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Abstract

In this paper, we investigate the output token001
probability information in the output embed-002
ding of language models. We provide an ap-003
proximate common log-linear encoding of out-004
put token probabilities within the output em-005
bedding vectors and demonstrate that it is accu-006
rate and sparse when the output space is large007
and output logits are concentrated. Based on008
such findings, we edit the encoding in output009
embedding to modify the output probability010
distribution accurately. Moreover, the spar-011
sity we find in output probability encoding012
suggests that a large number of dimensions013
in the output embedding do not contribute to014
causal language modeling. Therefore, we at-015
tempt to delete the output-unrelated dimensions016
and find more than 30% of the dimensions can017
be deleted without significant movement in out-018
put distribution and degeneration on sequence019
generation. Additionally, in training dynam-020
ics, we use such encoding as a probe and find021
that the output embeddings capture token fre-022
quency information in early steps, even before023
an obvious convergence starts.024

1 Introduction025

Modern Language Models (LMs) have two kinds026

of embeddings. One is the input embedding E(i)027

located at the earliest layer of LMs, for mapping028

the input token index into distributed inner repre-029

sentation. The other is the output embedding E(o)030

in the Language Modeling head (LM head), for031

mapping the hidden state to the predicted proba-032

bility distribution of the next token in the causal033

language modeling task.034

Since the output embeddings were often tied035

with the input embeddings (Chung et al., 2020;036

Press and Wolf, 2017), i.e. input embeddings are037

directly used as the output embedding, the behav-038

iors and features of independent output embeddings039

are rarely investigated. Along with the scaling of040

LMs, such embedding tying, which is proven to be041

Figure 1: The PCA result of the output embedding pa-
rameters of GPT2. Colors refer to the ranking percentile
of the averaged output token probability. Output em-
beddings encode the probabilities linear-likely.

harmful to model performance (Chung et al., 2020), 042

is gradually being unused in modern LMs such as 043

GPT-J (Wang and Komatsuzaki, 2021) and LLaMa 044

2 (Touvron et al., 2023). This raises attention to the 045

output embeddings, and explaining its underlying 046

mechanism can be beneficial to understanding and 047

improving LMs. 048

The most obvious and expected role of the LM 049

heads is to map the last hidden states into token 050

probabilities. Therefore, following Kobayashi et al. 051

(2023), who found an encoding of the averaged out- 052

put token probability distribution in the bias term 053

of the output LM head, this paper also focuses on 054

the averaged output probabilities1 as an overall rep- 055

resentation of LM outputs. We observe there is 056

a linear-like correlation between the output token 057

probabilities and the output embedding as shown in 058

Fig. 1. In §2, our mathematical derivation indicates 059

that softmax LM head naturally encodes the output 060

probabilities log-linearly in a common direction of 061

the output embeddings, as long as the output di- 062

mension is sufficiently large, and the output values 063

1We may omit the "averaged" in the following.
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(a) GPT2, 137M (b) GPT-J, 6B

Figure 2: The MLR results on GPT2 and GPT-J.

are concentrated.064

To prove our derivation empirically, we conduct065

Multiple Linear Regression (MLR) on output prob-066

abilities against output embeddings, where a strong067

log-linear correlation is observed. Additionally, we068

find that: (1). Almost all directions highly corre-069

lated with output probability are the top principal070

components of the embedding matrix; (2). Only a071

few dimensions of output embedding are related to072

output probability.073

Based on such findings, to further demonstrate074

the possible applications, in §3, we try to edit the075

output probability by the output embedding. We076

use a linear and local vectorized algorithm, modify-077

ing a small portion of dimensions along the encod-078

ing direction in the output embeddings for editing079

the probabilities. Our experiments find that: even080

on embedding-tied models, our editing method has081

respectable precision and a large usable range, sta-082

bly scaling the probability of tokens up to 20x (both083

scaling up or down), with little disturbing on the084

normal prediction process of LMs. Moreover, with085

the encoding direction estimated on few-shot ex-086

amples, the editing remains precise. Such results087

suggest that such a log-linear correlation we found088

is with good stability and generalization.089

Moreover, the aforementioned phenomenon090

demonstrates that most of the dimensions of the091

output embedding have minor effects on output092

probability. Therefore, we try removing these di-093

mensions to reduce the parameters in output embed-094

ding without obvious harm to the causal language095

modeling in §4. Our experiments show that more096

than 30% of the output embedding dimensions can097

be removed without significant impairment.098

Additionally, we use such log-linear encoding099

to investigate how and when the word frequency100

information of the training corpus is encoded into101

the output embedding during the training process.102

Table 1: The goodnesses (Adj.R2) of MLR of
− logαw,D,θ against the output(E(o)

w )/input(E(i)
w ) em-

bedding. Random Adj. R2: The Adj.R2 of normalized
random vector against E(o)

w . Parameter #: the number
of LM parameters. Embedding tied: whether the out-
put embedding is tied with the input embedding.

Model GPT2 GPT2-XL Pythia GPT-J

Parameter # 137M 1.6B 2.8B 6B
Embedding tied ✓ ✓ − −
Random Adj.R2 0.001 0.000 0.001 0.000

Adj.R2 on E
(o)
w 0.892 0.893 0.856 0.882

Adj.R2 on E
(i)
w (0.892) (0.893) 0.814 0.658

In §5, we find that the frequency encoding occurs 103

at the very early steps in the training dynamics 104

of LMs, even earlier than an obvious convergence 105

trend is observed. 106

The contribution of this paper can be summa- 107

rized as: 108

• We find a log-linear correlation as an encoding 109

of the output probability in the output embed- 110

ding. That is, the output token probabilities 111

are encoded in a particular common direction 112

on the output embeddings log-linearly. 113

• Based on the findings, we edit the averaged 114

output probabilities using such an encoding. 115

• Based on the findings, we remove dimensions 116

with weak correlation to output probabilities 117

without harm to the LMs. 118

• Based on the findings, we find that the LMs 119

learn the token frequency in the training cor- 120

pus at very early training steps. 121

2 Token Probability Encoding in Output 122

Embedding 123

In this section, we preliminarily reveal how the out- 124

put probabilities are encoded in the output embed- 125

ding by derivation, then conduct simple numerical 126

experiments to confirm it empirically. 127

2.1 Mathematical Log-linear Form 128

Considering an LM parameterized by θ with vo- 129

cabulary V. Denoting the last hidden state w.r.t. 130

input sequence x as hx, we can describe the output 131

probability of token w with an output embedding 132

E
(o)
w as: 133

Pθ(w|x) =
eE

(o)
w ·hx∑

i∈V eE
(o)
i ·hx

, 134
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(a) GPT2, 137M, PCA (b) GPT2-XL, 1.6B, PCA (c) Pythia, 2.8B, PCA (d) GPT-J, 6B, PCA

