Skip to main content

Evolutionary Significance of Epigenetic Variation

  • Chapter
  • First Online:
Plant Genome Diversity Volume 1

Abstract

Several chapters in this volume demonstrate how epigenetic work at the molecular level over the last few decades has revolutionized our understanding of genome function and developmental biology. However, epigenetic processes not only further our understanding of variation and regulation at the genomic and cellular levels, they also challenge our understanding of heritable phenotypic variation at the level of whole organisms and even the process of evolution by natural selection (Jablonka and Lamb 1989, 1995; Danchin et al. 2011). Although many of the epigenetic mechanisms involved in differential gene expression are reset each generation, some epigenetic marks are faithfully transmitted across generations (Jablonka and Raz 2009; Verhoeven et al. 2010a). In addition, we now know that natural variation exists not only at the DNA sequence level but also the epigenetic level (e.g., Vaughn et al. 2007; Herrera and Bazaga 2010). This may be particularly common in plants, and several studies suggest that epigenetic variation alone can cause significant heritable variation in phenotypic traits (e.g., Cubas et al. 1999; Johannes et al. 2009; Scoville et al. 2011). Because of these observations, there is currently increasing interest in understanding the role of epigenetic processes in ecology and evolution (e.g., Richards 2006, 2011; Bossdorf et al. 2008; Johannes et al. 2008; Richards et al. 2010a).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Plant Biol 8:135–141

    Article  PubMed  CAS  Google Scholar 

  • Adams KR, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Agrawal AA, Laforsch C, Tollrian R (1999) Transgenerational induction of defences in animals and plants. Nature 401:60–63

    Article  CAS  Google Scholar 

  • Ainouche ML, Fortune PM, Salmon A, Parisod C, Grandbastien MA, Fukunaga K, Ricou M, Misset MT (2009) Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invas 11:1159–1173

    Article  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and mate fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  • Bailey JP, Bímová K, Mandák B (2009) Asexual spread versus sexual reproduction and evolution in Japanese Knotweed s.l. sets the stage for the “Battle of the Clones”. Biol Invas 11:1189–1203

    Article  Google Scholar 

  • Bímová K, Mandák B, Kasparová I (2004) How does Reynoutria invasion fit the various theories of invisibility? J Veg Sci 15:495–504

    Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Bossdorf O, Arcurri D, Richards CL, Pigliucci M (2010) Experimental alteration of DNA methylation affects the phenotypic plasticity of ecologically relevant traits in Arabidopsis thaliana. Evol Ecol 24:541–553

    Article  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ, Yao YL, Pogribny I, Kovalchuk I (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants (virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725

    Article  PubMed  CAS  Google Scholar 

  • Boyko A, Blevins T, Yao YL, Golubov A, Bilichak A, Ilnytskyy Y, Hollander J, Meins F, Kovalchuk I (2010) Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5:e9514

    Article  PubMed  Google Scholar 

  • Brookfield JFY (2005) The ecology of the genome—mobile DNA elements and their hosts. Nat Rev Genet 6:128–136

    Article  PubMed  CAS  Google Scholar 

  • Burn JE, Bagnall DJ, Metzger JD, Dennis ES, Peacock WJ (1993) DNA methylation, vernalization, and the initiation of flowering. Proc Natl Acad Sci U S A 90:287–291

    Article  PubMed  CAS  Google Scholar 

  • Caicedo AL, Stinchcombe J, Schmitt J, Purugganan MD (2004) Epistatic interaction between the Arabidopsis FRI and FLC flowering time genes establishes a latitudinal cline in a life history trait. Proc Natl Acad Sci U S A 101:15670–15675

    Article  PubMed  CAS  Google Scholar 

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Molec Genet Genomics 268:543–552

    Article  CAS  Google Scholar 

  • Chelaifa H, Monnier A, Ainouche ML (2010) Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina × townsendii and Spartina anglica (Poaceae). New Phytol 186:161–174

    Article  PubMed  CAS  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  PubMed  CAS  Google Scholar 

  • Chinnusamy V, Zhu JK (2009) Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol 12:133–139

    Article  PubMed  CAS  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  PubMed  CAS  Google Scholar 

