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Abstract: Plant of the genus Zingiber (Zingiberaceae) have primarily distributed in subtropical and
tropical Asia, South America and Africa. The species of this genus have been widely used as food and
in folk with a long history for treating various diseases. Reports related to the phytochemistry and
phytochemistry of Zingiber species are numerous, but articles on the summary of the genus Zingiber
remain scarce. This review aims at presenting comprehensive information about the genus Zingiber
and providing a reference for the future application by systematically reviewing the literature from
1981 to 2020. Currently, a total of 447 phytochemical constituents have been isolated and identified
from this genus, in which volatile oils, diarylheptanoids, gingerols, flavonoids and terpenoids
are the major components. Gingerols, which are the main functional components, are the spicy
and aromatic ingredients in the Zingiber species. Extracts and single compounds from Zingiber
plants have been discovered to possess numerous biological functions, such as anti-inflammatory,
anticancer, antimicrobial, larvicidal, antioxidant and hypoglycemic activities. This review provides
new insights into the ethnomedicine, phytochemistry and pharmacology of the genus Zingiber
and brings to the forefront key findings on the functional components of this genus in food and
pharmaceutical industries.

Keywords: genus Zingiber; phytochemistry; pharmacology; ethnomedicine; gingerols; Zingiberaceae

1. Introduction

The genus Zingiber is the third largest of the family Zingiberaceae, whose members
are mostly edible and medical plants [1]. It comprises 141 species, of which 12 species are
native to China, southwest China in particular [2]. The plants of this genus are mostly
perennial herbs with a fibrous rhizome, erectedg stem, and aromatic odor. The roots of
Zingiber plants are mainly used for food and medicine, and the stems, leaves and roots are
also used for extracting aromatic oils. Many types of chemical compounds of Zingiber have
been discovered in current studies, such as volatile oils, organic acid, sterides, flavonoids,
diarylheptanoids, gingerols and terpenoids. Although numerous chemical constituents of
the genus Zingiber have been reported, including some well-known compounds named
6-gingerol (325), zerumbone (1) and curcumin (294), a systematic summary of the chemical
constituents of this genus was rarely reported.

As traditional medical and edible herbs, numerous studies have focused on five plants
of the genus Zingiber (Zingiber zerumbet (L.) Smith (Figure 1a), Zingiber officinale Rosc (ginger)
(Figure 1b), Zingiber corallinum Hance (Figure 1c), Zingiber mioga (Thunb.) Rosc (Figure 1d)
and Zingiber striolatum Diels (Figure 1e). Modern pharmacological studies demonstrated
that they exhibit extensive biological activities, such as antimicrobial, larvicidal, antioxidant,
anti-obesity, anti-inflammatory, hypoglycemic, neuroprotective, cardiovascular protective
and anti-tumor effects. According to their usage in history, Zingiber plants have been used
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to treat various symptoms and diseases, including nausea, vomiting, cough, common
cold, and headache, relieving joint pain and menstrual cramp, and preventing stomach
ulcers, neurodegenerative diseases, eye inflammation, cardiovascular diseases, diuretic
and respiratory disorders [3–5].
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Figure 1. The characteristics of some Zingiber plants. ((a) Zingiber zerumbet (L.) Smith; (b) Zingiber offic-
inale Rosc; (c) Zingiber corallinum Hance; (d) Zingiber mioga (Thunb.) Rosc; (e) Zingiber striolatum Diels).

Despite scholars having conducted extensive research on this genus in recent years,
reports on summaries of the genus Zingiber remain scarce. Most of the research is especially
concentrated on the Z. officinale, which is abundant in China, and is distributed mainly
in the southwest to southeast of China, especially in the Guangdong, Guangxi, Yunnan,
Sichuan and Guizhou provinces [6]. However, the details on the other species of this
genus are scanty. Therefore, in this review, the ethnomedicine, chemical compositions and
pharmacological activities from the available research reports on the genus Zingiber were
systematically summarized and presented.

2. Methods of Data Collection
2.1. Methods

All of the available information presented in this review, concerning the genus Zin-
giber, was gathered via the scientific database, including PubMed, Google Scholar, Web of
Science and Chinese National Knowledge Infrastructure (CNKI) between 1981 and 2020. In
addition, part of the information was obtained from some local books, PhD and master’s
dissertations. Keywords, such as Zingiber, phytochemical composition, bioactivities of
Zingiber, and Zingiberaceae, were used for the online search. The structures of the Zingiber
chemical contents, which were mentioned in the articles, were obtained from theses, books,
databases and other reliable sources.

2.2. Inclusion Criteria

Using the above-mentioned methods, we selected literature (1981–2020) concerning
the ethnomedicine, phytochemistry and pharmacology of the genus Zingiber. Non-English
articles were included if they included eligible study design and relevant outcomes. Con-
sidering the comprehensiveness of this review, all types of articles (books, research, reviews,
clinical trials and meta-analysis) are included and ultimately 130 eligible articles as the
result of the selection process. The details of screening and selecting eligible articles are
available in Figure 2.
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2.3. Exclusion Criteria

We excluded the articles whose study design is unreasonable or whose outcome is
ambiguous.

3. Traditional Uses and Modern Applications
3.1. Traditional Medical Uses and Modern Applications of Zingiber Plants in China

Plants of the genus Zingiber have been used in China for centuries, which are recorded
for treating cough, emesis, rhinobyon and typhia in the monographs of traditional Chinese
medicine, such as Sheng Nong’s herbal classic and the Compendium of Materia Medica [7].
Z. officinale is the representative herbal medicine of the genus Zingiber, which is used as
a common medication to relieve cough, cold, vomiting, diarrhea and abdominal pain in
the traditional Chinese medicine system. Another species (Z. zerumbet) in this genus was
recorded to have treatment effects of joint pain, stomachache, cold and dysmenorrhea.
Z. striolatum has been documented to relieve diabetes and constipation in the Compendium
of Materia Medica.