(e) GPT2, 137M, Original (f) GPT2-XL, 1.6B, Original (g) Pythia, 2.8B, Original (h) GPT-J, 6B, Original

Figure 3: Only a few directions/dimensions of output embedding are strongly correlated to the output
probabilities. (a-d): horizontal axis: the principle components of output embedding, vertical axis: absolute
Spearman r between the principle and the output probability distribution, color bar: the variance ratio loaded in the
principle component; (e-h): horizontal axis: original dimensions, vertical axis: absolute MLR slopes between this
dimension and the output probability distribution, color bar: the absolute Spearman correlations on the dimension.

we have:135

− log[Pθ(w|x)] = −E(o)
w · hx + log[

∑
i∈V

eE
(o)
i ·hx ].136

When we calculate the averaged output token137

probability αw,D,θ = Ex∈D[Pθ(w|x)] of token w138

on a detecting dataset D:139

− logαw,D,θ ≈ Ex∈D[− log[Pθ(w|x)]]

=− Ex∈D[E
(o)
w · hx] + Ex∈D[log(

∑
i∈V

eE
(o)
i ·hx)]

=− E(o)
w · Ex∈D[h

(o)
x ] + Ex∈D[log(

∑
i∈V

eE
(o)
i ·hx)].

(1)

140

We make a local linear approximation in the141

approximately equal sign, while we confirm it is142

precise when the output logits are concentrated143

in Appendix B.2. Notice that if the LM head is144

biased, the bias term can be re-constructed equally145

by fixing one dimension of hx to 1, w.l.o.g.146

We denote AD = −Ex∈D[hx], and BD =147

Ex∈D[log(
∑

i∈V eE
(o)
i ·hx)]. Here we do another148

approximation that the BD is independent to E
(o)
w .149

This approximation is precise when the logits of150

the output token w are small, and the vocabulary151

size |V| is large. Then, we get an approximated 152

log-linear form between the αw,D,θ and the E
(o)
w : 153

− logαw,D,θ ≈ AD · E(o)
w +BD. (2) 154

As a special case, we consider a fixed-to-one di- 155

mension in hx (also in AD) for a biased LM head, 156

where the bias re-constructed in E
(o)
w becomes a 157

linear factor of − logαw,D,θ with slope 1. 158

With such a derivation, we find that the phe- 159

nomenon shown in Fig. 1 is the nature of softmax 160

output head if it has plenty of classification cate- 161

gories, small and concentrated logits to make the 162

approximations numerically accurate. LMs have 163

a very wide output space and undergo regularized 164

training, which makes LMs meet the requirements 165

to have an accurate log-linear correlation between 166

output probabilities and output embeddings. That 167

is, the output probabilities are encoded within a 168

common direction of output embedding. 169

2.2 Empirical Confirmation 170

We conduct experiments to prove our derivation 171

in Eq. 2 empirically correct. First, following 172

Kobayashi et al. (2023), we calculate the averaged 173

output probabilities on an 8192-length sample of 174

shuffled WIKIDPR dataset (Karpukhin et al., 2020). 175
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Algorithm 1: Output token probability editing.
αD,θ ∈ R|V|: the output token probability distribution among the vocabulary; |D|: the length of
the probability detecting dataset; S: the element-wise confidence (p-value) of the MLR;
Element-wise calculations: (·)× (·): multiplication; (·)p: p-th power; | · |: absolute value.

Input: Language model Pθ(x) with output embedding E(o); Probability detecting dataset D;
Token index to be edited w; Expected scale of the edited token’s probability r;
Editing amount allocation parameter b

Output: Updated LM Pθ′(x)

