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Abstract: Despite the development of many antibiotics, excessive inflammation caused by endo-
toxins is still a subject of interest to biomedical researchers. The hyper-inflammatory response of
macrophages activated by endotoxins is an important topic in the development of natural product-
based anti-inflammatory drugs. Conioselinum tenuissimum, a perennial herb of the family Apiaceae,
contains levistolide A, demethylsuberosin, and fraxetin. One of the synonyms of Conioselinum
tenuissimum is Angelica tenuissima. The objective of this study was to determine the effects of Co-
nioselinum tenuissimum root water extract (AT) on the hyper-inflammatory responses of macrophages
activated by endotoxin (lipopolysaccharide; LPS) and the mechanisms involved in such effects. Levels
of cytokines, nitric oxide (NO), hydrogen peroxide, and cytosolic calcium in LPS-activated RAW
264.7 murine macrophages were evaluated by the multiplex cytokine assay (MCA), Griess reagent
assay (GRA), dihydrorhodamine 123 assay (DHR), and Fluo-4 calcium assay (FCA), respectively.
Additionally, real-time PCR and the flow cytometry assay (FLA) was performed to determine the
effects of AT on LPS-activated RAW 264.7. Data from MCA, GRA, DHR, and FCA revealed that AT
lowered levels of IL-6, MCP-1, TNF-α, G-CSF, GM-CSF, VEGF, M-CSF, LIF, LIX, MIP-1α, MIP-1β,
MIP-2, RANTES, IP-10, NO, hydrogen peroxide, and calcium in LPS-activated RAW 264.7. Real-time
PCR results revealed that AT significantly lowered mRNA expression levels of inflammatory genes
such as Chop, Nos2, c-Jun, Stat1, Stat3, c-Fos, Camk2a, Ptgs2, Fas, and Jak2. FLA showed that AT
significantly reduced phosphorylation levels of P38 MAPK and STAT3 in LPS-activated RAW 264.7.
These results indicate that AT can exert anti-inflammatory effects in LPS-activated macrophages via
the calcium–STAT3 pathway.

Keywords: Conioselinum tenuissimum; Angelica tenuissima; macrophage; lipopolysaccharide; cytokine;
nitric oxide; cytosolic calcium; hydrogen peroxide; chop; STAT3

1. Introduction

Despite the development of many treatments and medical technologies, including
antibiotics, microbial infections are still threatening human life [1,2]. Lipopolysaccharide
(LPS) is one of the substances that make up the outer leaflet of Gram-negative bacteria’s
outer membrane [3–6]. Gram-negative bacteria that have intruded into the body can be
destroyed by immune cells in the innate immune system. They can release LPS, which
is an endotoxin. Endotoxins are resistant to heat. Unlike exotoxins released from Gram-
positive bacteria, endotoxins have low immunogenicity, making it difficult to develop
antibodies and vaccines. When endotoxins stimulate immune cells (such as neutrophils
and macrophages), interleukins (ILs), tumor necrosis factors (TNFs), prostaglandins, and
colony stimulation factors are produced [7,8]. When endotoxins are found in the blood, it
is called endotoxemia. High levels of endotoxemia can lead to sepsis shock [9,10]. Sepsis is
still a major cause of death.

Processes 2022, 10, 2238. https://doi.org/10.3390/pr10112238 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr10112238
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-8448-3219
https://orcid.org/0000-0001-8752-4365
https://doi.org/10.3390/pr10112238
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr10112238?type=check_update&version=1


Processes 2022, 10, 2238 2 of 16

Macrophage activation induced by endotoxins and massive productions of inflamma-
tory mediators has important pathophysiological implications for septic shock, although
NO and cytokines can help remove invading pathogens and strengthen the immune system
against infection. Among inflammatory factors produced by macrophages, NO is one of
the reactive nitrogen species (RNS) that can directly destroy the source of infection. On the
other hand, it can worsen septic shock by lowering blood pressure and increasing blood ves-
sel permeability [11]. Cytokine is an essential factor in response to an infection. Cytokines
include IL, TNFs, and interferons (IFNs). They can induce immune cell migration and am-
plify immune responses. However, during the inflammation process, TNF could degrade
endothelial glycocalyx of vascular endothelium and cause vascular permeation, leukocyte
adhesion, and platelet aggregation, resulting in disseminated vascular coagulation and
multiple organ failure [12]. Therefore, decreasing the excessive production of inflammatory
factors caused by endotoxin is required to alleviate endotoxemia and septic shock. In this
respect, natural products that can suppress macrophage activation and excessive produc-
tion of inflammatory factors in macrophages caused by endotoxin have attracted attention.
Many studies have been conducted on natural anti-inflammatory materials using in vitro
experimental models and endotoxin-stimulated macrophages [13–15]. For example, Scutel-
lariae Radix was reported to decrease levels of NO, IL-6, and interferon-inducible protein
(IP)-10 (C-X-C motif chemokine ligand 10; CXCL10), and so on in mouse macrophages acti-
vated by endotoxins [16]. Mass production of reactive oxygen species (ROS), which occur
during an oxidative burst in activated macrophages, is crucial for macrophages to attack
and remove infectious pathogens. However, they can damage surrounding tissues around
infection sites and cause endoplasmic reticulum (ER) stress by altering redox signaling in
cells [17–20]. In sepsis, ROS and RNS can cause oxidative stress and oxidative damage by
modifying intracellular proteins, DNA, and lipids, resulting in organ dysfunction [21,22].
Signal transducer and activator of transcription (STAT) is a well-known transcription factor
(TF) related to inflammatory responses caused by infections. Inflammatory mediators
such as cytokines, chemokines, and growth factors can activate STAT protein, one of the
important TFs in the inflammatory cascade launched by Gram-negative bacterial infection
and viral infection [23]. So far, seven members of the mammalian STAT protein family
group have been reported. STAT is activated by Janus kinase (Jak) [24]. For this reason,
the term Jak–STAT is used to describe the mechanism of the immuno-inflammatory re-
sponse of immune cells, including macrophages and lymphocytes [25]. Jak–STAT is an
important signaling pathway for the expression of IL-6 and chemokines in ER stress-related
inflammation [26].

