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Abstract: The chloroplast genomes of Dioscorea brevipetiolata, D. depauperata, D. glabra, and D. pyrifolia
are 153,370–153,503 bp in size. A total of 113 genes were predicted, including 79 protein-coding
sequences (CDS), 30 tRNA, and four rRNA genes. The overall GC content for all four species was
37%. Only mono-, di-, and trinucleotides were present in the genome. Genes adjacent to the junction
borders were similar in all species analyzed. Eight distinct indel variations were detected in the
chloroplast genome alignment of 24 Dioscorea species. At a cut-off point of Pi = 0.03, a sliding window
analysis based on 25 chloroplast genome sequences of Dioscorea species revealed three highly variable
regions, which included three CDS (trnC, ycf 1, and rpl32), as well as an intergenic spacer region,
ndhF-rpl32. A phylogenetic tree based on the complete chloroplast genome sequence displayed an
almost fully resolved relationship in Dioscorea. However, D. brevipetiolata, D. depauperata, and D. glabra
were clustered together with D. alata, while D. pyrifolia was closely related to D. aspersa. As Dioscorea
is a diverse genus, genome data generated in this study may contribute to a better understanding of
the genetic identity of these species, which would be useful for future taxonomic work of Dioscorea.

Keywords: chloroplast genome; Dioscorea; next-generation; phylogenetic analysis

1. Introduction

Dioscorea L. is the largest genus in Dioscoreaceae, containing approximately 600 recorded
species, widely distributed in the Southeast Asia, Africa, Central America, South America,
and other tropical and subtropical regions [1–3]. Members of Dioscorea are generally known
as yams, an important vegetatively-reproducing tuber crop that is a good subsistence starch
crop [4,5]. While many Dioscorea species are part of a staple diet in many countries, some
of them are non-edible, as they contain toxic compounds [6]. Among them, many are
identified as good natural resources with medicinal properties [7–10]. However, due to
it being a diverse genus, identification and classification of Dioscorea species has been a
challenge to taxonomists; the genus is dioecious, has small flowers, and comes with great
morphological variations [11,12].

To shed light on the taxonomic status of the species in this complicated genus via
molecular approaches, several phylogenetic studies have been carried out using DNA fin-
gerprinting techniques, such as amplified fragment length polymorphism [13], polymerase
chain reaction- restriction fragment length polymorphism [14], random amplified polymor-
phic DNA [15], and simple sequence repeat [16], as well as the use of short gene loci derived
from nuclear DNA, Pgi [17] and Xdh [18], and chloroplast DNA (cpDNA), atpB-rbcL, psaA-
ycf 3, rbcL, rpl32-trnL, matK, trnH-psbA, and trnL-trnF [11,12,19–21]. Although molecular
markers provide some information on the taxonomy of Dioscorea, phylogenetic analyses are
low resolution due to the limited data. Further studies to find high resolution molecular
markers at the species level which lead to successful identification and phylogeny in the
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genus Dioscorea, are necessary [22]. Furthermore, the effort to perform molecular identi-
fication of Dioscorea species has been on-going [23–25]. Eventually, a study that utilized
the highly variable regions in the cp genome of Dioscorea was proposed as a potentially
useful marker for species delimitation and species identification among members of the
complicated genus [3]. Despite the fact that studies on DNA barcoding in Dioscorea have
been carried out to evaluate a suitable DNA barcode to discriminate the closely related
species, the findings were inconclusive—only a limited number of samples were included
in the study [26,27]. Note that Dioscorea is a diverse genus; thus, the work to barcode all
species could be tedious and costly. For that reason, it is wise to look into informative sites
in the cp genomes to aid in the barcoding effort of Dioscorea.

