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Abstract: The search for molecules that contribute to the relief of pain is a field of research in constant
development. Lamiaceae is one of the most recognized families world-wide for its use in traditional
medicine to treat diseases that include pain and inflammation. Mexico can be considered one of the
most important centers of diversification, and due to the high endemism of this family, it is crucial
for the in situ conservation of this family. Information about the most common genera and species
found in this country and their uses in folk medicine are scarcely reported in the literature. After an
extensive inspection in bibliographic databases, mainly Sciencedirect, Pubmed and Springer, almost
1200 articles describing aspects of Lamiaceae were found; however, 217 articles were selected because
they recognize the Mexican genera and species with antinociceptive and/or anti-inflammatory
potential to relieve pain, such as Salvia and Agastache. The bioactive constituents of these genera were
mainly terpenes (volatile and non-volatile) and phenolic compounds such as flavonoids (glycosides
and aglycone). The aim of this review is to analyze important aspects of Mexican genera of Lamiaceae,
scarcely explored as a potential source of secondary metabolites responsible for the analgesic and
anti-inflammatory properties of these species. In addition, we point out the possible mechanisms
of action involved and the modulatory pathways investigated in different experimental models.
As a result of this review, it is important to mention that scarce information has been reported
regarding species of this family from Mexican genera. In fact, despite Calosphace being one of the
largest subgenera of Salvia in the world, found mainly in Mexico, it has been barely investigated
regarding its potential biological activities and recognized bioactive constituents. The scientific
evidence regarding the different bioactive constituents found in species of Lamiaceae demonstrates
that several species require further investigation in preclinical studies, and of course also in controlled
clinical trials evaluating the efficacy and safety of these natural products to support their therapeutic
potential in pain relief and/or inflammation, among other health conditions. Since Mexico is one of
the most important centers of diversification, and due to the high endemism of species of this family,
it is crucial their rescue, in situ conservation, and investigation of their health benefits.
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1. Introduction

The term Labiatae comes from the Latin word “labia”, which means “lip”, and refers
to the peculiar morphological characteristic of all the species that belong to this family,
which have the corolla split into an upper lip and a lower one. This term precedes the
name Lamiaceae, which comes from the Greek “laimos” referring to the “gaping mounth”
of the corolla [1]. The Lamiaceae family belongs to the order Lamiales, in the clade Lamids,
in the Eudicots [2]. It is the sixth largest family of angiosperms comprising 12 subfamilies,
16 tribes, 9 subtribes, 236 genera, and over 7173 species [1,3]. A wide range of substances
isolated from plants belonging to this family produce antibacterial, cytotoxic, antioxidant,
anti-inflammatory and insecticidal activities [4]. Various studies report that the members of
this family are a source of phytochemical compounds with health benefits or play an active
role in the improvement of diseases, mainly due to the content and type of compounds, the
main ones being essential oils, terpenoids, phenolic acids and flavonoids [5,6], many of
which can be used to relieve pain.

It is well documented that healing with medicinal plants is as old as humanity itself,
perhaps mainly due to pain. Hippocrates (5th century BC) was the first Greek writer
to use the word analgesia in a medical rather than a philosophical context, as well as
derivative words related to pain when using plants to relieve it. Dioscorides (1st century
BC) was a Greek philosopher who explored the therapeutic properties of plants, including
those used for pain relief, describing the narcotic effects of the plant mandragora. As a
military physician and pharmacognosist, Dioscorides differentiated among a few species
from the genus Mentha (Lamiaceae), which were grown and used to relieve headache and
stomachache. Hey used expressive and precise adjectives and well-defined characteristics
of pain, such as location, duration, or relation to other symptoms, to elucidate a disease
process [7].

Nowadays, according to the International Association for the Study of Pain, “pain”
has been defined as an unpleasant sensory and emotional experience associated with, or
resembling experiences associated with, actual or potential tissue damage [8]. It can be
classified as functional (nociceptive or inflammatory) [9] or dysfunctional (neurogenic,
neuropathic and psychogenic) because of its origin or etiology [10], or as acute or chronic
because of its temporality [9]. In acute pain, nociceptors are activated in the site of tissue
damage, while chronic pain is commonly triggered by injury or an illness, and it can be
perpetuated by factors other than the cause of pain [10]. Acute pain associated with tissue
damage can last for less than 1 month, but sometimes it can last for more than 6 months,
at which point it becomes chronic pain. Preclinical studies have shown that neuronal
expression of new genes (the basis for neuronal sensitization and remodeling) occur within
20 min of injury. Chronic pain can cause long-term behavior and histological changes within
approximately one day after interventions, such as transient nerve ligation [8]. Among the
characteristics that commonly occur in patients with chronic and dysfunctional pain are
hyperalgesia (exacerbated sensitivity to painful stimuli), allodynia (painful response to
harmless stimuli) and hyperesthesia (abnormal sensitivity to sensory stimuli) [11].

Nociception is not the same as the term pain, it is the mechanism through which
harmful stimuli are transmitted to the central nervous system (CNS). This term is used in
the preclinical evaluation of the plants or bioactive constituents. Nociceptors are neurons
sensitive to noxious stimuli and are in the skin, blood vessels, muscles, fascia, joints and
viscera. They are predominantly myelinated (A-δ) or unmyelinated (c) fibers, activated
by noxious stimuli (mechanical, thermal, cold and chemical), which carry these signals
to the CNS [12–14]. All tissues, with the exception of the CNS neuropil, are innervated
by afferent fibers, although their properties differ markedly, depending on whether they
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are somatic (skin, joints, muscles) or visceral fibers (cardiovascular or respiratory tissue,
gastrointestinal or renal tract), and reproductive systems [15].