Conioselinum tenuissimum, a perennial herb of the family Apiaceae, contains levistolide
A, demethylsuberosin, fraxetin, marmesinin, and isopraeroside IV [27]. One of the syn-
onyms of Conioselinum tenuissimum is Angelica tenuissima. In traditional medicine, Angelica
tenuissima is used to treat pain (such as joint pain and abdominal pain) and gynecological
diseases [28,29]. So far, there have been no reports concerning the effect of Conioselinum
tenuissimum root (Angelicae tenuissimae Radix) on inflammatory responses of macrophages
stimulated by endotoxins. Thus, we checked the effects of Angelica tenuissima root (AT)
water extract on the hyper-inflammatory responses of macrophages activated by endotoxin
(lipopolysaccharide) and the mechanisms involved in such effects. Data revealed that the
water extract of AT could inhibit the excessive production of inflammatory mediators in
murine macrophages triggered by lipopolysaccharide (LPS) and that the calcium–STAT3
pathway was involved in its mechanism.

2. Materials and Methods

The experimental methods and substances used in this study have been referenced
from previous studies [30,31]. More details are described in the supplementary file.
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2.1. Materials

Baicalein (Cat No. 465119), indomethacin (Cat No. 17378), and Dulbecco’s modi-
fied Eagle medium (DMEM, Cat No. D5796) were purchased from Millipore (Billerica,
MA, USA).

2.2. Preparation of AT

Commercial Angelicae tenuissimae Radix materials were obtained from Omniherb
(Daegu, Korea) in August 2021. Angelicae tenuissimae Radix (voucher specimen No. 2021-
025) was authenticated by referring to the website of the Korea Food and Drug Administra-
tion accessed on 25 August 2021 (https://www.nifds.go.kr/nhmi/analscase/snststMnl/
view.do?selectedSnststMnlNo=29&pageIndex=1&pageSize=10&searchText=%EA%B3%A0
%EB%B3%B8&searchTarget=all&sortField=snststMnlNo&direction=DESC) and stored at
Gachon University College of Korean Medicine. Angelicae tenuissimae Radix materials were
extracted with hot water (yield: 33.98%) [30,31].

2.3. Diethylene Glycol Colorimetric Assay

The total flavonoid content (TFC) of AT was determined using the diethylene glycol
colorimetric assay [30].

2.4. MTT Assay

Murine macrophage RAW 264.7 cell line (passage number 2) was obtained from the
Korea Cell Line Bank (Seoul, Korea). Cell viability was accessed with a tetrazolium-based
colorimetric assay (MTT assay), as described previously [30]. After 24 h incubation with AT
(concentrations of 25~200 mg/mL), absorbance values were measured with a microplate
reader (Bio-Rad, Hercules, CA, USA) to calculate the viability of RAW 264.7. Cell viability
data were compared with the group treated with 25 µg/mL of AT, the group treated with
50 µg/mL, the group treated with 100 µg/mL, the group treated with 200 µg/mL, and the
group treated with cell culture media alone.

2.5. Griess Reagent Assay

NO production in RAW 264.7 (1 × 104 cells/well) after 24 h treatment with AT was
measured with Griess reagent (Thermo Fisher Scientific, Waltham, MA, USA), as described
previously [30].

2.6. Fluo-4 Calcium Assay

Cytosolic calcium release in RAW 264.7 (1 × 105 cells/well) after 24 h treatment with
AT was measured with a Fluo-4 calcium assay kit (Thermo Fisher Scientific) [30].

2.7. Dihydrorhodamine 123 Assay

The levels of hydrogen peroxide in RAW 264.7 (1 × 104 cells/well) were measured
with a dihydrorhodamine 123 assay [30].

2.8. Multiplex Cytokine Assay

Multiplex Cytokine Assay kits of Millipore were used to evaluate concentrations of
cytokines in RAW 264.7 (1 × 104 cells/well) [30,31].