1 αD,θ ← |D|−1
∑

x∈D Pθ(x) ; // Calculate the averaged probability distribution

2 AD,S ← MLR(− logαD,θ, E
(o)) ; // Conduct the MLR, get the slope and confidence

3 Ω← |AD|b × S × ∥|AD|b × S∥−1
1 ; // Allocate the editing weight of dimensions

4 E
′(o)
w ← E

(o)
w − log(r)Ω×A−1

D ; // Apply the editing to output embedding

5 return Updated LM Pθ′(x) with new output embedding E
′(o)
w

In detail, we input the sampled data points into the176

model, and average the output probability distribu-177

tion among every time step of every input sequence178

as the token probability distribution of the dataset179

(see Appendix B.1). Then, we conduct MLR to fit180

the AD and the BD.181

We run such experiment on GPT2, GPT2-182

XL (Radford et al., 2019), Pythia 2.8B (Biderman183

et al., 2023), and GPT-J (Wang and Komatsuzaki,184

2021). The fitting results are shown in Fig. 2, where185

good fittings are observed. We also list the adjusted186

R2 i.e. the goodness of fitting in Table 1. Sur-187

prisingly, both input and output embeddings have188

strong correlations with the token probabilities.189

More interestingly, as shown in Fig. 3, we find190

that only the top principal components and a few191

dimensions in the output embedding are highly cor-192

related to the output token probabilities. In detail,193

we calculate the absolute Spearman r between the194

output embedding’s sorted principle components195

/ original dimensions against the output probabil-196

ities, and we find that the overwhelming majority197

of both kinds of dimensions have poor correlations198

with the output probabilities.199

3 Token Probability Editing on Output200

Embeddings201

Our findings suggest that the output probabilities202

are encoded in a common direction in the output203

embeddings. So we try to edit the token probabili-204

ties by modifying a small portion of dimensions in205

the output embeddings following such a direction,206

as an application and further empirical proof of the207

findings.208

3.1 Algorithm 209

Based on the fact that the output probabilities are 210

log-linearly encoded in a direction on the output 211

embedding, and the correlation strengths signif- 212

icantly vary among dimensions, we propose an 213

output probability editing algorithm as shown in 214

Algorithm 1. We first calculate an output proba- 215

bility distribution αD,θ on a corpus D and conduct 216

MLR to calculate the AD and the confidence (p- 217

value) S of each element of the common encoding. 218

Then we assign an editing weight Ω to every dimen- 219

sion in the embedding vector based on the signifi- 220

cance of its correlation to the output probabilities, 221

as shown in line 3 of Algorithm 1. We allocate 222

more editing amount to stronger correlations to ob- 223

tain smaller and more accurate editing2. Given the 224

token index to be edited and the expected editing 225

scale, we calculate the detailed editing amount on 226

each dimension and update it as shown in line 4 of 227

Algorithm 1. 228

As calculation costs, such an editing algorithm 229

only needs a detect set D and a feed-forward pro- 230

cess to calculate the AD and S. We are about to 231

prove that it is stable for the size of D and consis- 232

tently precise. 233

3.2 Experiment Settings 234

We use the same detect dataset D as in §2, and a 235

set of scales of {1, 1.1, 1.2, 1.5, 2, 5, 10, 20} for 236

both scaling up and down. We randomly select 10 237

tokens to be edited and conduct experiments on 238

2Parameter b is introduced to control the softness of such
allocation, while the algorithm is stable on the parameter as
shown in Appendix C. Basically, we suggest that a large b is
suitable for a large model.
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Table 2: Main results on the evaluation of Algorithm 1. Unedited: the baseline without any editing. Random: the
baseline with a random AD. Shuffled: the baseline with a shuffled AD from the origin one. It is difficult to conduct
MAUVE experiments of GPT-J on such a repeating scale due to the enormous computational costs. b: the editing
amount allocation parameter in Algorithm 1. Fine-grained results are presented in the Appendix D.

Emb. Tied b
Reliability Generalization Specificity

elocal ↓ eid ↓ eood ↓ drKL × 10−7 ↓ MAUVE↑

unedited − − 1.101.06 1.101.06 1.101.06 0.000.00 1.000.00
137M, random ✓ 2 1.331.28 1.331.28 1.291.24 2.311.02 0.960.01
137M, shuffled ✓ 2 1.181.07 1.181.08 1.181.08 1.640.48 0.960.01

137M ✓ 2 0.190.30 0.200.32 0.150.28 9.515.87 0.960.01
1.6B ✓ 2 0.640.67 0.610.65 0.650.63 1.513.66 0.910.17
6B − 5 0.310.43 0.250.39 0.100.12 3.6414.65 −

(a) GPT2, 137M (b) GPT-J, 6B

Figure 4: The expected probability scales against the
actually edited scales measured in the edited LMs.

GPT2, GPT2-XL, and GPT-J.239

Metrics. We use 3 metrics to test the algorithm.240

• Scale error e: To describe the precision of the241

probability editing, given the expected editing242

scale r and the actual measured edited scale r̂243

on a test dataset, the scale error is calculated244

as e = | ln(r)− ln(r̂)|.245

• KL divergence on the unedited token drKL:246

To investigate the side effect on the unedited247

tokens, we calculate KL divergence between248

the probability distribution before and after249

editing on the unedited tokens.250

• MAUVE: To investigate the side effect on251

text generation, we generate a set of sen-252

tences from the edited model, then calculate253

the MAUVE3 with the generated set from the254

unedited model (see Appendix B.3).255

3Proposed by Pillutla et al. (2021), a measurement of the
similarity of two language datasets. The value range is [0, 1],
the larger means a greater similarity.

Figure 5: The eood on detect datasets with various num-
bers of sentence (averaged token per sentence ≈ 134).

Evaluations. Following the widely-used aspects 256

of model editing evaluations (Yao et al., 2023), we 257

define our evaluations as: 258

• Reliability: The local effectiveness of the 259

editing method. We use elocal, the scale error 260

on the detect dataset D. 261

• Generalization: The global effectiveness of 262

the editing method. We set multi-level gener- 263

alization evaluations to ensure that the conclu- 264

sions we obtain are the generalizable essence 265

of the model: (i). the scale error on the other 266

8192 samples of WIKIDPR as the In-domain 267

Scale Error eid; and (ii). the scale error on 268

2048 samples of BOOKCORPUS (Zhu et al., 269

2015) as the Out-of-domain Scale Error eood. 270

• Specificity: The non-harmfulness to unedited 271

part. We use two settings for this evaluation: 272

(i). the averaged drKL on the three data sam- 273

ples (detect set, in-domain, out-of-domain), 274

and (ii). the aforementioned MAUVE. 275
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(a) GPT2, 137M, dim=768, tied (b) Pythia, 2.8B, dim=2560 (c) GPT-J, 6B, dim=4096

Figure 6: The MAUVE(↑) and KL divergence(↓) of output token probability distribution dKL against original
distributions w.r.t. the dimension removing ratio on the output embedding. Solid curves: results of removing
dimensions from the least important ones to the most important ones; Dashed curves: adversarial controlling
experiment, removing dimensions reversely.