Pathophysiological mediators of pain and inflammation are generated by several
important sources. These mediators can act through a multiplicity of receptors that are
widely distributed in central and peripheral nerves and coupled to heterotrimeric G pro-
teins, as occurs in opioids and 5-HT1A inhibitory receptors associated with multiple second
messengers formation (cAMP, cGMP, DAG, IP3, intracellular Ca+2, NO) and protein kinases
(A, C or G) to promote the phosphorylation of multiple targets [10]. Other pharmacological
receptors involve activity through ion channels, e.g., excitatory amino acids or acetylcholine
(which activates the nicotinic receptor), to control the ionic permeability of the membrane
and muscle contraction [15,16].

In the case of inflammation, it involves an integration of several inflammatory media-
tors, such as prostaglandin E2, bradykinin, substance P, histamine, adenosine and serotonin,
sensitizing nociceptors after mechanical and thermal stimuli. It is commonly reported that
mediators in an inflammatory condition are cytokines. In this respect, Toll-like receptors
(TLRs) activate proinflammatory cytokine profiles in macrophages, altering the homeostatic
regulation of the immune system. Macrophages are essential components of the innate and
adaptive immune systems, and therefore play a central role in inflammation, host defense,
and tissue repair [17,18]. Depending on the microenvironment, these cells are functionally
classified into two main types: classically activated proinflammatory M1 macrophages and
alternately activated M2 macrophages. M1 macrophages are induced by Th1 cytokines
such as interferon γ (IFNγ) and tumor necrosis factor α (TNF-α) or by lipopolysaccha-
ride (LPS) and typically attack microorganisms and tumor cells, and express inducible
nitric oxide synthase (iNOS) and most of the TLRs [18]. In contrast, M2 macrophages
are induced by Th2 cytokines such as interleukins (ILs)-4, -13, and -10 and transforming
growth factor β (TGF-β). Könner and Brüning [19] demonstrated that TLR2 and TLR4 are
closely related to the systemic inflammatory response. TLRs (of which there are 10 types in
humans and 12 in mice), contain adapter proteins, the recruitment of which is followed
by a signaling pathway that activates nuclear factor kappa B (NF-kB), activator protein 1
(AP-1), signal transducer and activator of transcription 1 (STAT-1) and interferon regulatory
factor (IRF), which mediate inflammation as well as cytokines release [20,21]. NF-kB is an
important nuclear transcription factor in the regulation of the inflammatory response. It
participates in biological processes that involve inflammation, immunity, differentiation,
cell growth, tumorigenesis and apoptosis [22]. NF-kB is regulated by binding to inhibitory
molecules such as the nuclear factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, alpha (IkBα). The NF-kB p65 subunits dissociate from their inhibitory protein
IkBα by translocating from the cytoplasm to the nucleus where they influence the expres-
sion of proinflammatory cytokines such as TNF-α, IL-1β, IL-6 and IL-8 [23]. Therefore,
the prevention of nuclear translocation of NF-kB may work as a potential therapeutic
target. The transcription factor Nrf2 is largely responsible for the inducible expression of
proteins involved in the response to oxidative stress, cell protection and the inhibition of
the expression of inflammatory cytokines, such as IL-6 and IL-1β. Furthermore, Nrf2 is
associated with the NF-kB-mediated transcription of proinflammatory cytokines genes [24].
The signaling pathway of mitogen-activated protein kinases (MAPKs) consists of a fam-
ily of serine/threonine kinases that are activated by several stimuli, including different
inflammatory factors [25]. MAPK proteins control fundamental cellular processes, such as
proliferation, differentiation, metabolism, inflammation and apoptosis. As MAPK and NF-
kB can synergistically collaborate to induce proinflammatory cytokines [25,26], secondary
metabolites of phytopharmaceuticals with inhibitory capacity of NF-kB and MAPK may
have potential therapeutic advantages in the treatment of inflammatory diseases. It has
been demonstrated that many plant constituents can interact with one or more than one of
those previously mentioned biological targets, which are involved in producing, enhancing
or relieving pain alone, or are associated with inflammation because of tissular damage.
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Several aspects of Lamiaceae are addressed in this review, emphasizing that Mexican
genera have not been explored enough as source of medicinal species. We provide evidence
of the minimal number of species explored to investigate potential secondary metabolites
responsible for their antinociceptive and anti-inflammatory properties and point out the
mechanisms of action involved and modulatory pathways by using different experimental
models. The integration of relevant information on some species belonging to Mexican
genera of Lamiaceae and substances derived from these and other investigated plants
reinforces the evidence already reported regarding various species from different regions
around the world on their medicinal properties as promising alternatives for potential
analgesics and anti-inflammatory drugs.

2. Results
2.1. Lamiaceae Description

The species belonging to this family are generally characterized by being annual
or perennial herbaceous plants or shrubs, sub-shrubs and less commonly trees or vines;
occasionally with stolons or rhizomes; often with aromatic oils; stems being erect or
prostrate, generally tetragonal, due to the presence of large bundles of collenchyma, with
no spines [27], and with or without a glandular trichome indument. Opposite leaves,
generally decussate, sometimes whorled, simple or less frequently compound (Vitex),
dentate or crenate; the petiole being present or absent; and stipules being absent [28].

