Skip to main content

Functional Groups

  • Chapter
  • First Online:
Quantifying Functional Biodiversity

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

The set of species co-existing in a given community constitute a functional group if they have similar functional characteristics related to one ecosystem service. This dependence on ecosystem service is defined by theoretical framework or by empirical evidence. Functional groups in vegetation science are known as plant functional types and in animal science as guilds. Functional groups may be defined externally using categories for key traits or generated from several traits using cluster techniques. In this chapter we show how to identify functional groups, selecting the appropriate measures to evaluate species similarity based on trait profiles, and choosing linkage algorithms to conform the functional groups. Changes in the relative abundance of each group in a sample may be used to interpret the relationship of community composition with environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Calinski RB, Harabasz J (1974) A dendrite method for cluster analysis. Commun Stat 3(1):1–27

    Article  Google Scholar 

  • Carpenter SR, Mooney HA, Agard J, Capistrano D, DeFries R, Díaz S, Dietz T, Duriappah A, Oteng-Yeboah A, Pereira HM, Perrings C, Reid WV, Sarukhan J, Scholes RJ, Whyte A (2009) Science for managing ecosystem services: beyond the millennium ecosystem evaluation. Natl Acad Sci USA 106:1305–1312

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analysis of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, Ter Steege H, Morgan HD, Heijden MGA, van der Pausas JG, Poorter H (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot 51:335–380

    Article  Google Scholar 

  • De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Marins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Article  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2010) InfoStat versión 2009. Grupo InfoStat, FCA, Universidad Nacional de Córdoba

    Google Scholar 

  • Díaz S, Lavorel S, Stuart Chapin F, Tecco PA, Gurvich DE, Grigulist K (2007) Functional diversity—at the crossroads between ecosystem functioning and environmental filters. In: Canadell JG, Pataki DE, Pitelka LF (eds) Terrestrial ecosystems in a changing world. Springer, New York

    Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131(2):479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fraley C, Raftery AE (2002) Model-based clustering, discriminant analysis, and density estimation. J Am Stat Assoc 97:611–631

    Article  Google Scholar 

  • Fraley C, Raftery AE (2006) MCLUST Version 3 for R: normal mixture modelling and model-based clustering, technical report no. 504. Department of Statistics, University of Washington, Seattle, WA, USA

    Google Scholar 

  • Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–874

    Article  Google Scholar 

  • Hartigan J (1975) Clustering algorithms. Wiley, New York

    Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaudoise Sci Nat 44:223–270

    Google Scholar 

  • Kaufman L, Rousseeuw P (1990) Finding groups in data: an introduction to cluster analysis. Wiley, New York

    Book  Google Scholar 

  • Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D, Girel J, Pellet G, Douzet R (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99:135–147

    Article  Google Scholar 

  • MEA (Millennium Ecosystem Assessment) (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington

    Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Polania C, Pla L, Casanoves F (2011) Diversidad funcional y servicios ecosistémicos. In: Casanoves F, Pla L, Di Rienzo JA (eds) Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos. Serie Técnica 384, CATIE, Turrialba

    Google Scholar 

  • Pollard KS, van der Laan MJ (2005) Cluster analysis of genomic data. In: Gentleman R, Carey V, Huber W, Irizarry R, Dudoit S (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York

    Google Scholar 

  • Pollard KS, van der Laan MJ, Wall G (2009) Hopach: hierarchical ordered partitioning and collapsing hybrid (HOPACH). R-package version 2.4.0. http://CRAN.R-project.org/package=hopach

  • Sarle WS (1983) The cubic clustering criterion. SAS technical report A-108. SAS Institute, Cary

    Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438

    Google Scholar 

  • Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters in a dataset via the gap statistic. J R Stat Soc B Methodol 63(2):411–423

    Article  Google Scholar 

  • Tscharntke T, Sekercioglu CH, Dietsch TV, Sodhi NS, Hoehn P, Tylianakis JM (2007) Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89:944–951

    Article  Google Scholar 

  • Valdano SG, Di Rienzo JA (2007) Discovering meaningful groups in hierarchical cluster analysis. An extension to the multivariate case of a multiple comparison method based on cluster analysis. Available via InterStat Journal. http://interstat.statjournals.net subordinate document http://interstat.statjournals.net/YEAR/2007/articles/0704002.pdf. Accessed 13 May 2011

  • Vilchez S, Harvey C, Sánchez D, Medina A, Hernández B, Taylor R (2007) Diversidad y composición de aves en un agropaisaje de Nicaragua. In: Harvey C, Sáenz JC (eds) Evaluación y conservación de la biodiversidad en paisajes fragmentados de mesoamérica. INBio, Heredia

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Pla .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Pla, L., Casanoves, F., Di Rienzo, J. (2012). Functional Groups. In: Quantifying Functional Biodiversity. SpringerBriefs in Environmental Science. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2648-2_2

Download citation

Publish with us

Policies and ethics