3.3 Results276

The main statistical evaluation results are shown277

in Table 2, where we can get a basic intuition that278

the Algorithm 1 is accurate and generalizable, even279

on the out-of-domain data. Especially, despite the280

embedding tying in GPT2 and GPT2-XL, such an281

editing algorithm is still accurate and harmless,282

which demonstrates that the log-linear probability283

encoding is orthogonal to the possible semantical284

encoding in the output and also input embedding.285

Wide-scale stable: Large-scaled probability edit-286

ing is supported by a global log-linear pattern.287

The correlation of actually edited scales of token288

probability against the expected scales is shown in289

Fig. 4. The editing remains accurate even on a large290

scale of up to 20x. This indicates that the algorithm291

and the log-linear encoding are wide-ranging, not292

only locally effective, i.e. the log-linear encoding293

is a widely stable common essence.294

Few-shot generalizable: Encoding remains dis-295

tinct even by an AD estimated by few-shot cor-296

pus. Instead of using the 8192 examples for the297

detecting dataset D, we try various numbers of ex-298

amples to test the generalization of the encoding299

on GPT2. As shown in Fig. 5, we find that even300

2 examples can produce a distinct averaged prob-301

ability distribution for precise probability editing.302

This result strengthens the significance and gener-303

alization of our findings, that is, effective statistical304

patterns can be found in a small set of samples.305

These results demonstrate the wide-scale stabil-306

ity and generalization of our algorithm, while also307

reflecting the same attributes of token probability308

encoding in output embedding. We can confirm309

that such log-linear encoding of token probabili-310

ties is an inherent attribute of output embedding,311

which (1). has wide-scale linearity, allowing a 312

large-scaling probability editing, and (2). is com- 313

mon among tokens, so only a small number of 314

samples are needed to mine an accurate encoding. 315

By our editing experiments, the properties of prob- 316

ability encoding are strengthened. 317

4 Removing Dimensions with Weak 318

Probability Encoding 319

Moreover, based on the sparsity of probability en- 320

coding as shown in Fig. 3, we can infer that a large 321

number of dimensions are less effective for causal 322

language modeling, where the expected role of the 323

LM head is basically only to predict probabilities. 324

So we try to reduce the less related dimensions 325

towards a lightweight output head. 326

4.1 Method & Experiment Settings 327

First, we assign a weight of importance (or, 328

saliency) to each dimension of output embedding 329

from the aforementioned absolute MLR slopes as 330

shown in (e-h) of Fig. 3. Then, we remove the di- 331

mensions in ascending order of such weight, i.e. we 332

remove the less important dimension early. In de- 333

tail, as a prototype setting in the laboratory, we only 334

zero out the dimensions in the embedding matrix, 335

while the dimensions of the attention mapping ma- 336

trix, the feed-forward layer, and the dimensions of 337

the last hidden state corresponding to the removed 338

dimensions can also be removed equally. 339

Experiment Settings. We use the same MLR set- 340

tings as §2 on GPT2, Pythia 2.8B, and GPT-J. As 341

metrics, we test the MAUVE of the pruned model 342

similarly to §3.2, and test the KL divergence of 343

the averaged probability distribution against the 344

original model on the out-of-domain dataset men- 345
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Figure 7: The training dynamics of Pythia. Left: the MLR goodness (adjusted R2) of the negative logarithm of
corpus frequency against the output embedding. Right: on the Pythia-1B, the MLR goodness in the left figure, and
the convergence rate of various representative blocks. Notice the horizontal axis is logarithmically scaled.

tioned before. As an adversarial controlling experi-346

ment, we remove dimensions in descending order347

of importance, i.e. we remove the more important348

dimension early, reverse to the original settings.349

4.2 Result350

The results are shown in Fig. 6. With the ascend-351

ing removing order (the positive experiment, solid352

curve), at the beginning of the removal, both met-353

rics deteriorate slightly until around 50% of the354

dimensions are removed. Regarding MAUVE >355

0.80 as a threshold, we can confirm that 30% ∼356

40% of the dimensions in the output embedding357

can be removed without significant impairment358

of the causal language modeling ability of LMs.359

In contrast, in the adversarial experiment with a360

descending removing style (dashed curve), both361

metrics deteriorate sharply at the beginning of re-362

moving. Such results suggest that the weights from363

the MLR are faithful importance metrics.364

Noticeably, our method also works on the tied365

models, i.e. removing unnecessary dimensions con-366

currently from the input embedding and the output367

embedding, the causal language modeling ability368

of the LM remains at a considerable level.369

Consistent with previous works (Kovaleva et al.,370

2021; Timkey and van Schijndel, 2021; Gordon371

et al., 2020), our results identify the difference372

in the importance among the dimensions of the373

output embedding. Moreover, we confirm that the374

MLR results of the log-linear correlation are a good375

metric of importance, i.e. saliency score. This can376

be a new paradigm of saliency if a direct one-step377

statistical model can be found between the features378

and the model output.379

5 Output Embedding Learns Corpus 380

Frequency in Early Training Steps 381

Additionally, the findings in this paper inspire us to 382

utilize such log-linear correlation for detecting the 383

encoding of corpus token frequency in the output 384

embedding during the training. Intuitively, since 385

the model can refract overall output probability dis- 386

tribution in the output embedding matrix, it should 387

be forced to produce the same output distribution 388

with the corpus token frequency by the training ob- 389

jective. Therefore, when a log-linear encoding of 390

token frequency of the training corpus is observed 391

in the output embedding, we can confirm that the 392

output embedding learns the token frequency infor- 393

mation of the corpus. 394

We use the Pythia suite (Biderman et al., 2023), 395

where sequences of the model intermediate train- 396

ing checkpoints are saved. We estimate the token 397

frequencies of the training corpus PILE (Gao et al., 398

2020; Biderman et al., 2022) by sampling 14.3B 399

tokens, then conduct MLR on the negative loga- 400

rithm of the token frequencies w.r.t. the output 401

embeddings on each training checkpoint. The re- 402

sults are shown in the left part of Fig. 7, where we 403

can confirm an effective encoding since the very 404

early steps of the training process, and larger mod- 405

els have slightly better fitting goodness but almost 406

no difference in the timing of emergence. 407

Moreover, we want to know whether such a phe- 408

nomenon is a subsidiary effect of the convergence 409

of the parameters. We use the convergence rate 410

following the Chen et al. (2022) to describe the 411

actual training completion: denoting the trained 412

parameter matrix as θ∗, the initialized parameter 413

matrix as θ0, and the parameter matrix at step t 414
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as θt, the convergence rate at step t can be written415