The rapid development of next-generation sequencing (NGS) platforms and bioinfor-
matics tools in the last two decades has allowed the assembly and characterization of long
sequences into complete organellar genomes to be conducted with ease [28,29]. In general,
the chloroplast (cp) genome in angiosperms consists of a typical quadripartite structure,
containing a pair of inverted repeats (IRs) that are separated by large single-copy (LSC) and
small single-copy (SSC) regions [30]. The cp genome is generally maternally inherited, and
has a genome size between 120 k and 170 k bp in length [22]. Its low rates of nucleotide
substitutions and recombination make it suitable for use in phylogenetic studies of higher
plants, thus resolving the complex evolutionary relationships in complicated genera [31,32].
On the other hand, complete cp genome sequences also enable researchers to understand
various biological disciplines in plants, including gene families and functions, genome
structure and evolution, phylogenomic relationship, etc. [33,34].

Using cpDNA is much preferred by researchers in phylogenetic studies, as demon-
strated in Dioscorea; yet, studies have shown that the complete cp genome could increase
phylogenetic resolution at low taxonomic levels when compared to the use of short gene
sequences [22,35,36]. Owing to the need to reveal the phylogenetic relationships in Dioscorea
at cp genome level, so far approximately 55 cp genome sequences, representing 35 Dioscorea
species, have been made available in the NCBI GenBank database (as of January 2023).
Despite the relevant amount of cp genomes that have been sequenced, the number of cp
genomes reported for Dioscorea species was still less than 10% of the total species recorded
in the genus. To expand the genetic information of Dioscorea, in this study, we sequenced
anew and assembled the cp genome of four Dioscorea species that are native to Thailand.
The assembled cp genome sequences of D. brevipetiolata, D. depauperata, D. glabra, and
D. pyrifolia were characterized, and comparison analyses were conducted between the four
species and other closely-related species. As a potential source of medicinal properties, we
also identified several highly variable regions in the cp genome that could be developed
into DNA markers. Phylogenomic analyses were also carried out to reveal the molecular
placement of these species at cp genome level.

2. Materials and Methods
2.1. Plant Materials and DNA Extraction

Fresh, young leaf samples of four species of Dioscorea, including D. brevipetiolata (Prain
and Burkill), D. depauperata (Prain and Burkill), D. glabra (Roxb.), and D. pyrifolia (Kunth), were
collected from the Khon Kaen and Udonthani provinces, Thailand. The plants were identified
following the Flora of Thailand, 2009, Dioscoreaceae, by the corresponding author. Specimen
vouchers were kept at the Department of Biology, Faculty of Science, Khon Kaen University
(KKU), collector numbers A. Chaveerach 1031, 1031.1, 1034, 1034.1, 1035, 1035.1, 1040, and
1040.1, respectively. The leaf samples were immediately kept in Ziplock bags containing silica
gel beads, prior to being transported back to the laboratory for DNA extraction. Total genomic
DNA was extracted using a DNeasy Plant Mini Kit (QIAGEN, Hilden, Germany), based
on the manufacturer’s protocol. DNA purity and quantity were estimated using a Qubit™
4 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA).
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2.2. Next-Generation Sequencing, Genome Assembly, and Gene Annotation

A 350 bp paired-end library was prepared using a TruSeq DNA Sample Prep Kit (Illumina,
San Diego, CA, USA) to obtain 150 bp pair-end reads. Next-generation sequencing was
performed on the four collected species with an Illumina NovaSeq platform (Illumina, USA).
The NGS QC Toolkit was used to trim off the adapter sequences [37] and the plastid genome
was visualized using OrganellaGenomeDRAW v.1.3.1 [38]. The assembled cp genome was
annotated, and the inverted repeat junctions were identified using GeSeq v.2.03 [39]. The
circular cp genome was visualized using OrganellaGenomeDRAW v.1.3.1. The four Dioscorea
species sequences of the annotated cp genome were deposited in the NCBI GenBank database
under the accession numbers OL638495–OL638498.

2.3. Large Repeats and Simple Sequence Repeats (SSRs) Analysis

Large repeats, including the forward, palindromic, reverse, and complement repeats,
were identified using REPuter [40], in which the minimum repeat size was set at 30 bp and
the Hamming distance was set at 3. The SSRs present in the cp genome were identified
using MISA-web [41]. The minimum number of repeat parameters were set at 10, 6, 5, 5, 5,
and 5 for mono-, di-, tri-, tetra-, penta-, and hexanucleotide motifs, respectively.