In addition to their traditional uses, plants of Zingiber can be used as prescription oral
treatment for coronary heart disease, myocardial infarction, cardiovascular disease and
enteritis [8,9]. Z. officinale has been found as a safe and well tolerated alternative to anti-
emetic medications, which can decrease the severity and incidence of PONV (postoperative
nausea and vomiting) [10]. Moreover, Z. officinale, as the best-known plant of the genus
Zingiber, has different uses through different processing methods. Dried Z. officinale was
used to cure enteritis, diarrhea and emesis, whereas baked Z. officinale was cured hemafecia,
metrorrhagia and metrostaxis in the Chinese medicine system [11]. Ethyl-acetate extract
of Z. zerumbet has a protective effect against ethanol-induced brain damage, which is
mediated through its antioxidant properties [12]. With the unique fragrance and strong
antimicrobial and insecticidal functions, Z. corallinum Hance has been widely used in the
washing, fragrance and cosmetic industry.
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3.2. Traditional Medical Uses and Modern Applications of Zingiber Plants in Other Countries

Plants of the genus Zingiber have played significant roles in the medicine system of
many other countries. Z. mioga (Figure 1d) was used to ameliorate inflammation, rheumatic
disorders and gastrointestinal discomforts in traditional Oriental medicines [13]. Z. officinale
(Figure 1b) is employed as an important medicine for treating catarrh, rheumatism, nervous
diseases, gingivitis toothache, asthma, stroke, constipation, and diabetes in the Ayurvedic
and Tibb-Unani herbal medicines [14]. Moreover, Z. officinale has the effects of treating
asthma, bronchitis, piles, eructation, constipation, ascites and relieving flatulence in the
Indian medicine system [15,16]. The rhizome powder of Z. zerumbet (Figure 1a) mixed with
ripe Morinda citrifolia is used for the treatment of severe pain in India. The fresh rhizome
of Z. zerumbet is served as an anti-flatulent agent in Thailand. In addition, it also has a
long history in the treatment of headache, toothache, ringworm, arthralgia, sprains and
stomach-ache by Hawaiians [5].

Besides their medicinal uses, plants of Zingiber are the vital ingredient in the daily
diets in other countries. The flower buds of Z. mioga, which have a pungent aroma, are used
as spices, pickles and health supplements in Eastern Asia. As well, it is an excellent food
ingredient for increasing the functionality and consumer acceptability of kimchi [17,18].
The leaves of Z. mioga can be used to wrap and preserve manjyu, which is a traditional
Japanese confection [19].

4. Phytochemical Contents

A total of 447 compounds have been isolated and identified from the genus Zingiber,
which can be classified into seven categories, including volatile oils, terpenoids analogues,
flavonoids, gingerol analogues, diarylheptanoids, organic acids and sterides. Those com-
pounds and their origins have been summarized in Table S1 from Supplementary Materials,
and their chemical structures have been described in Figures 3–10.
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4.1. Volatile Oils

Compounds 1–106 are the volatile oils that were isolated and identified from Zingiber
plants (Figure 3). The volatile oils were extracted from the rhizome of Zingiber plants,
which account for roughly 0.25~3.0%. The α-zingiberene (219) is the main component
of the Z. officinale volatile oil [20,21]. Zerumbone (1) is the predominant component of Z.
zerumbet volatile oils, whose analogs account for approximately 60.3% [22]. Palmitic acid (33)
was identified as the highest content of the Z. striolatum Diels volatile oils, which account
for about 30.5% [23].

4.2. Terpenoid Analogues

Compounds 107–261 are the terpenoid analogues. The odor of Zingiber plants can be at-
tributed to the terpenoids’ compounds, which mainly consist of monoterpene (Figure 4) and
sesquiterpene (Figure 5), such as ar-curcumene (224) and β-sesquiphellandrene (225) [24].
Three diterpene dialdehydes’ compounds, named galanal A (260), galanal B (261) and
miogadial (198), were isolated from Z. mioga, in which the compound 198 was the main
contribution to the pungent taste of the flower buds [25].

4.3. Flavonoids

A total of 32 flavonoids (compounds 262–293) have been identified from the Zingiber
plants (Figure 6). The flavonoids’ content of the Z. mioga bud was 0.48%, which was
much higher than that of common vegetables (0.001–0.1%). Two anthocyanin compounds,
delphinidin (292) and cyanidin (293), were considered as the potential hypoglycemic
components in Z. mioga [26].

4.4. Diarylheptanoids

Twenty-seven diarylheptanoid compounds (294–320) were detected in the genus
Zingiber, and curcumin (294) is the first diarylheptanoid compound that was isolated from
this species (Figure 7). Diarylheptanoids are a class of compounds with 1,7-disubstituted
phenyl groups and heptane framework, which can be subdivided into acyclic (294–314) and
cyclic diarylheptanoids. The aromatic rings of diarylheptanoids are easily hydroxylated
and methoxylated, with the alkyl chains containing ketone, alkene, alcohol, and acetyl
functionalities, and 1,5- or 3,6-oxy bridges (315–320).
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4.5. Gingerol Analogues

Forty-five gingerol analogues compounds (321–367) were isolated and identified from
the Zingiber species, which were the main metabolites of Zingiber plants (Figure 8). Gingerol
analogues can be classified into six categories, including gingerol, shogaol, zingerone,
paradol, gingerdione and gingerdiol, based on the difference of hydrocarbon chains [27].
Different gingerol analogues demonstrated similar biological activity, which may be influ-
enced by the lengths of alkyl side chains. 6-gingerol (325) is the highest-content chemical
component of gingerol analogues and the main pungency constituent of the fresh Z. offici-
nale rhizome [28]. Due to their thermal instability, gingerols easily undergo dehydration
reactions to form the corresponding shogaols (332–338), which are the non-volatile pungent
ingredients in the Zingiber species. 6-paradol (355) is produced from 6-shogaol (333) by a
biotransformation process and possesses similar biological activities to 6-shogaol (333) [29].
6-gingesulfonic acid (365) accounts for 0.0013% of Z. officinale, with weak pungency and
strong anti-ulcer activity [30].
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4.6. Organic Acids

Compounds 368–395 were isolated and identified as organic acids in Zingiber plants
(Figure 9). These ingredients can be divided into fatty acids (compound 390) and aro-
matic acids (compound 368). Oxalic and tartaric acids (394–395) are two major acids of
Z. officinale rhizomes [31].