Terminal or axillary inflorescences, thyrsoids, are usually found with cymes or whorls
arranged in spikes, racemes, panicles or a capitulum, and bracts are usually present, being
persistent or deciduous. The flowers are usually bisexual, hypogynous, zygomorphic, and
rarely actinomorphic; have a persistent, gamosepalous, tubular to widely campanulate
calyx; have four to five (to nine) lobes, which are imbricated; have a gamopetalous corolla,
generally with five lobes, equal or sub-equal, frequently bilabiate, and in that case the
upper lip bilobed and the lower lip are trilobed, with imbricated lobes, and a short or long
tube; have four stamens, which are didynamous, rarely equal, sometimes reduced to two
and sometimes with staminodia present, and epipetalous; generally have free filaments;
have anthers longitudinally dehiscent; have a hypogynous disc, which usually fleshy, and
sometimes divided into four glands; have a bicarpellary gynoecium, which is usually
tetralocular due to a false septum, upper ovary, one style, which is gynobasic, and less
frequently terminal, and a filiform, usually with two stigmatic lobes, equal or unequal;
have four ovules, one per locule, erect, and the fruit is tetralobed and, indehiscent, usually
with four nuts, which are dry, smooth or slightly tuberculated or reticulated-rough. The
seeds are usually number four [3,27,28]. Photographs providing examples of species of
Lamiaceae from Mexican Salvias (Calosphace subgenus) are shown in Figure 1.

2.2. Geographical Distribution

In various regions worldwide, members of the Lamiaceae can be found. This family
contains 236 genera and approximately 7173 species, growing in areas with tropical and
temperate climates from 0 to 2500 m above sea level [3]. Several species are found to be
abundant in mountainous areas, with a temperate climate, although it is possible to find
the Hyptis and Asterohyptis genera in dry and hot areas [28,29]. There are six regions of
high diversity in the world [27,30]: the Mediterranean and Central Asia [31], Africa and
Madagascar [32], China [33], Australia, South America [34] and North America (including
Mexico) [28,35] (See Figure 2A).

In Mexico, Lamiaceae is the family with the eighth greatest diversity and the number
of species of this family in Mexico represents 5.5% of the species belonging to this family
worldwide. For that reason, Mexico can be considered one of the most important centers
of diversification, and due to the high endemism of this family, it is crucial for the in situ
conservation of this family [35] (Figure 2B).
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S. calderoniae Bedolla & Zamudio, (C): S. concolor Lamb. ex Benth., (D): S. divinorum Epling & Játiva, (E): S. involucrate Cav., 
(F): S. leucantha Cav., (G): S. karwinskii Benth., (H): S. mexicana L. (I): S. microphylla Kunth, (J): S. oaxacana Fernald, (K): S. 
pubescens Benth., (L): S. semiartrata, (M): S. tilantongensis J.G. González & Aguilar-Sant. and (N): S. wagneriana Zucc. 

  

Figure 1. Photographs of examples of Lamiaceae from Mexican Salvias (Calosphace subgenus). (A): S. circinnata Cav.,
(B): S. calderoniae Bedolla & Zamudio, (C): S. concolor Lamb. ex Benth., (D): S. divinorum Epling & Játiva, (E): S. involucrate
Cav., (F): S. leucantha Cav., (G): S. karwinskii Benth., (H): S. mexicana L. (I): S. microphylla Kunth, (J): S. oaxacana Fernald,
(K): S. pubescens Benth., (L): S. semiartrata, (M): S. tilantongensis J.G. González & Aguilar-Sant. and (N): S. wagneriana Zucc.
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2.3. Lamiaceae and Some of Its Genera in Mexico

Lamiaceae is one of the most diverse families in Mexico, after only Asteraceae,
Fabaceae, Poaceae, Orchidaceae, Cactaceae, Euphorbiaceae, and Rubiaceae, represent-
ing 13.55% of the genera and 8.23% of the world’s species, with an endemism of 66.2% [35].
Mexico has 31 genera and 598 species. The most diverse genus is Salvia, with 306 species,
where the subgenus Calosphace is one of the most diverse, with 295 species from the 580
included in the group [36]. Oaxaca is the state with the greatest diversity, while Jalisco
houses the largest number of endemic species. Even though no genus of the family is
endemic in the country, plants of the Cunila or Hedeoma genera have an endemism of up to
60% [35].

According to Harley et al. [3], from the 236 genera of Lamiaceae, 226 were assigned
to seven subfamilies: Ajugoideae, Lamioideae, Nepetoideae, Prostantheroideae, Scutellarioideae,
Symphorematoideae, and Viticoideae. Cymarioideae, Peronematoideae, and Premnoideae were
added later [37]. From these, six are found in Mexico. Finally, Callicarpa and Tectona
were transferred from the Verbenaceae family being recognized as independent subfamilies
latterly [31] (See Figure 3).