2.4. Comparative Genome and Nucleotide Diversity Analysis

The junctions of the inverted repeats for 25 species of Dioscorea, including D. abyssinica,
D. baya, D. brevipetiolata, D. burkilliana, D. cayennensis, D. collettii, D. depauperata, D. dumeto-
rum, D. elephantipes, D. esculenta, D. glabra, D. hirtiflora, D. japonica, D. nipponica, D. persimilis,
D. polystachya, D. praehensilis, D. pyrifolia, D. quinquelobata, D. rotundata, D. sagittifolia,
D. schimperiana, D. togoensis, D. villosa, and D. zingiberensis, were visualized using the
IRscope program [42] and the genes adjacent to them were identified. To ensure con-
sistency in the annotation of gene content, the 25 downloaded cp genome sequences
of Dioscorea were reannotated using GeSeq v2.03 [39] prior to junction analysis. Inter-
specific variation of the 25 species of Dioscorea at the cp genome level, including the
four obtained from this study, was analyzed using mVISTA [43,44] with the Shuffle-
LAGAN mode [45]. The cp genome of D. bulbifera was selected as the reference genome
(Supplementary Materials, Table S1). Nucleotide diversity (Pi) in the LSC, SSC, and IR re-
gions of the 25 species of Dioscorea was estimated using DnaSP v.6 [46]. The window length
was set at 1000 bp, and 500 bp was selected for step size. The numbers of polymorphic sites
and parsimony informative sites were also calculated.

2.5. Phylogenetic Reconstruction

Phylogenetic analysis was carried out based on the complete cp genome sequences of
37 species of Dioscoreaceae. Ten species—Burmania coelestis, B. cryptopetala, and B. disticha of
Burmaniaceae, Diocoreales, as well as Croomia heterosepala, C. japonica, C. pauciflora, Stamonia
japonica, S. mairei, S. tuberosa, and S. sessilifolia of Stemonaceae, Pandanales—were included
as outgroups (Supplementary Materials, Table S1). All sequences were prepared by MEGA-
X [47]. Multiple sequence alignment was performed using MAFFT v.7 [48] and phylogenetic
trees were reconstructed based on two methods, maximum likelihood (ML) [49] and
Bayesian inference (BI) [50]. The maximum likelihood was constructed using RAxML-
HPC2 on XSEDE using a generalized-time-reversible (GTR) model with gamma (+G), and
1000 bootstrap replications were selected; for BI, the BI tree was constructed using MrBayes
on XSEDE v.3.2.7a. A Markov chain Monte Carlo (MCMC) analysis was run for two million
generations (Ngen = 2,000,000), with trees sampled every 100 generations. Both the ML
and BI analyses were conducted using the pipelines available in the Cyberinfrastructure for
Phylogenetic Research (CIPRES) Science Gateway v.3.3 [51]. Resulting trees were visualized
using FigTree version 1.4.4 [52].
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3. Results
3.1. Chloroplast Genome Structure of Dioscorea

The complete cp genomes of the four species of Dioscorea showed a typical quadripar-
tite structure in a circular form (Figure 1). The cp genomes were each comprised of a pair of
inverted repeats (IRs), which were located between the large single-copy (LSC) and small
single-copy (SSC) regions. The cp genome sizes varied from 153,370 bp (D. pyrifolia) to
153,503 bp (D. glabra). All four cp genomes were predicted to have the same total number of
genes, which was 113, including 79 protein-coding (CDS), 30 tRNA, and four rRNA genes.
The GC content of the four cp genomes obtained from this study was identical, and was
37% (Table 1). Groups of genes, functions of genes, and gene names are listed in Table 2.
Among these genes, 18 of them were duplicated in the IR region, including trnH-GUG, rpl2,
rpl23, trnI-CAU, ycf 2, ycf 15, trnL-CAA, ndhB, rps7, trnV-GAC, rrn16, trnI-GAU, trnA-UGC,
rrn23, rrn4.5, rrn5, trnR-ACG, and trnN-GUU (Supplementary Materials, Table S2). A
total of 19 genes contained introns, of which trnK-UUU had 2585 introns (D. brevipetiolata),
2586 introns (D. depauperata), 2604 introns (D. glabra), or 2577 introns (D. pyrifolia), ycf 3
and clpP contained two introns, and trnT-CGU, atpF, rpoC1, trnL-UAA, trnV-UAC, petB,
petD, rpl16, rpl2, ndhB, rps12, trnI-GAU, trnA-UGC, and ndhA each contained one intron
(Supplementary Materials, Table S3).