  • Daehler CC, Strong DR (1997) Reduced herbivore resistance in introduced smooth cordgrass (Spartina alterniflora) after a century of herbivore-free growth. Oecologia 110:99–108

    Article  Google Scholar 

  • Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486

    Article  PubMed  CAS  Google Scholar 

  • Dlugosch KM, Parker IM (2008a) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molec Ecol 17:431–449

    Article  CAS  Google Scholar 

  • Dlugosch KM, Parker IM (2008b) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecol Lett 11:701–709

    Article  PubMed  Google Scholar 

  • Durka W, Bossdorf O, Prati D, Auge H (2005) Molecular evidence for multiple introductions of invasive garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molec Ecol 14:1697–1706

    Article  Google Scholar 

  • Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405

    Article  PubMed  CAS  Google Scholar 

  • Fieldes MA (1994) Heritable effects of 5-azacytidine treatments on the growth and development of flax (Linum usitatissimum) genotrophs and genotypes. Genome 37:1–11

    Article  PubMed  CAS  Google Scholar 

  • Fieldes MA, Amyot LM (1999a) Evaluating the potential of using 5-Azacytidine as an epimutagen. Can J Bot 77:1617–1622

    Article  CAS  Google Scholar 

  • Fieldes MA, Amyot LM (1999b) Epigenetic control of the early flowering in flax lines induced by 5-Azacytidine applied to germinating seeds. J Hered 90:199–206

    Article  CAS  Google Scholar 

  • Fieldes MA, Schaeffer SM, Krech MJ, Brown JCL (2005) DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. Theor Appl Genet 111:136–149

    Article  PubMed  CAS  Google Scholar 

  • Fox CW, Mousseau TA (1998) Maternal effects as adaptations for transgenerational phenotypic plasticity in insects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, New York, pp 159–177

    Google Scholar 

  • Galloway LF, Etterson JR (2007) Transgenerational plasticity is adaptive in the wild. Science 318:1134–1136

    Article  PubMed  CAS  Google Scholar 

  • Gammon MA, Kesseli R (2009) Haplotypes of Fallopia introduced into the US. Biol Invas. doi:10.1007/s10530-009-9459-7

  • Genereux DP, Miner BE, Bergstrom CT, Laird CD (2005) A population-epigenetic model to infer site-specific methylation rates from double-stranded DNA methylation patterns. Proc Natl Acad Sci U S A 102:5802–5807

    Article  PubMed  CAS  Google Scholar 

  • Gissis SB, Jablonka E (2011) Transformations of Lamarckism. MIT Press, Cambridge, MA

    Google Scholar 

  • Grant-Downton RT, Dickinson HG (2006) Epigenetics and its implications for plant biology 2. The ‘epigenetic epiphany’: epigenetics, evolution and beyond. Ann Bot 97:11–27

    Article  PubMed  CAS  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2008) Genomic clues to the evolutionary success of polyploid plants. Curr Biol 18:R435–R444

    Article  PubMed  CAS  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  PubMed  CAS  Google Scholar 

  • Herrera CM, Bazaga P (2008) Population-genomic approach reveals adaptive floral divergence in discrete populations of a hawk moth-pollinated violet. Molec Ecol 17:5378–5390

    Article  CAS  Google Scholar 

  • Herrera CM, Bazaga P (2010) Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis. New Phytol 187:867–876

    Article  PubMed  CAS  Google Scholar 

  • Herrera CM, Bazaga P (2011) Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory. Molec Ecol 20:1675–1688

    Article  CAS  Google Scholar 

  • Holeski LM (2007) Within and between generation phenotypic plasticity in trichome density of Mimulus guttatus. J Evol Biol 20:2092–2100

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese knotweed). Bot J Linn Soc 133:463–472

    Google Scholar 

  • Jablonka E, Lamb MJ (1989) The inheritance of acquired epigenetic variations. J Theor Biol 139:69–83

    Article  PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (1995) Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford University Press, Oxford

    Google Scholar 

  • Jablonka E, Lamb MJ (1998) Epigenetic inheritance in evolution. J Evol Biol 11:159–183

    Article  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Jeddeloh JA, Stokes TL, Richards EJ (1999) Maintenance of genomic methylation requires a SWI2/SNF2-like protein. Nat Genet 22:94–97