as (1 − ∥θ∗ − θt∥F /∥θ∗ − θ0∥F ). We visualize416

the convergence rate of the input and output em-417

beddings and the query-key-value mapping matrix418

of the multi-head attention blocks on Pythia-1B,419

as shown in the right part of Fig. 7. We find that420

the log-linear correlation occurs even earlier than421

an obvious convergence trend is observed by the422

convergence rate. Or rather, the appearance of such423

correlation happens to be the starting point of the424

convergence process of the model. We infer that the425

output embedding should learn the coarse-grained426

output pattern earlier than the semantics details.427

Additionally, we initially find that each layer of428

the transformer appears to have a uniform conver-429

gence curve, instead of an obvious deeper-slower430

pattern found by Chen et al. (2022). Especially,431

the input embedding and output embedding have432

almost overlapping training curves. We speculate433

that this is the effect of such full-residual connec-434

tion networks, which makes the layering of the435

network inconspicuous during the gradient descent.436

6 Conclusion and Discussion437

Conclusion. In this paper, based on the observa-438

tion of a linear-like correlation between the output439

token probability and the output token embeddings440

shown in Fig. 1, we derive an approximate log-441

linear correlation from the nature of softmax out-442

put head with a large output space and concentrated443

output value, i.e. the output token probabilities are444

encoded in a common direction of output embed-445

dings. Along such encoding direction, we edit the446

token probabilities with high accuracy, stability,447

and generalizability. Then, based on the sparsity448

of the encoding, we can distinguish the contribu-449

tions of dimensions for the output probability of450

the model. We try removing the determined non-451

contributing dimensions, and no critical deterio-452

ration is found. Finally, based on the findings,453

we find that the LMs catch the token frequency454

in training data at very early steps in the training455

process log-linearly, even earlier than an obvious456

convergence trend is observed. This paper reveals457

the inner mechanism of LM heads on the causal458

language modeling task and helps understand the459

global principles and training dynamics of LMs.460

Comparing to previous works. Previous work461

about analyzing LM heads was conducted462

by Kobayashi et al. (2023), where a correlation463

between the output token probability and bias term464

in the LM head was found. They declared that the 465

bias term is a projection to extract the probability 466

from the output embedding, but no more discussion 467

about the embedding matrix, which is the major 468

component of the LM head. Making up for their 469

work is one of the original motivations for our work. 470

More discussions about related works can be found 471

in Appendix A. 472

Demonstrations towards application. Our out- 473

put probabilities editing algorithm on the LM head 474

reveals the possibility of model editing on only the 475

output probability rather than in the hidden states 476

or the lower layers (Dai et al., 2022; Meng et al., 477

2022), which is more concise, and easy to explain. 478

Some global toxicity generation (Gehman et al., 479

2020), or biases in some application scenario (Fei 480

et al., 2023) can be suppressed by such a method, 481

but as we will mention in the Limitations, it is ele- 482

gant but not engineering-oriented. Moreover, the 483

dimension compression method in this paper can 484

be an easy-to-use and harmless inference-time ac- 485

celeration. Notice that we have a supervising on 486

such dimension compression by the MLR slopes, 487

so it can be more accurate than the previous random 488

or unsupervised pruning (Gordon et al., 2020). 489

Towards a new saliency score of output embed- 490

dings. Saliency score (Zhao et al., 2024; Sun 491

et al., 2021) is to weight a component (feature or 492

parameter) in a deep learning model by its impor- 493

tance. In this paper, we find that the log-linear 494

token probability encoding works like a saliency 495

score towards the output embedding. We build a 496

log-MLR model to assign saliency scores to the pa- 497

rameters, and such a statistical method can be a new 498

paradigm of model-based saliency (Dabkowski and 499

Gal, 2017), if strong one-step correlations can be 500

found between the output and components of the 501

neural network, a closed-form saliency model can 502

be proposed instead of a universal statistical model. 503

Duality between input and output embeddings. 504

In addition, we find some duality between input 505

and output embeddings, e.g., they both have a good 506

log-linearity w.r.t. the output probability and al- 507

most overlapping training curves. Further work 508

can be focused on such a phenomenon to get a 509

better understanding of the inner states, and the 510

interaction between components of LMs. 511
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7 Limitations512

Although we declare that the probability editing513

algorithm proposed in §3 is only an experimental514

method for investigation, we acknowledge that it515

is elegant but not practical. It can never be faster,516

more accurate, and more harmless than a filter on517

the output head (Guo et al., 2017). Future works518

can be focused on a local or directional probability519

editing method, limiting the detecting dataset D,520

and only editing the probability on specific input521

prefix.522

The dimension-reducing method in §4 may lead523

LMs to be unavailable on other tasks depending on524

the last hidden state, such as sentence summarizing525

vectors encoding, etc. However, we can always526

keep the original checkpoint to restore these addi-527

tional abilities of LM heads easily.528

Furthermore, despite our efforts, we cannot con-529

firm the source of the sparsity of the probability530

encoding mentioned in Fig. 3. Future works can be531

focused on the detailed training dynamics to trace532

such a sparsity.533

The findings in this paper seriously depend on534

the properties of the last hidden state of LMs. Al-535

though the layer normalization (Ba et al., 2016;536

Vaswani et al., 2017) in current Transformer-based537

LMs provides some intuitive assurance for the sta-538

bility and consistency of the last hidden state, fur-539

ther discussion is still needed to confirm the homo-540

geneity or heterogeneity of the models’ intrinsic541

properties to explain the differences between dif-542

ferent models in the token probability encoding543

phenomena investigated in the paper (e.g. the rea-544

son of our method perform better on GPT-J than545

GPT2-XL in Table 2, or, the reason of the sparsity546

of GPT2-XL is weaker than all the models we in-547

vestigated in Fig. 3), to establish a connection with548

the essential properties of LMs. Also, we should549

examine the distribution of the last hidden state so550

that the output probability to find how the accuracy551

of the averaged output probabilities can reflect the552

individual output probability.553
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Stanisław Jastrzębski, Zachary Kenton, Nicolas Bal-646
las, Asja Fischer, Yoshua Bengio, and Amos Storkey.647
2018. On the relation between the sharpest directions648
of dnn loss and the sgd step length. In International649
Conference on Learning Representations.650