2.4. Pain and Some of Mexican Lamiaceae Genera to Alleviate It

Currently, a wide variety of herbs are found in the markets of several cities around
the world [38], where the Lamiaceae family contains species of economic value because
of its culinary or flavoring and medicinal properties. Species from this family have been
widely used since ancient times, as spices and herbal teas in traditional medicine. Ve-
longiarious members of this family are specifically used as a source of essential oils [27].
In fact, a variety of healing properties is attributed to each plant from Lamiaceae [29].
Several of them are repeatedly recommended to treat the same disease, suggesting that
similar constituents are included in them [39] (Table 1). Despite this, reports describing
pharmacological evidence on the antinociceptive and anti-inflammatory effects, bioac-
tive compounds isolated and mechanism of action from Mexican Lamiaceae species are
scarce in the literature. Most of the investigations have evaluated polar extracts from
nature exploring the following genera: Hyptis, Lavandula, Leonurus, Melissa, Marrubium,
Mentha, Ocimum, Origanum, Sage, Satureja, Stachys, Scutellaria, Sideritis, and Teucrium [40].
Antinociceptive and anti-inflammatory effects were observed in polar extracts of Marru-
bium evaluated in formalin and carrageenan tests [41,42]. The analgesic-like response of
the ethanol and hydroalcoholic extracts of Hyptis were evaluated in the writhing, formalin,
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tail immersion, carrageenan and hyperalgesia induced by glutamate or capsaicin tests in
mice [43,44]. In a similar manner, the hydroalcoholic and aqueous extracts of species from
Teucrium [45–47] or Scutellaria [48] have shown these activities. Analysis of hydroalcoholic
extracts of species from the Stachys genus was carried out in mice using formalin, acetic
acid-induced writhing, and light tail-flick tests [39], and that of Leonurus cardiaca L. was
performed by using formalin, tail-flick, and hot-plate tests in mice [49].
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are recognized. Subfamilies recognized by Olmstead: Ajugoideae, Lamioideae, Nepetoideae, Prostan-
theroideae, Scutellarioideae, Symphorematoideae, Tectonoideae, Callicarpoideae and Viticoideae (Modified
from Li et al. [37]).

Table 1. Lamiaceae species used in traditional medicine for pain, inflammation treatment and/or as antioxidants.

Scientific
Name

Medical Properties
Used

Plant Organs
Preparation

Analgesic Anti-
Inflammatory Antioxidant

Clinopodium vulgare L. [50] X Aerial parts Hydroalcoholic extract
C. mexicanun (Benth.) Govaerts [51] X Leaves Organic extracts

Eremostachys laciniata (L.) Bunge. [52] X Aerial parts Hydrodistillation,
Methanol extract

Glechoma longituba Kupr. [53] X Aerial parts Infusion
Hedeoma drummondii Benth. [54] X Aerial parts Maceration
H. multiflorum Benth. [55] X Aerial parts Infusion
Holmskioldia sanguinea Retz. [56] X Leaves Methanol extract
Hyptis suaveolens (L.) Poit. [57] X Aerial parts Hydroalcoholic extract
H. spicigera Lam. [58] X X Aerial parts Hydrodistillation
Lamium álbum L. [59] X X Aerial parts Hydroalcoholic extract

Lavandula angustifolia Mill. [60,61] X X X Leaves,
aerial parts

Hydrodistillation,
Ethanol extract

Leonorus cardiaca L. [62] X Aerial parts Hydroalcoholic extract
Leonotis leonorus L. [63] X X Aerial parts Organic extracts
Leucas aspera Link [64] X X Roots Maceration

Marrubium vulgare. L. [65] X Leaves,
aerial parts

Tincture,
Organic extracts

Mentha piperita L. [66] X X Leaves Hydrodistillation
M. suaveolens Ehrh. [67] X X X Aerial parts Methanol extract
Ocimum americanum L. [68] X Aerial parts Methanol extract
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Table 1. Cont.

Scientific
Name

Medical Properties
Used

Plant Organs
Preparation

Analgesic Anti-
Inflammatory Antioxidant

O. basilicum L. [69] X X Aerial parts Hydrodistillation
Phlomis purpurea L. [70] X X Aerial parts Methanol extract
P. nissolii L. [71] X Leaves Decoction
Premna herbacea Roxb. [72] X X Roots Ethanol extract

P. integrifolia L. [73] X Roots Organic and aqueous
extracts

Prunella vulgaris L. [74] X X Inflorescence Ethanol extract

Rosmarinus officinalis L. [75,76] X X X Aerial parts,
leaves

Maceration,
Methanol extract

Salvia officinalis L. [77–79] X X X Aerial parts,
Leaves

Infusion, Decoction,
Hydroalcoholic extract

S. hispanica L. [80] X Aerial parts Organic extracts
Scutellaria indica L. [81] X Aerial parts Organic extracts

S. baicalensis Georgi. [82] X X Aerial parts,
Roots

Aqueous extract,
Organic extract

Sideritis bilgeriana P.H. Davis [83] X X X Aerial parts Maceration
S. congesta P.H. Davis & Hub.-Mor. [84] X Aerial parts Maceration
Stachys byzantina C. Koch. [85] X X Aerial parts Organic extracts
S. inflata Benth. [86] X Aerial parts Hydroalcoholic extract
Thymus serpyllum L. [87] X Aerial parts Hydrodistillation
T. vulgaris L. [88] X Leaves Hydrodistillation
Vitex agnus-castus L. [89] X Leaves Methanol extract
V. megapotamica Cham. [90] X X Leaves Hydroalcoholic extract

The scientific names were confirmed in The Plant List. Available online: http://www.theplantlist.org/ (Accessed on 2 December 2021).

In this manuscript, there is a special interest in plants belonging to this family, since
they are widely and traditionally used in Mexican folk medicine for the relief of pain
and/or inflammation, as are some species of the genera Salvia and Agastache.

