Skip to main content

Pedosphere: A Hot Spot of the Largest and Most Complex Diversity of Microorganisms Among Terrestrial Ecosystems

  • Chapter
  • First Online:
Structure and Functions of Pedosphere
  • 548 Accesses

Abstract

The pedosphere is the outer layer of the earth and is a big habitat for different types of flora and fauna. The microbial biodiversity is not only complex in their physiological aspects, but their behaviour and efficiency to regulate all bio-geochemical cycles are also typical in a particular site. The interaction of all kind of microflora and microfauna with plant roots and other meso- and macroflora and meso- and macrofauna makes the pedosphere a hub for the most suitable habitat for all forms of biodiversity. This huge bioreserve of pedosphere is comprised by bacteria and Archaea, fungi, protists and many more eukaryotes, such as nematodes, oribatid, mites, centipedes and millipedes, enchytraeids, tardigrades, springtails, ants, ground beetles and earthworms. Soil biota, especially the microforms, is responsible to create life dynamics in pedosphere. Most of them are involved in beneficial plant growth-promoting activity and play important role to maintain the food web. As per the weight of microbial carbon per gram of the soil bacteria contributed with highest numbers of about 1 billion, actinomycetes are several hundred million, fungi are 10–20 million, algae are 10,000 to 3 million, protozoa cells are up to 1 million, and nematodes are 50 or more. The present chapter provides an insight about the microbial biodiversity of the pedosphere which makes it a lining and dynamic system to sustain life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology, 4th edn. Wiley, New York

    Google Scholar 

  • Antoun H, Prevost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Bagyaraj DJ, Ashwin R (2017) Soil biodiversity: role in sustainable horticulture. Biodivers Hortic Crops 5:1–18. https://doi.org/10.1016/j.jenvman.2017.08.001

    Article  CAS  Google Scholar 

  • Bagyaraj DJ, Thilagar G, Ravisha C, Kushalappa CG, Krishnamurthy KN, Vaast P (2015) Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agric Ecosyst Environ 202:198–202

    Article  Google Scholar 

  • Baldrian P (2003) Interactions of heavy metals with white-rot fungi. Enzym Microb Technol 32:78–91. https://doi.org/10.1016/S0141-0229(02)00245-4

    Article  CAS  Google Scholar 

  • Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, Oxford

    Book  Google Scholar 

  • Bardgett RD, Van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511. https://doi.org/10.1038/nature13855

    Article  CAS  PubMed  Google Scholar 

  • Beijerinck M (1893) BerichtübermeineKulturenniedererAlgen auf Nährgelatine. Z Bakteriol 13:781–786

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • Blackwell M (2011) The fungi: 1, 2, 3 ... 5.1 million species? Am J Bot 98:426–438

    Article  PubMed  Google Scholar 

  • Bonner JT, Lamon DS (2005) Behavior of cellular slime molds in the soil. Mycologia 97(1):178–184

    Article  CAS  PubMed  Google Scholar 

  • Borchhardt N, Baum C, Mikhailyuk T, Karsten U (2017) Biological soil crusts of arctic svalbard—water availability as potential controlling factor for microalgal biodiversity. Front Microbiol 8:1485. https://doi.org/10.3389/fmicb.2017.01485

    Article  PubMed  PubMed Central  Google Scholar 

  • Borzì A (1895) Studialgologici: saggio di ricerchesullabiologiadellealghe. Fasc. 1-2. G. Capara, p 476

    Google Scholar 

  • Brady NC, Weil RR (2002) The soils around us. In: The nature and properties of soils, 17th edn. Pearson Education, Upper Saddle River, pp 9–11

    Google Scholar 

  • Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, Dennett MR, Moran DM, Jones AC (2009) Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol 75(18):5797–5808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Old K (1982) Mycophagous soil amoeba: Interactions with three plant pathogenic fungi. Soil Biol Biochem 14:247–255

    Article  Google Scholar 

  • Coleman DC, Whitman WB (2005) Linking species richness, biodiversity and ecosystem function in soil systems. Pedobiologia 49:479–497