Dayal Singh Kalra and Maissam Barkeshli. 2024. Phase651
diagram of early training dynamics in deep neural652
networks: effect of the learning rate, depth, and width.653
Advances in Neural Information Processing Systems,654
36.655

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick656
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and657
Wen-tau Yih. 2020. Dense passage retrieval for open-658
domain question answering. In Proceedings of the659
2020 Conference on Empirical Methods in Natural660
Language Processing (EMNLP), pages 6769–6781,661
Online. Association for Computational Linguistics.662

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina663
Toutanova. 2019. Bert: Pre-training of deep bidirec-664
tional transformers for language understanding. In665
Proceedings of NAACL-HLT, pages 4171–4186.666

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter667
Tang, Dheevatsa Mudigere, and Mikhail Smelyan-668
skiy. 2017. On large-batch training for deep learning:669
Generalization gap and sharp minima. In 5th Inter-670
national Conference on Learning Representations,671
ICLR 2017.672

Goro Kobayashi, Tatsuki Kuribayashi, Sho Yokoi, and 673
Kentaro Inui. 2023. Transformer language models 674
handle word frequency in prediction head. In Find- 675
ings of the Association for Computational Linguis- 676
tics: ACL 2023, pages 4523–4535, Toronto, Canada. 677
Association for Computational Linguistics. 678

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, 679
and Anna Rumshisky. 2021. Bert busters: Outlier 680
dimensions that disrupt transformers. Findings of 681
the Association for Computational Linguistics: ACL- 682
IJCNLP 2021. 683

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha 684
Sohl-Dickstein, and Guy Gur-Ari. 2020. The large 685
learning rate phase of deep learning: the catapult 686
mechanism. arXiv preprint arXiv:2003.02218. 687

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and 688
Tom Goldstein. 2018. Visualizing the loss landscape 689
of neural nets. Advances in neural information pro- 690
cessing systems, 31. 691

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man- 692
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis, 693
Luke Zettlemoyer, and Veselin Stoyanov. 2019. 694
Roberta: A robustly optimized bert pretraining ap- 695
proach. arXiv preprint arXiv:1907.11692. 696

Zeyu Liu, Yizhong Wang, Jungo Kasai, Hannaneh Ha- 697
jishirzi, and Noah A Smith. 2021. Probing across 698
time: What does roberta know and when? In Find- 699
ings of the Association for Computational Linguistics: 700
EMNLP 2021, pages 820–842. 701

Kevin Meng, David Bau, Alex Andonian, and Yonatan 702
Belinkov. 2022. Locating and editing factual asso- 703
ciations in GPT. Advances in Neural Information 704
Processing Systems, 35. 705

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-top: 706
Simple and effective postprocessing for word repre- 707
sentations. In International Conference on Learning 708
Representations. 709

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. 710
2020. What is being transferred in transfer learning? 711
Advances in neural information processing systems, 712
33:512–523. 713

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pas- 714
cal Frossard. 2024. Task arithmetic in the tangent 715
space: Improved editing of pre-trained models. Ad- 716
vances in Neural Information Processing Systems, 717
36. 718

Krishna Pillutla, Swabha Swayamdipta, Rowan Zellers, 719
John Thickstun, Sean Welleck, Yejin Choi, and Zaid 720
Harchaoui. 2021. Mauve: Measuring the gap be- 721
tween neural text and human text using divergence 722
frontiers. Advances in Neural Information Process- 723
ing Systems, 34:4816–4828. 724

Ofir Press and Lior Wolf. 2017. Using the output embed- 725
ding to improve language models. In Proceedings of 726
the 15th Conference of the European Chapter of the 727

10

https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2023.findings-acl.276
https://doi.org/10.18653/v1/2023.findings-acl.276
https://doi.org/10.18653/v1/2023.findings-acl.276


Association for Computational Linguistics: Volume728
2, Short Papers, pages 157–163.729

Alec Radford, Jeff Wu, Rewon Child, David Luan,730
Dario Amodei, and Ilya Sutskever. 2019. Language731
models are unsupervised multitask learners.732

Xiaofei Sun, Diyi Yang, Xiaoya Li, Tianwei Zhang,733
Yuxian Meng, Han Qiu, Guoyin Wang, Eduard Hovy,734
and Jiwei Li. 2021. Interpreting deep learning mod-735
els in natural language processing: A review. arXiv736
preprint arXiv:2110.10470.737

William Timkey and Marten van Schijndel. 2021. All738
bark and no bite: Rogue dimensions in transformer739
language models obscure representational quality.740
In Proceedings of the 2021 Conference on Empir-741
ical Methods in Natural Language Processing, pages742
4527–4546.743

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,744
and Armen Aghajanyan. 2022. Memorization with-745
out overfitting: Analyzing the training dynamics of746
large language models. Advances in Neural Informa-747
tion Processing Systems, 35:38274–38290.748

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-749
bert, Amjad Almahairi, Yasmine Babaei, Nikolay750
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti751
Bhosale, et al. 2023. Llama 2: Open founda-752
tion and fine-tuned chat models. arXiv preprint753
arXiv:2307.09288.754

Francisco Valentini, Juan Sosa, Diego Slezak, and Edgar755
Altszyler. 2023. Investigating the frequency distor-756
tion of word embeddings and its impact on bias met-757
rics. In Findings of the Association for Computa-758
tional Linguistics: EMNLP 2023, pages 113–126.759

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob760
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz761
Kaiser, and Illia Polosukhin. 2017. Attention is all762
you need. Advances in neural information processing763
systems, 30.764

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-765
6B: A 6 Billion Parameter Autoregressive Lan-766
guage Model. https://github.com/kingoflolz/767
mesh-transformer-jax.768

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,769
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu770
Zhang. 2023. Editing large language models: Prob-771
lems, methods, and opportunities. In Proceedings772
of the 2023 Conference on Empirical Methods in773
Natural Language Processing, pages 10222–10240.774

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,775
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei776
Yin, and Mengnan Du. 2024. Explainability for large777
language models: A survey. ACM Transactions on778
Intelligent Systems and Technology, 15(2):1–38.779

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weip-780
ing Wang. 2023. A survey on model compres-781
sion for large language models. arXiv preprint782
arXiv:2308.07633.783

Figure 8: The expected probability scales and the ac-
tually edited scales measured in the edited LMs w.r.t.
different values of b.

