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Abstract: The genus Ormosia comprises approximately 130 species, which are found in tropical
regions all over the world. The taxonomy and evolutionary history are still ambiguous due to the lack
of a solid phylogeny at the species level. Due to the fast advancement of high-throughput sequencing
technology, it is now possible to retrieve the full chloroplast (cp) genome sequence, providing a
molecular basis for phylogenetic analysis. Five species of Ormosia were used in this work, and their
whole cp genomes were sequenced. One circular, quadripartite-structured molecule, ranging from
169,797 to 173,946 base pairs in length, was present in all five Ormosia species. The cp genomes of
the five newly sequenced Ormosia species were further compared with the published cp genomes
of O. pinnata. Ten hypervariable regions (Pi > 0.025) were uncovered in the Ormosia chloroplast
genomes, among which petN-psbM showed the highest Pi value. Phylogenetic analysis revealed
that O. microphylla and O. olivacea clustered with strong support. O. balansae was resolved as a sister
to O. pinnata, and they were further found to be sisters to the remaining 13 Ormosia species. The
cp genes of O. elliptica showed a close relationship to O. hosiei, and O. semicastrata clustered with
O. emarginata. Taken together, the comprehensive analysis of the complete cp genomes of five Ormosia
species offers valuable insight and information for reconstructing their phylogeny and sheds light on
the evolutionary dynamics of the chloroplast genome in Ormosia.

Keywords: Ormosia; chloroplast genome; phylogenetic analysis; SSR; IR variations

1. Introduction

Ormosia is a genus of flowering plants belonging to the Fabaceae family, which is
one of the largest families of flowering plants. Ormosia species are usually trees or big
bushes found in tropical and subtropical regions across the world, primarily in Asia, Africa,
and the Americas [1]. Ormosia species are characterized by their pinnate leaves, which
consist of several leaflets arranged on either side of a central stem, and their showy, pea-like
flowers that range in color from red to yellow. The fruits of Ormosia species are generally
legumes, which contain extremely hard seeds that are often brightly colored in shades
of red, orange, brown, and black [2]. The seeds have little nutritional value and contain
poisonous alkaloids [3], but they are commonly utilized in jewelry and handcrafts [4]. In
addition to the spectacular seeds, Ormosia is unique for its arborescent habit, and certain
species are highly prized for their sturdy and handsome wood, which is used in furniture,
flooring, and construction [5].

There are around 130 species in the genus Ormosia [6], and phylogenetic analysis of
the genus dates back over a century. Prain (1990, 1904) divided it into two groups, each
with four subsections, based on pod structure and seed characteristics [7,8]. Merrill and
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Chen (1943) then conducted a survey of Chinese and Indochinese Ormosia species, which
they classified into 15 series based mostly on fruit and seed characteristics [9]. Even though
both categories were based on morphology, their categorization differed from Prain’s in
numerous ways, suggesting that morphological parameters alone are insufficient for correct
classification. In a recent study by Torke et al., a comprehensive molecular phylogeny
of Ormosia was constructed using nuclear and plastid DNA sequences, including matK
and trnL-F, from a diverse range of 82 species [10]. The varied species found in southern
China and Southeast Asia were classified into two clades. However, matK and trnL intron
sequences were found to differ slightly between species. Efforts should be made to improve
the phylogenetic resolution and identify the sources of conflicting categorization.

Next-generation sequencing methods hold a lot of promise in this field because, com-
pared to Sanger sequencing, they provide much more data and make statistically rigorous
comparisons across DNA regions and genomes more easily [11]. In recent years, the study
of plant evolutionary biology has benefited greatly from the utilization of chloroplast (cp)
genomes. These genomes have emerged as valuable tools due to their genetic stability,
unique genome structure, and relatively faster evolutionary rate compared to mitochon-
dria [12]. The recent use of Illumina sequencing to obtain complete cp genomes of five
Chinese Ormosia species was a significant first step in this field [13]. However, just a few
genomic resources of this genus have been investigated [14–18]. At present, there are only
around ten sequences of a complete cp genome of Ormosia species in GenBank.

