta acatctcttt cgatgatgtg 300
actgagattg ctaggattat gaggcctaga tctattgcta aggagctgag tgggactgtg 360
agggagattc ttggaacgtg tgtctctgtg ggatgcactg ttgatgggaa agaccctaag 420
gatcttcagc aggagattca agaaggtgag attgagattc ctgagaatta aggaacaatg 480
gagttttttt ttcttcttat gggaatttga aatgcttctg ttgttatctt tctcgtttta 540
ccatattttg tttttgtttg ggaacttagc tgctatgatg tttcacttag aatgactctc 600
aagttttgga ttcttattat tctctgtttc 630

<400> SEQUENCE : 112	
tgcagcaatc tctagctcag aaccagttcc aatcaagatc acatcgggtt tgttgcctga	60
agagtcgtca gaaattgtat atcacccttt tccactcctt cgatggatgt acctggaaga	120
tgaggcagct tttgcctaga cagagctaag atagatggtg tcttgcgett ggtgacagcg	180
atcttgtatg caccggctgc ggaggtgctc aggaaagacg gcaaaaccgt tagagttgtt	240
tctttcgtgt gctgggaact atttgacgag caatcagatg aatacaagga gagtgtgttg	300
ccatcggatg tatcagctag agttagcatt gaagcagctt cgactttcgg atggggaaag	360
attgttggag gcaaaggaaa gtccattggt attaattcat tcggagccag cgcaccagca	420
cccttactct acaaggagtt tggtatcacc gttgaagctg ttgttgatgc ggccaagtca	480
ttcttctaag agatttaaga tcggaccatt ctctctgagg gggttttgtc tgaaacttga	540
tttggaaaca aggctattca caacattgtc tcatatctcg aaataaagtg caacaagaca	600
caaagacttt cactttcttt tttgtttttg ttttttgtac ttcaggtcaa gataggtttt	660
cggtttgaga agagaaacaa attagaaaga caatgtaaaa ctcccatgat cattcgtgta	720
	780
	815
<210> SEQ ID NO 113	
<211> LENGTH: 1106	
<212> TYPE: DNA	
<213> ORGANISM: Nicotiana benthamiana	
<400> SEQUENCE : 113	
ggaaaacaat cacctggttg tttgtttcgg ggagttgttg attgacttcg ttcctactgt	60
atctggagtt tcacttgcag aagcgcctgg atttgagaaa gctcctggtg gagctccagc	120
taacgttgca gttggtatag caagattagg aggttcttcc gcctttattg gcaaggtggg	180
tgcagatgaa tttggttata tgttatctga tatattaaaa cagaaccatg tcgacaattc	240
tggcatgcgt ttcgataccc atgcaaggac agcattagca tttgtcactt tgagagcaga	300
tggcgagaga gaattcatgt ttttccgcaa tccaagtgct gatatgcttc ttacaaagga	360
agagctggac aaagatctca ttcagaaggc aagaatattt cactatgggt caatctcttt	420
aatcgcggaa ccgtgtaggt cagctcatct tgcagccatg gagattgcca aaaaagctgg	480
ctgcattctc tcttatgacc caaatctaag gttgccetta tggccatccg cagatgctgc	540
tcgtaaaggc atcttgagca tttgggacca agccgacgtt attaaggtaa gcgaagacga	600
aatcacattc ttgacagacg gtgaagacgc ctacgatgac aatgtggtga tgactaagct	660
tttccaccca aaccttaagc ttttgctggt taccgaaggg ggagaaggtt gcagatacta	720
tactaagaat tttcacggga gagtgaatgg cattaaagta acagcagttg ataccacagg	780
agcaggtgat gcatttgttg gcggacttct caacagtatg gccacagatc cagacattta	840
tcaggatgag aagaaactaa ggaatgcact cctttttgcc aatggttgtg gagctataac	900
tgtgacagaa aaaggagcaa ttcctgcatt gccaacaaaa gcagcagtgc ttaaaatctt	960
ggatggtgcc acagctaact gatccaatca aattcccccc acceacagaa aagcctccta	1020
atctccaccc cttgtaagac actacactag tacttcgtgt acaaattatc atatatactg	1080
gaatttactc caaaaaaaa aaaaaa	1106

