Skip to main content

Camelina (Camelina sativa) Seed

  • Chapter
  • First Online:
Oilseeds: Health Attributes and Food Applications

Abstract

Camelina [Camelina sativa (L.) Crantz., Brassicaceae] is also known by the names of false flax and gold of pleasure. Historically, camelina oil was used in cooking and as fuel. Additionally, the seed meal was used as livestock feed. Currently, the crop is produced commercially in the United States and utilized as biodiesel. The phytochemical potential of camelina has renewed the interest in this crop for health and food applications. Mechanical extraction is the oldest method for oil extraction. Newer and greener methods like the supercritical-CO2 extraction method have also been studied for oil extraction from camelina. The oil content in camelina seed ranges from 30 to 50%, which is rich in omega-3 fatty acids (25–50% of total fatty acids) and antioxidants. The health-promoting attributes of camelina oil arise due to the presence of alpha-linolenic acid and antioxidants. The major antinutritional compounds in camelina are glucosinolates, tannins, and erucic acid. The oil can be used for skin ailments, cardiovascular diseases, cancer, and chronic diseases. Additionally, camelina oil has the potential in food applications such as edible oil and as a functional ingredient, feed applications, and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramovič H, Butinar B, Nikolič V (2007) Changes occurring in phenolic content, tocopherol composition and oxidative stability of Camelina sativa oil during storage. Food Chem 104:903–909

    Article  Google Scholar 

  • Bansal S, Durrett TP (2016) Camelina sativa: an ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 120:9–16

    Article  CAS  PubMed  Google Scholar 

  • Barceló-Coblijn G, Murphy EJ (2009) Alpha-linolenic acid and its conversion to longer chain n-3 fatty acids: benefits for human health and a role in maintaining tissue n-3 fatty acid levels. Prog Lipid Res 48:355–374

    Article  PubMed  Google Scholar 

  • Berhow MA, Vaughn SF, Moser BR et al (2014) Evaluating the phytochemical potential of Camelina: an emerging new crop of old world origin. In: Phytochemicals—biosynthesis, function and application, Recent advances in phytochemistry, vol 44. Springer, Cham, pp 129–148

    Chapter  Google Scholar 

  • Berti M, Gesch R, Eynck C et al (2016) Camelina uses, genetics, genomics, production, and management. Ind Crop Prod 94:690–710

    Article  CAS  Google Scholar 

  • Betancor MB, Li K, Sprague M, Bardal T, Sayanova O, Usher S, Han L, Måsøval K, Torrissen O, Napier JA, Tocher DR (2017) An oil containing EPA and DHA from transgenic Camelina sativa to replace marine fish oil in feeds for Atlantic salmon (Salmo salar L.): effects on intestinal transcriptome, histology, tissue fatty acid profiles and plasma biochemistry. PLoS One 12(4):e0175415

    Article  PubMed  PubMed Central  Google Scholar 

  • Budin JT, Breene WM, Putnam DH (1995) Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J Am Oil Chem Soc 72:309–315

    Article  CAS  Google Scholar 

  • Burel C, Boujard T, Kaushik SJ et al (2001) Effects of rapeseed meal-Glucosinolates on thyroid metabolism and feed utilization in rainbow trout. Gen Comp Endocrinol 124:343–358

    Article  CAS  PubMed  Google Scholar 

  • Cais-Sokolińska D, Pikul J, Wójtowski J et al (2015) Evaluation of quality of kefir from milk obtained from goats supplemented with a diet rich in bioactive compounds. J Sci Food Agric 95:1343–1349

    Article  PubMed  Google Scholar 

  • Crabtree RJ, Prater JD, Mbolda P (1990) Long-term wheat, soybean, and grain sor- ghum double-cropping under rainfed conditions. Agron J 82:683–686

    Article  Google Scholar 

  • Crowley J, Frohlich A (1998) Factors affecting the composition and use of Camelina, Dublin, Teagasc