    Article  CAS  Google Scholar 

  • Conover A (2001) Hunting slime molds: they're not animals and they’re not plants, and biologists want to know a lot more about them. Smithsonian 2001:26–30

    Google Scholar 

  • Dawidziuk A, Popiel D, Kaczmarek J, Strakowska J, Jedryczka M (2016) Morphological and molecular properties of Trichoderma species help to control stem canker of oilseed rape. BioControl 61:755–768

    Article  CAS  Google Scholar 

  • De Luca T, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133(2):206–214

    Article  Google Scholar 

  • De Vargas C, Audic S, Henry N, Decelle J, Mahe F, Logares R, Lara E, Berney C et al (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. https://doi.org/10.1126/science.1261605

    Article  CAS  PubMed  Google Scholar 

  • Dick R (2009) Lecture on soil fungus in soil microbiology, personal collection of R. Dick, Ohio State University School of Environment & Natural Resources, Columbus, OH. diversity of marine picoeukaryotes. PLoS One 4:e7143

    CAS  Google Scholar 

  • Dobrovolsky T (2008) Pedosphere is the soil cover of the earth (is the earth’s mantle of soil): Institute of Ecological Pedology (soil science). Lomonosov Moscow State University, Moscow

    Google Scholar 

  • Dokuchaev VV (1949) Russian Chernozem. Works, vol. III, Publ. of AN SSSR, 620 p

    Google Scholar 

  • Ehrenberg CG (1833) DritterBeitragzurErkenntniss grosser Organisation in der Richtung des kleinstenRaumes. Königliche Akademie der Wissenschaften, Berlin, pp 145–336

    Google Scholar 

  • Ekelund F, Rønn R, Griffiths BS (2001) Quantitative estimation of flagellate community structure and diversity in soil samples. Protist 152:301–314

    Article  CAS  PubMed  Google Scholar 

  • Elliot LF, Lynch JM (1995) The international workshop on establishment of microbial inocula in soils: cooperative research project on biological resource management of the Organization for Economic Cooperation and Development (OECD). Am J Altern Agric 10:50–73

    Article  Google Scholar 

  • Emerson JB (2019) Soil viruses: a new hope. mSystems 4:e00120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, Singleton CM, Solden LM, Naas AE, Boyd JA, Hodgkins SB, Wilson RM, Trubl G, Li C, Frolking S, Pope PB, Wrighton KC, Crill PM, Chanton JP, Saleska SR, Tyson GW, Rich VI, Sullivan MB (2018) Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol 3:870–880. https://doi.org/10.1038/s41564-018-0190-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ettl H, Gärtner G (2014) Syllabus der Boden-, Luft-und Flechtenalgen. Springer, New York, p 773

    Book  Google Scholar 

  • Farzaneh M, Vierheilig H, Löss A, Kaul HP (2011) Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ 57(10):465–470

    Article  CAS  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 21–42

    Google Scholar 

  • Finlay BJ (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061–1063

    Article  CAS  PubMed  Google Scholar 

  • Flavin MC, O'Kelly TN, Wilkinson G (2000) Cholamonas cyrtodiopsidis gen. n., sp. n.(Cercomonadida), an endocommensal, mycophagous heterotrophic flagellate with a doubled kinetid. Acta Protozool 39:51–60

    Google Scholar 

  • Foissner W (1999) Description of two new, mycophagous soil ciliates (Ciliophora, Colpodea): Fungiphrya strobli n. g., n. sp. and Grossglockneria ovata n. sp. J Eukaryot Microbiol 46:34–42

    Article  Google Scholar 

  • Frąc M, Jezierska-Tys S, Takashi Y (2015) Occurrence, detection, and molecular and metabolic characterization of heat-resistant fungi in soils and plants and their risk to human health. Adv Agron 132:161–204

    Article  Google Scholar 

  • Gardi C, Jeffery S, Saltelli A (2013) An estimate of potential threats levels to soil biodiversity in EU. Glob Chang Biol 19:1538–1548