4.7. Sterides

Only two sterides compounds have been found in the genus Zingiber, including
daucosterol (396) and 24-propylcholesterol (397) (Figure 10).

4.8. Others

Compounds 398–447 have been isolated and identified from the genus of Zingiber,
including anthraquinones (441), furans (400–401), pyrimidine (408–409) and saccharides
(407 and 447) (Figure 10).

5. Pharmacological Properties

Zingiber plants possess anti-inflammatory, anticancer, antimicrobial, larvicidal, antioxi-
dant, hypoglycemic, analgesic, neuroprotective and cardiovascular protective effects. These
pharmacological properties have been summarized in Table 1 in the following subsections.

Table 1. Pharmacological effects of Zingiber plants.

Pharmacological Effects Details Extracts/Compounds Inhibitory
Concentrations/Dose References

Anti-inflammatory activity

Inhibition of the direct binding between intercellular
adhesion molecules and lymphocyte

function-associated antigen-1 of the THP-1 cells

10-gingerol IC50: 57.6 µM

[32]
8-shogaol IC50: 65.4 µM

Inhibitory effect on direct binding between sVCAM-1
and VLA-4 of THP-1 cells

6-shogaol IC50: 27.1 µM

Dehydro-6-gingerdione IC50: 62.0 µM

Inhibition of the produc-tion of pro-inflammatory
cytokines from LPS stim-ulated macrophages 6-gingerol 50 mg/kg [33]

Decreased ETBF-induced colitis via inhibition of
NF-κB signaling Zerumbone MIC: 32–48 µg/mL [34]

Anti-cancer activity

Cytotoxic effect on MRC-5
(human fetal lung fibroblasts cell linse)

Z. zerumbet fresh rhizome
essential oil

IC50: 216.99 ± 8.27 µM
for 24 h

[22]

Z. zerumbet dry rhizome
essential oil

IC50: 159.47 ± 9.34 µM
for 24 h

Zerumbone IC50: 117.96 ± 5.67 µM
for 24 h

Cytotoxic effect on PC-3
(human prostate cancer cell lines)

Z. zerumbet fresh rhizome
essential oil

IC50: 53.32 ± 1.34 µM
for 24 h

Z. zerumbet dry rhizome
essential oil

IC50: 77.45 ± 0.46 µM
for 24 h

Zerumbone IC50: 30.78 ± 1.31 µM
for 24 h

Z. striolatum essential oil IC50: 86.05 µM [35]

6-shogaol IC50: 100.0 ± 13.1 µM

[36]

6-dehydrogingerdione IC50: 106.4 ± 12.5 µM

10-gingerol IC50: 59.7 ± 8.2 µM

3,5-dioxo-1,7-bis(3-
methoxy-4-hydroxy)-

phenyl-heptane
IC50: 153.5 ± 13.8 µM

Gingerenone A IC50: 114.3 ± 14.2 µM

3,5-diacetoxy-1-(3-methoxy-
4,5-dihydroxy-phenyl)-7-(4-

hydroxy-3-
methoxyphenyl) heptane

IC50: 86.6 ± 7.5 µM

Curcumin IC50: 16.5 ± 2.7 µM
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Table 1. Cont.

Pharmacological Effects Details Extracts/Compounds Inhibitory
Concentrations/Dose References

Cytotoxic effect on K562
(human leukemia cell lines)

Z. zerumbet fresh rhizome
essential oil

IC50: 35.73 ± 1.72 µM for
24 h

[22]Z. zerumbet dry rhizome
essential oil

IC50: 41.79 ± 1.18 µM for
24 h

Zerumbone IC50: 10.08 ± 0.61 µM

Z. striolatum essential oil IC50: 29.67 µM [35]

6-gingerol IC50: 22.86 µM

[37]

Gingerenone A IC50: 33.3 ± 5.1 µM

3,5-diacetoxy-1-(3-methoxy-
4,5-dihydroxy-phenyl)-7-(4-

hydroxy-3-
methoxyphenyl) heptane

IC50: 39.6 ± 4.8 µM

1,5-epoxy-3-hydroxy-1-(3,4-
hydroxy-5-

methoxyphenyl)-7-(4-
hydroxy-3-

methoxyphenyl) heptane

IC50: 160.3 ± 14.1 µM

Citrylidenmalonsaeure IC50: 119.8 ± 9.9 µM

Curcumin IC50: 30.5 ± 5.3 µM

Cytotoxic effect on A-549
(human lung cancer cell lines)

Z. zerumbet fresh rhizome
essential oil

IC50: 44.88 ± 1.21 µM
for24 h

[27]
Z. zerumbet dry rhizome

essential oil
IC50: 68.06 ± 1.09 µM

for 24 h

Zerumbone IC50: 25 µM [38]

Z. striolatum essential oil IC50: 48.87 µM [35]

6-shogaol IC50: 22.9 ± 2.1 µM

[36]

6-dehydrogingerdione IC50: 81.2 ± 9.6 µM

10-gingerol IC50: 85.4 ± 10.2 µM

3,5-dioxo-1,7-bis(3-
methoxy-4-hydroxy)-

phenyl-heptane
IC50: 248 ± 17.9 µM

Gingerenone A IC50: 44.5 ± 5.8 µM

3,5-diacetoxy-1-(3-methoxy-
4,5-dihydroxy-phenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC50: 96.3 ± 7.8 µM

7-(3,4-dihydroxy-5-
methoxyphenyl)-5-

hydroxy-1-(4-hydroxy-3-
methoxyphenyl)

heptan-3-one

IC50: 83.6 ± 8.4 µM

1,5-epoxy-3-hydroxy-1-(3,4-
hydroxy-5-

methoxyphenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC50: 230.8 ± 17.9 µM

5-[4-hydroxy-6-(4-
hydroxyphenethyl)

tetrahydro-2H-pyran-2-yl]-
3-methoxybenzene-1,2-diol

IC50: 212.0 ± 15.2 µM

Curcumin IC50: 58.8 ± 9.4 µM

Cytotoxic effect on H-460
(human lung cancer cell lines) Zerumbone IC50: 15 µM [38]
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Table 1. Cont.