    Google Scholar 

  • Dal Bello B, Torri L, Piochi M et al (2015) Healthy yogurt fortified with n-3 fatty acids from vegetable sources. J Dairy Sci 98:8375–8385

    Article  CAS  PubMed  Google Scholar 

  • Denstadli V, Skrede A, Krogdahl Å et al (2006) Feed intake, growth, feed conversion, digestibility, enzyme activities and intestinal structure in Atlantic salmon (Salmo salar L.) fed graded levels of phytic acid. Aquaculture 256:365–376

    Article  CAS  Google Scholar 

  • Dubois V, Breton S, Linder M et al (2007) Fatty acid profiles of 80 vegetable oils with regard to their nutritional potential. Eur J Lipid Sci Technol 109:710–732

    Article  CAS  Google Scholar 

  • Eidhin DN, Burke J, Lynch B et al (2003a) Effects of dietary supplementation with Camelina oil on porcine blood lipids. J Food Sci 68:671–679

    Article  CAS  Google Scholar 

  • Eidhin DN, Burke J, O'Beirne D (2003b) Oxidative stability of ω3-rich Camelina oil and Camelina oil-based spread compared with plant and fish oils and sunflower spread. J Food Sci 68:345–353

    Article  CAS  Google Scholar 

  • Fan L, Eskin M (2013) Camelina oil: chemistry, properties and utilization. Rec Res Dev Lipids 9:125–137

    Google Scholar 

  • Frame D, Palmer M, Peterson B (2007) Use of Camelina sativa in the diets of young turkeys. J Appl Poultry Res 16:381–386

    Article  CAS  Google Scholar 

  • Fröhlich A, Rice B (2005) Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Ind Crop Prod 21:25–31

    Article  Google Scholar 

  • Gehringer A, Scoles GJ, Friedt W et al (2006) Genetic mapping of agronomic traits in false flax (Camelina sativa subsp. sativa). Genome 49:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Gerber M (2012) Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. Br J Nutr 107:S228–S239

    Article  CAS  PubMed  Google Scholar 

  • Goyal A, Sharma V, Upadhyay N, Gill S, Sihag M (2014) Flax and flaxseed oil: an ancient medicine & modern functional food. J Food Sci Technol 51(9):1633–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GRAS. (n.d.) GRAS Notice (GRN) No. 642. http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm

  • Günç Ergönül P, Aksoylu ÖZ (2018) Identification of bioactive compounds and total phenol contents of cold pressed oils from safflower and camelina seeds. J Food Measure Characteriz 12:2313–2323

    Article  Google Scholar 

  • Hatt G. (1937) Landbrug i Danmarks Oldtid, Udvalget for folkeoplysnings fremme, Koebenhavn (in Danish).

    Google Scholar 

  • Hixson SM, Parrish CC (2014) Substitution of fish oil with camelina oil and inclusion of camelina meal in diets fed to Atlantic cod (Gadus morhua) and their effects on growth, tissue lipid classes, and fatty acids1. J Anim Sci 92:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Hurtaud C, Peyraud JL (2007) Effects of feeding Camelina (seeds or meal) on milk fatty acid composition and butter spreadability. J Dairy Sci 90:5134–5145

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim F, El Habbasha ES (2015) Chemical composition, medicinal impacts and cultivation of camelina (Camelina sativa): Review. Int J PharmTech Res 8:114–122

    CAS  Google Scholar 

  • Karvonen HM, Aro A, Tapola NS et al (2002) Effect of [alpha ]-linolenic acid[ndash ]rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects. Metabolism 51:1253–1260

    Article  CAS  PubMed  Google Scholar 

  • Knorzer KH (1978) Evolution and spread of gold of pleasure (Camelina sativa S.L.). Bererichte der Deutschen Botanischen Gesellschaft 91:187–195

    Google Scholar 

  • Kok W-M, Mainal A, Chuah C-H et al (2018) Content of erucic acid in edible oils and mustard by quantitative 13C NMR. Eur J Lipid Sci Technol. https://doi.org/10.1002/ejlt.201700230

