Skip to main content

Vaccinium corymbosum

  • Chapter
  • First Online:
Edible Medicinal And Non-Medicinal Plants
  • 669 Accesses

Abstract

Vaccinium amoenum Aiton, Vaccinium arkansanum Ashe, Vaccinium ashei Reade, Vaccinium atrococcum (Gray) Heller, Vaccinium australe Small, Vaccinium caesariense Mackenzie, Vaccinium constablaei A. Gray, Vaccinium elliottii Chapman, Vaccinium fuscatum Aiton, Vaccinium marianum Watson, Vaccinium simulatum Small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Borges G, Degeneve A, Mullen W, Crozier A (2010) Identification of flavonoid and phenolic antioxidants in black currants, blueberries, raspberries, red currants, and cranberries. J Agric Food Chem 58:3901–3909

    Google Scholar 

  • Brambilla A, Lo Scalzo R, Bertolo G, Torreggiani D (2008) Steam-blanched highbush blueberry (Vaccinium corymbosum L.) juice: phenolic profile and antioxidant capacity in relation to cultivar selection. J Agric Food Chem 56(8):2643–2648

    Google Scholar 

  • Burdulis D, Sarkinas A, Jasutiené I, Stackevicené E, Nikolajevas L, Janulis V (2009) Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Pol Pharm 66(4):399–408

    Google Scholar 

  • Castrejón ADR, Eichholz I, Rohn S, Kroh LW, Huyskens-Keil S (2008) Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chem 109(3):564–572

    Google Scholar 

  • DeFuria J, Bennett G, Strissel KJ, Perfield JW 2nd, Milbury PE, Greenberg AS, Obin MS (2009) Dietary blueberry attenuates whole-body insulin resistance in high fat-fed mice by reducing adipocyte death and its inflammatory sequelae. J Nutr 139(8):1510–1516

    Google Scholar 

  • Ehlenfeldt MK, Prior RL (2001) Oxygen radical absorbance capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 49(5):2222–2227

    Google Scholar 

  • Galletta GJ, Ballington JR (1996) Blueberries, cranberries, and lingonberries. In: Janick J, Moore JN (eds) Fruit breeding, vol 2. Vine and small fruits. Wiley, New York, pp 1–107, 477 pp

    Google Scholar 

  • Galli RL, Bielinski DF, Szprengiel A, Shukitt-Hale B, Joseph JA (2006) Blueberry supplemented diet reverses age-related decline in hippocampal HSP70 neuroprotection. Neurobiol Aging 27(2):344–350

    Google Scholar 

  • Hall IV (1978) Vaccinium species of horticultural importance in Canada. Hort Abstr 48(6):441–445

    Google Scholar 

  • Kader F, Rovel B, Girardin M, Metche M (1996) Fractionation and identification of the phenolic compounds of highbush blueberries (Vaccinium corymbosum, L.). Food Chem 55(1):35–40

    Google Scholar 

  • Kader F, Rovel B, Metche M (1993) Role of invertase in sugar content in highbush blueberries (Vaccinium corymbosum, L.). Lebens Wissen Technol 26(6):593–595

    Google Scholar 

  • Kalt W, Foote K, Fillmore SA, Lyon M, Van Lunen TA, McRae KB (2008) Effect of blueberry feeding on plasma lipids in pigs. Br J Nutr 100(1):70–78

    Google Scholar 

  • Kim SM, Shang YF, Um BH (2010) Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry leaves (Vaccinium corymbosum L.). Phytochem Anal 21(5):457–462

    Google Scholar 

  • Krikorian R, Shidler MD, Nash TA, Kalt W, Vinqvist-Tymchuk MR, Shukitt-Hale B, Joseph JA (2010) Blueberry supplementation improves memory in older adults. J Agric Food Chem 58(7):3996–4000

    Google Scholar 

  • Lohachoompol V, Mulholland M, Srzednicki G, Craske J (2008) Determination of anthocyanins in various cultivars of highbush and rabbiteye blueberries. Food Chem 111(1):249–254

    Google Scholar 

  • Lohachoompol V, Srzednicki G, Craske J (2004) The change of total anthocyanins in blueberries and their antioxidant effect after drying and freezing. J Biomed Biotechnol 2004(5):248–252

    Google Scholar 

  • Luby JL, Ballington JR, Draper AD, Pliszka K, Austin ME (1990) Blueberries and cranberries (Vaccinium). Acta Hortic 290(1):393–456

    Google Scholar 

  • Lyons MM, Yu C, Toma RB, Cho SY, Reiboldt W, Lee J, van Breemen RB (2003) Resveratrol in raw and baked blueberries and bilberries. J Agric Food Chem 51(20):5867–5870

    Google Scholar 

  • Mazza G, Kay CD, Cottrell T, Holub BJ (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50(26):7731–7737

    Google Scholar 

  • Mejia-Meza EI, Yanez JA, Davies NM, Rasco B, Younce F, Remsberg CM, Clary C (2008) Improving nutritional value of dried blueberries (Vaccinium corymbosum L.) combining microwave-vacuum, hot-air drying and freeze drying technologies. Int J Food Eng 4(5):Article 5

    Google Scholar 

  • Migas P, Cisowski W, Dembińska-Migas W (2005) Isoprene derivatives from the leaves and callus cultures of Vaccinium corymbosum var. Bluecrop. Acta Pol Pharm 62(1):45–51

    Google Scholar 

  • Neto CC (2007) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51(6):652–664

