Skip to main content

Plant Growth Promoting Rhizobacteria: Mechanisms and Alleviation of Cold Stress in Plants

  • Chapter
  • First Online:
Plant Stress Biology

Abstract

Microorganisms have a variety of evolutionary adaptations and physiological acclimation mechanisms that allow them to survive and remain active to face environmental stress. Among the mechanisms identified in microbes, tolerance to low temperatures is of paramount significance, considering the area of the earth’s surface that is exposed to varying degrees of low temperatures. Based on low temperature preference, microbes have been classified as psychrophiles or cold loving, and psychrotrophs or cold tolerant. Psychrophiles are exposed to extremes of cold for major part of the year, while psychrotrophs are exposed to transient cold conditions in nature. The ability of psychrotolerant bacteria to survive and proliferate at low temperatures implies that they have devised a number of mechanisms that help them to tide over the transient cold. These adaptations include lipid modification to maintain membrane fluidity, induction of specific proteins (Csp and Cap), synthesis and utilization of cryoprotectants, cold adapted enzymes, synthesis of ROS detoxifying enzymes, ice binding proteins, and RNA degradosomes. This review highlights the current knowledge on cold tolerance/adaptation mechanisms operating in psychrotolerant bacteria and their utility in alleviation of cold stress and modern biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAT:

Aspartate aminotransferase

AFPs:

Antifreeze proteins

Caps:

Cold acclimation proteins

CRP:

Cold resistance protein

CSD:

Cold shock domain

Csps:

Cold shock proteins

CSR:

Cold shock response

DNA:

Deoxyribonucleic acid

EDTA:

Ethylenediaminetetraacetic acid

EPS:

Extracellular polysaccharides

GST:

Glutathione S-transferase

hik:

Histidine kinase

INAP:

Ice nucleation active protein

RIR:

Ice recrystallization

kDa:

Kilo Dalton

LP:

Lipoglycoprotein

MDa:

Mega Dalton

PCR:

Polymerase chain reaction

PHB:

Poly-β-hydroxybutyrate

RI:

Recrystallization inhibition

RNA:

Ribose nucleic acid

ROS:

Reactive oxygen species

TF:

Trigger factor

TH:

Thermal hysteresis

References

  • Aislabie J, Foght JM (2008) Hydrocarbon-degrading bacteria in contaminated soils. In: Filler DM, Snape I, Barnes DL (eds) Bioremediation of petroleum hydrocarbons in cold regions. Cambridge University Press, Cambridge, pp 69–83

    Chapter  Google Scholar 

  • Andersen J, Delihas N (1990) micF RNA binds to the 5’ end of ompF mRNA and to a protein from Escherichia coli. Biochem 29:9249–9256

    Article  CAS  Google Scholar 

  • Angelidis AS, Smith GM (2003) Role of glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Appl Environ Microbiol 69:7492–7498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annamalai T, Venkitanarayanan K (2005) Expression of major cold shock proteins and genes by Yersinia enterocolitica in synthetic medium and foods. J Food Prot 68:2454–2458

    Article  CAS  PubMed  Google Scholar 

  • Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:o fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appleby JL, Parkinson JS, Bourret RB (1996) Signal transduction via the multi-step phosphorelay: not necessarily a road less traveled. Cell 86:845–848

    Article  CAS  PubMed  Google Scholar 

  • Bae W, Phadtare S, Severinov K, Inouye M (1999) Characterization of Escherichia coli cspE, whose product negatively regulates transcription of cspA, the gene for the major cold shock protein. Mol Microbiol 31:1429–1441

    Article  CAS  PubMed  Google Scholar 

  • Berger F, Morellet N, Menu F, Potier P (1996) Cold shock and cold acclimation proteins in the psychrotrophic bacterium Arthrobacter globiformis SI55. J Bacteriol 178:2999–3007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisht SC, Mishra PK, Ruwari P, Joshi P, Suyal P, Selvakumar G, Bisht JK (2009) Enhancement of chilling tolerance and productivity of inoculated wheat with cold tolerant Plant Growth Promoting Pseudomonas sp. strain PPERs23. 4th Annual Conference UCOST, G.B Pant University of Ag. & Tech. Pantnagar, 15

    Google Scholar 

  • Carpenter EJ, Lin S, Capone DG (2000) Bacterial activity in South Pole snow. Appl Environ Microbiol 66:4514–4517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carty SM, Sreekumar KR, Raetz CR (1999) Effect of cold shock on lipid A biosynthesis in Escherichia coli. Induction at 12 degrees C of an acyltransferase specific for palmitoleoyl-acyl carrier protein. J Biol Chem 274:9677–9685

    Article  CAS  PubMed  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA Chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavicchioli R (2006) Cold adapted archaea. Nat Rev Microbiol 4:331–343

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK (2002) Bacterial cryoprotectants. Resonance 7:59–63

    Article  CAS  Google Scholar 

  • Chattopadhyay MK (2006) Mechanism of bacterial adaptation to low temperature. J Biosci 31:157–165

    Article  CAS  PubMed  Google Scholar 

  • Chattopadhyay MK, Jagannadham MV (2001) Maintenance of membrane fluidity in Antarctic bacteria. Polar Biol 24:386–388

    Article  Google Scholar 

  • Chattopadhyay MK, Raghu G, Sharma YV, Biju AR, Rajasekharan MV, Shivaji S (2011) Increase in oxidative stress at low temperature in an Antarctic bacterium. Curr Microbiol 62:544–546

    Article  CAS  PubMed  Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol 50:631–642