(a) GPT2-XL, 1.6B (b) Pythia, 2.8B

Figure 9: Supplement for Fig. 2. The MLR results on
GPT2-XL and Pythia-2.8B.
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A Related Works 790

As mentioned before, Kobayashi et al. (2023) 791

mainly found a correlation between the output to- 792

ken probability and the bias term in the LM head 793

and tried to remove this bias towards more diversi- 794

fied text generation. However, they didn’t analyze 795

the output embedding matrix, which has the most 796

parameters in the LM head, and this paper com- 797

pletes their research. 798

Geometry of Input Embedding. As a similar 799

research object with the output embedding, it 800

was found that the word embeddings in LMs, as 801

well as the hidden states, are anisotropy (Mu and 802

Viswanath, 2018; Ethayarajh, 2019; Gao et al., 803

2018), i.e., these vectors share a common bias and 804
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Table 3: Supplementary results of Table 2 with various b on GPT2.

Reliability Generalization Specificity

elocal ↓ eid ↓ eood ↓ drKL × 10−7 ↓ MAUVE↑

unedited 1.091.06 1.091.06 1.091.06 0.000.00 1.000.00
random 1.331.28 1.331.28 1.291.24 2.311.02 0.960.01

137M, shuffled 1.181.07 1.181.08 1.181.08 1.640.48 0.960.01

Average (b = −∞) 2.793.21 2.863.24 2.613.12 4.00× 103 0.920.08

Softmax
b = 1 0.170.29 0.170.31 0.180.33 11.978.22 0.950.02
b = 2 0.190.30 0.200.32 0.150.28 9.515.87 0.960.01
b = 5 0.170.28 0.180.31 0.160.28 12.257.91 0.950.01

Argmax (b = +∞) 1.211.68 1.271.70 1.301.84 9.29× 103 0.920.14

Figure 10: Supplement for Fig. 4. The expected proba-
bility scales and the actually edited scales measured in
the edited GPT2-XL.

a close direction. Such anisotropies hurt the ex-805

pressiveness of word embeddings, and the word806

frequency in the corpus may be an inducement (Mu807

and Viswanath, 2018; Valentini et al., 2023). Also,808

some efforts tried to remove the harmfulness of809

anisotropies and towards isotropy word embed-810

dings (Mu and Viswanath, 2018; Gong et al., 2018).811

These works are based on input embedding, while812

our paper is on output embedding. Although we813

can confirm that the input and output embeddings814

act similarly, they are still completely different815

components of untied LMs. So the existing con-816

clusions on input embeddings cannot overwrite our817

work.818

Embedding Tying in LMs. LMs in previous gen-819

erations often have a shared output embedding820

from the input embedding, such as BERT (Ken-821

ton and Toutanova, 2019), RoBERTa (Liu et al.,822

2019), GPT2 (Radford et al., 2019), etc. That is,823

the LM head maps the last hidden state to the token824

probability by dpt-producing the input embedding.825

Such a paradigm is recommended by Press and826

(a) GPT2, 137M (b) GPT2-XL, 1.6B

(c) Pythia, 2.8B (d) GPT-J, 6B

Figure 11: Examples of the probability distribution of
one token among input prefixes.

Wolf (2017) for fewer parameters. And also re- 827

futed by Chung et al. (2020) for a harmfulness to 828

expressiveness. Such a paradigm is being depre- 829

cated currently, but the model behavior with and 830

without embedding tying is still interesting to ana- 831

lyze. 832

(Language) Model Editing and Model Pruning. 833

Recent Large LMs are expensive to fine-tune or 834

retrain, so there are many model editing methods 835

to control the output of LMs (Yao et al., 2023). 836

Current LM parameter editing methods are mainly 837

oriented to entity relationship editing, where they 838

locate some parameters with correlations to the 839

entities, and interference is applied on such param- 840

eters (Dai et al., 2022; Meng et al., 2022). More- 841

over, vectorized methods are also proposed with 842
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the arithmetic of parameter vectors with editing in-843

formation (Ilharco et al., 2022; Ortiz-Jimenez et al.,844

2024). As a specific and extreme scenario of model845

editing, research on model pruning, similar to our846

dimension removing is also proposed in current847

years (Zhu et al., 2023; Frantar and Alistarh, 2023;848

Kovaleva et al., 2021; Timkey and van Schijndel,849

2021; Gordon et al., 2020). These pruning are usu-850

ally unsupervised, where our dimension removing851

can be a new practice in the supervised pruning852

paradigm.853

Training Dynamics (of LMs). Investigating854

what is happening in the training process of lan-855

guage models and other deep learning models is an856

attractive research topic. Many works about train-857

ing trajectory (Kalra and Barkeshli, 2024; Jastrzęb-858

ski et al., 2018; Lewkowycz et al., 2020), early pe-859

riod training behaviors (Frankle et al., 2019; Kalra860

and Barkeshli, 2024; Achille et al., 2018), loss land-861

scape (Neyshabur et al., 2020; Keskar et al., 2017;862

Li et al., 2018), and "knowledge" earned in differ-863

ent stages of training (Tirumala et al., 2022; Liu864

et al., 2021) have been done. Differences in training865

speed among various network layers (the deeper-866

slower pattern) have been discovered by Chen et al.867

(2022), while in this paper, following their method,868

we don’t find a similar pattern.869

B Calculation Details870

B.1 Calculation of Averaged Token871

Probability872

Given a dataset D = {xi}mi=1, we input each xi873

into LMs in a teacher forcing style. Denote the874

length of xi as li, we can get output token prob-875

ability distribution on each time step (noted as j)876

αD,θ,i,j ∈ R|V| of an amount of li.877

We average all the αD,θ,i,j on every i and j, and878

get the averaged token probability distribution αD,θ879

on dataset D.880

B.2 Error Analysis of Eq. 1881

In Eq. 1, we do a local linear approximation as:882

− logαw,D,θ = − logEx∈D[Pθ(w|x)]
≈ Ex∈D[− log[Pθ(w|x)]].