    Article  PubMed  CAS  Google Scholar 

  • Johannes F, Colot V, Jansen RC (2008) Epigenome dynamics: a quantitative genetics perspective. Nat Rev Genet 9:883–890

    Article  PubMed  CAS  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    Article  PubMed  CAS  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  PubMed  CAS  Google Scholar 

  • Kakutani T (2002) Epi-alleles in plants: inheritance of epigenetic information over generations. Plant Cell Physiol 43:1106–1111

    Article  PubMed  CAS  Google Scholar 

  • Kankel MW, Ramsey DE, Stokes TL, Flowers SK, Haag JR, Jeddeloh JA, Riddle NC, Verbsky ML, Richards EJ (2003) Arabidopsis MET1 cytosine methyltransferase mutants. Genetics 163:1109–1122

    PubMed  CAS  Google Scholar 

  • Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866

    Article  PubMed  Google Scholar 

  • Keyte AL, Percifield R, Liu B, Wendel JF (2006) Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). J Hered 97:444–450

    Article  PubMed  CAS  Google Scholar 

  • Kidwell MG, Lisch DR (2000) Transposable elements and host genome evolution. Trends Ecol Evol 15:95–99

    Article  PubMed  Google Scholar 

  • Kirkpatrick M, Lande R (1989) The evolution of maternal characters. Evolution 43:485–503

    Article  Google Scholar 

  • Korves T, Schmid KJ, Caicedo AL, Mays C, Stinchcombe JR, Purugganan MD, Schmitt J (2007) Fitness effects associated with the major flowering time gene FRIGIDA in Arabidopsis thaliana in the field. Am Nat 169:E141–E157

    Article  PubMed  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci U S A 104:3883–3888

    Article  PubMed  CAS  Google Scholar 

  • Li YD, Shan XH, Liu XM, Hu LJ, Guo WL, Liu B (2008) Utility of the methylation-sensitive amplified polymorphism (MSAP) marker for detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species (Hordeum brevisubulatum). Ecol Res 23:927–930

    Article  CAS  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR, Lavine K, Mittal V, May B, Kasschau KD, Carrington JC, Doerge RW, Colot V, Martienssen R (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  PubMed  CAS  Google Scholar 

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5:e10326

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Molec Phylogenet Evol 29:365–379

    Article  PubMed  CAS  Google Scholar 

  • Loomis ES, Fishman L (2009) A continent-wide clone: Population genetic variation of the invasive plant Hieracium aurantiacum (Orange Hawkweed; Asteraceae) in North America. Int J Plant Sci 170:759–765

    Article  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140:336–348

    Article  PubMed  CAS  Google Scholar 

  • Mandák B, Pysek P, Bímová K (2004) History of the invasion and distribution of Reynoutria taxa in the Czech Republic: a hybrid spreading faster than its parents. Preslia 76:15–64

    Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • Mirouze M, Paszkowski J (2011) Epigenetic contribution to stress adaptation in plants. Curr Opin Plant Biol 14:267–274

    Article  PubMed  CAS  Google Scholar 

  • Mittelsten Scheid O, Jakovleva L, Afsar K, Maluszynska J, Paszkowski J (1996) A change of ploidy can modify epigenetic silencing. Proc Natl Acad Sci U S A 93:7114–7119

    Article  PubMed  CAS  Google Scholar 

  • Mittelsten Scheid O, Afsar K, Paszkowski J (2003) Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nat Genet 34:450–454

    Article  PubMed  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    PubMed  CAS  Google Scholar 

  • Olsen KM, Haldorsdottir S, Stinchcombe J, Weinig C, Schmitt J, Purugganan MD (2004) Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics 157:1361–1369

    Article  CAS  Google Scholar 

  • Pal C, Miklos I (1999) Epigenetic inheritance, genetic assimilation and speciation. J Theor Biol 200:19–37

    Article  PubMed  CAS  Google Scholar 

  • Palevitz BA (1999) Helical science. Scientist 13:31

    Google Scholar 

  • Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien MA, Ainouche ML (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184:1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203