    Article  PubMed  Google Scholar 

  • Geisen S, Weinert J, Kudryavtsev A, Glotova M, Bonkowski M, Smirnov A (2014) Two new species of the genus Stenamoeba (Discosea, Longamoebia): cytoplasmic MTOC is present in one more amoebae lineage. J Eukaryot Microbiol 50(2):153–165

    Google Scholar 

  • Geisen S, Koller R, Hünninghaus M, Dumack K, Urich T, Bonkowski M (2015) The soil food web revisited: diverse and widespread mycophagous soil protists. Soil Biol Biochem 94:10–18

    Article  CAS  Google Scholar 

  • Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F et al (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42:293–323

    Article  CAS  PubMed  Google Scholar 

  • Geisen S, Lara E, Edward AD, Mitchell, Völcker E, Krashevska V (2020) Soil protist life matters! Senckenberg Museum of Natural History, Görlitz, pp 189–196

    Google Scholar 

  • Gilyarov MS (1949) Characteristic features of soil as a habitat and its significance in the evolution of insects. Nauka, Moscow

    Google Scholar 

  • Glare T et al (2012) Have biopesticides come of age? Trends Biotechnol 30:250–258

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez M, Pujol M, Metraux JP, Gonzalez-Garcia V, Bolton MD, Borrás-Hidalgo O (2011) Tobacco leaf spot and root rot caused by Rhizoctonia solani Kuhn. Mol Plant Pathol 12:209–216

    Article  PubMed  Google Scholar 

  • Gougoulias N, Papapolymerou G, Karayannis V, Spiliotis X, Chouliaras N (2018) Effects of manure enriched with algae Chlorella vulgaris on soil chemical properties. Soil Water Res 13:51–59

    Article  CAS  Google Scholar 

  • Grunzweig JM, Sparrow SD, Yakir D, Stuart Chapin F (2004) Impact of agricultural land-use change on carbon storage in Boreal Alaska. Glob Chang Biol 10(4):452–472

    Article  Google Scholar 

  • Hannula SE, Van Veen JA (2016) Primer sets developed for functional genes reveal shifts in functionality of fungal community in soils. Front Microbiol 7:1897

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrison RL, Keena MA, Rowley DL (2014) Classification, genetic variation and pathogenicity of Lymantria disparnucleopolyhedrovirus isolates from Asia, Europe, and North America. J Invertebr Pathol 116:27–35

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4):52. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016

    Article  Google Scholar 

  • Hiltner L (1904) Uber neuereErfahrungen und Probleme auf dem Gebiete der BodenbakteriologieunterbesondererBerucksichtigung der Grundungung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and non suspended algae. J Phycol 34:757–763

    Article  CAS  Google Scholar 

  • Hu C, Zhang D, Huang Z, Liu Y (2003) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257(1):97–111

    Article  CAS  Google Scholar 

  • Imada C (2005) Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek 87(1):59–63

    Article  CAS  PubMed  Google Scholar 

  • Ingham ER (2009) Soil biology primer, chapter 4: soil fungus. Soil & Water Conservation Society, Ankeny, pp 22–23

    Google Scholar 

  • Johns C (2015) Under our feet: soil microorganisms as primary drivers of essential ecological processes. Strategic analysis paper. Future Directions Internationals Pvt Ltd., p 8

    Google Scholar 

  • Kloepper JW (2003) A review of mechanisms for plant growth promotion by PGPR. In: Reddy MS, Anandaraj M, Eapen SJ, Sarma YR, Kloepper JW (eds) Abstracts and short papers. 6th international PGPR workshop. Indian Institute of Spices Research, Calicut, pp 81–92

    Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62. https://doi.org/10.1146/annurev-phyto-080508-081748

    Article  CAS  PubMed  Google Scholar 

  • Kützing FT (1843) Phycologiageneralis: oderAnatomie, Physiologie und Systemkunde der Tange. Brockhaus, Leipzig, p 458