    CAS  PubMed  Google Scholar 

  • Christner BC (2002) Incorporation of DNA and protein precursors into macromolecules by bacteria at −15°C. Appl Environ Microbiol 68:6435–6438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen BE (1999) Physical and chemical properties of extracellular polysaccharides associated with biofilms and related substances. In: Wingender J, Neu T, Flemming HC (eds) Microbial extracellular substances: characterization, structure and function. Springer, New York, pp 144–154

    Google Scholar 

  • Coker JA, Sheridan PP, Loveland-Curtze J, Gutshall KR, Auman AJ, Brenchley JE (2003) Biochemical characterization of a β-galactosidase with a low temperature optimum obtained from an Antarctic Arthrobacter isolate. J Bacteriol 185:5473–5482

    Google Scholar 

  • Collins T, Hoyoux A, Dutron A, Georis J, Genot B, Dauvrin T, Arnaut F, Gerday C, Feller G (2006) Use of glycoside hydrolase family 8 xylanases in baking. J Cereal Sci 43:79–84

    Article  CAS  Google Scholar 

  • Cooksey KE, Cooksey B (1995) Adhesion of bacteria and diatom to surfaces in the sea: a review. Aquat Microb Ecol 9:87–96

    Article  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Ann Rev Microbiol 49:711–745

    Article  CAS  Google Scholar 

  • Cummings SP, Black GW (1999) Polymer hydrolysis in a cold climate. Extremophiles 3:81–87

    Article  CAS  PubMed  Google Scholar 

  • Cusano AM, Parrilli E, Duilio A, Sannia G, Marino G, Tutino ML (2006) Secretion of psychrophilic alpha-amylase deletion mutants in Pseudoalteromonas haloplanktis TAC125. FEMS Microbiol Lett 258:67–71

    Article  CAS  PubMed  Google Scholar 

  • D’Amico S, Colins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: a challenge for life. EMBO Rep 7:385–389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davail S, Feller G, Narinx E, Gerday C (1994) Cold adaptation of proteins. Purification, characterization, and sequence of the heat-labile subtilisin from the Antarctic psychrophile Bacillus TA41. J Biol Chem 269:17448–17453

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis M, Gobbetti M (2004) Environmental stress response in Lactobacillus: a review. Proteomics 4:106–122

    Article  CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes. Oceanogr Mar Biol Ann Rev 28:73–153

    Google Scholar 

  • Delcher AL, Phillippy A, Carlton J, Salzberg SL (2002) Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30:2478–2483

    Article  PubMed  PubMed Central  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  CAS  PubMed  Google Scholar 

  • Denarie J, Debelle F, Rosenberg C (1992) Signalling and host range variation in nodulation. Annu Rev Microbiol 46:497–531

    Article  CAS  PubMed  Google Scholar 

  • De-Vos D, Collins T, Nerinckx W, Savvides SN, Claeyssens M, Gerday C, Feller G, Van-Beeumen J (2006) Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1, 4- xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochem 45:4797–4807

    Article  CAS  Google Scholar 

  • De-Wult P, Akerley BJ, Lin EC (2000) Presence of the Cpx system in bacteria. Microbiol 146:247–248

    Article  Google Scholar 

  • Dorman CJ, Hinton JCD, Free A (1999) Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 7:124–128

    Article  CAS  PubMed  Google Scholar 

  • Drlica K (1992) Control of bacterial DNA supercoiling. Mol Microbiol 6:425–433

    Article  CAS  PubMed  Google Scholar 

  • Drouin P, Prevost D, Antoun H (2000) Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp. FEMS Microbiol Ecol 32:111–120

    CAS  PubMed  Google Scholar 

  • Dufrenne J, Delfgou E, Ritmeester W, Notermans S (1997) The effect of previous growth conditions on the lag phase time of some foodborne pathogenic microorganisms. Int J Food Microbiol 34:89–94

    Article  CAS  PubMed  Google Scholar 

  • Duman JG (2001) Antifreeze and Ice Nucleator Proteins in Terrestrial Arthropods. Annu Rev Physiol 63:327–357

    Article  CAS  PubMed  Google Scholar 

  • Eriksson S, Hurme R, Rhen M (2002) Low temperature sensors in bacteria. Philos Trans R Soc Lond B 357:887–893

    Article  CAS  Google Scholar 

  • Falconi M, Colonna B, Prosseda G, Micheli G, Gualerzi CO (1998) Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature-dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H-NS. EMBO J 17:7033–7043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Hou Y, Inouye M (1998) Role of the cold box region in the 5- untranslated region of the cspA m-RNA in its transient expression at low temperature in Escherichia coli. J Bacteriol 180:90–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feller G, Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53:830–841

    Article  CAS  PubMed  Google Scholar 

  • Feng Y, Huang H, Liao J, Cohen SN (2001) Escherichia coli poly (A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNaseE. J Biol Chem 274:31651–31656

    Article  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov MM, Golyshin PN, Timmis KN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267

    Article  CAS  PubMed  Google Scholar 

  • Filler DM, Van-Stempvoort DR, Leigh MB (2009) Remediation of frozen ground contaminants with petroleum hydrocarbons: feasibility and limits. In: Margesin R (ed) Environmental technology 843 permafrost soils. Springer-Verlag, Berlin, pp 279–301

    Chapter  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    Article  CAS  PubMed  Google Scholar 

  • Fujii S, Nakasone K, Horikoshi K (1999) Cloning of two cold shock genes, cspA and cspG from the deep sea psycrophilic bacterium Shewanella vioacea strain DSS12. FEMS Microbial Lett 178:123–128

    Article  CAS  Google Scholar 

  • Garnham CP, Gilbert JA, Hartman CP, Campbell RL, Laybourn-Parry J, Davies PL (2008) A Ca2+-dependent bacterial antifreeze protein domain has a novel b-helical ice-binding fold. Biochem J 411:171–180