2.5. Salvia Species Used in Pain Relief

Salvia’s name comes from the Latin salvare, which means to save and heal. One of the
most ancient species of this genus is Salvia officinalis L. despite its Mediterranean origin,
it is also of great medicinal use in Mexico, and is commonly known as sage. It was used
by Egyptians, Greeks, and Romans to treat ulcerations. Nowadays, its anti-inflammatory
properties are useful for the treatment of buccal conditions such as amigdalitis, faringitis
and gingivitis, which might be because of the bioactive effect of components such as ursolic
acid [91]. Its anti-inflammatory and antioxidant properties are influenced by the cytokine’s
mediators considering its marked properties that inhibit the increase in IL-33 and TNF-α
levels and the amplification of NF-kB expression and its activation [92].

Another species of Mediterranean origin with great medicinal utility to relieve pain
in Mexico is Rosmarinus officinalis L., a Lamiaceae species recently reclassified as Salvia
Rosmarinus Spenn. [40]. This species, cultivated in Mexico, possesses a broad spectrum
of antinociceptive activities already evidenced in several acute and chronic experimental
models, such as the writhing, formalin and gout arthritic-like pain tests, by preparing polar
and non-polar extracts [93,94]. The responsible bioactive compounds of this species are
flavonoids and triterpenoids, including hesperidin and ursolic, oleanolic, and micromeric
acids [94]. Their mechanisms of action involve calcium channels and central inhibitory
receptors or peripheral actions depending on the kind of pain induced [94,95]. The in-
volvement of several mechanisms of action allowed the researchers to obtain a synergistic
antinociceptive response in the presence of clinical analgesics and other medicinal plants
used to alleviate pain [96].

http://www.theplantlist.org/
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Scarce information was found in the literature describing Salvia and Agastache genera
distributed in Mexico and used for pain reliefDue to this, our group explored some of these
genera to obtain pharmacological evidence of their medicinal properties, for example the
cases of S. divinorum Epling & Jativa, S. semiatrata Zucc. and S. amarissima Ortega, as well
as their main constituents as promising anti-inflammatory, antioxidant and antinociceptive
agents, highlighting their mode of action in experimental models of pain as follows:

Salvia divinorum (1962) is a member of the Sage family that has been historically used
for divination and shamanism by the Mazatecs from Oaxaca, Mexico, because of this
hallucinogenic properties with a short duration. However, its leaf extracts have also been
reported as useful medicinal species to relieve pain [97]. It has shown a wide spectrum
of antinociceptive activities in preclinical studies using acute nociception in abdominal
pain and in the neurogenic and inflammatory test of formalin [98] but also in chronic pain
models, such as in neuropathic pain involving electroencephalographic changes [99]. Its
bioactive compounds are from salvinorin, mainly salvinorin A, a neoclerodane diterpene,
by involving kappa opioid, 5-HT1A serotonin and CB1 cannabinoid receptors as the main
mechanisms of action [99–101].

Salvia amarissima is another endemic species in Mexico used in traditional medicine
to treat disorders attributed to a cold state such as anxiety in the CNS, as well as gas-
trointestinal ailments and pain relief. It has been evaluated using several preclinical
animal models of pain preparing different kinds of extracts, where medium polar
and polar extracts have been the most bioactive [102]. It has also been observed that
medium polar constituents are involved in the inhibition of neurogenic and inflamma-
tory nociceptive responses through the participation of opioid and TRPV1 and 5-HT1A
serotonin receptors [103]. The presence of a neoclerodane terpene named amarisolida
A and the flavonoid pedalitin have been implicated in the bioactive and abundant
constituents [102]. Their properties have also been reported in metabolic alterations
such as diabetes, since they produce a significant antihyperglycemic action in vivo
during an oral sucrose tolerance test by an alfa-glucosidase inhibitory activity [104].
The presence of flavonoids and terpenoid bioactive constituents has also been asso-
ciated with another enzymatic and regulatory protein inhibition such as in protein
tyrosine phosphatase 1B (PTP-1B), where different kinds of amarisolide have been
characterized [105], as well as flavonoids such as rutin, isoquercitrin and pedalitin al-
ready associated with anxiolytic and/or antinociceptive activities [106,107]. Diterpenes
derived from S. amarissima also possess modulatory capability in protein multidrug
resistance and cytotoxic activity [108]. All these properties together suggest their useful
application in the comorbidity of diabetes and pain such as in neuropathic pain or even
in cancer.

Salvia semiatrata is a species used as a tranquilizer and to relieve pain in folk medicine
in Santiago Huauclilla, Oaxaca, Mexico. Preclinical evidence was recently reported re-
garding its significant effects as an anxiolytic and antinociceptive in several experimental
models in which the presence of the neo-clerodane diterpene 7-keto-neoclerodan-3,13-dien-
18,19:15,16-diolide was identified as being partially responsible [109]. Pain is as strongly
associated with anxiety as with depressive disorders, this comorbility can exacerbate the
other significantly [110]. This kind of comorbidity can be modulated by the dual activity of
herbal therapy, as it was observed in anxiolytic and antinociceptive effects of S. semiatrata
using similar doses [109].