$<210\rangle$ SEQ ID NO 114	
<211> LENGTH: 1252	
<212> TYPE: DNA	
<213> ORGANISM: Nicotiana benthamiana	
<400> SEQUENCE: 114	
ttttcttctt tattgtatag atatatactt tacatacaca tattctctct attcatagtc 60	
ggtatggcag ctaacggcgt tagttctggt ttaattgtga gcttcggcga gatgttgatc 120	
gatttcgtgc cgacggtctc cggegtttcc cttgccgagg ctcogggttt cttgaagget 180	
cctggcggtg caccggcaaa cgtcgccatc gcagtgacta ggctcggggg aaagtcggcg 240	
ttcgttggga aactcggcga cgatgagttc ggccacctgc tcgecgagat actcaaaaag 300	
aacggcgttc aagccgacgg gatcaacttc gacaagggag cgagaacggc attggcattc 360	
gtgaccctac gcgccgacgg agagcgtgag ttcatgttct acaggaatcc cagtgctgat 420	
atgttgctca ctcccgacga gttgaatctt gatgttatta gatctgctaa ggtgttccac 480	
tacggttcga taagtttgat agtggagcca tgcagatcag cacatttgaa ggcaatggaa 540	
gtggcaaagg aggcaggagc attgctctct tatgacccaa acctccgttt gccgctgtgg 600	
cogtcggcag aggaggcgag gaagcaaatc aagagcatct gggacgaggc agatgtgatc 660	
aaggtgagtg atgtggagct ggaattccta accggaagtg acaagattga tgacgaatct 720	
gccatgtcct tatggcatcc taatttgaag ctcctcttgg tcaccetcgg tgagaaaggc 780	
tgcaattatt acaccaagaa tttccatgga ggtgttgagg cattccatgt gaagactgtt 840	
gacaccaccg gagctggtga ttcttttgtt ggtgcccttc taaccaagat tgttgatgac 900	
caatccattc ttgaggatga agcaagactg aaggaagtac taaggtttgc atgtgcatgt 960	
ggagccatca caacaaccaa gaaaggagca atcccagctc ttcctactga atctgaagcc 1020	
ctcactatgc tttacggagg agcataggac gaagatgatg ttaccctttt aattcttttt 1080	
aatcgtgata tatttcgacc gtttacgagt ttttcctttc aatcaatcaa aatagtttca	1140
gcctttcatt tcacttttgg ggtttcggat tttaatggtt tcttgtaatg atgaaagact	1200
atgcattaag gcacttaata aagtaagctt tcttcctaaa aaaaaaaaaa aa	1252

$<210>$ SEQ ID NO 115
<211> LENGTH: 803
<212> TYPE: DNA
<213> ORGANISM: Nicotiana benthamiana
<400> SEQUENCE: 115
ttgttgctga gcatgccgct gccaataaca agatattctc gatgaacctt tctgcaccat 60
tcatctgcga gttcttcagg gatccacaag agaaagcctt gccgtatatg gattttgtat 120
tcggaaatga gaccgaagca agaaccttct caaagtaca tggatgggag actgataatg 180
ttgaagaaat agctctgaaa atatctgaat ggccaaaggc atctgaaaca cacaaaagga 240
tcactgttat tacacaaggt gctgatcctg ttgttgttgc tgagaatggg aaggtgaagt 300
tgttccctgt aataccgttg ccaaagaga aacttgttga caccaatggt gctggggatg 360
catttgttgg gggattcttg tcacaattgg ttcaaggaaa acctgttgaa gattgtgtaa 420
gagcaggatg ttatgcgtca aatgttatca tccaaaggtc gggttgcaca taccctgaga 480
aaccagattt tgcataagat aagttcttat tcttggtttc tagttttatg ttgacagaac 540


```
<210> SEQ ID NO 116
<211> LENGTH: 565
<212> TYPE: DNA
<213> ORGANISM: Nicotiana benthamiana
<400> SEQUENCE : }11
```

cccgttgttt cctttgtttg ttgggagctt ttcgaagaac aatcagccga ctacaaggaa
agtgtccttc catcatctgt tacagctaga gttagcattg aagctggatc cacatttggg
tgggagaaat atgtcggatc aaaggggaag gccatcggaa ttgatagatg gggtgccagt 180
gcccctgctg gaaaaatata ccaggagtac ggaattacag cagaggctgt tgtagctgca 240
gctaaacaag tttcttaggc tttattactt acacttggtt gctggtgtct accaaatttg 300
ttttcagttt gacactgagg ttggaggtga tggtggaaac caataccaaa cggactcggc 360
agttcactgt tgcctggtat tttcaataaa aactatttct tcatctgcce tttgttttct 420
tcagttttag tagcggagcg gccaaaatga atccaagatg aggatagaaa taggattatg 480
gatgctcctg accatgtaca ctttaacca tatctttgag ttttgtaatt tcatttggtc 540
gagtgatacc aagatcttat tttca 565

```
<210> SEQ ID NO 117
<211> LENGTH: 759
<212> TYPE: DNA
<213> ORGANISM: Oryza japonica
<400> SEQUENCE: 117
```