2.9. Real-Time PCR

The mRNA expressions of Chop, Camk2a, Stat1, Stat3, Jak2, Fas, c-Jun, c-Fos, Nos2, Ptgs2,
and β-Actin were quantified with real-time PCR. GenBank accession numbers used for
designing primers are listed in Table 1.

https://www.nifds.go.kr/nhmi/analscase/snststMnl/view.do?selectedSnststMnlNo=29&pageIndex=1&pageSize=10&searchText=%EA%B3%A0%EB%B3%B8&searchTarget=all&sortField=snststMnlNo&direction=DESC
https://www.nifds.go.kr/nhmi/analscase/snststMnl/view.do?selectedSnststMnlNo=29&pageIndex=1&pageSize=10&searchText=%EA%B3%A0%EB%B3%B8&searchTarget=all&sortField=snststMnlNo&direction=DESC
https://www.nifds.go.kr/nhmi/analscase/snststMnl/view.do?selectedSnststMnlNo=29&pageIndex=1&pageSize=10&searchText=%EA%B3%A0%EB%B3%B8&searchTarget=all&sortField=snststMnlNo&direction=DESC
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Table 1. List of GenBank accession numbers used for PCR primers.

Gene Name GenBank Accession Number

Chop NM_007837
Camk2a NM_012920

Stat1 NM_009283.4
Stat3 NM_011486.5
Jak2 NM_001048177.3
Fas NM_007987

c-Jun NM_010591
c-Fos NM_010234
Nos2 NM_010927.3
Ptgs2 NM_011198

β-Actin NM_007393.3

2.10. Flow Cytometry Assay

Flow cytometry was used to check phospho-STAT3 and phospho-P38 MAPK with
Attune NxT flow cytometer (Thermo Fisher Scientific) [30]. After 18 h treatment, RAW
264.7 were stained with phospho-P38 MAPK and phospho-P38 MAPK antibody. The level
of the antibody was analyzed with Attune NxT software. Details of flow cytometry are
presented in the supplementary file.

2.11. Statistical Analyses

Values are expressed in means ± standard deviation. ANOVA was used to check the
statistical significance.

3. Results
3.1. Total Flavonoid Content of AT

The TFC of AT was 1.62 mg RE/g extract.

3.2. Cell Viability

AT did not show any cytotoxicity to RAW 264.7. After 24 h of treatment, cell viabil-
ity was measured with a tetrazolium-based colorimetric assay. Cell viability data were
compared with the group treated with 25 µg/mL of AT (AT25), the group treated with
50 µg/mL (AT50), the group treated with 100 µg/mL (AT100), the group treated with
200 µg/mL (AT200), and the group treated with cell culture media alone (Nor). Experi-
mental results represented that the cell viability of AT25 was 104.19 ± 4.63% compared
to Nor, 101.41 ± 0.94% of AT50, 104.00 ± 3.65% of AT100, and 108.89 ± 2.37% of AT200,
respectively (Figure 1A). Along with these experimental results, up to 200 µg/mL of AT
concentration were used in this study.

3.3. NO Production

Although macrophages tend to produce RNS such as NO, as shown in Figure 1, LPS
significantly induced NO production of RAW 264.7 (Figure 1B), whereas AT significantly
inhibited NO production of RAW 264.7 against the stimulation of LPS (Figure 1B). NO
production data were compared with AT25, AT50, AT100, and AT200 and the group treated
with lipopolysaccharide (LPS, 1 µg/mL) alone (Con). Experimental results represented
that NO production of AT25 was 94.71 ± 1.76% compared to Con, 92.88 ± 3.43% of AT50,
92.8 ± 2.82% of AT100, and 92.15 ± 4.96% of AT200, respectively. These experimental results
mean that AT can regulate NO-caused harmful inflammatory processes by controlling the
amount of NO produced from activated macrophages.
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Figure 1. Effects of Angelicae tenuissimae Radix (AT) water extract on cell viability (A), Nitric Oxide
(NO) production (B), and Calcium release (C) in RAW 264.7. Values are presented as mean ± SD.
Nor, the group treated with cell culture media alone; Con, the group treated with lipopolysaccharide
(LPS, 1 µg/mL) alone. AT25 means 25 µg/mL of AT, AT50 means 50 µg/mL of AT, AT100 means
100 µg/mL of AT, and AT200 means 200 µg/mL of AT. IN, indomethacin at 0.5 µM. #, p < 0.05 vs.
Nor; **, p < 0.01 vs. Con; ***, p < 0.001 vs. Con.

3.4. Calcium Release

Calcium release data were compared with AT25, AT50, AT100, and AT200 and the
group treated with LPS (1 µg/mL) alone (Con). Experimental results represented that
calcium release of AT25 was 66.07 ± 3.39% compared to Con, 68.53 ± 0.43% of AT50,
66.96 ± 7.37% of AT100, and 61.38 ± 5.83% of AT200, respectively (Figure 1C). These results
of AT treatment on LPS-activated macrophages can be interpreted as having the effect of
controlling harmful inflammatory processes in LPS-activated macrophages by modulating
the calcium release signaling in activated macrophages.