    Article  CAS  PubMed  Google Scholar 

  • Garnier M, Sebastien M, Didier C, Marie-France P, Francoise L, Odile T (2010) Adaptation to cold and proteomic responses of the psychrotrophic biopreservative Lactococcus piscium strain CNCM I-403. Appl Envion Microbiol 76:8011–8018

    Article  CAS  Google Scholar 

  • Geiger O, Spaink HP, Lugtenberg BJJ (1993) Biosynthesis of lipo-oligosaccharides: phospholipids of Rhizobium contain nod E- determined highly unsaturated fatty acid moieties. In: Palacios R, Mora J, Newton WE (eds) New horizons in nitrogen fixation. Kluver Academics Publisher, Dordrecht, p 233

    Google Scholar 

  • Glansdorff N, Xu J (2002) Microbial life at low temperatures: mechanisms of adaptation and extreme biotopes. Implications for exobiology and the origin of life. Recent Res Devl 6:1–21

    CAS  Google Scholar 

  • Gounot AM, Russell NJ (1999) Physiology of cold-adapted microorganisms. In: Margesin R, Schinner F (eds) Cold adapted organisms. Springer, Berlin, pp 33–55

    Chapter  Google Scholar 

  • Gratia E, Weekers F, Margesin R, D’Amico S, Thonart P, Feller G (2009) Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles 13:763–768

    Article  CAS  PubMed  Google Scholar 

  • Graumann P, Marahiel MA (1998) A superfamily of proteins containing the cold shock domain. Trends Biochem Sci 23:286–290

    Article  CAS  PubMed  Google Scholar 

  • Graumann P, Schroder K, Schmid R, Marahiel MA (1996) Cold shock stress induced proteins in Bacillus subtilis. J Bacteriol 178:4611–4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulig PA, Danbara H, Guiney DG, Lax AJ, Norel F, Rhen M (1993) Molecular analysis of spv virulence genes of the Salmonella virulence plasmid. Mol Microbiol 7:825–830

    Article  CAS  PubMed  Google Scholar 

  • Hébraud M, Guzzo J (2000) The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol Lett 190:29–34

    Article  PubMed  Google Scholar 

  • Hebraud M, Dubois E, Potier P, Labadie J (1994) Effect of growth temperature on the protein levels in the psychrotrophic bacterium, Pseudomonas fragi. J Bacteriol 176:4017–4024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert RA (1986) The ecology and physiology of psychrotrophic micro-organism. In: Herbert RA, Codd GA (eds) Society for gen microbiology. Academic Press, Cambridge, pp 1–24

    Google Scholar 

  • Herbraud M, Potier P (1999) Cold shock response and low temperature adaptation in psycrophilic bacteria. J Mol Microbiol Biotechnol 1:211–219

    Google Scholar 

  • Hoang LC, Dumomt F, Marechal PA, Thanh ML, Gervais P (2007) Rates of chilling to 0°C: implication for the survival of microorganisms and relationship with membrane fluidity modification. Appl Microbiol Biotechnol 77:1379–1387

    Article  CAS  Google Scholar 

  • Hoch JA (2000) Two component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170

    Article  CAS  PubMed  Google Scholar 

  • Horton AJ, Hak KM, Steffan RJ, Foster JW, Bej AK (2000) Adaptive response to cold temperatures and characterization of cspA in Salmonella typhimurium LT2. Antonie van Leeuwenhoek 77:13–20

    Article  CAS  PubMed  Google Scholar 

  • Hoyoux A, Jennes I, Dubois P, Genicot S, Dubail F, Francois JM, Baise E, Feller G, Gerday C (2001) Cold-adapted beta-galactosidase from the Antarctic psychrophile Pseudoalteromonas haloplanktis. Appl Environ Microbiol 67:1529–1535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurme R, Berndt K, Normark SJ, Rhen M (1997) A proteinaceous gene regulatory thermometer in Salmonella. Cell 90:55–64

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, Hou Y, Inouye M (1997) CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J Biol Chem 272:196–202

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Vanbogelen RA, Neidhart FC (1987) Induction of proteins in response to low temperature in Escherichia coli. J Bacteriol 69:2092–2095

    Article  Google Scholar 

  • Jorov A, Zhorov BS, Yang DSC (2004) Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Sci 13:1524–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Junge K, Eicken H, Deming JW (2003) Motility of Colwellia psychrerythraea strain 34H at subzero temperatures. Appl Environ Microbiol 69:4282–4284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaan T, Jurgen B, Schweder T (1999) Regulation of the expression of the cold shock proteins CspB and CspC in Bacillus subtilis. Mol Gen Genom 262:351–354

    Article  CAS  Google Scholar 

  • Kaan T, Mader U, Bandow J, Schweder T (2002) Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiol 148:3441–3455

    Google Scholar 

  • Kaasen I, Falkenberg P, Styrvold OB, Stroem AR (1992) Molecular cloning and physical mapping of the otsBA genes, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by Kat F(AppR). J Bacteriol 174:889–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakegawa TS, Hirose S, Kashiwagi K, Igarshi K (1986) Effect of polyamines on in vitro reconstitution of ribosomal sub units. Eur J Biochem 158:265–269

    Article  CAS  PubMed  Google Scholar 

  • Kandror O, DeLeon A, Goldberg AL (2002) Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proc Natl Acad Sc 99:9727–9732

    Article  CAS  Google Scholar 

  • Karner MB, Delong EF, Karl DM (2001) Archeal dominance in the mesophilic zone of Pacific Ocean. Nature 409:507–510