ccccccaaaa tacatctaca ttgctggctt tttccttacg gtctccccag attctattca
gcttgttgct gagcatgctg ccgctaacaa caaggtgttc ctgatgaacc tctctgcacc 120
ctttatctgt gagtttttcc gtgatgccca ggagaaggtt cttccgtttg tggactacat 180
cttcggtaac gaaacagaag caagaatctt tgctaaagtc cgtggatggg agactgagaa 240
tgttgaggag atcgcgttga agatttccca gcttccattg gcctctggaa aacaaaagag 300
gattgccgtg attactcaag gtgctgatcc agtagttgtc gctgaggatg gacaggtgaa 360
aacattccct gtgatcctac tgccaaagga gaagcttgtt gacaccaatg gcgctggtga 420
tgcctttgtt ggaggcttcc tctcacaatt ggttcaacaa aagagcattg aggactctgt 480
gaaggctggt tgctatgccg caaatgttat catccagcgt tctggctgca cttaccotga 540
gaagcctgat ttcaactagg gctaacccaa ccacatattg aggaacaatt attcgcacat 600
ccaacctact agtggtttgg tgtgttctac ctgtaccatc tcgaggcttt ccatatgatc 660
cggccaatat ttttttgceg tgatttttgt ttcactgctg caaaccttac tttattctcg 720
gtataaggca caattgccaa toggtgtgtt gttttggtc 759

ctttgaaaa taagagatta agcatttgaa atatggagta ataagaaagc cgcctgcagt	1320
tgaaatcggt tcctaagttg tatgtaaaca gtgattgttg ttgcatactg tcaatatacc	1380
ttggcttgtg ttaataagag agatttgtgt gctgttgttg caaggccc	1428

$<210>$ SEQ ID NO 120
$<211>$ LENGTH: 1428
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Oryza indica
$<400>$ SEQUENCE : 120
gatggtacgc atcatcggcc caagtccagc tcaatcctcc tcaccaacac caagacgacc 60
acgacctcct cgccetcgcc gccgcccacc gaccatggce tccgccgccg cttcttcctc 120
caaacctccc gtcgtgcttg gctgcggcgc cgtctccgcg gactacctcg ccaccgtcgc 180
ctccttcccc aaccccgacg acaagatccg aagcctaacg ctcaaggtcc agggaggegg 240
caacactggc aatgccttga cogccgctgc tcgtttgggc cttcgcccaa ggatcatatc 300
caaggtatcc aatgacccac aaggaagaaa tattctcaag gagctgcaag atgatggggt 360
cgacacctct catatcctgg ttgcagagga ggggaattca cctttcacct atataattgt 420
tgacaaccag acgaaaactc gtacttgtat tcacactcct ggttatcctc ctatggtccc 480
tgaagagctc acacaagaaa acttgtttgc cgctttagac ggtgctgaca ttgtatattt 540
tgatgtcaga ttgcatgaaa ctgctttact agttgctgaa gaggcaagcc aaagaaaact 600
tcctattttg attgatgccg aacggaagag ggatggattg gacgagcttc tcaatttcgc 660
atcttatgtt gtatgctctg caaaatttcc tcaggcttgg acaggagcct catcaacacc 720
ggttgctttg gtgtccatgc ttttaagatt gcctaatatc aagtttatta ttgtaaccct 780
tggagaaaag ggatgcttga tgcttgaaag aagcacaaca gatgcttctg aggcagagga 840
aatagatgta gagagtcttc tggaatcact agagaagaaa gaagttttga gttcaagcat 900
gccaaaatgc atcgcctcca agtcaaattt gagaataagt gcagatggaa taggatccat 960
cagtggcaga ttacttttag gcactgccga aattataccc tctgaagagc tcatagatac 1020
aactggtgcg ggtgatgcat ttatcggagc agttctctac ggtttatgct ctggcatgcc 1080
gcctgagaag atgctgcctt ttgcagctca agtggctgct tgcgggtgca ggggtttagg 1140
ggctcggact gctcttcccc atcgcacaga tccccgcctg gttgcctatt gactcgagga 1200
actgtagtgt atcaatctgt gttggatctg attgggatgg attcattgga ttgtgggcgc 1260
ctttgaaaaa taagagatta agcatttgaa atatggagta ataagaaagc cgcctgcagt 1320
tgaaatcggt tcctaagttg tatgtaaaca gtgattgttg ttgcatactg tcaatatacc 1380
ttggcttgtg ttaataagag agatttgtgt gctgttgttg caaggccc 1428
$<210>$ SEQ ID NO 121
$<211>$ LENGTH: 1172
$<212>$ TYPE DNA
$<213>$ ORGANISM: Papaver rhoeas
$<400>$ SEQUENCE $: 121$
tttttttttt tttttttgtt ctttttttta attattatta taattcgttc acgaggctgt
ttttctgaac tcaaattact cttaaagaca ggcctctctc ctcccgtgtc acttctaaat