3.5. Hydrogen Peroxide Production

Figure 2 represents that AT dose-dependently decreased hydrogen peroxide produc-
tion from RAW 264.7 activated by LPS. Hydrogen peroxide data were compared with AT25,
AT50, AT100, and AT200 and the group treated with LPS (1 µg/mL) alone (Con). Experi-
mental results for 24 h treatment represented that hydrogen peroxide production of AT25
was 96.57 ± 5.65% compared to Con, 84.29 ± 12.01% of AT50, 79.44 ± 9.43% of AT100, and
77.05 ± 3.1% of AT200, respectively (Figure 2A). Experimental results for 48 h treatment rep-
resented that hydrogen peroxide production of AT25 was 87.51 ± 8.15% compared to Con,
77.56 ± 12.56% of AT50, 76.3 ± 11.25% of AT100, and 82.24± 3.67% of AT200, respectively
(Figure 2B). These results of AT treatment on LPS-activated macrophages can be inter-
preted as having the effect of relieving oxidative stress phenomena during LPS-induced
macrophage oxidative burst by modulating hydrogen peroxide production in activated
macrophages, resulting in the inhibition of oxidative stress-linked inflammatory processes.
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Figure 2. Effects of AT on hydrogen peroxide production after incubation with RAW 264.7
macrophages for 24 h (A) and 48 h (B). Values are presented as mean ± SD. Nor, the group treated
with cell culture media alone; Con, the group treated with lipopolysaccharide (LPS, 1 µg/mL) alone.
AT25 means 25 µg/mL of AT, AT50 means 50 µg/mL of AT, AT100 means 100 µg/mL of AT, and
AT200 means 200 µg/mL of AT. IN, indomethacin at 0.5 µM. #, p < 0.05 vs. Nor; *, p < 0.05 vs. Con;
**, p < 0.01 vs. Con; ***, p < 0.001 vs. Con.
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3.6. Cytokine Production

Since one of the goals of this study regards the activity of AT on increased productions
of various cytokines and growth factors related to the Jak–STAT signaling pathway in
LPS-stimulated macrophages, the level of cytokines and growth factors in cell culture
supernatants was checked after 24 h of incubation with LPS (1 µg/mL) and AT. In detail,
concentrations of B cell stimulatory factor 2 (BSF2; IL-6), chemokine ligand 2 (CCL2; MCP-1),
tumor necrosis factor-alpha (TNF-α), colony-stimulating factor 1 (CSF1; M-CSF), colony-
stimulating factor 2 (CSF2; GM-CSF), colony-stimulating factor 3 (CSF3; G-CSF), vascular
permeability factor (VPF; VEGF), cholinergic differentiation factor (CDF; LIF), C-X-C motif
chemokine 5 (CXCL5; LIX), chemokine (C-C motif) ligand 3 (CCL3; MIP-1α), chemokine
(C-C motif) ligands 4 (CCL4; MIP-1β), chemokine (C-X-C motif) ligand 2 (CXCL2; MIP-2),
chemokine (C-C motif) ligand 5 (CCL5; RANTES), and CXCL10 (IP-10) were evaluated
using the Bio-plex 200 system for the multiplex cytokine assay. Experimental results
represented that AT at concentrations of 25, 50, 100, and 200 µg/mL significantly inhibited
the LPS-induced production of CSF1, CSF2, CSF3, CXCL5, and CXCL2 in RAW 264.7
(Figure 3, Table 2). In addition, AT at concentrations of 50, 100, and 200 µg/mL significantly
inhibited the LPS-induced production of CCL3, CCL4, CCL2, TNF-α, CXCL10, CDF, and
CCL5 in RAW 264.7 (Figures 3 and 4, Table 2). The level of VPF was significantly decreased
by AT at concentrations of 25, 100, and 200 µg/mL in RAW 264.7 activated by LPS. BSF2
was significantly decreased by AT at concentrations of 100 and 200 µg/mL (Figure 4 and
Table 2).

However, concentrations of CCL4 (MIP-1β), CXCL2 (MIP-2), and TNF-α did not
decrease by AT dose-dependently (Figures 3 and 4). After treatment with AT at 25 µg/mL,
levels of CCL3 (MIP-1α), CCL4 (MIP-1β), CCL2 (MCP-1), TNF-α, CXCL10 (IP-10), CDF
(LIF), and CCL5 (RANTES) were decreased, although such decreases were not statistically
significant (Figures 3 and 4). AT at a concentration of 50 µg/mL decreased VPF (VEGF)
production (Figure 4), and such decrease did not reach significance either. In the case
of BSF2 (IL-6), AT at concentrations of 25 and 50 µg/mL did not significantly inhibit its
production (Figure 4).

Our data show that AT regulates hyper-inflammatory responses in activated macrophages
by decreasing excessive levels of various cytokines and growth factors, thus modulating
the hyper-inflammatory response associated with endotoxemia.