    Google Scholar 

  • Parra L, Mutis A, Ceballos R, Lizama M, Pardo F, Perich F, Quiroz A (2009) Volatiles released from Vaccinium corymbosum were attractive to Aegorhinus superciliosus (Coleoptera: Curculionidae) in an olfactometric bioassay. Environ Entomol 38(3):781–789

    Google Scholar 

  • Piljac-Žegarac J, Belščak A, Piljac A (2009) Antioxidant capacity and polyphenolic content of Blueberry (Vaccinium corymbosum L.) leaf infusions. J Med Food 12(3):608–614

    Google Scholar 

  • Prior RL, Cao G, Martin A, Sofic E, Mcewen J, O’Brian C, Lischner N, Ehlenfeldt M, Kalt W, Krewer G, Mainland CK (1998) Antioxidant capacity as influenced by total phenolic and anthocyanin content, maturity, and variety of Vaccinium species. J Agric Food Chem 46:2686–2693

    Google Scholar 

  • Riihinen K, Jaakola L, Karenlampi S, Hohtola A (2008) Organ-specific distribution of phenolic compounds in bilberry (Vaccinium myrtillus) and ‘northblue’ blueberry (Vaccinium corymbosum x V. angustifolium). Food Chem 110(1):156–160

    Google Scholar 

  • Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J Agric Food Chem 52(15):4713–4719

    Google Scholar 

  • Schmidt BM, Erdman JW Jr, Lila MA (2005) Effects of food processing on blueberry antiproliferation and antioxidant activity. J Food Sci 70(6):19–26

    Google Scholar 

  • Sellappan S, Akoh CC, Krewer G (2002) Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J Agric Food Chem 50(8):2432–2438

    Google Scholar 

  • Senevirathne M, Kim SH, Jeon YJ (2010) Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line. Nutr Res Pract 4(3):183–190

    Google Scholar 

  • Shukitt-Hale B, Galli RL, Meterko V, Carey A, Bielinski DF, McGhie T, Joseph JA (2005) Dietary supplementation with fruit polyphenolics ameliorates age-related deficits in behavior and neuronal markers of inflammation and oxidative stress. Age 27(1):49–57

    Google Scholar 

  • Skupień K, Oszmiański J, Kostrzewa-Nowak D, Tarasiuk J (2006) In vitro antileukaemic activity of extracts from berry plant leaves against sensitive and multidrug resistant HL60 cells. Cancer Lett 236(2):282–291

    Google Scholar 

  • Takeshita M, Ishida Y, Akamatsu E, Ohmori Y, Sudoh M, Uto H, Tsubouchi H, Kataoka H (2009) Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem 284(32):21165–21176

    Google Scholar 

  • Torri E, Lemos M, Caliari V, Kassuya CA, Bastos JK, Andrade SF (2007) Anti-inflammatory and antinociceptive properties of blueberry extract (Vaccinium corymbosum). J Pharm Pharmacol 59(4):591–596

    Google Scholar 

  • U.S. Department of Agriculture, Agricultural Research Service (2010) USDA national nutrient database for standard reference, release 23. Nutrient Data Laboratory Home Page. http://www.ars.usda.gov/ba/bhnrc/ndl

  • Van der Kloet SP (1980) The taxonomy of the highbush blueberry, Vaccinium corymbosum. Can J Bot 58:1187–1201

    Google Scholar 

  • Wang CY, Wang SY, Chen C (2008a) Increasing antioxidant activity and reducing decay of blueberries by essential oils. J Agric Food Chem 56(10):3587–3592

    Google Scholar 

  • Wang MF, Li JG, Shao Y, Huang TC, Huang MT, Chin CK, Rosen RT, Ho CT (1999) Antioxidative and cytoxic components of highbush blueberry (Vaccinium corymbosum L.). In: Shahidi F, Ho CT (eds) Phytochemicals and Phytopharmaceuticals, AOCS Press, Champaign, pp 271–277, 431 pp

    Google Scholar 

  • Wang SY, Chen C (2010) Effect of allyl isothiocyanate on antioxidant enzyme activities, flavonoids and fruit quality of blueberry (Vaccinium corymbosum L., cv. Duke). Food Chem 122(4):1153–1158

    Google Scholar 

  • Wang SY, Chen CT, Sciarappa W, Wang CY, Camp MJ (2008b) Fruit quality, antioxidant capacity, and flavonoid content of organically and conventionally grown blueberries. J Agric Food Chem 56(14):5788–5794

    Google Scholar 

  • Wang SY, Jiao H (2000) Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem 48(11):5677–5684

    Google Scholar 

  • Yao Y, Vieira A (2007) Protective activities of Vaccinium antioxidants with potential relevance to mitochondrial dysfunction and neurotoxicity. Neurotoxicol 28(1):93–100

    Google Scholar 

  • Yi W, Akoh CC, Fischer J, Krewer G (2006) Absorption of anthocyanins from blueberry extracts by caco-2 human intestinal cell monolayers. J Agric Food Chem 54(15):5651–5658

    Google Scholar 

  • Youdim KA, Shukitt-Hale B, Martin A, Wang H, Denisova N, Bickford PC, Joseph JA (2000) Short-dietary supplementation of blueberry polyphenolics: beneficial effect on aging brain performance and peripherial tissue function. Nutr Neurosci 3(6):383–397

    Google Scholar 

  • Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem 51(2):502–509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lim, T.K. (2012). Vaccinium corymbosum. In: Edible Medicinal And Non-Medicinal Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1764-0_60

Download citation

Publish with us

Policies and ethics