ttggaagagc agaaatccaa aaaccaaaat gacaaataag cttcagctga aaaagggaca

aagaaacaa tctacataac tgacttagct gctgcaataa cggcctctga tgtgatgcca	240
aactcttgt atataattgg tgcaggcgca cttgctccga aaccgtcaac accaatagcc	300
tttccttgc ttccgatal cttgtgccat ccgaatgttg aacctgcctc aatactaact	360
ctagcagtga cagcagctgg aagaacagac tccttgtatt cgtcggtctg ttcatcatat	420
aattcccagg aaacaantga aacaacccta actgcagttc cttccttcct gagctcacca	480
gcggcctttt cagcaatttc taattctgaa ccagtagcac acacgatgac atctggtttg	540
ttacctgtag agttgtctga tattgtgtaa cctcccttgg cgactccttc aatggaggtt	600
cctggaaggt ttgcaagctt ttgacgtgaa agggcaagaa ttgagggtct ctttctgttt	660
tcaactgcaa ccttgtatgc cccggcagtc tcgtttccgt cagcgggacg gaacataaga	720
atgttaggca tggctctaaa gcttgccaaa tgttcgatgg gctgatgagt tggaccatcc	780
tctccaagac caatagagtc gtgggtcatg acgtaaatga ctccagcttc agataaggct	840
gaaattctca tggcacctct catgtaatcg gtgaaaacaa agaaggtagc acagtagggg	900
acaaaaccag gactgtggag agcaattccg ttacagatgg ctcccatagc atgctctctg	960
acaccaaatc gaacattcct ctcttctgga gtggcctttt ggaaatctcc gaacattttc	1020

<210> SEQ ID NO 122	
<211> LENGTH: 717	
<212> TYPE: DNA	
<213> ORGANISM: Oryza japonica	
<400> SEQUENCE: 122	
cctgtcataa gttggcatca aacttaacc aatcaagtaa aagcacacca aataagctgt 60	
gccactaatt gattacacaa gccettgatg tatcaaggag ttccaaatac aacacctagc	120
agcagaatac taaaattaaa gctacaacag gaagcttttt ggcttctaat attagctttg 180	
ctcctcggce tcagcctccg ctgccgcggc ctccctctct tccgcggctg ctgccatcag 240	
ttcgtcaat ttgtccgtct tgcecagcac tatttcaatc ttggctttct gcatagggcg 300	
actcctcgaa tcatctttga cgtcaacagt agatgtcata atcttcttct cgacagcaag 360	
gccattattt ttcagaattt cagcaacagt caccacagtt gcaatagcca tgccgagtgc 420	
cgagagctcc acttcgttat gcagctgcat gtacctcttg gcgaggttga cgtagaagaa 480	
gagcggcttc ttggtgttgg agacctggat gcggttcttc ttgtgcgcct cogccgcgec 540	
gccgeccgcc coggcggctt ctcccgcggc tatggtgagg ttgccgaccg cotccgtcac	600
ctcctccatg gccgccgcce gacgagtccc cgcggagcac cgtgcgcgag tgaaacggag	660
agcgegaggc ggcgaagaag atgtggagga tttcggcggc gacggaggta agaggga	717