3.7. The Level of Inflammatory Gene Expression

To verify the effects of AT on expressions of inflammatory genes in LPS-stimulated
macrophages, mRNA expression levels of inflammatory genes related to ER stress and
the Jak–STAT signaling pathway were measured with real-time PCR. CHOP, CAMK2a,
and FAS might play a key role in the ER stress cascade in activated macrophages [18–20].
Jak–STAT signaling is associated with increased expression levels of STAT, Jak, c-Jun, c-Fos,
Nos2, and Ptgs2. Our data showed that treatment with AT at concentrations of 25, 50, 100,
and 200 µg/mL for 24 h significantly reduced mRNA expression levels of Stat1, Stat3, Nos2,
Ptgs2, Jak2, Fas, c-Jun, c-Fos, Chop, and Camk2a genes in LPS-stimulated RAW 264.7 (Figure 5,
Table 2). Our data show that the anti-inflammatory effect of AT on macrophages activated
by LPS is achieved through the CHOP-related pathway.
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Figure 3. Production of G-CSF (A), GM-CSF (B), LIX (C), MIP-1α (D), MIP-1β (E), MIP-2 (F), M-
CSF (G), and MCP-1 (H) in RAW 264.7 activated by LPS. Values are presented as mean ± SD. Nor,
the group treated with cell culture media alone; Con, the group treated with lipopolysaccharide
(LPS, 1 µg/mL) alone. AT25 means 25 µg/mL of AT, AT50 means 50 µg/mL of AT, AT100 means
100 µg/mL of AT, and AT200 means 200 µg/mL of AT. BA, baicalein (25 µM). #, p < 0.05 vs. Nor;
*, p < 0.05 vs. Con; **, p < 0.01 vs. Con; ***, p < 0.001 vs. Con.
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Table 2. Effects of Angelica tenuissima root extract (AT) on hyper-inflammatory responses in RAW 264.7 activated by endotoxin (1 µg/mL of lipopolysaccharide).

Inflammatory Factor
Normal

(Media Only)
Control

(LPS Alone)

Concentration (µg/mL) of AT with Lipopolysaccharide (LPS)

25 50 100 200

IL-6 (pg/mL) 397.67 ± 68.05 21,494.67 ± 973.61 19,787.50 ± 797.22 17,699.33 ± 3085.14 17,879.83 ± 1655.03* 16,650.00 ± 272.53**

TNF-α (pg/mL) 342.50 ± 104.26 6740.63 ± 324.74 6420.00 ± 268.06 5346.00 ± 230.36** 5745.50 ± 621.53* 4817.83 ± 606.39**
G-CSF (pg/mL) 521.00 ± 83.72 25,543.00 ± 238.10 24,842.50 ± 357.68* 24,842.83 ± 323.51* 24,810.50 ± 347.73* 24,253.50 ± 248.47**

GM-CSF (pg/mL) 51.67 ± 5.03 9191.88 ± 961.95 6978.33 ± 597.92* 5821.33 ± 1745.5* 7315.83 ± 712.23* 5202.25 ± 1347**
M-CSF (pg/mL) 38.67 ± 4.04 64.25 ± 0.87 59.88 ± 2.39* 52.75 ± 2.22*** 52.50 ± 1.78*** 50.88 ± 10.02*
VEGF (pg/mL) 282.67 ± 39.03 2258.50 ± 181.85 1641.00 ± 146.21** 1567.00 ± 575.31 1324.67 ± 127.45** 1329.33 ± 176.38**
IP-10 (pg/mL) 925.67 ± 235.72 9146.33 ± 257.94 8075.17 ± 1031.92 7064.33 ± 816.24* 6314.50 ± 1103.26** 5472.33 ± 270.81**
LIF (pg/mL) 48.00 ± 3.04 8874.63 ± 321.15 8004.38 ± 979.19 6841.63 ± 1219.48* 6759.38 ± 790.78** 5881.25 ± 354.84***
LIX (pg/mL) 227.00 ± 14.93 9632.00 ± 556.22 8041.67 ± 656.98* 7785.50 ± 1082.63* 7891.83 ± 365.63* 7194.67 ± 642.9**

MCP-1 (pg/mL) 265.33 ± 36.83 6632.75 ± 542.50 5690.33 ± 1434.00 4457.67 ± 1597.81* 3903.75 ± 1278.68** 3420.13 ± 313.43***
MIP-1α (pg/mL) 20,198.33 ± 733.50 26,577.30 ± 201.23 25,957.67 ± 465.5* 25,611.50 ± 189.76** 25,562.83 ± 443.83* 24,959.83 ± 121.64***
MIP-1β (pg/mL) 17,552.50 ± 520.21 24,111.80 ± 145.97 23,903.67 ± 122.45 23,671.67 ± 75.18* 23,840.00 ± 139.53* 23,215.33 ± 553.15*
MIP-2 (pg/mL) 120.67 ± 24.17 24,363.00 ± 89.64 23,902.00 ± 212.08* 23,343.50 ± 265.26** 23,749.50 ± 360.7* 23,358.83 ± 576.98*