Genes 2023, 14, 703  5  of  17 
 

 

 

Figure 1. Genome structure and gene map of  the four studied species, Dioscorea brevipetiolata, D. 

depauperata, D. glabra, and D. pyrifolia. The inside and outside circle genes are transcribed clockwise 

and counter‐clockwise, respectively. The color codes represent different functional groups of  the 

genes. The thick black lines indicate boundaries of the inverted repeats (IRA and IRB), divided be‐

tween the LSC and SSC regions. 

Table 1. General characteristics of complete chloroplast genomes of the four Dioscorea species. 

Sample Name 

Total 

Length 

(bp) 

GC 

(%) 

LSC Re‐

gion 

Length (bp) 

SSC Re‐

gion 

Length (bp) 

IR Region 

Length 

(bp) 

Protein–

Coding 

Genes 

Transfer 

RNA 

Genes 

Ribosomal 

RNA 

Genes 

GenBank Ac‐

cession Num‐

ber 

D. brevipetiolata  153,485  37  83,720  18,813  25,476  79  30  4  OL638495 

D. depauperata  153,487  37  83,710  18,825  25,476  79  30  4  OL638496 

D. glabra  153,503  37  83,724  18,827  25,476  79  30  4  OL638497 

D. pyrifolia  153,370  37  83,692  18,886  25,396  79  30  4  OL638498 

   

Figure 1. Genome structure and gene map of the four studied species, Dioscorea brevipetiolata,
D. depauperata, D. glabra, and D. pyrifolia. The inside and outside circle genes are transcribed clockwise
and counter-clockwise, respectively. The color codes represent different functional groups of the
genes. The thick black lines indicate boundaries of the inverted repeats (IRA and IRB), divided
between the LSC and SSC regions.
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Table 1. General characteristics of complete chloroplast genomes of the four Dioscorea species.

Sample Name Total
Length (bp) GC (%)

LSC
Region
Length

(bp)

SSC
Region
Length

(bp)

IR Region
Length

(bp)

Protein–
Coding
Genes

Transfer
RNA

Genes

Ribosomal
RNA

Genes

GenBank
Accession
Number

D. brevipetiolata 153,485 37 83,720 18,813 25,476 79 30 4 OL638495
D. depauperata 153,487 37 83,710 18,825 25,476 79 30 4 OL638496

D. glabra 153,503 37 83,724 18,827 25,476 79 30 4 OL638497
D. pyrifolia 153,370 37 83,692 18,886 25,396 79 30 4 OL638498

Table 2. List of genes, including their function, groups, and names, in the four Dioscorea species
chloroplast genomes.

Function of Gene Group of Gene Gene Name

Photosynthesis related genes

Assembly and stability of Photosystem I * ycf 3, ycf 4

ATP synthase atpA, atpB, atpE, * atpF, atpH, atpI

cytochrome b/f compelx petA, * petB, * petD, petG, petL, petN

cytochrome c synthesis ccsA

NADPH dehydrogenase * ndhA, * ndhB (2), ndhC, ndhD, ndhE, ndhF,
ndhG, ndhH, ndhI, ndhJ, ndhK

Photosystem I psaA, psaB, psaC, psaI, psaJ

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH,
psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ

Rubisco rbcL

Transcription and translation related genes

ribosomal proteins
rps2, rps4, rps3, rps7 (2), rps8, rps11, * rps12

(2), rps14, rps15, rps18, rps19, * rpl2 (2),
rpl14, * rpl16, rpl20, rpl22, rpl23 (2), rpl32,

rpl33, rpl36

ribosomal RNA rrn4.5 (2), rrn5 (2), rrn16 (2), rrn23 (2)

transcription rpoA, rpoB, * rpoC1, rpoC2

transfer RNA

* trnA-UGC (2), trnC-GCA, trnD-GUC,
trnE-UUC, trnF-GAA, trnf M-CAU,

trnG-GCC, trnH-GUG (2), trnI-CAU (2),
* trnI-GAU (2), * trnK-UUU, trnL-CAA (2),

* trnL-UAA, trnL-UAG, trnM-CAU,
trnN-GUU (2), trnP-UGG, trnQ-UUG,
trnR-ACG (2), trnR-UCU, trnS-GCU,
trnS-GGA, trnS-UGA, * trnT-CGU,

trnT-GGU, trnT-UGU, trnV-GAC (2),
* trnV-UAC, trnW-CCA, trnY-GAU

translation initiation factor inf A

Other genes

carbon metabolism cemA

fatty acid synthesis accD

proteolysis * clpP

RNA processing matK

Genes of unknown function conserved reading frames ycf 1, ycf 2 (2), ycf 15 (2)

* = Gene with intron; (2) = 2 repeat units.

3.2. Repeat Sequences and SSR Analysis

A total of 90 large repeats were detected in four cp genome sequences, of which
11–14 were palindromic repeats and 9–11 were forward repeats. One large reverse
repeat was identified, which was derived from D. glabra. The repeat length that was
most abundant was 30–40 bp in length, followed by the length 41–50 bp. The repeat
length that was recorded the least was 51–60 bp, of which only one was found in
D. pyrifolia (Figure 2; Supplementary Materials, Table S4).
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three repeat types, including palindromic, forward, and reverse (A); length group of repeat sequences
(B); the three types of SSRs in Dioscorea cp genomes, including mononucleotides, dinucleotides, and
trinucleotides (C); and the number of identified SSR motifs in different repeat types (D).

The SSR analysis of the four studied Dioscorea species revealed three SSRs: mono-, di-,
and trinucleotides. Mononucleotides was the most-observed type in all four studied Dioscorea
species, with A and T present, while C and G were absent. A type was found the most in
D. depauperata and D. glabra at 19 SSRs, followed by D. brevipetiolata at 17 repeats and
D. pyrifolia at 16 repeats. T type was found the most in D. brevipetiolata at 21 SSRs, followed by
D. pyrifolia, D. depauperata, and D. glabra at 20, 16, and 16 SSRs, respectively. For dinucleotides,
there was only TA in D. brevipetiolata with two SSRs, with D. depauperata, D. glabra, and
D. pyrifolia at one SSR each. Concerning trinucleotides, there were ATA and TAT with one SSR
in all four studied Dioscorea species (Figure 2; Supplementary Materials, Table S5).

3.3. IR Expansion and Contraction

There were four boundaries located between the LSC–IR and SSC–IR regions in all 25 cp
genomes. In general, the genes adjacent to the boundaries were similar in all cp genomes
analyzed (Figure 3). For the junction between the LSC and IRB regions (JLB), the rps19 gene
was found crossing over from the IRB region into the LSC region for all species, except for
D. zingiberensis; the rps19 gene of D. zingiberensis was placed in the LSC region and was 48 bp
away from the boundary. On the other hand, the trnH genes, which were adjacent to JLB, were
located in the IRB region in all species analyzed. For the junction between the SSC and IRB
regions (JSB), two genes, trnN and ycf1, were placed next to the boundary. The trnN gene was
located in the IRB region, while ycf1 was identified crossing over from the IRB region into the
SSC region for all species analyzed. For the junction between the SSC and IRA regions (JSA),
trnN was found intact in the IRA region, while the ndhF gene that was located in the SSC
region was found crossing over JSA in the cp genomes of 10 species of Dioscorea, including
D. baya, D. brevipetiolata, D. collettii, D. depauperata, D. dumentorum, D. glabra, D. japonica,
D. nipponica, D. persimillis, D. polystachya, D. pyrifolia, and D. togoensis. For the junction between
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the LSC and IRA regions (JLA), both the trnH and psbA genes were placed in the LSC and
IRA regions, respectively.
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Figure 3. Comparisons of the border regions of LSC, SSC, and IR among 25 Dioscorea cp genomes;
the boxes above and below the line indicate adjacent border genes. The figure only shows relative
changes at or near the IR/SC borders, and is not to scale regarding sequence length.