    Book  Google Scholar 

  • Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb Ecol 58(2):394–407

    Article  PubMed  Google Scholar 

  • Lavelle P, Spain AV (2002) Soil ecology. Kluwer Academic Press, Amsterdam

    Google Scholar 

  • Lavelle P, Spain AV (2005) Soil ecology, chapter 3: soil organisms. Springer, New Delhi

    Google Scholar 

  • Lejzerowicz F, Pawlowski J, Fraissinet-Tachet L, Marmeisse R (2010) Molecular evidence for widespread occurrence of Foraminifera in soils. Environ Microbiol 12:2518–2526

    Article  CAS  PubMed  Google Scholar 

  • Linnaeus C (1753) Species Plantarum, p 1200. http://www.botanicus.org/title/b12069590

  • López-Bucio J, Pelagio-Flores R, Herrera-Estrell A (2015) Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hortic 196:109–123. https://doi.org/10.1016/j.scienta.2015.08.043

    Article  Google Scholar 

  • Lowenfels J, Lewis W (2006) Teaming with microbes: a gardener’s guide to the soil food web, chapter 3: bacteria. Timber Press, Portland

    Google Scholar 

  • Magdoff, F, Harold M, Van Es (2000) Building soils for better crops building soils for better crops. SARE, p 394. https://www.researchgate.net/publication/242399103

  • Mahé F, De Vargas C, Bass D, Czech L, Stamatakis A, Lara E, Singer D et al (2017) Parasites dominate hyperdiverse soil protist communities in neotropical rainforests. Nat Ecol Evol 1:91

    Article  PubMed  Google Scholar 

  • Martínez-Álvarez P, Vainio EJ, Botella L, Hantula J, Diez JJ (2014) Three mitovirus strains infecting a single isolate of Fusarium circinatum are the first putative members of the family Narnaviridae detected in a fungus of the genus Fusarium. Arch Virol 159:2153–2155

    Article  PubMed  CAS  Google Scholar 

  • Meyen FJF (1829) Beobachtungenübereinigeniedere Algenformen. Weber, pp 769–778

    Google Scholar 

  • Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10:311–324. https://doi.org/10.1111/j.1364-3703.2009.00538.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mrva M (2010) Morphological studies on two rare soil amoebae Deuteramoeba algonquinensis and D. mycophaga (Gymnamoebia, Amoebidae). Protistology 6:284–289

    Google Scholar 

  • Mu F et al (2018) Virome characterization of a collection of S. sclerotiorum from Australia. Front Microbiol 8:2540–2552

    Article  PubMed  PubMed Central  Google Scholar 

  • Nägeli C (1849) GattungeneinzelligerAlgen. Schulthess 139 p

    Google Scholar 

  • Nikolaev SI, Mitchell EAD, Petrov NB, Berney C, Fahrni J, Pawlowski J (2005) The new species of the genus Stenamoeba (Discosea, Longamoebia): cytoplasmic MTOC is present in one more amoebae lineage. J Eukaryot Microbiol 50:153

    Google Scholar 

  • Not F, del Campo J, Balagué V, de Vargas C, Massana R (2009) New insights into the of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162:545–570

    Google Scholar 

  • Osaki H, Sasaki A, Nomiyama K, Tomioka K (2016) Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 52:835–847

    Article  CAS  PubMed  Google Scholar 

  • Oskay M, Tamer U, Cem A (2004) Antibacterial activity of some Actinomycetes isolated from farming soils of Turkey. Afr J Biotechnol 3:441–446

    Article  Google Scholar 

  • Page F (1977) The genus Thecamoeba (Protozoa, Gymnamoebia) species distinctions, locomotive morphology, and protozoan prey. J Nat Hist 11:25–63

    Article  Google Scholar 

  • Pankratova EM (2006) Functioning of cyanobacteria in soil ecosystems. Eurasian Soil Sci 39:S118–S127

    Article  Google Scholar 

  • Paolo N (2020) Soil is still an unknown biological system. Appl Sci 10:3717. https://doi.org/10.3390/app10113717

    Article  CAS  Google Scholar 

  • Petz W, Foissner W, Wirnsberger E, Krautgartner WD, Adam H (1986) Mycophagy, a new feeding strategy in autochthonous soil ciliates. Naturwissenschaften 73:560–562