In this work, the cp genomes of five Ormosia species were sequenced: O. microphylla,
O. semicastrata, O. olivacea, O. balansae, and O. elliptica. All of these species are planted in
southern China and are valuable wood species for housing construction, furniture, wheels,
and pipes. Additionally, there is still uncertainty in the categorization of these five species.
We carried out a cp genome-based investigation and provide a detailed description of the
cp genome assembly, annotations, and simple sequence repeats (SSRs). We conducted
phylogenetic analyses of Ormosia based on the whole cp genome sequences, using newly
sequenced species together with previously published ones. This study aimed to achieve
three main objectives: (i) To characterize the structure of the Ormosia cp genome, providing
insight into its organization and arrangement. (ii) To identify highly divergent regions
within the Ormosia cp genome that could serve as potential DNA barcodes, which would be
useful for species identification and molecular characterization of Ormosia species. (iii) To
investigate the evolutionary relationships among different Ormosia species using cp genome
sequences, contributing to the understanding of the genetic divergence and phylogenetic
patterns within the genus Ormosia.

2. Materials and Methods
2.1. Plant Materials and DNA Extraction

Fresh leaves of one plant each of five Ormosia species—O. microphylla, O. semicastrata,
O. olivacea, O. balansae, and O. elliptica—were collected from the Guilin Botanical Garden,
Guangxi, China (25◦4′14.88′′ N, 110◦17′57′′ E). Fresh leaves (>1.0 g) were used for the
extraction of total genomic DNA. The Magnetic Plant Genomic DNA Kit (TIANGEN
Biotech, Beijing, China) was employed following the manufacturer’s instructions. The
DNA quality was evaluated using both electrophoresis in a 1% agarose gel and a TBS-380
Mini-Fluorometer (Invitrogen, Waltham, MA, USA).

2.2. Chloroplast Genome Sequencing and Assembly

Initially, 1 µg of DNA was utilized for library construction. The DNA sample under-
went sonication to fragment into 300–500 bp fragments. Subsequently, the fragmented
DNA was subjected to end-polishing, A-tailing, and ligation with full-length adaptors for
sequencing. Polymerase chain reaction (PCR) amplification was carried out using the cBot
TruSeq PE Cluster Kit v3-cBot-HS (Illumina, San Diego, CA, USA). Following PCR, the
products were purified using the AMPure XP system (Beckman Coulter Inc., Brea, CA,
USA). To generate sequencing libraries, the VAHTS Universal Plus DNA Library Prep Kit
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for Illumina (Vazyme, Nanjing, China) was employed, adhering to the manufacturer’s
instructions. Each sample’s sequences were assigned unique index codes. The size dis-
tribution of the resulting libraries was evaluated using the Agilent 2100 Bioanalyzer, and
quantification was performed using real-time PCR. For cluster generation, the index-coded
samples were clustered using the cBot Cluster Generation System (Illumina) as per the
manufacturer’s instructions. The libraries were subsequently subjected to paired-end
sequencing with 150 bp reads using the Illumina NovaSeq 6000 platform.

The quality of the raw paired-end reads was assessed using FastQC v0.11.7 soft-
ware. Following the quality evaluation, the data were integrated into optimum contigs
by de novo assemblers (Fast-Plast, https://github.com/mrmckain/Fast-Plast, accessed
on 27 November 2022, and GetOrganelle, https://github.com/Kinggerm/GetOrganelle,
accessed on 27 November 2022). The cp sequences of Ormosia hosiei (MG813874),
O. formosana (MT258921), Zollernia splendens (MN709880), Lespedeza maritima (MG867570),
and Laguncularia racemose (MH551145) were downloaded from GenBank and used as the
seed sequence for O. balansae, O. semicastrata, O. elliptica, O. olivacea, and O. microphylla,
respectively.

After that, the obtained cp genomes were annotated using the PGA software
(https://github.com/quxiaojian/PGA, accessed on 5 December 2022) and Geseq soft-
ware (https://chlorobox.mpimpgolm.mpg.de/geseq.html, accessed on 5 December 2022)
with default settings. Manual corrections were made to ensure accuracy. The resulting gene
map was visualized using the online OGDraw v1.2 software [19]. Five complete cp genomes
were deposited at GenBank (accession nos.: OQ862759 (Ormosia balansae), OQ862760
(O. semicastrata), (OQ862761 (O. elliptica), (OQ862762 (O. olivacea), and (OQ862763
(O. microphylla)). Relative synonymous codon usage (RSCU) and amino acid frequency in
the protein-coding gene region were determined by MEGA-X [20].

2.3. Repeat Sequences and SSRs

For the analysis of repeat sequences and simple sequence repeats (SSRs), the cp
genome sequence of O. pinnata (NC_064393.1) obtained from GenBank and the five newly
sequenced cp genomes of Ormosia species were utilized. A Perl script called MISA was
employed to identify SSRs in the complete cp genome sequences of the six Ormosia
species. The thresholds used for different SSR lengths were as follows: mononucleotides
(10 repeats), dinucleotides (6 repeats), trinucleotides (5 repeats), tetranucleotides (5 repeats),
pentanucleotides (5 repeats), and hexanucleotides (5 repeats).