2.6. Agastache Species to Alleviate Pain and Inflammation

Agastache mexicana (Kunth) Lint & Epling is a plant in high demand that has long
been used in Mexican folk medicine to treat anxiety, insomnia, and stomachache, among
other afflictions associated to pain. A. mexicana has been divided in two subspecies:
A. mexicana ssp. mexicana (Toronjil morado) and A. mexicana ssp. xolocotziana (Toronjil
blanco), both of which are used in traditional medicine to alleviate visceral pain; how-
ever it was found that only a polar extract from ssp. mexicana produced spasmolytic-
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like effects [111]. This antinociceptive response was demonstrated in a significant and
dose-dependent manner in an in vitro study, where ursolic acid and acacetin evaluated
by the enteral and parenteral route of administration were both partial responsible con-
stituents [112]. In contrast, ssp. xolocotziana was associated with a spasmogenic response.
The spasmolytic effects of A. mexicana were related to an activation of nicotinic recep-
tors, prostaglandins and calcium channels, but not nitric oxide mechanisms [113]. It is
well-known that the abundant presence of certain constituents depends on the manner
of preparation of the vegetal material [111]. In the methanol extracts of A. mexicana, the
abundant presence of flavonoids such as acacetin and tilianin has been found [113]. Extracts
from different polarities have been compared in different experimental models of pain,
such as the writhing test in mice, the formalin and plantar tests in mice or rats, as well
as the pain-induced functional impairment assay in rats (a gouty arthritis pain model) to
demonstrate significant and dose-dependent antinociceptive responses. The effect was
more evident in the less polar extracts in part due to the presence of ursolic acid [114].This
triterpene produced its antinociceptive effect mediated by the presence of cGMP and an
additive synergism with 5HT1A receptors, but also produced antagonistic activity towards
TRPV1 receptors in neurogenic and inflammatory nociception with an ED50 = 44 mg/kg. A
lower dosage was required to produce an antinociceptive effect in abdominal pain with an
ED50 = 2 mg/kg [115].

Another species from Lamiaceae independent of the Agastache genus, but also known
as “toronjil” in Mexico is Clinopodium mexicanum (Benth.) Govaerts, which is used in
Mexican traditional medicine to induce sleep, as well as in a sedative and analgesic remedy
with the common name of “Toronjil de Monte”. Its aqueous extract was able to inhibit
central nociception using a thermal stimulus in mice supporting its depressant activity,
where glavanone glycosides such as neoponcirin, poncirin and isonaringin were involved
as bioactive constituents [51].

2.7. Secondary Metabolites Identified in Lamiaceae Species with Analgesic and/or
Anti-Inflammatory Activities

Given the broad range of known mechanisms for pain transmission, numerous natural
compounds of different origins are reported in the literature to directly or indirectly modu-
late pain transmission to produce analgesic effects. Most of these constituents modulate the
release of endogenous analgesic mediators or inhibit algogenic neurotransmitters through
pre- or post-synaptic mechanisms at both the central and peripheral levels.

2.7.1. Terpenes
Volatile Terpenes

Terpenes are a group of secondary metabolites with a great diversity of chemical
structure. This type of compound comprises approximately 90% of the components of
the essential oils of aromatic plants [116]. The essential oil of the species of the Lamiaceae
is particularly rich in volatile monoterpenes, sesquiterpenes and diterpenes, which are
made up of 10, 15 and 20 carbon atoms, respectively [1]. Terpenes are very diverse in both
structure and function, but chemically they derive from the polymerization of isoprene; in
fact, their classification is based on the number of isoprene units that bind to each other:
hemi (one unit), mono (two units), sesqui (three units), di (four units), ses (five units), tetra
(eight units), and polyterpenes (n-units). Monoterpenes, the main active ingredients in
essential oils, consist of two isoprene units that are made up of five carbons joined [117].

Among the monoterpenes, the main reported compounds are α-pinene, β-pinene,
1,8-cineole, menthol, limonene, and γ-terpinene. The monoterpenes commonly present in
the Lamiaceae family and whose antinociceptive, anti-inflammatory and/or antioxidant
mechanisms of action have been evaluated, as well as their described chemical structure,
are listed in Table 2. Anticancer, antimicrobial, antioxidant, antiviral, analgesic and anti-
inflammatory activities are attributed to these compounds in various plant species [118].
Regarding the development of analgesics and anti-inflammatories, monoterpenes and
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sesquiterpenes have become a topic of interest with an increasing number of new patent
applications [1,119–121]. According to some studies, monoterpenes are promising in the
modulation of cytokines due to their lipophilic characteristics which favor their absorption
and rapid action [121], and they have been recognized as stimulating an increase in anti-
inflammatory cytokines, such as IL-10 [122,123]. Studies of Hyptis spicigera Lam. reported
the antinociceptive effects of the essential oil because of the presence of α- and β-pinene,
and 1,8-cineol associated to the participation of TRPV1, A1 and M8 receptors [58], whereas
in the case of the essential oil of Monarda fistulosa L., carvacrol, thymol and β-myrcene
were characterized as possible compounds responsible for the antinociceptive properties
mediated by TRPA1 receptors [124]. The presence of δ-cadinene, α-pinene, myrcene, β-
caryophylene, germacrene, and limonene in the essential oil of Teucrium stocksianum Boiss.
was characterized as a bioactive antinociceptive in the writhing test [125] but also in the
formalin test in the antinociceptive activity of Ocimum [126].

Table 2. Monoterpenes and sesquiterpenes present in Lamiaceae with biological activity and their molecular targets
explored in pain and inflammation.

Compound Structure Mechanism of Action References

β-pinene
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Non-Volatile Terpenes

Non-volatile diterpenes (made up 20 carbon atoms) and triterpenes (made up
30 carbon atoms) are reported as the two main subclasses of components of species in
the Lamiaceae family [146]. Seven main types of non-volatile diterpenes have been re-
ported differing in the various arrangements of the 20-carbon atom structure in order to
form abietanes, clerodanes, ent-kauranes, iso-pimarans, labdanes and neo-clerodanes [117].
Some of these types are considered chemotaxonomic markers for specific subfamilies or
genera [147], although all of them can be indifferently evidenced in all Lamiaceae species.