  • Kumar K, Gupta SM, Arya MC et al (2017) In vitro antimicrobial and antioxidant activity of Camelina seed extracts as potential source of bioactive compounds. Proc Natl Acad Sci India Sect B Biol Sci 87:521–526

    Article  CAS  Google Scholar 

  • Leonard EC (1998) Camelina oil: α-linolenic source. Inform 9:830–838

    Google Scholar 

  • Mandal S, Ghosh K (2010) Inhibitory effect of Pistia tannin on digestive enzymes of Indian major carps: an in vitro study. Fish Physiol Biochem 36:1171–1180

    Article  CAS  PubMed  Google Scholar 

  • Manninen S, Lankinen M, de Mello V et al (2019a) The effect of Camelina sativa oil and fish intakes on fatty acid compositions of blood lipid fractions. Nutr Metab Cardiovasc Dis 29:51–61

    Article  CAS  PubMed  Google Scholar 

  • Manninen S, Lankinen M, Erkkila A et al (2019b) The effect of intakes of fish and Camelina sativa oil on atherogenic and anti-atherogenic functions of LDL and HDL particles: a randomized controlled trial. Atherosclerosis 281:56–61

    Article  CAS  PubMed  Google Scholar 

  • Marra MC and Carlson GA. (1986) Double-cropping wheat and soybeans in the southeast: input use and patterns of adoption. Natural resource economics division, eco- nomic research service, U.S. Department of Agriculture, Washington, D.C., USA.

    Google Scholar 

  • Matthaus B, Zubr J (2000) Variability of specific components in Camelina sativa oilseed cakes. Ind Crop Prod 12:9–18

    Article  CAS  Google Scholar 

  • Matthäus B (2002) Antioxidant activity of extracts obtained from residues of different oilseeds. J Agric Food Chem 50(12):3444–3452

    Article  PubMed  Google Scholar 

  • de Mello VD, Dahlman I, Lankinen M et al (2019) The effect of different sources of fish and Camelina sativa oil on immune cell and adipose tissue mRNA expression in subjects with abnormal fasting glucose metabolism: a randomized controlled trial. Nutr Diabetes 9:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Miles EA, Calder PC (2012) Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr 107:S171–S184

    Article  CAS  PubMed  Google Scholar 

  • Mithen RF, Dekker M, Verkerk R et al (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967–984

    Article  CAS  Google Scholar 

  • Moser BR (2010) Camelina (Camelina sativa L.) oil as a biofuels feedstock: Golden opportunity or false hope? Lipid Technol 22:270–273

    Article  CAS  Google Scholar 

  • Moser BR, Vaughn SF (2010) Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel☆. Bioresour Technol 101:646–653

    Article  CAS  PubMed  Google Scholar 

  • Moslavac T, Jokić S, Šubarić D et al (2014) Pressing and supercritical CO2 extraction of Camelina sativa oil. Ind Crop Prod 54:122–129

    Article  CAS  Google Scholar 

  • Murphy EJ (2016) Chapter 8—Camelina (Camelina sativa). In: TA MK, Hayes DG, Hildebrand DF et al (eds) Industrial oil crops. AOCS, Champaign, pp 207–230

    Chapter  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Pikul J, Wójtowski J, Danków R, Teichert J, Czyżak-Runowska G, Cais-Sokolińska D, Cieślak A, Szumacher-Strabel M, Bagnicka E (2014) The effect of false flax (Camelina sativa) cake dietary supplementation in dairy goats on fatty acid profile of kefir. Small Rumin Res 122(1–3):44–49

    Article  Google Scholar 

  • Pilgeram AL, Sands DC, Boss D et al (2007) Camelina sativa, a Montana omega-3 and fuel crop. In: Janick J, Whipkey A (eds) New Crops and New Uses. ASHS, Alexandria, pp 129–131

    Google Scholar 

  • Popa AL, Jurcoane S, Dumitriu B (2017) Camelina sativa oil—a review. Sci Bull Ser F Biotechnol 21:233–238