To detect repeat sequences, the REPuter program [21] was employed, which identified
four types of repeats: palindromic, forward, reverse, and complement repeats. The follow-
ing criteria were used to identify repeat sequences within the cp genome: (1) a Hamming
distance of 3, (2) a minimum size of 30 base pairs, and (3) a sequence identity of at least 90%.

2.4. Variations and Divergent Hotspot Regions of cp Genomes

To create the sequence variation map, the mVISTA comparative genomics server [22]
was utilized, with the annotation of the O. balansae cp genome serving as the reference. The
variations in inverted repeat (IR) sequences, including expansion and contraction events,
were assessed using the online IRscope program (https://irscope.shinyapps.io/irapp/,
accessed on 20 December 2022). To identify the hotspots of intergeneric divergence, a
sliding window analysis was conducted using DnaSP v5.10 software [23]. A window
length of 600 base pairs (bp) was selected, and the step size was set to 200 bp.

2.5. Phylogenomic Reconstruction Based on cp Genomes

The phylogenomic analysis was conducted using the maximum likelihood method
based on a dataset consisting of the five newly sequenced cp genomes of Ormosia species
and ten Ormosia species downloaded from GenBank. Sophora velutina and S. tomentosa
were defined as outgroups. To align the sequences, the Multiple Sequence Alignment
Based on Fast Fourier Transform (MAFFT) program [24] was employed, and conserved
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sequences were screened out by Gblocks v0.91b software [25]. The best substitution
model, GTR + G, was selected in the jModelTest v2.1.7 program [26], and the maximum
likelihood method was applied in MEGA 6.0 software to infer the phylogenetic relationships
using 1000 bootstrap replicates [27]. Maximum likelihood (ML) was performed using
RAxML v8.2.12 software. Samples were collected at every 1000 generations. The resulting
phylogenetic tree was visualized using FigTree v1.4.4 (http://tree.bio.ed.ac.uk/software/
figtree/, accessed on 15 January 2023).

3. Results
3.1. Overall cp Genome Features of Five Ormosia Species

The cp genomes of the five Ormosia species exhibited a circular structure (Figure 1) with
a quadripartite organization. Their lengths ranged from 169,797 to 173,946 base pairs, with
Ormosia microphylla having the largest genome and O. elliptica the smallest. The cp genomes
consisted of a large single copy (LSC) region (70,849–73,937 bp) and a small single copy
(SSC) region (18,272–18,785 bp), separated by a pair of inverted repeats (IRa and IRb, with
lengths of 80,676–81,224 bp) (Table 1). The total GC content was 35.71–36.16%, suggesting
almost equal values among the five complete Ormosia cp genomes. Additionally, the GC
content distribution varied among different regions, with the LSC, SSC, and IR regions
displaying GC contents of 33.45–33.98%, 29.73–30.24%, and 39.16–39.42%, respectively
(Table 1). The RSCU values of each codon of five Ormosia cp genomes are shown in Table
S1. Totally, 29 preferentially used codons were found in the five Ormosia cp genomes, with
RSCU values that were relatively comparable across species.

Table 1. Statistics on basic features of chloroplast genomes of five Ormosia species.

Ormosia
balansae

Ormosia
microphylla

Ormosia
elliptica

Ormosia
olivacea

Ormosia
semicastrata

Total
Length (bp) 170,836 172,973 169,797 172,829 173,946
GC% 35.92 35.83 36.16 35.84 35.71

LSC
Length (bp) 71,096 73,163 70,849 73,055 73,937
GC% 33.79 33.62 33.98 33.65 33.45
Length (%) 41.62 42.30 41.73 42.27 42.51

IR
Length (bp) 81,038 81,178 80,676 81,154 81,224
GC% 39.21 39.18 39.42 39.18 39.16
Length (%) 47.44 46.93 47.51 46.96 46.70

SSC
Length (bp) 18,702 18,632 18,272 18,620 18,785
GC% 29.74 29.86 30.24 29.87 29.73
Length (%) 10.95 10.77 10.76 10.77 10.80