RANTES (pg/mL) 76.00 ± 10.39 11,624.71 ± 674.17 11,397.50 ± 1156.28 10,413.83 ± 763.51* 9724.33 ± 30.09** 9703.50 ± 2096.06*

Chop mRNA (ratio) 1.24 ± 0.80 17.83 ± 6.00 4.98 ± 1.18** 4.69 ± 1.19** 4.63 ± 1.36** 4.57 ± 0.34**
Camk2a mRNA (ratio) 1.51 ± 1.28 17.03 ± 6.96 6.32 ± 0.38* 3.32 ± 0.12** 6.06 ± 5.32* 3.83 ± 0.2*
Stat-1 mRNA (ratio) 1.08 ± 0.43 5.90 ± 2.12 1.28 ± 0.31*** 0.86 ± 0.1*** 0.81 ± 0.25*** 1.49 ± 0.21***
Stat-3 mRNA (ratio) 1.38 ± 0.98 3.18 ± 1.45 1.63 ± 0.85* 1.37 ± 0.52* 1.34 ± 0.43* 1.30 ± 0.36*
Jak2 mRNA (ratio) 1.13 ± 0.73 3.99 ± 1.03 1.21 ± 0.08** 1.20 ± 0.33*** 1.19 ± 0.29** 0.89 ± 0.17**
Fas mRNA (ratio) 1.09 ± 0.59 366.74 ± 68.43 103.31 ± 2.7*** 93.07 ± 9.9** 86.25 ± 5.84*** 79.15 ± 9.41***

c-Jun mRNA (ratio) 1.14 ± 0.53 15.22 ± 1.60 9.42 ± 1.75* 6.65 ± 1.33* 8.97 ± 3.09* 6.18 ± 0.77*
c-Fos mRNA (ratio) 1.16 ± 0.61 18.40 ± 4.62 8.33 ± 1.17* 5.59 ± 0.67* 8.02 ± 0.36* 5.32 ± 1.07*
Nos2 mRNA (ratio) 1.38 ± 1.78 3354.89 ± 2239.32 920.95 ± 687.25* 884.32 ± 806.5* 1046.78 ± 244.75* 262.17 ± 123.65*
Ptgs2 mRNA (ratio) 2.05 ± 2.56 23,427.87 ± 14,650.27 1886.16 ± 49.8* 1260.22 ± 33.95* 1361.26 ± 202.44* 2966.61 ± 268.69*

Values are the mean ± SD (n = 4); *, p < 0.05 vs. Con; **, p < 0.01 vs. Con; ***, p < 0.001 vs. Con.
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Figure 4. Production of TNF-α (A), IP-10 (B), LIF (C), RANTES (D), VEGF (E), and IL-6 (F) in RAW
264.7 activated by LPS. Values are presented as mean ± SD. Nor, the group treated with cell culture
media alone; Con, the group treated with lipopolysaccharide (LPS, 1 µg/mL) alone. AT25 means
25 µg/mL of AT, AT50 means 50 µg/mL of AT, AT100 means 100 µg/mL of AT, and AT200 means
200 µg/mL of AT. BA, baicalein (25 µM). #, p < 0.05 vs. Nor; *, p < 0.05 vs. Con; **, p < 0.01 vs. Con;
***, p < 0.001 vs. Con.
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Figure 5. Effects of AT on mRNA expression levels of Chop (A), Camk2a (B), Stat-1 (C), Stat-3 (D),
c-Jun (E), c-Fos (F), Jak2 (G), Fas (H), Nos2 (I), and Ptgs2 (J) in RAW 264.7 activated by LPS. Values are
presented as mean ± SD. Nor, the group treated with cell culture media alone; Con, the group treated
with lipopolysaccharide (LPS, 1 µg/mL) alone. AT25 means 25 µg/mL of AT, AT50 means 50 µg/mL
of AT, AT100 means 100 µg/mL of AT, and AT200 means 200 µg/mL of AT. BA, baicalein (25 µM).
#, p < 0.05 vs. Nor; *, p < 0.05 vs. Con; **, p < 0.01 vs. Con; ***, p < 0.001 vs. Con.