    Article  Google Scholar 

  • Poinar GO, Waggoner BM (1992) A fossil myxomycete plasmodium from Eocene-Oligocene amber of the Dominican Republic. J Protozool 39(5):639–642

    Article  Google Scholar 

  • Pratama AA, Van Elsas JD (2018) The ‘neglected’ soil virome: potential role and impact. Trends Microbiol 26:649–662. https://doi.org/10.1016/j.tim.2017.12.004

    Article  CAS  PubMed  Google Scholar 

  • Rahmonov O, Piątek J (2007) Sand colonization and initiation of soil development by Cyanobacteria and algae. Ekológia 26(1):52–63

    CAS  Google Scholar 

  • Ranjard L, Richaume AS (2001) Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152(8):707–716

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53. https://doi.org/10.1111/j.1469-8137.2006.01750.x

    Article  CAS  PubMed  Google Scholar 

  • Sachidanand B, Mitra NG, Kumar V, Roy R, Mishra BB (2019) Soil as a huge laboratory for microorganisms. Agric Res Technol 22(4):556205. https://doi.org/10.19080/ARTOAJ.2019.22.556205

    Article  Google Scholar 

  • Sapkota A, Thapa A, Budhathoki A, Sainju M, Shrestha P, Aryal S (2020) Isolation, Characterization, and Screening of Antimicrobial-Producing Actinomycetes from Soil Samples. Int J Microbiol 2020:7. https://doi.org/10.1155/2020/2716584

    Article  CAS  Google Scholar 

  • Schmidle W (1901) Ueberdrei Algengenera. Ber Deut Bot Ges 19:149–158

    Google Scholar 

  • Schoelz JE, Stewart LR (2018) The role of viruses in the phytobiome. Annu Rev Virol 5:93–111

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Bohm K, Geisen S, Wubs E et al (2017) The prey’s scent – Volatile organic compound mediated interactions between soil bacteria and their protist predators. ISME J 11:817–820. https://doi.org/10.1038/ismej.2016.144

    Article  CAS  PubMed  Google Scholar 

  • Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri L, Mitchell EAD, Lara E (2017) Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biol Biochem 112:68–76

    Article  CAS  Google Scholar 

  • Shiba T (1989) Taxonomy and ecology of marine bacteria. In: Harashima K, Shiba T, Murata N (eds) Aerobic photosynthetic bacteria. Japan Scientific Societies Press, Tokyo, pp 9–24

    Google Scholar 

  • Shtina EA, Gollerbach MM (1976) Ecology of soil algae. Nauka 143 p

    Google Scholar 

  • Smirnov AV, Nassonova ES, Chao E, Cavalier-Smith T (2007) Phylogeny, evolution, and taxonomy of vannellid amoebae. Protist 158:295–324

    Article  CAS  PubMed  Google Scholar 

  • Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T (2011) A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist 162:545–570

    Article  PubMed  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Microbiology 30(4):205–240. https://doi.org/10.1080/10408410490468786

    Article  CAS  Google Scholar 

  • Soule MH (1932) Identity of Bacillus subtilis, Cohn 1872. J Infect Dis 51(2):191–215. http://www.jstor.org/stable/30088436

    Article  Google Scholar 

  • Staay, van der Moon SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610

    Article  CAS  Google Scholar 

  • Starr EP, Nuccio EE, Pett-Ridge J, Banfield JF, Firestone MK (2019) Meta transcriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc Natl Acad Sci U S A 116(51):213–222

    Article  CAS  Google Scholar 

  • Swift MJ (2005) Human impacts on biodiversity and ecosystem services: an overview. In: Dighton J, White JF (eds) The fungal community its organization and role in ecosystems. CRC Press, Boca Raton, pp 627–641

    Chapter  Google Scholar 

  • Swift MJ, Andren O, Brussaard L, Briones M, Couteaux MM, Ekschmitt K, Kjoller A, Loiseau P, Smith P (1998) Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Glob Chang Biol 4:729–743