Pharmacological Effects Details Extracts/Compounds Inhibitory
Concentrations/Dose References

Cytotoxic effect on BEL7404
(human lung cancer cell lines)

6-shogaol IC50: 11.8 ± 2.6 µM

[36]

6-dehydrogingerdione IC50: 115.2 ± 13.7 µM

10-gingerol IC50: 95.2 ± 12.2 µM

3,5-dioxo-1,7-bis(3-
methoxy-4-hydroxy)-

phenyl-heptane
IC50: 49.4 ± 3.4 µM

Gingerenone A IC50: 9.0 ± 2.3 µM

3,5-diacetoxy-1-(3-methoxy-
4,5-dihydroxy-phenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC50: 101.9 ± 13.1 µM

7-(3,4-dihydroxy-5-
methoxyphenyl)-5-

hydroxy-1-(4-hydroxy-3-
methoxyphenyl)

heptan-3-one

IC50: 180.6 ± 16.5 µM

1,5-epoxy-3-hydroxy-1-(3,4-
hydroxy-5-

methoxyphenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC50: 180.6 ± 12.5 µM

Curcumin IC50: 38.2 ± 3.9 µM

Cytotoxic effect on CNE
(human nasopharyngeal cancer cell lines)

6-shogaol IC50: 43.8 ± 5.0 µM

6-dehydrogingerdione IC50: 119.7 ± 7.9 µM

10-gingerol IC50: 88.1 ± 7.3 µM

3,5-dioxo-1,7-bis(3-
methoxy-4-hydroxy)-

phenyl-heptane
IC50: 76.7 ± 5.4 µM

Gingerenone A IC50: 27.7 ± 3.9 µM

3,5-diacetoxy-1-(3-methoxy-
4,5-dihydroxy-phenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC50: 62.0 ± 10.7 µM

7-(3,4-dihydroxy-5-
methoxyphenyl)-5-

hydroxy-1-(4-hydroxy-3-
methoxyphenyl)

heptan-3-one

IC50: 75.4 ± 6.6 µM

1,5-epoxy-3-hydroxy-1-(3,4-
hydroxy-5-

methoxyphenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC50: 174.2 ± 15.1 µM

5-[4-hydroxy-6-(4-
hydroxyphenethyl)

tetrahydro-2H-pyran-2-yl]-
3-methoxybenzene-1,2-diol

IC50: 247.9 ± 20.1 µM

Curcumin IC50: 33.5 ± 10.1 µM

Cytotoxic effect on Hep-2
(human laryngeal carcinoma cell lines) Zerumbone IC50: 15 µM [39]

Anti-proliferative effect on HepG2
(human liver cancer cell lines) Zerumbone IC50: 3.45 ± 0.026 µg/ml

[40]
Cytotoxic effect on 16 human oral squamous cell

carcinoma lines Zerumbone IC50: average 2 µM; range:
0.8–4.9 µM

Cytotoxic effect on DU145
(human prostate cancer cell lines) Zerumbone IC50: 24 µM [41]

Cytotoxic effect on HCT116
(human colorectal cancer cell lines) Zerumbone IC50: 30 ± 1.5 µM

[42]
Cytotoxic effect on SW620

(human colorectal cancer cell lines) Zerumbone IC50: > 46 µM

Cytotoxic effect on MCF-7
(human breast cancer cell lines) Zerumbone IC50: 23.0 µg/ml

[43]
Cytotoxic effect on MDA-MB 231
(human breast cancer cell lines) Zerumbone IC50: 24.3 µg/ml
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Table 1. Cont.

Pharmacological Effects Details Extracts/Compounds Inhibitory
Concentrations/Dose References

Cytotoxic effect on Hela
(human cervical cancer cell lines)

Zerumbone IC50: 6.4 µg/mL

6-gingerol IC50: 126.89 µM [44]

6-dehydrogingerdione IC50: 62.5 ± 4.7 µM

[45]

Zingerone IC50: 114.6 ± 9.3 µM

10-gingerol IC50: 52.4 ± 7.1 µM

3,5-dioxo-1,7-bis(3-
methoxy-4-hydroxy)-

phenyl-heptane
IC50: 86.8 ± 10.5 µM

Gingerenone A IC50: 15.4 ± 3.2 µM

3,5-diacetoxy-1-(3-methoxy-
4,5-dihydroxy-phenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC50: 110.0 ± 9.8 µM

1,7-bis(4-hydroxy-3-
methoxyphenyl)
heptane-3,5-diol

IC50: 191.0 ± 16.5 µM

7-(3,4-dihydroxy-5-
methoxyphenyl)-5-

hydroxy-1-(4-hydroxy-3-
methoxyphenyl)

heptan-3-one

IC50: 133.2 ± 16.1 µM

5-[4-hydroxy-6-(4-
hydroxyphenethyl)

tetrahydro-2H-pyran-2-yl]-
3-methoxybenzene-1,2-diol

IC50: 231.8 ± 13.7 µM

Curcumin IC50: 18.9 ± 2.8 µM

Inhibitory effect on epstein-barr virus
(human herpesvirus 4) Zerumbone IC50: 0.14 µM [46]