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H, Li J, Griffth M, Glick BR (2001) Relationship between Antifreeze protein and Freezing Resistance in Pseudomonas putida GR 12-2. Curr Microbiol 43:365–370

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H, Nakano Y, Omiya K, Muryoi N, Nishikawa J, Obata H (2004) Production of two types of ice crystal controlling proteins in Antarctic bacterium. J Biosci Bioeng 98:220–223

    Article  CAS  PubMed  Google Scholar 

  • Kawahara H, Iwanaka Y, Higa S, Muryoi N, Sato M, Honda M, Omura H, Obata H (2007) A novel, intracellular antifreeze protein in an Antarctic bacterium, Flavobacterium xanthum. Cryo Letters 28:39–49

    CAS  PubMed  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress response to high-osmolality environments. Arch Microbiol 170:319–330

    Article  CAS  PubMed  Google Scholar 

  • Khan M, Kumar V, Goel R (2003) Characterization and localization of fluorescent Pseudomonas cold shock protein(S) by Monospecific polyclonal Antibodies. Microbial Immunol 47:895–901

    Google Scholar 

  • Khan M, Kumar S, Goel R (2007) Development of immunoassay for the identification of cold shock proteins from diversified micro flora. Afr J Biotechnol 6:252–257

    CAS  Google Scholar 

  • Kim SJ, Yim JH (2007) Cryoprotective Properties of Exopolysaccharide (P-21653) Produced by the Antarctic Bacterium, Pseudoalteromonas arctica KOPRI 21653. J Microbiol 45:510–514

    CAS  PubMed  Google Scholar 

  • Kiran MD, Annapoorni S, Suzuki I, Murata N, Shivaji S (2005) Cistrans isomerase gene in psychrophilic Pseudomonas syringae is constitutively expressed during growth and under conditions of temperature and solvent stress. Extremophiles 9:117–125

    Article  CAS  PubMed  Google Scholar 

  • Koda N, Inada Y, Nakayama S, Kawahara H, Obata H (2002) Response of the Ice-nucleating bacterium Pantoea ananas KUIN-3 during cold acclimation. Biosci Biochnol Biochem 66:866–868

    Google Scholar 

  • Kolenc RJ, Inniss WE, Glick BR, Robinson CW, Mayfield CI (1988) Transfer and expression of mesophilic plasmid-mediated degradative capacity in a psychrotrophic bacterium. Appl Environ Microbiol 54:638–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozloff LM, Schofield MA, Lute M (1983) Ice-nucleating activity of Pseudomonas syringae and Erwinia herbicola. J Bacteriol 153:222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kozloff LM, Turner MA, Arellano F (1991) Formation of bacterial membrane ice-nucleating lipoglycoprotein complexes. J Bacteriol 173:6528–6536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessieres P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Brauwn M, Brignell SC, Born S, Brouillet S, Bruschi SV, Caldwell B, Capuano V, Carter NM, Choi SK, Codani SJ, Connerton IF (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  CAS  PubMed  Google Scholar 

  • Lease RA, Belfort M (2000) A trans-acting RNA as a control switch in Escherichia coli: DsrA modulates function by forming alternative structures. Proc Natl Acad Sci USA 97:9919–9924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RE, Warren GJ, Gusta LV (1995) Biochemistry of bacterial ice nuclei. In: Ray F, Paul WK (eds) Biological ice nucleation and its application. APS Press, St Paul, pp 63–83

    Google Scholar 

  • Leiros I, Moe E, Lanes O, Smalas AO, Willassen NP (2003) The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features. Acta Crystallogra D Biol 59:1357–1365

    Article  CAS  Google Scholar 

  • Lillford PJ, Holt CB (2002) In-vitro uses of biological cryoprotectants. Philos Trans R Soc Lond Ser B Biol Sci 357:945–951

    Article  CAS  Google Scholar 

  • Lindow SE (1983) The role of bacterial ice nucleation in frost injury to plants. Rev Phytopathol 21:363–384

    Article  Google Scholar 

  • Lindow SE, Leveau JH (2002) Phyllosphere microbiology. Curr Opin Biotechnol 13:238–243

    Article  CAS  PubMed  Google Scholar 

  • Lindow SE, Arny DC, Upper CD (1978) Erwinia herbicola: a bacterial ice nucleus active in increasing frost injury to corn. Phytopathol 68:523–527

    Article  Google Scholar 

  • Los DA, Suzuki I, Zinchenko VV, Murata N (2008) Stress responses in Synechocystis: regulated genes and regulatory systems. In: Herrero A, Flores E (eds) The cyanobacteria: molecular biology, genetics and evolution. Horizon ScientiWc Press, Wymondham, pp 117–158

    Google Scholar 

  • Lundheim R (2002) Physiological and ecological significance of biological ice nucleators. Philos Trans R Soc Lond B Biol Sci 357:937–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majdalani N, Vanderpool CK, Gottesman S (2005) Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 40:93–113

    Article  CAS  PubMed  Google Scholar 

  • Maki IR, Galyon EL, Chang-Chien M, Cald WDR (1974) Ice nucleation induced by Pseudomonas syringae. Appl Microbiol 28:456–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansilla MC, Albanesi D, Cybulski LE, de Mendoza D (2005) Molecular mechanisms of low temperature sensing bacteria. Ann Hepatol 4:216–217

    PubMed  Google Scholar 

  • Margesin R, Feller G (2010) Biotechnological applications of psychrophiles. Environ Technol 31:835–844

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (1999a) Cold-adapted organisms. In: Ecology, physiology, enzymology and molecular biology. Springer, Berlin

    Google Scholar 

  • Margesin R, Schinner F (1999b) Biotechnological applications of cold-adapted organisms. Springer, Berlin