883

That is, given a set of {pi}ni=0, where ∀i, pi > 0 we884

approximate that logEi∈[0,n][pi] ≈ Ei∈[0,n][log pi].885

Assume that we have a non-descending sequence886

of p, that is, p0 ≤ p1 ≤ p2 ≤ · · · ≤ pn, w.l.o.g.887

We can confirm that Ei∈[0,n][pi] ∈ [p0, pn]. So we 888

have: ∃ξ ∈ (p0,Ei∈[0,n][pi]), s.t., 889

logEi∈[0,n][pi] =
1

ξ
(Ei∈[0,n][pi]− p0) + log p0 890

We have: 891

Ei∈[0,n][log pi] ≥ log p0, 892

since log′(·) > 0. That is: 893

[logEi∈[0,n][pi]− Ei∈[0,n][log pi]]
2

≤ 1

ξ2
(Ei∈[0,n][pi]− p0)

2

≤ 1

p20
(Ei∈[0,n][pi]− p0)

2.

(3) 894

We can empirically confirm the concentration 895

of pi, shown as examples in Fig. 11, which makes 896

the error shown in Eq. 3 acceptably small. Ad- 897

ditionally, a low-probability token shows a wide 898

probability distribution, which is consistent with 899

our findings in Fig. 2, where a low-probability to- 900

ken is assigned with more inaccurate predictions 901

(manifested as a comet-shaped figure). 902

B.3 Details of MAUVE Calculation 903

The MAUVE is a similarity between two datasets. 904

Refer Pillutla et al. (2021) for the calculating details 905

of MAUVE. Here we explain our method to get 906

both datasets for MAUVE to measure the harmful- 907

ness of our model editing method. We sample 512 908

data points from the BOOKCORPUS (Zhu et al., 909

2015), and take the first two words of each data 910

point as a prefix to collect a prefix set. Given a gen- 911

erative language model, we input the prefixes and 912

let the model generate naturally into a generated 913

dataset. We do this process on the original model 914

and the edited model and use the two generated 915

datasets to calculate the MAUVE. 916

C Ablation Study on Editing Amount 917

Allocation Parameter b 918

We discuss the editing amount allocation parameter 919

b in Algorithm 1. We try different settings of b on 920

GPT2 as shown in Table 3 and Fig. 8. 921

The results show that when the b is not infinities, 922

the editing remains accurate and stable. That is, 923

the algorithm is not sensitive to a positive integer b. 924

But we still recommend a large b when the model 925

is large and the sparsity of MLR slope is not fine. 926

However, when the b is +∞ or −∞, the edit- 927

ing can not be accurate and is easy to get a larger 928
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(a) GPT2-XL, 1.6B (b) Pythia, 2.8B (c) GPT-J, 6B

Figure 12: Supplement for Fig. 1. Output embedding visualizations w.r.t. output token probability for GPT2-XL,
Pythia, GPT-J.

(a) elocal (b) eid (c) eood (d) drKL (e) MAUV E

Figure 13: Fine-grained results w.r.t. expected editing scales of GPT2.

scale than expected. We infer that both of these929

infinity b increase the norm of the embedding vec-930

tor too much, leading to an increase in its output931

probability as well.932

D Supplementary Experiment Results933

Supplement for Fig. 1. Output embedding visual-934

izations w.r.t. output token probability for GPT2-935

XL, Pythia, GPT-J are shown in Fig. 12.936

Supplement for Fig. 2. Output probability fitting937

results of GPT2-XL and Pythia-2.8B are shown in938

Fig. 9.939

Supplement for Fig. 4. The expected probability940

scales and the actually edited scales of GPT2-XL941

is shown in Fig. 10.942

Supplement for Table 2. Fine-grained results w.r.t.943

expected editing scales of GPT2 (Fig. 13), GPT2-944

XL (Fig. 14), GPT-J (Fig. 15).945

Supplement for Fig. 5. The elocal, eid, drKL w.r.t.946

the detect dataset size are shown in Fig. 16.947

Supplement for Fig. 7. The figures without log-948

scaling are shown in Fig. 17.949

E Necessary Statements950

Repeatability statement. Models and datasets951

are all loaded from huggingface. All the datasets952

are shuffled with random seed 42 and cut into re- 953

quired slices. We calculate MAUVE by the pack- 954

age mauve-text by default parameters. In experi- 955

ments, all the logarithms are natural. 956

License of the artifacts. The artifacts used in 957

this paper are all open-sourced and are used for 958

their intended usage. 959

Models. GPT2 family are under the MIT license, 960

GPT-J and Pythia are under the apache-2.0 li- 961

cense. 962

Datasets. WIKIDPR is under the cc-by-nc-4.0 963

license, BOOKCORPUS and PILE is under the MIT 964

license. 965

Tool. MAUVE is under the GNU license. 966
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(a) elocal (b) eid (c) eood (d) drKL (e) MAUV E

Figure 14: Fine-grained results w.r.t. expected editing scales of GPT2-XL.

(a) elocal (b) eid (c) eood (d) drKL

Figure 15: Fine-grained results w.r.t. expected editing scales of GPT-J.

(a) elocal (b) eid (c) drKL

Figure 16: Supplement for Fig. 5. The elocal, eid, eood w.r.t. the detect dataset size.

Figure 17: Supplement for Fig. 7. Without log-scaling.
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