Protein-
coding

Length (bp) 81,768 81,777 81,445 80,838 76,590
GC% 37.42 37.46 37.53 37.37 37.29
Length (%) 47.86 47.28 47.97 46.77 44.03

tRNA
Length (bp) 2793 2737 2792 2795 2804
GC% 53.35 53.49 53.51 53.42 53.35
Length (%) 1.63 1.58 1.64 1.62 1.61

rRNA
Length (bp) 9062 9062 9062 9056 9054
GC% 55.40 55.44 55.44 55.43 55.47
Length (%) 5.30 5.24 5.34 5.24 5.21

http://tree.bio.ed.ac.uk/software/figtree/
http://tree.bio.ed.ac.uk/software/figtree/
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Figure 1. Gene map of chloroplast genomes of five Ormosia species. Directed by arrow, genes
located on the outer circle indicate clockwise transcription, while those on the inner circle indicate
counterclockwise transcription. Functional groups of genes are visually distinguished through color
coding. The inner circle exhibits varying shades of gray, with darker shades representing the GC
content of the chloroplast genome and lighter shades representing the AT content.

3.2. IR Expansion and Contraction

The IR/LSC and IR/SSC junction regions of five newly sequenced cp genomes of
Ormosia species and the cp genome of O. pinnata downloaded from GenBank were compared
to assess potential expansion or contraction events. While the length of IR regions in the
six Ormosia species remained similar, minor shifts in the IR/SC borders were observed for
Ormosia species (Figure 2). In O. olivacea, O. elliptica, and O. balansae, the ycf1 pseudogene
spanned the IRb/SSC boundary, extending 1–32 bp into the SSC region, whereas it is found
1 bp away from the border in O. pinnata and O. microphylla. The IRb/LSC junction is found
in the clpP region in all six species, and the IRa/SSC junction is located in the ycf1 region.
The length of the IRs differs between species: 2022–2084 bp for clpP and 5300–5348 bp for
normal ycf1 gene. Additionally, a noncoding sequence of 3–9 bp was found between the
IRa/LSC boundary and the 3’-end of the trnH-GUG gene in the LSC region.
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ilarity across the six species, with noncoding region variation being substantially larger 
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Figure 2. Comparison of LSC, SSC, and IR regional boundaries of chloroplast genomes between six
Ormosia species. JLB, junction line between LSC and IRb; JSB, junction line between IRb and SSC; JSA,
junction line between SSC and IRa; and JLA, junction line between IRa and LSC. The start and end of
each gene from the junctions has been shown with arrows. Ψ, pseudogene. The cp genome sequence
of O. pinnata (NC_064393.1) was obtained from GenBank.

3.3. Variations and Divergence Hotspot Regions of cp Genomes

The intergeneric divergence of cp genome sequences was assessed by calculating the
percentage of identity among six Ormosia species, using O. balansae as the reference genome
(Figure 3). Overall, the arrangement of the cp genome in Ormosia exhibited a high level of
collinearity, with a conserved gene order. There was a considerable degree of similarity
across the six species, with noncoding region variation being substantially larger than
coding area variation.
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scale represents the coordinates within the chloroplast genome. Gray arrows indicate genes with
their orientation. The different regions of the genome, including exons, introns, untranslated regions
(UTRs), and conserved non-coding sequences (CNSs), are color-coded for easy visualization. The cp
genome sequence of O. pinnata (NC_064393.1) was downloaded from GenBank.

The nucleotide diversity (pi) values within 600 bp segments were analyzed to identify
divergence hotspots (Figure 4). The pi values varied from 0 to 0.075, with higher genetic
diversity observed in the LSC (average pi = 0.013) and SSC (average pi = 0.011) areas
than in the IR area (average pi = 0.006), indicating that the IR region was more conserved
than the LSC and SSC regions across the six cp genomes. The highest variable region
was petN−psbM, with a Pi value of 0.073, while seven additional hypervariable regions
(Pi > 0.025) were identified in the Ormosia cp genomes, as shown in Figure 4. Nine hyper-
variable regions are located in the LSC or SSC region, while there is only one hypervariable
region (ycf2) in the IR region.
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3.4. Repeat Analysis

SSRs and large repeats in the cp genomes of six Ormosia species were investigated. It
was observed that the Ormosia cp genomes contained a range of 79 to 102 SSRs (Figure 5a).
Among these SSRs, the majority were located in the LSC regions (70.0–77.0%), with the
number varying within species, ranging from 46 in O. balansae to 70 in O. microphylla.
Four types of SSRs (mono-, di-, tri-, and tetra-nucleotide repeats) were observed in the cp
genomes of the six Ormosia species (Figure 5b). Mono-nucleotide repeats were found to
be the most prevalent, accounting for 69.62 and 77.01% of total SSRs in O. balansae and
O. elliptica, respectively. Tri-nucleotide repeats were detected in O. microphylla, O. olivacea,
and O. semicastrata, while tetra-nucleotide repeats were only detected in O. balansae and
O. pinnata.