1. A method of creating a transfected or transgenic plant chosen from the group consisting of ornamental, horticultural, forestry, medicinal or Nicotiana sp. plants, exhibiting a dwarf phenotype comprising: expressing in the plant the DNA identified by a polynucleotide sequence chosen from the group consisting of SEQ. ID NO: 1-122 or the mRNA
encoded by the DNA identified by a polynucleotide sequence chosen from the group consisting of SEQ. ID NO: 1-122:
2. A method of creating a transfected or transgenic plant chosen from the group consisting of ornamental, horticultural, forestry, medicinal or Nicotiana sp. plants, exhibiting a dwarf phenotype comprising the steps of:
(a) providing a viral inoculum capable of infecting a plant comprising the DNA identified by a polynucleotide sequence chosen from the group of SEQ. ID NO: 1-122 or the mRNA encoded by the DNA identified by a polynucleotide sequence chosen from the group of SEQ. ID NO: 1-122;
(b) applying said viral inoculum to a plant;
whereby the plant is infected and the DNA or the mRNA is expressed in the plant.
3. The method of claims 1 or 2 wherein the plant is turfgrass.
4. The method of claims $\mathbf{1}$ or $\mathbf{2}$ wherein the plant is fir tree.
5. A transfected or transgenic plant chosen from the group consisting of ornamental, horticultural, forestry, medicinal or Nicotiana sp. plants, exhibiting a dwarf phenotype made by the method comprising: expressing in the plant the DNA identified by a polynucleotide sequence chosen from the group consisting of SEQ. ID NO: 1-122 or the mRNA encoded by the DNA identified by a polynucleotide sequence chosen from the group consisting of SEQ. ID NO: 1-122.
6. The transfected or transgenic plant of claim 5 wherein the plant is turfgrass.
7. The transfected or transgenic plant of claim 5 wherein the plant is fir tree.
8. A transfected or transgenic plant chosen from the group consisting of ornamental, horticultural, forestry, medicinal or Nicotiana sp. plants, exhibiting a dwarf phenotype made by the method comprising the steps of:
(a) providing a viral inoculum capable of infecting a plant comprising the DNA identified by a polynucleotide sequence chosen from the group of SEQ. ID NO: 1-122 or the mRNA encoded by the DNA identified by a polynucleotide sequence chosen from the group of SEQ. ID NO: 1-122;
(b) applying said viral inoculum to a plant;
whereby the plant is infected and the DNA or the mRNA is expressed in the plant.
9. The transfected or transgenic plant of claim 8 wherein the plant is turfgrass.
10. The transfected or transgenic plant of claim 8 wherein the plant is fir tree.
11. A method of producing multiple crops of the plant of claims 5-10 comprising the steps of:
(a) planting a reproductive unit of the plant;
(b) growing the planted reproductive unit under natural light conditions;
(c) harvesting the plant; and
(d) repeating steps (a) through (c) at least once in the year.
12. A method of manufacturing a biopharmaceutical comprising:
(a) providing a plant that expresses a biopharmaceutical in the plant;
(b) providing a viral inoculum capable of infecting a plant comprising the DNA identified by a polynucleotide sequence chosen from the group of SEQ. ID NO: 1-122 or the mRNA encoded by the DNA identified by a polynucleotide sequence chosen from the group of SEQ. ID NO: 1-122;
(c) applying said viral inoculum to the plant;
whereby the plant is infected, exhibits a dwarf phenotype, and expresses the biopharmaceutical.

[^0]: Internal Standard(s)
 Undecanoic acid, methyl ester
 Tetracosanoic acid, methyl ester
 Chromatography

 Column: | | J \& W DB-23 FAME |
 | :--- | :--- |
 | | $60 \mathrm{M} \times 0.250 \mathrm{~mm} \times 0.15 \mu \mathrm{~m}$ film |
 | | Mode: constant flow |

 Mode: constant flow
 Flow: $2.0 \mathrm{~mL} / \mathrm{min}$
 Detector: MSD
 Outlet psi: vacuum
 $50^{\circ} \mathrm{C}$. for 2.0 min
 $20^{\circ} \mathrm{C} . / \mathrm{min}$ to $240^{\circ} \mathrm{C}$., hold 10.0 min Equilibration time: 1 min Mode: split

 Inj Temp: $240^{\circ} \mathrm{C}$.
 Split ratio: 50:1
 Gas Type: Helium
 Inj volume: optimized to undecanoic
 acid, methyl ester peak intensity
 (Typically $10 \mu \mathrm{~L}$)
 Sample pumps: 2
 Wash solvent A: Methanol
 Wash solvent B: Methanol
 Preinj Solvent A washes: 2
 Preinj Solvent B washes: 2
 Postinj Solvent A washes: 2
 Postinj Solvent B washes: 2
 APEX Injector
 Method Name:
 BIOFAMEx (where x is a revision number of the core APEX method).

[^1]: $<210>$ SEQ ID NO 107
 <211> LENGTH: 514
 $<212>$ TYPE: DNA
 $<213>$ ORGANISM: Arabidopsis thaliana
 $<400\rangle$ SEQUENCE : 107