    Book  Google Scholar 

  • Margesin R, Zacke G, Schinner F (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93

    Article  Google Scholar 

  • Margesin R, Fauster V, Fonteyne PA (2005a) Characterization of cold active pectate lyases from psychrophilic Mrakia frigida. Lett Appl Microbiol 40:453–459

    Google Scholar 

  • Margesin R, Fonteyne PA, Redl B (2005b) Low-temperature biodegradation of high amounts of phenol by Rhodococcus spp. and Basidiomycetous yeasts. Res Microbiol 156:68–75

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Neuner G, Storey KB (2007) Cold- loving microbes, plants, and animals-fundamental and applied aspects. Naturewisenschaften 94:77–99

    Article  CAS  Google Scholar 

  • Marx JC, Blaise V, Collins T, D’Amico S, Delille D, Gratia E, Hoyoux A, Huston AL, Sonan G, Feller G, Gerday C (2004) A perspective on cold enzymes: current knowledge and frequently asked questions. Cell Mol Biol 50:643–655

    CAS  PubMed  Google Scholar 

  • Mayr B, Kaplan T, Lechner S, Scherer S (1996) Identification and purification of a family of dimeric major cold shock protein homologs from the psychrotrophic Bacillus cereus WSBC 10201. J Bacteriol 178:2916–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazur P (1966) Physical and chemical basis of injury in single-celled microorganisms subjected to freezing and thawing. In: Merman HT (ed) Cryobiology. Academic Press, New York, pp 214–315

    Google Scholar 

  • Michel V, Lehoux I, Hebraud P (1997) The cold shock response of the psychrotrophic bacterium Pseudomonas fragi. Curr Microbiol 33:16–25

    Article  Google Scholar 

  • Mikami K, Kanesaki Y, Suzuki I, Murata N (2002) The histidine kinase Hik33 perceives osmotic stress and low-temperature stress in Synechocystis sp. PCC 6803. Mol Microbiol 46:905–915

    Article  CAS  PubMed  Google Scholar 

  • Mishra PK, Bisht SC, Ruwari P, Joshi GK, Singh G, Bisht JK, Bhatt JC (2010a) Bioassociative effect of cold tolerant Pseudomonas spp. and Rhizobium leguminosarum-PR1 on iron acquisition, nutrient uptake and growth of lentil (Lens culinaris L.). Eur J Soil Biol 47:35–43

    Article  CAS  Google Scholar 

  • Mishra PK, Joshi P, Bisht SC, Bisht JK, Selvakumar G, Gupta HS (2010b) Cold-tolerant agriculturally important microorganisms. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. microbiology monographs (Springer series), vol 18. Springer, Berlin, pp 273–296

    Chapter  Google Scholar 

  • Mishra PK, Bisht SC, Bisht JK, Bhatt JC (2011) Cold tolerant PGPRs as bioinoculant for stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Microbiology monographs. Springer, Berlin, pp 95–118

    Google Scholar 

  • Mishra PK, Bisht SC, Bisht JK, Bhatt JC (2012) Cold tolerant PGPRs as bioinoculant for stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Microbiology Monographs. Springer, Berlin, pp 95–118

    Chapter  Google Scholar 

  • Miteva VI, Sheridan PP, Brenchley JE (2004) Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland glacier ice core. Appl Environ Microbiol 70:202–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitta M, Fang L, Inouye M (1997) Deletion analysis of cspA of Escherichia coli: requirement of the AT-rich UP element for cspA transcription and the downstream box in the coding region for its cold shock induction. Mol Microbiol 26:321–335

    Article  CAS  PubMed  Google Scholar 

  • Miyake R, Kawamoto J, Wei YL, Kitagawa M, Kato I, Kurihara T, Esaki N (2007) Construction of a low temperature protein expression system using a cold adapted bacterium, Shewanella sp. strain Ac10, as the host. Appl Environ Microbiol 73:4849–4856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed K, Roohi JMA, Pramod W (2012) Structural adaptation and biocatalytic prospective of microbial cold-active α-amylase. African J Microbiol Res 6:206–213

    Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2003) L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase. Appl Environ Microbiol 69:212–219

    Google Scholar 

  • Murata N, Wada H (1995) Acyl lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muryoi N, Matsukawa K, Yamade K, Kawahara H, Obata H (2003) Purification and properties of an Ice-nucleating protein from an Ice nucleating bacterium Pantoea ananatis KUIN-3. J Biosci Bioeng 95:157–163

    Google Scholar 

  • Muryoi N, Sato M, Kaneko S, Kawaahara H, Obata H, Yaish MWF, Griffth M, Glick BR (2004) Cloning and expression of afpA, a gene encoding an antifreeze protein from the Arctic plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. J Bacteriol 186:5661–5671

    Google Scholar 

  • Nanjo T, Kobayashi M, Yoshida Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suspension of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    Google Scholar 

  • Neuhaus K, Rappsch S, Francis KP, Scherer S (2000) Restart of exponential growth of cold-shocked Yersinia enterocolitica occurs after down-regulation of cspA1/A2 mRNA. J Bacteriol 182:3285–3288

    Google Scholar 

  • Nishijyo T, Haas D, Itoh Y (2001) The Cbr A, Cbr B two- component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa. Mol Microbiol 40:917–931

    Article  CAS  PubMed  Google Scholar 

  • Obata H, Kakinami K, Tanishita J, Hasegawa Y (1990) Identification of new Ice-nucleating bacterium and its ice nucleation properties. Agri Bio Chem 54:725–730

    CAS  Google Scholar 

  • Olson JC, Nottingham PM (1980) Temperature in microbial ecology of foods volume 1: factors affecting life and death of microorganisms. In: International commission on microbiological specifications for foods. Academic Press, London, pp 1–37