Cytotoxic effect on KB
(human oral epithelial cancer cell lines)

6-shogaol IC50: 7.4 ± 2.2 µM

[37]

6-dehydrogingerdione IC50: 229.5 ± 17.5 µM

10-gingerol IC50: 89.5 ± 8.7 µM

3,5-dioxo-1,7-bis(3-
methoxy-4-hydroxy)-

phenyl-heptane
IC50: 27.7 ± 2.7 µM

Gingerenone A IC50: 8.8 ± 2.6 µM

Curcumin IC50: 34.7 ± 6.7 µM

3,5-diacetoxy-1-(3-methoxy-
4,5-dihydroxy-phenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC50: 75.1 ± 10.5 µM

7-(3,4-dihydroxy-5-
methoxyphenyl)-5-

hydroxy-1-(4-hydroxy-3-
methoxyphenyl)

heptan-3-one

IC50: 90.3 ± 10.1 µM

1,5-epoxy-3-hydroxy-1-(3,4-
hydroxy-5-

methoxyphenyl)-7-(4-
hydroxy-3-methoxyphenyl)

heptane

IC5: 78.5 ± 11.3 µM

Curcumin IC50: 34.7 ± 6.7 µM

Cytotoxic effect on HT29
(human colorectal cancer cell lines) Zerumbone IC50: 38.8 ± 1.2 µM [45]

IC50: the half maximal inhibitory concentration.

5.1. Anti-Inflammatory Activity

The extracts of Zingiber plants have been used to treat inflammation. The extract
of Z. zerumbet inhibited the inflammatory-mediated signaling pathways (NF-κB, MAPK
and PI3K-Akt) in human macrophages via suppression of the release of pro-inflammatory
mediators and the mRNA expression of pro-inflammatory factors [47]. The total essential oil
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of Z. officinale (28 mg/kg/d) prevents chronic joint inflammation, which may be attributed
to the combined effects of both the aromatic essential oil and gingerols [48].

The anti-inflammatory effects of the single metabolites originated from the Zingiber
plants have been well investigated. Zerumbone (1) has the effect of reducing the inflam-
matory response of acute lung injury (ALI) by inhibiting the Akt-NFκB activation [49].
6-shogaol (333) and 6-dehydrogingerdione (357) display the inhibiting effect for binding
between sICAM-1 (cell adhesion molecules) and VLA-4 (very late antigen) of the THP-1
(human monocytic cell line) cells, which are the main features of inflammation initiation. In
addition, 10-gingerol (327), 6-shogaol (333), 8-shogaol (334) and 6-dehydrogingerdione (357)
can inhibit direct binding between sICAM-1 and LFA-1 (lymphocyte function-associated
antigen) of the THP-1 cells with IC50 value of 57.6, 27.1, 65.4 and 62.0 µM, respectively [32].
Moreover, the selective inhibition of pro-inflammatory cytokines for 6-gingerol (325) was
also detected [33]. A few papers suggest that the strong anti-neuroinflammatory effects
of Z. officinale are owing to 10-gingerol (327), not 6-gingerol (325). Those effects can be at-
tributed to the inhibition of proinflammatory gene expression by blocking NF-κB activation,
which can conduce to a reduced level of NO, IL-1β, IL-6 and TNF-α [50].

5.2. Anticancer Activity

The extracts and single metabolites originating from the Zingiber plants, especially in
the essential oils, diarylheptanoids and gingerols, display significant anticancer activity.
The essential oils from the fresh rhizome of Z. zerumbet displayed obvious cytotoxicity
against K562 (human leukemia cell lines), PC-3 (human prostate cancer cell lines), A549
(human lung cancer cell lines) and MRC-5 (human fetal lung fibroblasts cell lines) cells
with IC50 values range from 35.73 to 216.99 µM, which is stronger than that of the dry
rhizome [22]. Zerumbone (1) is the main essential oil of Z. zerumbet, which exhibits a
significant inhibitory effect on Hela (human cervical cancer cell lines), H460 (human lung
cancer cell lines) and A549 cell lines with the IC50 value of 6.4 µg/mL, 15 and 25 µM,
respectively [38]. β-myrcene (171) exhibited in vitro cytotoxicity on HepG2 (human liver
cancer cell line), HCT116 (colon cancer cell line) and MCF7 (breast cancer cell line) cells
with an IC50 value ranging from 2.51 to 3.28 µg/mL [35]. α-pinene (160) and β-pinene (182)
also demonstrate strong cytotoxicity to SK-OV-3, HO-8910 and Bel-7402 cells (human tumor
cell lines) [51]. Galanals (260–261) can induce the death of Jurkat human T-cell leukemia
cells, which are characterized by DNA fragmentation and caspase-3 activation.

3,5-dioxo-1,7-bis(3-methoxy-4-hydroxy)-phenyl-heptane (313), which belongs to the
diarylheptanoid type compound, displayed cytotoxic effect on BEL7404 (human lung
cancer cell lines), CNE (human nasopharyngeal carcinoma cell lines), Hela and KB (human
oral epithelial cancer cell lines) cells with IC50 values of 49.4 ± 3.4, 76.7 ± 5.4, 86.8 ± 10.5
and 27.7 ± 2.7 µM, respectively. Curcumin (294) and Gingerenone A (311) also exhibited a
stronger inhibitory effect in those human cancer cell lines [36].