Processes 2022, 10, 2238 11 of 16

3.8. The Level of Phospho-STAT3 and Phospho-P38 MAPK

To determine the pathway for the inhibitory effect of AT on RAW 264.7 activated by
LPS, the effects of AT on the phosphorylation of P38 MAPK and STAT3 in RAW 264.7
were investigated using the flow cytometry assay. AT significantly downregulated the
phosphorylation of P38 MAPK and STAT3 in RAW 264.7 activated by LPS (Figure 6). In
detail, phosphorylation levels of P38 MAPK in RAW 264.7 macrophages treated with
AT at 25, 50, and 100 µg/mL were decreased to 48.76 ± 3.79%, 35.97 ± 11.12%, and
23.37 ± 1.74% of that treated with LPS alone, respectively. Phosphorylation levels of STAT3
were decreased to 38.23 ± 0.49%, 36.29 ± 2.55%, and 22.87 ± 16.9% of that treated with
LPS alone, respectively. These data show that AT inhibits hyper-inflammatory responses in
RAW 264.7 activated by LPS via P38 MAPK and STAT3 signaling.
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Figure 6. P38 MAPK phosphorylation (A) and STAT3 phosphorylation (B) in RAW 264.7 activated by
LPS. Values are presented as mean ± SD. Nor, the group treated with cell culture media alone; Con,
the group treated with lipopolysaccharide (LPS, 1 µg/mL) alone. AT25 means 25 µg/mL of AT, AT50
means 50 µg/mL of AT, and AT100 means 100 µg/mL of AT. BA, baicalein (25 µM). #, p < 0.05 vs.
Nor; *, p < 0.05 vs. Con; **, p < 0.01 vs. Con; ***, p < 0.001 vs. Con.

4. Discussion

Conioselinum tenuissimum is traditionally used to treat pain (such as headaches, joint
pain, limb pain, toothache, and abdominal pain) and gynecological diseases in East
Asia [28,29]. Lee et al. reported the efficacy of Conioselinum tenuissimum in treating
headaches [32]. They found that Angelicae tenuissimae Radix could decrease the level
of NO and Nos2 gene transcripts in LPS-stimulated BV-2 (C57/BL6 murine Microglia)
activated by endotoxins as well as the level of prostaglandin E and Ptgs2 gene transcripts,
suggesting that Angelicae tenuissimae Radix might lessen brain inflammation and headache.
Kim et al. reported that the combination of Angelica tenuissima, Angelica dahurica, Scutellaria
baicalensis, and acetaminophen can synergistically decrease LPS-induced inflammation in a
microglia cell line [33]. These results support the activity of Angelicae tenuissimae Radix in
relieving brain inflammation and lessening headaches.

Angelicae tenuissimae Radix and Aspergillus oryzae-fermented Angelicae tenuissimae Radix
(FAT) inhibit melanin production in melanocytes insulted by α-melanocyte-stimulating
hormone as well as tyrosinase activity [28]. In 2018, Park et al. reported that FAT could
protect keratinocytes against ultraviolet light B exposure [29]. This means that FAT has
an anti-photoaging effect [29]. FAT can increase procollagen Type-1 and hemeoxygease-1
while suppressing the expression of MMP-1, elastase, and Ptgs2 [29]. Thus, FAT could be
a candidate with anti-aging and anti-wrinkle effects. Despite these studies, there are not
many detailed studies on the inhibitory activity of Conioselinum tenuissimum root on the
production of cytokines and growth factors in endotoxin-activated macrophages yet.

Current data revealed that AT did not show any toxicity to RAW 264.7. Even if natural
products have biomedical effects, if they are toxic to immune cells, they can rather reduce
the host’s immune function in response to infection. In this regard, when developing anti-
inflammatory drugs using natural products, it is important to confirm whether the natural
product is toxic to macrophages. Since our data represent AT modulate hyper-inflammatory
responses in endotoxins-activated macrophages without cytotoxicity, AT might be a safe
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candidate material for treating inflammatory diseases concerned with excessive production
of cytokines and growth factors.

First, AT inhibited the level of NO, cytosolic calcium, and hydrogen peroxide in
RAW 264.7 activated by LPS. These inhibitory effects of AT on activated macrophages
can be interpreted as having the effect of relieving oxidative stress phenomena during
endotoxins-induced macrophage oxidative burst by regulating the production of ROS such
as hydrogen peroxide as well as RNS such as NO, resulting in the modulation of oxidative
stress-linked inflammatory processes via calcium signaling. Of course, oxidative stress
causes various effects on human pathophysiological phenomena. Not only ROS but also
RNS play different roles in immune cells (i.e., macrophages) and brain tissue cells such as
neuroglia. In other words, in the innate immune system, RNS or ROS belong to an effective
method of responding to infection. Therefore, proper control may be more beneficial for
disease control than the complete removal of RNS and ROS which are produced during
oxidative stress. In this respect, the activity of AT that regulates the production of RNS
and ROS can be effective in solving inflammatory responses caused by bacterial infection.
Furthermore, considering that calcium signaling in ER stress is involved in increasing Chop
transcripts, it means that AT’s activity to control calcium release and suppress the expression
of the Chop gene is involved in relieving ER stress in endotoxin-induced macrophages.