Much attention has recently been paid to diterpenoids such as marrubiin, from Mar-
rubium vulgare L. assayed in experimental models of pain, such as writhing, formalin
and hot-plate tests, but also carnosol and carnosic acid [148], which suppress cyclooxyge-
nase (COX)-2, interleukin-1B, and TNF-alfa expression, as well as leukocyte infiltration in
inflamed tissues [149,150].

Regarding triterpenes, two main types have been reported: pentacyclic triterpenes and
phytoecdysteroids. The former is characterized by having an olean- and ursan-like base
structure [151], with oleanolic acid and ursolic acid being the most reported pentacyclic
triterpenes in species belonging to this family. Diterpenes and triterpenes within the
Lamiaceae have also been reported to produce antinociceptive and/or anti-inflammatory
effects. Their chemical structure and mechanism of action explored are listed in Table 3.

Table 3. Diterpenes and triterpenes present in Lamiaceae with biological activity and their molecular targets explored in
pain and inflammation.

Compound Structure Mechanism of Action References

Tormentic acid
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2.7.2. Phenolic Compounds

Some species of the Lamiaceae family and their biological activities have been charac-
terized by the presence of phenolic compounds, even if only in minor quantities. Caffeic
acid and rosmarinic acid, together with their derivatives, are the most reported phenolic
acids in the family [170–172]. However, in recent studies, chemotaxonomic markers at the
genera level have also been found [121].

In general terms, phenols and polyphenols refer to a group of plant secondary metabo-
lites which carry at least one phenolic ring in their molecule; they are derived from shikimic
acid and phenylpropanoid metabolism pathways. A phenolic ring is made up of a hy-
drophobic aromatic nucleus and a hydrophilic hydroxy group that can be involved in
hydrogen bond formation. As redox active compounds, plant phenols can also act as
antioxidants or pro-oxidants [173]. The antioxidant activity of phenolic compounds de-
pends on the number of hydroxy substituents, their position and the site of binding on the
aromatic ring [174].

All phenolic compounds of the plants in the Lamiaceae share significant antioxidant
activity which is attributed to the complete extracts [175]. Antioxidants protect plant cells
from damage caused by free radicals that develop with normal cellular metabolism or due
to stressful events, such as excessive UV radiation, exposure to soil or air pollutants, and
diseases [176]. The antioxidant properties of phenolic compounds can participate in the
uptake of reactive oxygen species and reactive nitrogen species (ROS/RNS), inhibiting
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their formation by suppressing enzymes or metals associated with the production of free
radicals, and regulating or defending the plant antioxidant systems [177].

Lipid peroxidation processes which cause damage to fatty acids tend to decrease mem-
brane fluidity and lead to numerous pathological events [178], and could be reduced by
phenolic acids in plants due to their capacity to modulate different oxygen species [121,175].
Furthermore, polyphenols have been demonstrated to protect the nervous system against
oxidative stress, to such an extent that regular dietary intake of flavonoids has been
associated with reduced dementia and delayed onset of Alzheimer’s and Parkinson’s
diseases [179]. Polyphenols have been considered potential neuroprotective and direct
neuromodulatory agents of the CNS because of their ability to cross the blood-brain bar-
rier [180]. Plants belonging to the genera Calamintha, Lavandula, Mentha, Melissa, Origanum,
Rosmarinus, Salvia, Teucrium or Thymus are used for the treatment of various nervous system
disorders, mainly thanks to the presence of polyphenols, particularly rosmarinic acid [78].

Phenolic compounds present in the Lamiaceae and their corresponding structures,
which have shown antioxidant, anti-inflammatory and/or antinociceptive pharmacological
activity, related to the evaluated mechanisms of action, are shown in Table 4.

Table 4. Phenolic acids commonly found in Lamiaceae and their molecular targets explored in pain and inflammation.

Compound Structure Mechanisms of Action References

Rosmarinic
acid
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Abbreviations: 5HT: Serotonin; ALT: Alanine aminotransferase; AP-1: Activator protein 1; AST: Aspartate aminotransferase; Bax: Bcl-2-
associated X protein; CD80/86: CD28 receptor binds to the B7; COX-2: Cyclooxygenase-2; ERK: Extracellular-signal-regulated kinase;
GABAA: γ-aminobutyric acid type A receptor; GFAP: Glial fibrillary acidic protein; GSH: Glutathione; Iba-1: Ionized calcium-binding
adapter molecule 1; IL-: Interleukin-; iNOS: Inducible nitric oxide synthase; IkBα: Nuclear factor of kappa light polypeptide gene enhancer
in B-cells inhibitor, alpha; JNK: c-Jun N-terminal kinase; Keap1: Kelch-like ECH-associated protein 1; MDA: Malondialdehyde; MPO:
Myeloperoxidase; mRNA: Messenger Ribonucleic acid; NF-kB: Nuclear factor kappa-light-chain-enhancer of activated B cells; NLRP3:
Family pyrin domain containing 3; NRf2: nuclear factor erythroid 2–related factor 2; p65: Nuclear factor NF-kappa-B p65 subunit; SOD:
Superoxide dismutase; TBARS: Thiobarbituric acid reactive substances; Th1: T helper type 1; TLR4: Toll like receptor 4; TNF-α: Tumor
necrosis factor-alpha; TNF-α: Tumor necrosis factor-alpha; TRPA1: Transient receptor potential ankyrin 1; TRPA1: Transient receptor
potential cation channel, subfamily A, member 1; TRPM8: Transient receptor potential cation channel subfamily M (melastatin), member 8;
TRPV1: Transient receptor potential cation channel subfamily V member 1.