Gingerols, as the major active components of Zingiber plants, possess remarkable
anti-cancer activities as well. The aliphatic chain and hydroxyl moieties that existed in
6-gingerol (325) and 6-shogaol (333) were proven to be responsible for the anti-cancer
activities, and 6-gingerol (325) had the potential to bind with DNA and induced cell death
by autophagy and caspase-3 mediated apoptosis [28]. The HepG2 cell lines can be induced
by 6-gingerol (325) via autophagy and caspase-3 mediated apoptosis, and 6-gingerol (325)
also demonstrates cytotoxic effect on K562 as well [34,39]. 10-gingerol (327), 6-shogaol
(333) and 6-dehydrogingerdione (357) exhibited a cytotoxic effect on multiple cancer cells
(BEL7404, Hela and KB cell lines), while 6-shogaol (333) has a stronger inhibitory effect
than the other two compounds.

The quantitative structure–activity relationship (QSAR) models found that the cyto-
toxicity was related to compound lipophilicity because it may increase the permeability of
the cancer cell membrane [36]. This means that gingerols with longer unbranched alkyl
side chains may have greater anticancer potential because of their increased lipophilicity
(Figure 11a).



Molecules 2022, 27, 2826 17 of 25Molecules 2022, 27, x FOR PEER REVIEW 18 of 27 
 

 

 

Figure 11. The structure–activity relationship of anticancer for gingerol (a) and shogaol (b). 

5.3. Antimicrobial Activity 

The essential oils and gingerols originating from the Zingiber plants display signifi-

cant antimicrobial activities and the details are available in Table S2 from Supplementary 

Materials. Essential oils of the Z. officinale rhizome have the significant effect of inhibiting 

the growth of both Gram-negative and Gram-positive bacteria [45]. Zerumbone (1) is the 

main antimicrobial ingredient of the Z. zerumbet essential oils, with a mid-to-high IC50 

value against staphylococcus aureus, bacillus subtilis, escherichia coli and proteus vulgaris 

[52]. It also demonstrates an anti-virulence effect by inhibiting the biofilm formation and 

hyphal growth of C. albicans in a concentration-dependent manner, and it exhibited anti-

microbial activity at the MIC (minimum inhibitory concentration) of 250 μg/mL against 

the H. pylori strain [53,54]. Three compounds named miogadial (198), galanal A (260) and 

galanal B (261) that isolated from Z. mioga, had antimicrobial activities against different 

strains of bacteria, yeasts and molds. However, miogadial (198) demonstrated stronger 

antimicrobial activity against Gram-positive bacteria and yeasts than compounds galanal 

A (260) and galanal B (261) [25]. The essential oil of Z. corallinum Hance also can inhibit the 

growth of numerous plant pathogenic fungi with a low concentration. 

The majority of gingerol analogues displayed strong antimicrobial activity. For in-

stance, 10-gingerol (327) has the stronger inhibitory effect on three periodontal bacteria 

than 12-gingerol (328), with a MIC range from 6 to 14 μg/mL and a MBC (minimum bac-

tericidal concentration) range from 4 to 14 μg/mL. Bacteria of Mycobacterium avium and 

Mycobacterium tuberculosis, which may cause tuberculosis, can also be suppressed by 10-

gingerol (327) as well. Furthermore, 10-gingerol (327) and 12-gingerol (328) from the Z. 

officinale rhizome have antibacterial activity against periodontal bacteria, with the MBC 

ranging from 4 to 20 μg/mL. The compound 6-gingerol (325) demonstrated a strong anti-

microbial effect on Helicobacter pylori, with a MIC of 20 μg/mL. The structure–activity re-

lationships (SARs) demonstrated that the shorter alkyl side chain of gingerols play a key 

role for their microbial inhibition effect (Figure 11a) [55]. 

5.4. Larvacidal Activity 

The essential oils of Zingiber plants are proven to be an effective tool for mosquito 

larval control and the details are available in Table S3. The Z. corallinum Hance essential 

oil exhibited a stronger poison effect against the larval of Aedes albopictus and Culex quin-

quefasciatus than pupa [56]. Both methanol and dichloromethane extracts of Z. zerumbet 

rhizomes exhibited significant larvacidal effect. The dichloromethane extracts displayed 

more toxicity to the larvae of Aedes aegypti and Anopheles nuneztovari than the methanol 

extracts, which may be attributed to the essential oil. In addition, the gingerols were the 

vital insecticidal composition of the genus Zingiber. 4-gingerol (324) demonstrated strong 

Figure 11. The structure–activity relationship of anticancer for gingerol (a) and shogaol (b).

5.3. Antimicrobial Activity

The essential oils and gingerols originating from the Zingiber plants display significant
antimicrobial activities and the details are available in Table S2 from Supplementary Mate-
rials. Essential oils of the Z. officinale rhizome have the significant effect of inhibiting the
growth of both Gram-negative and Gram-positive bacteria [45]. Zerumbone (1) is the main
antimicrobial ingredient of the Z. zerumbet essential oils, with a mid-to-high IC50 value
against staphylococcus aureus, bacillus subtilis, escherichia coli and proteus vulgaris [52]. It
also demonstrates an anti-virulence effect by inhibiting the biofilm formation and hyphal
growth of C. albicans in a concentration-dependent manner, and it exhibited antimicrobial
activity at the MIC (minimum inhibitory concentration) of 250 µg/mL against the H. pylori
strain [53,54]. Three compounds named miogadial (198), galanal A (260) and galanal B
(261) that isolated from Z. mioga, had antimicrobial activities against different strains of
bacteria, yeasts and molds. However, miogadial (198) demonstrated stronger antimicrobial
activity against Gram-positive bacteria and yeasts than compounds galanal A (260) and
galanal B (261) [25]. The essential oil of Z. corallinum Hance also can inhibit the growth of
numerous plant pathogenic fungi with a low concentration.