3.4. Genomes Sequence Divergence among Dioscorea Species

Genome comparison was analyzed in 25 Dioscorea cp genomes, including the four stud-
ied species and the 21 Dioscorea species derived from the NCBI database, with
D. bulbifera for reference. The results indicated that the IR regions were more highly
conserved than the LSC and SSC regions, with variations located on LSC and SSC. Eight
variation gaps were observed in the cp genomes alignment; namely, psbA (black arrow, A),
trnK-UUU through trnQ-UUG (black arrow, B), trnS-GCU through trnG-UCC (black arrow,
C), trnT-UGU through trnL-UAA (black arrow, D), accD through psaI (black arrow, E), psbE
through petL (black arrow, F), petD (black arrow, G), and ccsA–trnL-UAG–rpl32–ndhF (black
arrow, H). Variation gaps of trnK-UUU through trnQ-UUG, and trnS-GCU through trnG-
UCC, were found in all Dioscorea cp genomes. Nine Dioscorea cp genomes had variation
gaps at psbA and trnT-UGU through the trnL-UAA regions. Four Dioscorea cp genomes,
D. collettii, D. quinquelobata, D. villosa, and D. zingiberensis had nucleotide divergence gaps
at the accD through psaI regions. Sixteen Dioscorea cp genomes had variation gaps at
psbE through petL region, while nucleotide divergence gaps in petD were found only in
D. esculenta. Three Dioscorea cp genomes, D. colletii, D. quinquelobata, and D. villosa, had
distinct gaps in the ccsA–trnL-UAG–rpl32–ndhF region. These regions had more than 50%
different nucleotide sequences from D. bulbifera, which was used for reference (Figure 4).
Nucleotide diversity via sliding window analysis of the 25 cp genomes were compared
in the LSC, IR, and SSC regions. Nucleotide variation was higher in the LSC and SSC
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than the IR regions, as IR regions have low nucleotide diversity. There were three highly
nucleotide-divergent regions, called mutational hotspots, located in the LSC (A) and SSC
(B, C) regions, showing a Pi value of >0.03 (Figure 5; Supplementary Materials, Table S6).
The first hotspot, A, covered the whole trnC-GCA gene; the second hotspot, B, was located on
the ycf1 gene; while the third hotspot, C, consisted of the rpl32 gene and the intergenic spacer
region ndhF–rpl32.
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Figure 4. Comparative plots based on sequence identity of the 25 cp genomes of Dioscorea species,
using D. bulbifera as the reference genome, constructed by mVISTA Software using Shuffle-LAGAN
mode; the purple bars represent exons; pink bars represent conserved non-coding sequences (CNS);
light-blue bars represent tRNA and rRNA regions; gray arrows above the aligned sequences indicate
the genes and their orientations; the x-axis represents the number of bases in aligned sequences; the
y-axis represents the percent identity within 50–100%; black arrows indicate regions which have a
crucial divergence in variations located on LSC and SSC. Region with high variation include psbA
(black arrow, A), trnK-UUU–trnQ-UUG (black arrow, B), trnS-GCU–trnG-UCC (black arrow, C),
trnT-UGU–trnL-UAA (black arrow, D), accD–psaI (black arrow, E), psbE–petL (black arrow, F), petD
(black arrow, G), and ccsA–trnL-UAG–rpl32–ndhF (black arrow, H).
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3.5. Phylogenetic Analysis