    Google Scholar 

  • Palmisano AC, Sullivan CW (1985) Growth, metabolism and dark survival in sea ice microalgae. In: Horner RA (ed) Sea ice biota. CRC Press, Boca Raton, FL, pp 131–146

    Google Scholar 

  • Panasik N, Brenchley JE, Farber GK (2000) Distributions of structural features contributing to thermostability in mesophilic and thermophilic alpha/beta barrel glycosyl hydrolases. Biochim Biophys Acta 1543:189–201

    Article  CAS  PubMed  Google Scholar 

  • Panicker G, Aislabie SD, Bej AK (2002) Cold tolerance of Pseudomonas sp. 30-3 isolated from oil contaminated soil. Antarctica. Polar Biol 25:5–11

    Article  Google Scholar 

  • Papa R, Rippa V, Sannia G, MarinGO DA (2007) An effective cold inducible expression system developed in Pseudoalteromonas haloplanktis TAC125. J Biotechnol 127:199–210

    Article  CAS  PubMed  Google Scholar 

  • Parente AD, Garces JG, Guinea JS, Garcia JMA, Casaroli RM, Reina MDP, Vilaro SC (2006) Use of a glycoprotein for the treatments and Re-Epithelialisation of wounds. EP20020738185, US7022668

    Google Scholar 

  • Parrilli E, De Vizio D, Cirulli C, Tutino ML (2008) Development of an improved Pseudoalteromonas haloplanktis TAC125 strain for recombinant protein secretion at low temperature. Microb Cell Fact 7:2. https://doi.org/10.1186/1475-2859-7-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phadtare S, Inouye M (2004) Genome-wide transcriptional analysis of the cold shock response in wild-type and cold-sensitive, quadruple-csp-deletion strains of Escherichia coli. J Bacteriol 186:7007–7014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polissi A, De Laurentis W, Zangrossi S, Briani F, Loghi V, Pesole G, Deho G (2003) Changes in Escherichia coli transcriptome during acclimatization at low temperature. Res Microbiol 154:573–580

    Article  CAS  PubMed  Google Scholar 

  • Ponder MA, Gilmour SJ, Bergholz PW, Mindock CA, Hollingsworth R, Thomashow MW, Tiedje JM (2005) Characterization of potential stress response in ancient Siberian permafrost psychroactive bacteria. FEMS Microbiol Ecol 53:103–115

    Article  CAS  PubMed  Google Scholar 

  • Prakash JSS, Zorina A, Kupriyanova E, Sinetova M, Suzuki I, Murata N, Los DA (2009) DNA supercoiling regulates the stress-inducible expression of genes in Synechocystis sp. PCC 6803. Mol Biosyst 5:1904–1912

    Article  CAS  PubMed  Google Scholar 

  • Prevost D, Drouin P, Laberge S, Bertrand A, Cloutier J, Levesque G (2003) Cold-adapted rhizobia for nitrogen fixation in temperate regions. Can J Bot 81:1153–1161

    Article  CAS  Google Scholar 

  • Price PB (2004) Life in solid ice on earth and other planetary bodies. In: Norris R, Stootman F (eds) Bioastronomy 2002: life among the stars, proceedings of IAU symposium 213. Astronomical Society of the Pacific, San Francisco, pp 363–366

    Google Scholar 

  • Purusharth RI, Klein F, Sulthana S, Jager S, Jagannadham MV, Hackenberg EE, Ray MK, Klug G (2005) Exoribonuclease R interacts with endoribonuclease E and RNA helicase in the psychrotrophic bacterium Pseudomonas syringae Lz4W. J Biol Chem 280:14572–14578

    Article  CAS  PubMed  Google Scholar 

  • Qoronfleh MW, Debouck C, Keller J (1992) Identification and characterization of novel low temperature inducible promoters of Escherichia coli. J Bacteriol 174:7902–7909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray MK (2006) Cold-stress response of low temperature adapted bacteria. In:Sreedhar AS, Srinivas UK (eds) Stress response: A molecular biology approach. Research Signpost, India. 2006. pp. 1–23 

    Google Scholar 

  • Ray MK, Seshu Kumar G, Shivaji S (1994a) Phosphorylation of Lipopolysaccharides in the Antarctic Psychrotroph Pseudomonas syringae: a Possible Role in Temperature Adaptation. J Bacteriol 176:4243–4243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray MK, Seshu Kumar G, Shivaji S (1994b) Phosphorylation of membrane proteins in response to temperature in an Antarctic Pseudomonas syringae. Microbiol 140:3217–3223

    Article  CAS  Google Scholar 

  • Ray MK, Seshu Kumar G, Shivaji S (1994c) Tyrosine phosphorylation of a cytosolic protein from the Antarctic psychrotrophic bacterium Pseudomonas syringae. FEMS Microbiol Lett 122:49–54

    Article  CAS  Google Scholar 

  • Ray MK, Seshu Kumar G, Shivaji S (1994d) Phosphorylation of lipopolysaccharides in the Antarctic psychrotroph Pseudomonas syringae: a possible role in temperature adaptation. J Bacteriol 176:4243–4249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray MK, Sitaramamma T, Ghandhi S, Shivaji S (1994e) Occurrence and expression of cspA, a cold shock gene, in Antarctic psychrotrophic bacteria. FEMS Microbiol Lett 116:55–60

    Article  CAS  PubMed  Google Scholar 

  • Ray MK, Kumar GS, Janiyani K, Kannan K, Jagtap P, Basu M, Sivaji S (1998) Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J Biosci 23:423–435