    Google Scholar 

  • Rode J (2002) Study of autochthon Camelina sativa (L.) Crantz in Slovenia. Int J Geogr Inf Syst 9:313–318

    CAS  Google Scholar 

  • Rokka T, Alén K, Valaja J et al (2002) The effect of a Camelina sativa enriched diet on the composition and sensory quality of hen eggs. Food Res Int 35:253–256

    Article  CAS  Google Scholar 

  • Salo P, Kuusisto P (2016) Cholesterol lowering effect of plant stanol ester yoghurt drinks with added Camelina oil. Cholesterol 2016:1–12

    Article  Google Scholar 

  • Schuster A, Friedt W (1998) Glucosinolate content and composition as parameters of quality of Camelina seed. Ind Crop Prod 7:297–302

    Article  CAS  Google Scholar 

  • Schwab US, Lankinen MA, de Mello VD et al (2018) Camelina sativa oil, but not fatty fish or lean fish, improves serum lipid profile in subjects with impaired glucose metabolism-a randomized controlled trial. Mol Nutr Food Res 62(4). https://doi.org/10.1002/mnfr.201700503

  • Shu C-C, Hsu C-L, Lee C-Y et al (2016) Inflammatory markers and clinical characteristics for predicting persistent positivity of interferon gamma release assay in dialysis population. Sci Rep 6:34577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SK, Muthukumarappan K (2016) Effect of feed moisture, extrusion temperature and screw speed on properties of soy white flakes based aquafeed: a response surface analysis. J Sci Food Agric 96:2220–2229

    Article  CAS  PubMed  Google Scholar 

  • Tanwar B, Modgil R, Goyal A (2018) Antinutritional factors and hypocholesterolemic effect of wild apricot kernel (Prunus armeniaca L.) as affected by detoxification. Food Funct 9(4):2121–2135

    Article  CAS  PubMed  Google Scholar 

  • Tanwar B, Modgil R, Goyal A (2019) Effect of detoxification on biological quality of wild apricot (Prunus armeniaca L.) kernel. J Sci Food Agric 99(2):517–528

    Article  CAS  PubMed  Google Scholar 

  • Terpinc P, Polak T, Makuc D et al (2012) The occurrence and characterisation of phenolic compounds in Camelina sativa seed, cake and oil. Food Chem 131:580–589

    Article  CAS  Google Scholar 

  • Tripathi MK, Mishra AS (2007) Glucosinolates in animal nutrition: a review. Anim Feed Sci Technol 132:1–27

    Article  CAS  Google Scholar 

  • Vollman J, Moritz T, Kargl C et al (2007) Agronomic evaluation of camelina genotypes selected for seed quality characteristics. Ind Crop Prod 26:270–277

    Article  Google Scholar 

  • Waraich E, Ahmed Z, Ahmad R et al (2013) Camelina sativa, a climate proof crop, has high nutrtive value and multiple-uses: a review. Aust J Crop Sci 7:1551–1559

    Google Scholar 

  • Woods VB, Fearon AM (2009) Dietary sources of unsaturated fatty acids for animals and their transfer into meat, milk and eggs: a review. Livest Sci 126:1–20

    Article  Google Scholar 

  • Zanetti F, Vamerali T, Mosca G (2009) Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata a. Braun) under reduced agricultural inputs. Ind Crop Prod 30:265–270

    Article  CAS  Google Scholar 

  • Zubr J (1997) Oil-seed crop: Camelina sativa. Ind Crop Prod 6:113–119

    Article  Google Scholar 

  • Zubr J, Matthaus B (2002) Effects of growth conditions on fatty acids and tocopherols in Camelina sativa oil. Ind Crop Prod 1:155–162

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bipin Rajpurohit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.K., Rajpurohit, B., Singha, P. (2021). Camelina (Camelina sativa) Seed. In: Tanwar, B., Goyal, A. (eds) Oilseeds: Health Attributes and Food Applications. Springer, Singapore. https://doi.org/10.1007/978-981-15-4194-0_18

Download citation

Publish with us

Policies and ethics