The majority of gingerol analogues displayed strong antimicrobial activity. For in-
stance, 10-gingerol (327) has the stronger inhibitory effect on three periodontal bacteria than
12-gingerol (328), with a MIC range from 6 to 14 µg/mL and a MBC (minimum bactericidal
concentration) range from 4 to 14 µg/mL. Bacteria of Mycobacterium avium and Mycobac-
terium tuberculosis, which may cause tuberculosis, can also be suppressed by 10-gingerol
(327) as well. Furthermore, 10-gingerol (327) and 12-gingerol (328) from the Z. officinale
rhizome have antibacterial activity against periodontal bacteria, with the MBC ranging
from 4 to 20 µg/mL. The compound 6-gingerol (325) demonstrated a strong antimicrobial
effect on Helicobacter pylori, with a MIC of 20 µg/mL. The structure–activity relationships
(SARs) demonstrated that the shorter alkyl side chain of gingerols play a key role for their
microbial inhibition effect (Figure 11a) [55].

5.4. Larvacidal Activity

The essential oils of Zingiber plants are proven to be an effective tool for mosquito
larval control and the details are available in Table S3. The Z. corallinum Hance essential
oil exhibited a stronger poison effect against the larval of Aedes albopictus and Culex quin-
quefasciatus than pupa [56]. Both methanol and dichloromethane extracts of Z. zerumbet
rhizomes exhibited significant larvacidal effect. The dichloromethane extracts displayed
more toxicity to the larvae of Aedes aegypti and Anopheles nuneztovari than the methanol
extracts, which may be attributed to the essential oil. In addition, the gingerols were the
vital insecticidal composition of the genus Zingiber. 4-gingerol (324) demonstrated strong
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larvicidal activity against Aedes aegypti and Culex quinquefasciatus [57]. β-sitosterol (397)
was highly effective against Aedes aegypti, Anopheles stephensi and C. quinquefasciatus, with
an LC50 value of 11.49, 3.58 and 26.67 ppm, respectively [58].

5.5. Antioxidant Activity

The polyphenols, flavonoids, gingerols and essential oils originating from the Zingiber
plants demonstrated significant antioxidant activity. The polyphenols and flavonoids of Z.
mioga account for approximately 0.5% and 4.6%, respectively, which were far higher than
that in common vegetables (0.001~0.1%), manifesting its potential antioxidant properties.
The ethanol extract of Z. mioga, compared to the water extract, exhibited stronger peroxyl
radical scavenging linked antioxidant activity (0.53/TE 1 µM) with 2697.31 ± 118.25 mg/100 g
of the total antioxidant capacity (TAC) [59]. The ethyl-acetate extract of Z. zerumbet at
400 mg/kg has a protective effect against ethanol-induced brain damage because of its
antioxidant properties [11]. The antioxidant capacity of the methanolic extract of Z. officinale
has been assessed with the DPPH assay (86.26 ± 0.97%), ABTS assay (91.04 ± 0.96%) and
nitric oxide assay (86.72 ± 1.51%) [60].

The essential oils, such as zerumbone (1), display significant antioxidant power with a
FRAP (Ferric-reducing antioxidant power) value of 58.3 ± 2.08, which is higher than that
of ascorbic acid, by enhancing the cellular antioxidant pathway [53]. In addition, some
gingerol analogues exhibited conspicuous antioxidant activity. 6-gingerol (325), 8-gingerol
(326), 10-gingerol (327) and 6-shogaol (333) represented antioxidant effects with a IC50 value
range from 8.05 to 26.3 µM against the DPPH radical. 10-gingerol (327) demonstrates a
stronger quenching ability of DPPH radicals than curcumin (294), but a weaker quenching
ability than quercetin (286). The highest antioxidant activity of 6-shogaol (333) can be
attributed to the presence of unsaturated ketones moieties. The SAR demonstrated that the
substituent groups and the length of the alkyl chain play a crucial role for their antioxidant
effects and the presence of α; the β-unsaturated ketone moiety is predominant to that of
the alkyl side chains’ length in exhibiting the antioxidant and anti-inflammatory properties
(Figure 11b) [61,62].

5.6. Hypoglycemic Activity

The extracts and single metabolites originating from the Zingiber plants display sig-
nificant hypoglycemic activity. The sucrase, maltase and α-amylase were significantly
suppressed by the ethanol extract of Z. mioga. Moreover, the ethanol extract of Z. mioga
exhibited it’s possibility of acting as an intestinal α-glucosidase inhibitor by using SD
rat and db/db mice models [52]. The hypoglycemic activity of Z. mioga was considered
to be the presence of the anthocyanin compound (292–293) [26]. The ethanol extract of
Z. striolatum has a dose-dependent hypoglycemic effect on insulin-resistant HepG2 cells
with low cytotoxicity [63]. A daily feeding of 200 mg/kg ethanolic extract of Z. officinale for
20 days can significantly decrease blood glucose [64]. In addition, it also inhibits LDL (low-
density lipoprotein) oxidation [65] and HMG-COA (3-hydroxy-3-methylglutaryl coenzyme
A) reductase and increases insulin release [66].

Gingerols exert their anti-diabetic effects primarily by activating AMPK (AMP-activated
protein kinase), which regulates the glucose and lipid metabolism energy sensor. The
steaming process would enhance the anti-diabetic potential of Z. officinale via increasing the
content of 6-dehydrogingerdione (357), which could stimulate the insulin secretion by the
closure of KATP (ATP-sensitive potassium channels) in pancreatic β-cells [67]. Furthermore,
Gingerenone A (311) is equipped to sensitize the insulin receptor and increase glucose
uptake by inhibiting the activity of p70 S6 kinase [68].

5.7. Prevention of Nausea and Vomiting Activity

Z. officinale has been used as an antiemetic in various traditional medicine systems
for over 2000 years, and it remains considered as an alternative therapy for nausea and
vomiting in modern medicine [69]. Doctors in Thailand used Z. officinale as a drug to
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prevent nausea and vomiting after laparoscopic surgery for gynecological outpatients [7].
Besides its medical application on postoperative nausea, Z. officinale was used for motion
sickness and pregnancy-induced nausea and vomiting as well; those effects of reducing
nausea and vomiting might be associated with a weak inhibitory effect of gingerols and
shogaols on M3 and 5-HT3 receptors or exert their anti-emetic effect by acting on the 5-HT3
receptor ion-channel complex [70].