    Article  CAS  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    Article  CAS  PubMed  Google Scholar 

  • Regand A, Goff HD (2006) Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. J Dairy Sci 89(1):49–57

    Article  CAS  PubMed  Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP, Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl Environ Microbiol 66:3230–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi G (1999) Biohydrometallurgical processes and temperature. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin, pp 291–308

    Chapter  Google Scholar 

  • Russell NJ (1990) Cold adaptation of microorganisms. Philos Trans R Soc Lond B Biol Sci 329:595–611

    Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    CAS  PubMed  Google Scholar 

  • Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4:83–90

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ (2006) Antarctic micro-organisms: coming in from the cold. Culture 27:1–7

    Google Scholar 

  • Sakamoto O, Kitoh T, Ohura T, Ohya N, Iinuma K (2002) Novel missense mutation (R94S) in the TAZ (G4.5) gene in a Japanese patient with Barth syndrome. J Hum Genet 47:229–231

    Article  CAS  PubMed  Google Scholar 

  • Sano F, Asakawa N, Inouye Y, Sakurai M (1999) A dual role for intracellular trehalose in the resistance of yeast cells to water stress. Cryobiology 39:80–87

    Article  CAS  PubMed  Google Scholar 

  • Santoro N, Thiele DJ (1999) Oxidative stress responses in the yeast Saccharomyces cerevisiae. In: Hohmann S, Mager WH (eds) Yeast stress response. R.G. Landes Co., Austin TX

    Google Scholar 

  • Selvakumar G, Gupta AD, Samaresh K, Gupta HS (2009) Cold tolerance mechanism in microorganisms and their agricultural importance. In: Arora DK, Rajendra TP, Srivastava AK (eds) Agriculturally important microorganisms, vol 1, pp 73–93

    Google Scholar 

  • Sheridan PP, Panasik N, Coombs JM, Brenchely JE (2000) Approaches for deciphering the structural basis of low temperature enzyme activity. Biochim Biophys Acta 1543:417–433

    Article  CAS  PubMed  Google Scholar 

  • Shima J, Sakata-Tsuda Y, Suzuki Y, Nakajima R, Watanable H, Kawamoto S, Takano H (2003) Disruption of the CARI gene encoding arginase enhances freeze tolerance of the commercial baker’s yeast Saccharomyces cerevisiae. Appl Envion Microbiol 69:715–718

    Article  CAS  Google Scholar 

  • Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95

    Article  CAS  PubMed  Google Scholar 

  • Siani L, Papa R, Di Donato A, Sannia G (2006) Recombinant expression of Toluene o-Xylene Monooxygenase (ToMO) from Pseudomonas stutzeri OX1 in the marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. J Biotechnol 126:334–341

    Article  CAS  PubMed  Google Scholar 

  • Skirvin RM, Kohler E, Steiner H, Ayers D, Laughnan A, Norton MA, Warmund M (2000) The use of genetically engineered bacteria to control frost on strawberries and potatoes. Whatever happened to all of that research? Sci Hortic 84:179–189

    Article  Google Scholar 

  • Sledjeski DD, Gupta A, Gottesman S (1996) The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15:3993–4000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somero GN (2004) Adaptation of enzymes to temperature: searching for basic “strategies”. Comp Biochem Physiol 139:321–333

    Article  CAS  Google Scholar 

  • Sonnefield JM, Burns CM, Higgins CF, Hinton J (2001) The nucleoid- associated protein StpA binds curved DNA, has a greater DNA-binding affinity than H-NS and is present in significant levels in hns mutants. Biochimie 83:243–249

    Article  Google Scholar 

  • Stead D, Park SF (2000) Roles of Fe superoxide dismutase and catalase in resistance of Campylobacter coli to freeze-thaw stress. Appl Envion Microbiol 66:3110–3112

    Article  CAS  Google Scholar 

  • Stoderegger K, Herndl G (1998) Production and release of bacterial capsular material and its subsequent utilization by marine bacterioplankton. Limnol Oceanol 43:877–884

    Article  CAS  Google Scholar 

  • Strocchi M, Ferrer M, Timmis KN, Golyshin PN (2006) Low temperature induced systems failure in Escherichia coli: Insights from rescue by cold-adapted chaperones. Proteomics 6:193–206

    Article  CAS  PubMed  Google Scholar 

  • Sundareswaran VR, Singh AK, Dube S, Shivaji S (2010) Aspartate aminotransferase is involved in cold adaptation in psychrophilic Pseudomonas syringae. Arch Microbiol 92:663–672

    Article  CAS  Google Scholar 

  • Sutherland IW (1994) Structure function relationships in microbial exopolysaccharides. Biotechnol Adv 12:393–448

    Article  CAS  PubMed  Google Scholar 

  • Suzuki I, Los DA, Kanesaki Y, Mikami Y, Murata N (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki I, Kanasaki Y, Mikami K, Kanehisa M, Murata N (2001) Cold regulated genes under the control of cold sensor hik33 in Synechocystis. Mol Microbiol 40:235–245

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Haruki M, Takano K, Morikawa M, Kanaya S (2004) Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold adaptation. Eur J Biochem 271:1372–1381

    Article  CAS  PubMed  Google Scholar 

  • Tamaru Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium. Appl Envion Microbiol 71:7327–7333

    Article  CAS  Google Scholar 

  • Tanabe H, Goldstein J, Yang M, Inouye M (1992) Identification of the promoter region of the Escherichia coli major cold shock gene, cspA. J Bacteriol 174:3867–3873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tange TQ, Shibuya T, Jurica M, Moare MJ (2003) Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. RNA Society 11:1869–1883

    Article  CAS  Google Scholar 

  • Thieringer HA, Jones PG, Inouye M (1998) Cold shock and adaptation. BioEssays 20:49–57