The investigation of large repeats in the cp genomes of the six Ormosia species revealed
the presence of 40 to 43 large repeats. Among the species, O. semicastrata and O. olivacea
did not exhibit any complementary repeats in their cp genomes (Figure 5c). Except for
O. elliptica, which had more palindromic repeats than forward repeats, the number of
forward repeats was larger in all investigated species. The length distribution of repeats is
illustrated in Figure 5d. Although the number of repeats was similar among the six Ormosia,
the length of repeats varied. Repeats with a length of 2130 bp were predominant in the cp
genomes of O. elliptica, O. microphylla, O. olivacea, and O. semicastrata, accounting for 88.1 to
91.5% of total repeats, whereas repeats with a length of 3140 bp only accounted for 1.6 to
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7.5%. The proportion of repeats with a length of 3140 bp was much higher in O. balansae
and O. pinnata, making up 29.9 and 36.2% of total repeats, respectively.
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Figure 5. Analysis of simple sequence repeats (SSRs) and repeated sequences in chloroplast genomes
of Ormosia species: (a) the number of SSRs; (b) the type and frequency of each identified SSR; (c) the
identification of four types of repeats; and (d) the frequency of repeat occurrence based on length.
The cp genome sequence of O. pinnata (NC_064393.1) was obtained from GenBank.

3.5. Phylogenomic Analysis

The cp genomic protein-coding regions of 15 species of Ormosia were used to construct
a phylogenetic tree using the maximum likelihood method, with Sophora tomentosa and
S. velutina defined as outgroups (Figure 6). In terms of the five newly sequenced cp
genomes, O. microphylla and O. olivacea clustered with strong support (100 BS). O. balansae
was resolved as a sister to O. pinnata (100 BS), and both were further found to be sisters to
the remaining 13 Ormosia species. The cp genome of O. elliptica exhibited a close relationship
with O. hosiei (100 BS), and O. semicastrata clustered with O. emarginata (100 BS).
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4. Discussion

The analysis of cp genome sequences provides comprehensive information for phyloge-
netic analysis of plants, and DNA barcoding using cp markers enables reliable identification
of plant species [28]. In this study, we present the cp genomes of five Ormosia species and
compare them to another species, O. pinnata, to gain insight into the differences among
the cp genomes described above. Furthermore, we conducted phylogenetic analysis by
incorporating the complete cp genomes of these species along with nine other Ormosia
species. By studying the cp genome sequences of these species, we aim to enhance our
understanding of the evolutionary dynamics within the Ormosia genus.

The structure of the complete cp genomes of all five studied Ormosia species is com-
parable to that of the majority of plants, consisting of a single circular quadripartite
molecule [29–31]. The cp genomes of the five Ormosia species examined in this study
were relatively larger than those of most angiosperms [32]. For instance, the cp genomes of
the Dalbergia species, belonging to the Fabaceae family, have been reported to be approxi-
mately 156,000 in size [33]. The longer sequences of Ormosia cp genomes are ascribed to
the IR regions, which are twice as long as those of Dalbergia species. The size of the five
studied Ormosia cp genomes is comparable to that of previously reported Ormosia species,
ranging from 170,811 to 174,128 bp [13]. The cp genomes of most land plants are highly
conserved, and the chlB, chlL, chlN, and trnP-GGG are observed to be missing in flowering
plants [34]. The deletion of the above four genes was found in the cp genomes of all five
Ormosia species. GC content plays a crucial role in sequence stability, with higher GC
content indicating increased DNA density and a more conserved and rigid sequence [35].
Our findings indicate a high degree of conservation in the cp genomes of Ormosia species,
with similar GC content observed in each region (LSC, SSC, and IR) among the species
(Table 1). Variation in GC content was observed among different regions, with the IR
regions exhibiting higher GC content, primarily due to the presence of rRNAs [29]. The
high GC content in these regions plays a critical role in maintaining the base composition
of cp genomes and stabilizing their overall structure.