5.8. Others

Several other pharmacological activities of the components or extracts of the Zingiber
species have been found in previous research, such as analgesic, anti-ulcer, neuroprotec-
tive and cardiovascular protection. The genus Zingiber, especially Z. officinale, possess
remarkable analgesic activity, which could be due to their phytoconstituents binding to
TRPA1 (ankyrin receptors) and TRPV1 (vanilloid receptors) ion channels [71]. The signifi-
cant central and peripheral antinociceptive effects of the Z. zerumbet essential oil has been
detected [72]. Zerumbone (1) displayed anti-hyperalgesic properties via suppressing the
pain transmission from primary afferent neurons to the ascending tract and modulating
pain impulses reaching the supraspinal regions [73].

An intraperitoneal injection of 25 mg/kg–50 mg/kg of 6-gingerol (325) into a rat can
generate the inhibitory effect of the acetic acid-induced writhing response and formalin-
induced licking time [74]. Z. zerumbet enhanced the protection of the ethanol-induced
gastric ulcer by the effects of maintaining mucus integrity, antioxidant activity and HSP-
70 induction [42]. Furthermore, Z. officinale powder can obviously improve the gastric
mucosa injury caused by aspirin as well [75]. Moreover, 6-gingerol (325) was tested and
has the ability of preventing the acrylonitrile-induced cerebral cortex lesion as well, with
the increase in the brain immunohistochemical expression of caspases-9 and caspases-
3. It would be a better fungible drug for the prevention of neurodegenerative diseases
when compared to some synthetic drugs in [76]. The presence of a double bond and the
linear chain of 6-shogaol (333) may enhance the neuroprotective effects of this compound
(Figure 11b).

6. Conclusions

In this work, the phytochemical constituents and pharmacological effects of the Zin-
giber species was first reviewed systematically, based on the literature from 1981 to 2020.
A total of 447 metabolites are included in this review, of which 34.78% are volatile oils,
23.70% are terpenoids, 6.96% are flavonoids, 5.87% are diarylheptanoids, 9.78% are gin-
gerols analogues, 6.30% are organic acids and 12.61% are classified as other compounds.
These compounds, including zerumbone (1), zingerone (322), curcumin (294) and gingerols
(321–367), are considered the characteristic constituents of this genus. Gingerols are the
main pungency components of the genus Zingiber, in which the 6-gingerol (325) accounts
for more than 75% [7].

The anti-inflammatory, anticancer and antimicrobial effects are the main biological
activities of the extract or single compound of these genus plants. As we all know, most
plants of the genus Zingiber are medicine-food homology herbs. Therefore, the extract
or single compound has a huge potential for the development of new food additives for
their obvious biological activity. Some bioactive constituents of the Zingiber plants, such as
6-gingerol, 10-gingerol and 12-gingerol, displayed stronger antimicrobial activity, and are
regarded as attractive targets in food contaminations management. In addition, the essential
oil of Z. corallinum Hance holds great potential as an environmentally friendly pesticide, with
a remarkable inhibitory effect of numerous plant pathogenic fungi. There is some evidence
that Zingiber plants (Z. officinale, Z. mioga and Z. striolatum) may provide potential benefits
on metabolic syndromes (obesity and type-2 diabetes). It is noteworthy that the ethanol
extract demonstrates stronger hypoglycemic activity compared to the water extract in most
animal studies. This may be due to ethanol extracting more flavonoid compounds, such
as delphinidin (292) and cyanidin (293). As extensively used hypoglycemic drugs, such



Molecules 2022, 27, 2826 20 of 25

as acarbose, can cause side effects such as nausea, vomiting, gastrointestinal swelling and
kidney function disorders, plants of the genus Zingiber could be used as a complementary
or alternative medicine to diabetes therapy. Z. officinale has been used as an antiemetic for
over 2000 years, which would be associated with gingerols and shogaols, and it remains
considered as an alternative therapy for nausea and vomiting in motion sickness by the
Committee on Herbal Medicinal Products (HMPC).

Despite possessing the significant pharmacological activity of some Zingiber con-
stituents, the clinical applications are still rare, considering the uncertain safety of their
consumption in humans. Furthermore, as products and studies related to the mechanisms
underlying the pharmacological activity derived from those herbs remain scarce, more
laboratory investigations and product developments are needed.

Structural modification by heating and dehydration, as well as enzyme reactions, may
be helpful in enhancing the biological activities of Zingiber plants. Shogaols (332–336) are
produced from gingerols (323–327) by heating, which are more effective in inhibiting the in-
flammatory mediators and ROS production and possess better thermostability as compared
to gingerols (323–327). 6-paradol (355) is the non-pungent metabolite of 6-shogaol (333),
which may avoid side effects such as gastric irritation. However, the structure–activity
information related to Zingiber plants remains scarce, due to the variability of experimental
outcomes. These metabolite contents were very low in Zingiber plants or difficult to isolate
due to their structural similarity. Therefore, more extensive studies in this direction are
needed for future clinical applications or for serving as adjuvants.

In conclusion, Zingiber plants are the herbs in homologous medicine and food that
have been widely used in different countries for centuries. Our present paper provides
comprehensive information on the traditional uses, phytochemistry and pharmacology
of the genus Zingiber. We highlight the enormous potential of the Zingiber plants to serve
as potent clinical drug candidates, in order to provide a scientific foundation for future
research and application on this genus.

Supplementary Materials: The following supporting information can be downloaded: https://
www.mdpi.com/article/10.3390/molecules27092826/s1, Table S1: A comprehensive list of chemical
constituents of Zingiber plants.; Table S2: Antimicrobial effect of Zingiber plants.; Table S3: Larvicidal
effect of Zingiber plants. References from [77–128] are cited in the Supplementary Materials.
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