    Article  Google Scholar 

  • Sylvia DM, Hartel PG, Fuhrmann JJ, Zuberer DA (2005) In: Sylva DM (ed) Principles and applications of soil microbiology, 2nd edn. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Treseder KK, Lennon JT (2015) Fungal traits that drive ecosystem dynamics on land. Microbiol Mol Biol Rev 79:243–262. https://doi.org/10.1128/MMBR.00001-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedi PC, Pandey S, Bhadauria S (2010) Textbook of microbiology. Pointer Publishers, Jaipur

    Google Scholar 

  • Trubl G, Jang HB, Roux S, Emerson JB, Solonenko N, Vik DR, Solden L, Ellenbogen J, Runyon AT, Bolduc B, Woodcroft BJ, Saleska SR, Tyson GW, Wrighton KC, Sullivan MB, Rich VI (2018) Soil viruses are underexplored players in ecosystem carbon processing. mSystems 3:e00076. https://doi.org/10.1128/mSystems.00076-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valles SM, Porter SD, Calcaterra LA (2018) Prospecting for viral natural enemies of the fire ant Solenopsis invicta in Argentina. PLoS One 13:e0192377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Van West P, Appiah AA, Gow NAR (2003) Advances in research on oomycete root pathogens. Physiol Mol Plant Pathol 62:99–113. https://doi.org/10.1016/S0885-5765(03)00044-4

    Article  Google Scholar 

  • Viles HA (2012) Microbial geomorphology: a neglected link between life and landscape. Geomorphology 157–158:6–16

    Article  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci 111(14):5266–5270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Zhang J, Zhang H, Qiu D, Guo L (2016) Two novel relative double-stranded RNA mycoviruses infecting Fusarium poae strain SX63. Int J Mol Sci 17:E641

    Article  PubMed  CAS  Google Scholar 

  • Wardle D (2002) Communities and ecosystems. Princeton University Press, Princeton

    Google Scholar 

  • Wen M, Steinmetz NF (2016) Design of virus-based nanomaterials for medicine, biotechnology, and energy. Chem Soc Rev 45:4074–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson KE, Srinivasiah S, Wommack KE (2012) Viruses in soil ecosystems. In: Huang PM, Li Y, Summer ME (eds) Handbook of soil science: perspectives and processes. CRC Press, Boca Raton, pp 24.1–24.10

    Google Scholar 

  • Williamson KE, Fuhrmann JJ, Wommack KE, Radosevich M (2017) Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu Rev Virol 4:201–219. https://doi.org/10.1146/annurev-virology-101416-041639

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Ge T, Chen C, O’Donnell AG, Wu J (2012) Significant role for microbial autotrophy in the sequestration of soil carbon. Appl Environ Microbiol 78(7):2328–2336. https://doi.org/10.1128/AEM.06881-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurkov VV, Beatty JT (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zancan S, Trevisan R, Paoletti MG (2006) Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agric Ecosyst Environ 112:1–12

    Article  Google Scholar 

  • Zenova G, Shtina E, Dedysh S, Glagoleva O, Likhacheva A, Gracheva T (1995) Ecological relations of algae in biocenoses. Microbiology 64(2):121–133

    Google Scholar 

  • Zhang S (2017) The secrets of the ‘humongous fungus’. The Atlantic

    Google Scholar 

  • Zhang R et al (2014) A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses. Front Microbiol 5:360

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energy 108:281–287

    Article  CAS  Google Scholar 

  • Žifčáková L, Vetrovský T, Howe A, Baldrian P (2016) Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environ Microbiol 18:288–301. https://doi.org/10.1111/1462-2920.13026

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rani, M. (2022). Pedosphere: A Hot Spot of the Largest and Most Complex Diversity of Microorganisms Among Terrestrial Ecosystems. In: Giri, B., Kapoor, R., Wu, QS., Varma, A. (eds) Structure and Functions of Pedosphere. Springer, Singapore. https://doi.org/10.1007/978-981-16-8770-9_4

Download citation

Publish with us

Policies and ethics