The SSRs present in the cp genomes of plants have implications for a variety of
fields, including genetics, conservation biology, phylogenetics, and plant breeding. They
serve as useful genetic markers for studying the genetic diversity of plant populations,
understanding the evolutionary relationships among plant species, and reconstructing their
phylogenetic history, and can be utilized in plant breeding programs to develop improved
crop varieties by identifying SSR markers linked to desirable traits [36]. Analysis of the
cp genomes of six Ormosia species revealed the presence of five types of SSRs, ranging
from mononucleotide to compound repeats. Among these, mononucleotide repeats were
the most abundant, consistent with the findings reported by Liu et al. [13] for five species
within the same genus. Our study identified a total of 543 SSRs in the cp genomes of the six
Ormosia species, indicating a wealth of SSR polymorphism information in these genomes.
These findings have implications for the identification and analysis of genetic diversity
among Ormosia species. Large repeats were critical for studying genome reorganization,
rearrangement, and phylogeny, as well as causing substitutions and insertions in the cp
genome [37]. We detected 40–43 large repeats in five Ormosia species, but the types and
numbers of each type differed between species. The complementary repeats were missing
in O. semicastrata and O. olivacea cp genomes, which may also play a role in the genetic
diversity and evolution of different Ormosia species.

The expansion and contraction of IR region borders are the primary causes of cp
genome size variation and are important in species evolution [38]. In our study, we
observed both similarities and differences in the junctions of LSC, SSC, and IR among the
six species under comparison. Additionally, certain genes, including ycf1, clpP, and trnH,
exhibited shifts at the borders (Figure 2). Previous reports have indicated that the varying
lengths of cp genomes may be created by expansion and contraction occurring in the IR
regions [31]. By contrast, we observed that the variation in Ormosia cp genome length was
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attributed to the differences in length of non-coding sequences in the LSC region, which
was consistent with Liu’s report [13].

Determining variations in cp genomes is critical to comprehending the evolution and
genomic structure of chloroplasts [39]. In this study, it was observed that the IR regions
exhibited lower variability compared to the LSC and SSC regions, which aligns with the
findings of a previous study [30]. Since non-coding regions generally undergo faster mu-
tation rates than coding regions [40], the highly variable regions in Ormosia cp genomes
are mostly found in intergenic spacers, such as atpE-trnS, ndhC-trnV, petN-trnD, psbK-trnQ,
and rpl32-trnL. The rRNA genes showed no significant variation in coding regions between
the six Ormosia species (Figure 3), which was consistent with prior findings that rRNA
gene sequences were highly conserved [41]. Natural selection has little effect on nucleotide
substitutions in intergenic spacer and intron regions, as well as pseudogenes that are not
translated into proteins [42]. As a result, a non-coding area can be used to deduce the
evolutionary history [43]. Certain coding areas with relatively substantial sequence varia-
tion have also been found to be a useful source for interspecies phylogenetic research [10].
Several divergence hotspot regions (e.g., aspE-rps4, petN-psbM, psaB-psbA, accD-ycf4, ndhA,
ycf1, and ycf2) were found by calculating and comparing the nucleotide diversity (Pi) values
(Figure 4). These regions exhibit significant variability and can potentially serve as valuable
molecular markers in future phylogenetic studies [44].

The importance of cp genomes in reconstructing phylogenetic relationships and un-
derstanding evolutionary history has been demonstrated [45]. Cp genome markers such as
matK, trnL-F, ndhF, trnH-psbA, rpoB, and ycf have been widely used in taxonomy and DNA
barcoding investigations [46,47]. Torke et al. conducted a Bayesian analysis of nuclear
and plastid marker sequences and classified O. elliptica, O. olivacea, and O. microphylla into
Ormosia clade I, and O. semicastrata, O. balansae, and O. pinnata into clade II [10]. Here, we
confirmed a close relationship between O. balansae and O. pinnata, and between O. olivacea
and O. microphylla. Both O. balansae and O. pinnata, increasingly cultivated as ornamental
street trees in southern China, are attractive for their thick leaves and red seeds. O. olivacea
and O. microphylla, which grow on hillsides at an altitude over 600 m, have great economical
value for their wood. Interestingly, our study found that O. elliptica was sister to O. henryi,
which had been placed in its own series by Merrill and Chen (1943) due to its relatively
long hilum [9]. The morphological characteristics of O. elliptica are extremely close to those
of O. henryi, except for the shape of the leaf and pod. Most nodes were allocated with high
BP values in our study, except O. henryi and O. xylocarpa. Liu et al. also reported a low
BP value for five Ormosia species [13]. Therefore, more information on the cp genomes of
Ormosia species is needed to enhance the resolution of the phylogeny.
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