As both the ML and BI trees displayed similar topology, only the ML tree is shown
(Figure 6). Based on the phylogenetic analysis reconstructed using the complete cp genome
sequences, a completely resolved phylogenetic relationship was recorded among species of
Dioscorea for the ML tree, but not for the BI tree. Divergence is considered reliable when the
bootstrap support (BS) value is equal to or more than 75%, while the posterior probability
(PP) value is equal to or more than 0.90, as indicated on the branch node. By placing the
seven Pandanales taxa as an outgroup, in Dioscoreales, the Dioscorea clade was sister to
the Burmannia + Tacca + Trichopus clade. In the Dioscorea clade, two distinct groups can
be observed—one of the groups contains five species, including D. collettii, D. futchauensis,
D. quinquelobata, D. villosa, and D. zingiberensis, while all the other species were placed in
the other group. A moderate PP value (PP = 0.76) was observed on the branch of the BI
tree between the D. futschauensis + D. quinquelobata clade and D. zingiberensis. However, this
branch was supported by the ML tree, in which a BS value of 77% was recorded. Based on
current circumscription, Dioscorea exhibited a monophyletic relationship. A distinct divergence
was recorded at the root of the Dioscorea clade, of which five species, including D. collettii,
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D. futschauensis, D. quinquelobate, D. villosa, and D. zingiberensis, formed a group that was
separated from the other members of Dioscorea. For the four species of Dioscorea used in this
study, D. depauperata was closely related to D. glabra, and they were clustered with two other
species, where D. alata was first to diverge, followed by D. brevipetiolata. D. pyrifolia was closely
related to D. aspersa, and both of them formed a group with D. persimilis.
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Figure 6. Phylogenetic trees inferred from maximum likelihood and Bayesian inference, showing
genetic relationships of cp genome sequences of 37 species representing four different genera (Bur-
mannia, Dioscorea, Tacca, and Trichopus) of Dioscoreales. Seven taxa of Pandanales, representing two
genera (Croomia and Stemona), were included as an outgroup. The numbers associated with each node
are bootstrap support values for ML (left) and posterior probability values for BI (right). Asterisks
denote studied species.

4. Discussion

In this study, the cp genomes of four Dioscorea species that are native to Thailand were
sequenced and assembled, and a comprehensive comparative analysis of these cp genomes
was performed using other published cp genomes of the same genus obtained from NCBI
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GenBank. The cp genome sizes and characteristics of the four studied Dioscorea species,
D. brevipetiolata, D. depauperata, D. glabra, and D. pyrifolia, are within a range that is similar
to other reported cp genomes of Dioscorea, for which the complete cp genome sequence
length is between 152,039 bp (D. burkilliana; GenBank no. MG805605) and 155,406 bp
(D. rotundata; GenBank no. KJ490011). Within Dioscoreaceae, members of Tacca (GenBank
nos. KX171420 and KT719235) have a larger cp genome size when compared to Dioscorea,
which is approximately 163,000 bp, while the cp genome size of Trichopus zeylanicus subsp.
travancoricus (GenBank no. MK674169) was 153,497, which is similar to that of Dioscorea.
The repeat sequences found in the cp genome are products of the rearrangement and
recombination of sequences in the cp genome [53]. Long repeat sequences play a role
in inducing indels and identifying mutational hotspots [54], while SSRs are potentially
useful in the characterization of closely-related species, as well as genetic differentiation
at an intraspecific level, due to their high variability and reproducibility [55]. Based on
our findings, we were unable to identify any patterns that could correlate the cp genome
size and structure with the number of repeat sequences found. On the other hand, the
finding from the IR border analysis somehow suggested that chloroplast genome evolution
in Dioscorea seems to be highly conserved; the sequence length of the IR regions was similar,
between 25,213 bp (D. schimperiana; GenBank no. MG805614) and 25,591 bp (D. collettii;
GenBank no. KY996495). The expansion and contraction of the IR region allowed the
movement of several genes adjacent to the junctions, including the rps19 and ndhF genes, to
cross into the neighboring region. Although expansion and contraction of the IR region are
common in the plant cp genome, they can differ in some degree [56]. Yet, the movement
of genes crossing over the border in Dioscorea seems to not be drastic, suggesting that the
evolution of the IR region in Dioscorea could be in its beginning stage.