    Article  CAS  PubMed  Google Scholar 

  • Thomassin-Lacroix EJ, Eriksson M, Reimer KJ, Mohn WW (2002) Biostimulation and bioaugmentation for on-site treatment of weathered diesel fuel in Arctic soil. Appl Microbiol Biotechnol 59:551–556

    Article  CAS  PubMed  Google Scholar 

  • Trotsenko YA, Khmelenina VN (2005) Aerobic methanotrophic bacteria of cold ecosystems. FEMS Microbiol Ecol 53:15–26

    Article  CAS  PubMed  Google Scholar 

  • Tse-Dinh YC, Qi H, Menzel H (1997) DNA supercoiling and bacterial adaptation: thermotolerance and thermoresistance. Trends Microbiol 5:323–326

    Article  CAS  PubMed  Google Scholar 

  • Turner MA, Arellano F, Kozloff LM (1991) Components of ice nucleation structure of bacteria. J. Bacteriol 173:6515–6527

    Article  CAS  Google Scholar 

  • Tutino M, Duilio A, Parrilli E, Remaut E, Sannia G, Marino G (2001a) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264

    Article  CAS  PubMed  Google Scholar 

  • Yi T, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. App Envion Microbiol 71:7327–7333

    Google Scholar 

  • Tutino M, Duilio A, Parrilli E, Remaut E, Sannia G, Marino G (2001b) A novel replication element from an Antarctic plasmid as a tool for the expression of proteins at low temperature. Extremophiles 5:257–264

    Article  CAS  PubMed  Google Scholar 

  • Varcamonti M, Arsenijevic S, Martirani L, Fusco D, Naclerio G, Felice MD (2006) Expression of the heat shock gene clpL of Streptococcus thermophilus is induced by both heat and cold shock. Microbial Cell Factories. https://doi.org/10.1186/1475-2859-5-6

  • Wada H, Murata N (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol 92:1062–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walworth JL, Pond A, Snape I, Rayner J, Ferguson S, Harvey P (2007) Nitrogen requirements for maximizing petroleum bioremediation in a sub-Antarctic soil Cold Regions. Sci Tech 48:84–91

    Google Scholar 

  • Wang E, Koutsioulis D, Leiros HK, Andersen OA, Bouriotis V, Hough E, Heikinheimo P (2007) Crystal structure of alkaline phosphatase from the Antarctic bacterium TAB5. J Mol Biol 366:1318–1331

    Article  CAS  PubMed  Google Scholar 

  • Wang QF, Miao JL, Hou YH, Ding Y, You LG (2006) Expression of CspA and GST by an Antarctic psychrophilic bacterium Colwellia sp. NJ341 at near-freezing temperature. World J Microbiol Biotechnol 22:311–316

    Article  CAS  Google Scholar 

  • Wintrode PL, Miyazaki K, Arnold FH (2000) Cold-adaptation of a mesophilic subtilisin-like protease by laboratory evolution. J Biol Chem 275:31635–31640

    Article  CAS  PubMed  Google Scholar 

  • Witter LD, Campbell MF, Azuma Y (1966) Formation of bacterial pigments at low temperature by psychrophillic pseudomonads. Dev Ind Microbiol 7:231–239

    Google Scholar 

  • Wong PTW, McBeath JH (1999) Plant protection by cold-adapted fungi. In: Margesin R, Schinner F (eds) Biotechnological applications of cold-adapted organisms. Springer, Berlin, pp 177–190

    Chapter  Google Scholar 

  • Woodall KA, Gallagher M, Blakely G, Ferguson G (2011) Cold shock response of Salmonella enterica serovar typhimurium; the involvement of the CspA paralogues. PhD thesis, http://www.era.lib.ed.ac.uk/bitstream/1842/5652/1/Woodall2011.pdf. Accessed on 16 July 2012

  • Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73

    Article  CAS  Google Scholar 

  • Yamanaka K (1999) Cold shock response in Escherichia coli. J Mol Microbiol Biotechnol 34:193–202

    Google Scholar 

  • Yamashita Y, Nakamura N, Omiya K, Nishikawa J, Kawahara H, Obata H (2002) Identification of an antifreeze lipoprotein from Moraxella sp. of Antarctic origin. Biosci. Biotechnol Biochem 66:239–247

    Article  CAS  Google Scholar 

  • Yankofsky SA, Levin Z, Bertold T, Sandlerman N (1981) Some basic characteristics of bacterial freezing nuclei. J Appl Meterol 20:1013–1019

    Article  Google Scholar 

  • Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant cell Physiol 38:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Zartler ER, Jenney FE, Terrell M, Eidsness MK, Adams MW, Prestegard JH (2001) Structural basis for thermostability in aporubredoxins from Pyrococcus furiosus and Clostridium pasteurianum. Biochem 40:7279–7290

    Article  CAS  Google Scholar 

  • Zhang W, Shi L (2005) Distribution and evolution of multiple-step phosphorelay in prokaryotes: lateral domain recruitment involved in the formation of hybrid-type histidine kinases. Microbiol 151:2159–2173

    Article  CAS  Google Scholar 

  • Zhao G, Zhang G (2005) Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J Appl Microbiol 99:333–338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the generous supprot of Indian Council of Agriculrural Research through the project “Application of Microorganisms in Agriculture and Allied Sectors (AMAAS)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, P.K. et al. (2020). Plant Growth Promoting Rhizobacteria: Mechanisms and Alleviation of Cold Stress in Plants. In: Giri, B., Sharma, M.P. (eds) Plant Stress Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-9380-2_6

Download citation

Publish with us

Policies and ethics