Phenolic Acids

Phenolic acids have been characterized as being responsible for the biological activity
of several Lamiaceae species, such as antioxidant, anti-inflammatory and antinociceptive
activities, exploring not only their pharmacological activity but also the possible mechanism
of action involved (Table 4). As redox active compounds, phenolic acids can also act
as antioxidants or pro-oxidants [173]. The antioxidant activity of phenolic compounds
depends on the number of hydroxy substituents, their position and the site of binding on
the aromatic ring [174]. Caffeic acid and rosmarinic acid and their derivatives have been
part of the most common phenolic acids described [170–172]. Nevertheless, recent studies
have found and established chemotaxonomic markers at the genera level [121].

Rosmarinic acid is among the main phenolic compounds contained in the tissues of
various plant species belonging to this family. The genotype of the plant, but also physiological
or environmental factors, such as phenology, climate, growth technique and stress conditions,
strongly influence the amounts of phenolic compounds in the plant [121,196].

High levels of rosmarinic acid are commonly found only within the Nepetoideae
subfamily. In the genus Stachys, in the Lamioideae subfamily [197], several species belonging
to the Lamiaceae can accumulate high levels of different phenolic compounds, such as
phenolic acids, flavonoids, or phenolic terpenes. Only in the Lamiaceae family are some
phenolic compounds present, such as carnosic acid, which prevents the oxidative damage
of the chloroplast and shows highly antioxidant properties in vitro [198]. Another phe-
nolic acid exclusive to Lamiaceae species is clerodendranoic acid, which was found in
Clerodendranthus spicatus (Thunb.) C.Y. Wu ex H.W. Li [199].

Flavonoids

A few compounds from flavonoid nature in Lamiaceae with antinociceptive and anti-
inflammatory activities have been reported. This is the case of a standardized mixture of
baicaline and catequine from Scutellaria baicalensis Georgi, which was evaluated using the
writhing, formalin and carragennan tests in rodents [200]. Salvigenina was isolated from S.
officinalis as the responsible flavonoid for the antinociceptive effects in writhing, hot-plate
and carragennan tests [201]. Other flavonoids including pedalitin from S. amarissima have
been explored in writhing test in mice [102], while tilianin and acacetin were identified
in Agastache mexicana and reported in several experimental models of acute and chronic
pain [113]. Examples of these flavonoids commonly present in species of the Lamiaceae
family with antioxidant, antinociceptive and anti-inflammatory activity are listed in Table 5.
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Table 5. Flavonoids commonly present in Lamiaceae and their molecular targets explored in pain and inflammation.

Compound Structure Mechanism of Action References
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constituents are of interest to researchers, laboratories, and pharmaceutical companies. 
During the last few decades, the mechanisms of action of the different secondary metab-
olites of the Lamiaceae family have been broadly investigated by means of in vivo and in 
vitro assays to confirm their participation in the modulation of pain and in the cascade of 
inflammation mediators. This work summarizes part of the reported scientific knowledge 
regarding the secondary metabolites of some specific Mexican species of the Lamiaceae 
that have shown activity for pain relief, highlighting the participation of terpenes, flavo-
noids, and phenolic acids as potential alternatives for new drug therapies. As a result of 
this review, it is important to mention that few studies have been reported regarding Mex-
ican genera of this family; for example, Calosphace is one of the largest subgenera of Salvia 
in all the world, mainly found in Mexico, but it has barely been investigated regarding its 
potential biological activities and their bioactive constituents. The scientific evidence re-
garding the different bioactive constituents found in species of the Lamiaceae family 
demonstrates that several species of this family require further investigation in preclinical 
studies, but also in controlled clinical trials to evaluate the efficacy and safety of these 
natural products to support their therapeutic potential in pain relief and/or inflammation, 
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3. Materials and Methods
Literature Survey Databases

This literature review was carried out based on an electronic search in the Sciencedirect,
Pubmed and Springer link databases in 2020. The keywords used were “Lamiaceae”
“antinociceptive” “pain”, “analgesic” and “anti-inflammatory”. Almost 1200 articles were
found, and after an extensive survey, 217 articles were selected, which described the
antinociceptive and/or anti-inflammatory potential of natural compounds to relieve pain.

4. Conclusions

The chemical characteristics and the pharmacological properties of the Lamiaceae con-
stituents are of interest to researchers, laboratories, and pharmaceutical companies. During
the last few decades, the mechanisms of action of the different secondary metabolites of the
Lamiaceae family have been broadly investigated by means of in vivo and in vitro assays
to confirm their participation in the modulation of pain and in the cascade of inflammation
mediators. This work summarizes part of the reported scientific knowledge regarding
the secondary metabolites of some specific Mexican species of the Lamiaceae that have
shown activity for pain relief, highlighting the participation of terpenes, flavonoids, and
phenolic acids as potential alternatives for new drug therapies. As a result of this review, it
is important to mention that few studies have been reported regarding Mexican genera
of this family; for example, Calosphace is one of the largest subgenera of Salvia in all the
world, mainly found in Mexico, but it has barely been investigated regarding its potential
biological activities and their bioactive constituents. The scientific evidence regarding the
different bioactive constituents found in species of the Lamiaceae family demonstrates that
several species of this family require further investigation in preclinical studies, but also
in controlled clinical trials to evaluate the efficacy and safety of these natural products to
support their therapeutic potential in pain relief and/or inflammation, along with other
health conditions.
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