STAT proteins are transcription factors that can mediate various cellular functions
such as immunity, proliferation, and even apoptosis. They are activated by Jak [34,35]. In
detail, ligands such as cytokines and growth factors can activate STAT proteins, which
are phosphorylated by receptor-associated Jak. Among STAT proteins, STAT3 is activated
through the phosphorylation of tyrosine 705 by Janus kinases. In addition, Tkach et al.
reported that STAT3 is phosphorylated at Ser727 residue via MAPK signaling in progestin-
induced murine C4HD cells (breast cancer cells) [36]. Activated STAT3 can translocate
to the nucleus and subsequently stimulate the expression of various genes associated
with inflammation, oncogenesis, and even tumor suppression. In addition, STAT3 can
interact with various proteins such as EP300, JUN, NR3C1, PML, Stathmin, MYOD1, mTOR,
TRIP10, RELA, and so on for cell signaling. Interestingly, Yang and Stark reported that
unphosphorylated STAT can strengthen NFκB signaling to promote the expression of
RANTES in response to secreted IL-6 [37]. Jak–STAT signaling is an important pathway
for LPS-induced inflammatory processes in macrophages [35]. Simon et al. reported
that ROS, such as hydrogen peroxide in mammalian cells, might activate the Jak–STAT
pathway [38]. The Jak–STAT3 pathway is also important for signaling the expression of
IL-6 and chemokines in ER stress-related inflammation [39]. Increases in ROS and RNS can
cause oxidative stress to cells, break cellular redox homeostasis, and increase unfolded or
misfolded proteins in ER lumen, resulting in ER stress [40]. That is, the increase in ROS and
RNS might provoke ER stress and unfolded protein reactions. In 2013, Ahyi et al. reported
that ER stress could activate STAT3 signaling in infection [41]. Our data suggest that the
inhibitory effects of AT on oxidative stress in endotoxins-activated RAW 264.7 could relieve
ER stress through the P38 MAPK–STAT3 pathway (Figure 7).

As opposed to oxidative stress-induced redox imbalance (the impaired redox home-
ostasis) causing ER stress, cellular ROS could be increased by ER stress as well as CHOP
expression [42,43]. ROS occur in both ER and mitochondria. This study could not reveal
where hydrogen peroxide occurred (mitochondria or ER) in RAW 264.7. However, the
level of ROS changed in response to changes in NO production and calcium release. The
regulatory effect of AT on the production of cytokines such as CCL3 and mRNA expres-
sions of inflammatory genes such as Chop and Camk2a could be related to the modulation
of ER stress in activated RAW 264.7. Phosphorylated STAT proteins and P38 MAPK are
important in ER stress and inflammatory cascade in macrophages activated by endotoxins
via the CHOP–caspase-11 pathway, which can finally induce the expression of Fas and
cytokines [44–46]. Liu et al. reported that LPS-stimulated RAW 264.7 can generate ROS
and cytokines via P38 MAPK activation [45]. In addition, activating protein-1 (AP-1), a
well-known transcription factor for apoptosis, is associated with CHOP overexpression
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in mouse aortic smooth muscle cells [47]. Components of AP-1 include c-Fos and c-Jun.
Klymenko et al. reported that AP-1 can not only induce Chop expression in type-II alve-
olar epithelial cells under ER stress conditions but also is essential for the induction of
CHOP [48]. CHOP-amplified calcium released from ER calcium stores can activate Camk2a,
which can increase ROS generation, Fas induction, and/or Stat1 activation in the processes
of macrophage apoptosis [43,46]. During inflammatory processes, LPS can increase Chop
expression and calcium, which might be released from ER calcium stores [49,50].
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Regarding the actual usage of Angelica tenuissima root, Yi et al. evaluated the effect
of AT on cytochrome P450 activities after healthy volunteers were administered daily AT
(183 mg/kg) for 11 days [51]. As a reference, mice were administered daily i.p. injections of
BA (10 mg/kg) to determine whether or not BA could inhibit β-amyloid production [52].
Additional research is required to determine the therapeutic dosage of AT. Meanwhile, it
was not possible to reveal which bioactive ingredients of AT could suppress the production
of RNS, ROS, cytokines, and growth factors and the phosphorylation of P38 MAPK and
STAT3. Since the anti-inflammatory effects of decursin [53] and Z-ligustilide [54] have
already been reported, decursin and Z-ligustilide may have been involved in the anti-
inflammatory effect of AT. More research is required to investigate the clinical efficacy of
AT for inflammatory diseases.

The current study showed that AT (50~ 200 µg/mL) significantly inhibited levels
of NO, hydrogen peroxide, cytosolic Ca2+, cytokines, and growth factors (CSF1, CSF2,
CSF3, CCL3, CCL4, CCL5, CXCL2, etc.) in RAW 264.7 activated by endotoxins. AT also
decreased transcriptional levels of ER stress-related genes such as Chop and Camk2a. In
addition, it inhibited the phosphorylation levels of P38 MAPK and STAT3. When referring
to prior studies, the results of this study indicated that AT might inhibit endotoxin-induced
inflammatory responses in RAW 264.7 through calcium-STAT3 signaling.

5. Conclusions

AT can significantly inhibit levels of NO, Ca2+, hydrogen peroxide, CSF1, CSF2, CSF3,
CXCL10, CDF, CXCL5, TNF-α, CCL2, CCL3, CCL4, CCL5, and CXCL2 in RAW 264.7
activated by endotoxins through calcium-STAT3 signaling.
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