Based on the finding from mVISTA, similar results of divergent regions have been
previously reported in Dioscorea cp genomes, including ndhF, ycf 1, trnK-trnQ, trnS-trnG,
trnC-petN, trnE-trnT, petG-trnW-trnP, and trnL-rpl32 [22]. Moreover, the divergent regions
include trnK-trnQ, trnS-trnG, trnC-petN, trnE-trnT, petG-trnW-trnP, and trnL-rpl32, where
previous reports found that these divergent regions were mostly present in the SSC and
LSC regions and showed a trend toward more rapid evolution [22,57–59]. With that in
mind, DNA markers in the form of indels and nucleotide repeats could also be explored for
species discrimination of Dioscorea. For example, two indel markers were developed from
the complete cp genomes of six Ipomoea species [60], and five species-specific indel markers
were developed to authenticate five species of Panax [61]. With at least eight different
variable regions found in the alignment of the 25 cp genome sequences, based on mVISTA,
as well as hundreds of repeats identified in the cp genome of Dioscorea, with several species
of Dioscorea as important resources in traditional medicine production [62], novel indel and
repeat markers could be developed to aid in species identification and authentication of
these important species.

In a previous work, Zhao et al. [22] identified eight highly variable regions from a
sliding window analysis of the cp genome sequences of nine species of Dioscorea. Among
these eight highly variable regions, the ycf 1 gene was also reported in our work, but
the regions trnC, rpl32, and ndhF-rpl32, reported in our study, are new information. The
difference in the discovery of novel hotspot regions may be due to the number of cp genome
sequences used during the analysis; Zhao et al. [22] utilized nine species of Dioscorea,
while 25 species of Dioscorea are included in this study. Altogether there is no study that
evaluates the minimum cp genome sequences that should be included in a sliding window
analysis to ensure high accuracy in hotspot detection, taxon sampling from eight to ten is
recommended in search of a specific barcode [63]. Yet, an increase in taxon sampling may
improve the accuracy of sequence alignment, which will further affect the information of
variable sites delivered [64]. Therefore, we do not exclude the possibility that the hotspot
regions identified in our study might be superior to those proposed by Zhao et al. [22]
in terms of phylogenetic resolution at the species level. However, further experiments to
verify the discrimination strength of these regions are required.
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To our knowledge, this is the first work on phylogenetic tree reconstruction of Dioscorea
that involved 31 different species, based on the complete cp genome sequence. Evidently,
the use of the complete cp genome sequence in phylogenetic tree reconstruction of com-
plicated genera has been recommended by many researchers, as it could yield promising
results [65,66]. For example, the molecular placement of D. aspersa, D. glabra, and D. per-
similis was ambiguous when using five cp and two mitochondrial DNA sequences [67],
but was resolved in this study. In the same study, the phylogenetic tree, reconstructed
using 48 Dioscorea taxa, revealed similar topology when compared to the phylogenetic tree
based on the complete cp genome sequences. The divergence of the five species in our
study complimented the grouping of the taxa from the section Stenophora [67]. The section
Stenophora is recognized as the most basal clade in the phylogeny of Dioscorea [68], while
the genus was proposed with more than 23 sections, with differing opinions being put
forward. Nonetheless, a fully resolved phylogenetic tree was obtained in this study; it is
recommended that an acceptable sample size ought to be achieved prior to phylogenetic
reconstruction for taxonomic classification purposes. Although there is literature proposing
the use of the complete cp genome sequence as super-barcodes that are effective in delimit-
ing closely related species [69], performing NGS on a large number of samples might not
be favorable to some laboratories due to sequencing cost and availability of sequencing
facilities. Thus, identifying a powerful DNA region that is adequate for phylogenetic
analysis of Dioscorea, as suggested in the previous paragraph on the DNA barcoding of
Dioscorea, is deemed requisite.

5. Conclusions

The genomic data generated in this study can be potentially useful for the authenti-
cation of Dioscorea species, and can be further developed into powerful species-specific
markers of Dioscorea species, using both subtle details and the overall cp genome. Addition-
ally, beyond reducing the necessary research time, funding, and the number of plant species
studied, the findings from the phylogenetic analysis of Dioscorea based on the complete cp
genome sequences have provided much insight into the molecular placement and phyloge-
netic relationship among the members of Dioscorea used in this study. Further taxonomic
classification of Dioscorea should also consider the use of this NGS dataset for reconstruction
of phylogenetic trees at the genome level, to aid in combing out the taxonomic uncertainties
among these complicated species.
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