    Article  PubMed  CAS  Google Scholar 

  • Paun O, Fay MF, Soltis DE, Chase MW (2007) Genetic and epigenetic alterations after hybridization and genome doubling. Taxon 56:649–656

    Article  PubMed  Google Scholar 

  • Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW (2010) Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Molec Biol Evol 27:2465–2473

    Article  PubMed  CAS  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294

    Article  PubMed  CAS  Google Scholar 

  • Pysek P, Brock JH, Bímová K, Mandák B, Jarosík V, Koukolíková I, Pergl J, Stepánek J (2003) Vegetative regeneration in invasive Reynoutria (Polygonaceae) taxa: the determinant of invisibility at the genotype level. Am J Bot 90:1487–1495

    Article  PubMed  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    Article  PubMed  CAS  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  PubMed  CAS  Google Scholar 

  • Rebollo R, Horard B, Hubert B, Vieira C (2010) Jumping genes and epigenetics: towards new species. Gene 454:1–7

    Article  PubMed  CAS  Google Scholar 

  • Reinders J, Paszkowski J (2009) Unlocking the Arabidopsis epigenome. Epigenetics 4:557–563

    Article  PubMed  CAS  Google Scholar 

  • Reinders J, Wulff BBH, Mirouze M, Marí-Ordóñez A, Dapp M, Rozhon W, Bucher E, Theiler G, Paszkowski J (2009) Compromised stability of DNA methylation and transposon immobilization in mosaic Arabidopsis epigenomes. Gene Dev 23:939–950

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ (2006) Inherited epigenetic variation—revisiting soft inheritance. Nat Rev Genet 7:395–401

    Article  PubMed  CAS  Google Scholar 

  • Richards EJ (2008) Population epigenetics. Cu Op Genet Dev 18:221–226

    Article  CAS  Google Scholar 

  • Richards EJ (2011) Natural epigenetic variation in plant species: a view from the field. CurrOp Plant Biol 14:204–209

    Article  CAS  Google Scholar 

  • Richards CL, Wendel JF (2011) The hairy problem of epigenetics in evolution. New Phytol 191:7–9

    Article  PubMed  Google Scholar 

  • Richards CL, Walls R, Bailey JP, Parameswaran R, George T, Pigliucci M (2008) Plasticity in salt tolerance traits allows for invasion of salt marshes by Japanese knotweed s.l. (Fallopia japonica and F. × bohemica, Polygonaceae). Am J Bot 95:931–942

    Article  PubMed  Google Scholar 

  • Richards CL, Bossdorf O, Pigliucci M (2010a) What role does heritable epigenetic variation play in phenotypic evolution? Bioscience 60:232–237

    Article  Google Scholar 

  • Richards CL, Bossdorf O, Verhoeven KJF (2010b) Understanding natural epigenetic variation. New Phytol 187:562–564

    Article  PubMed  Google Scholar 

  • Rodin SN, Riggs AD (2003) Epigenetic silencing may aid evolution by gene duplication. J Molec Evol 56:718–729

    Article  PubMed  CAS  Google Scholar 

  • Rosenthal DM, Ramakrishnan AP, Cruzan MB (2008) Evidence for multiple sources of invasion and intraspecific hybridization in Brachypodium sylvaticum (Hudson) Beauv. in North America. Molec Ecol 17:4657–4669

    Article  Google Scholar 

  • Roux F, Colomé-Tatché M, Edelist C, Wardenaar R, Guerche P, Hospital F, Colot V, Jansen RC, Johannes F (2011) Genome-wide epigenetic perturbation jump-starts patterns of heritable variation found in nature. Genetics 188(4):1015–7, in press

    Article  PubMed  CAS  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  PubMed  CAS  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molec Ecol 14:1163–1175

    Article  CAS  Google Scholar 

  • Schmitt J, Dudley SA, Pigliucci M (1999) Manipulative approaches to testing adaptive plasticity: phytochrome-mediated shade-avoidance responses in plants. Am Natur 154:S43–S54

    Article  Google Scholar 

  • Scoville AG, Barnett LB, Bodbyl-Roels S, Kelly JK, Hileman LC (2011) Differential regulation of a MYB transcription factor predicts transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. New Phytol 191:251–263

    Article  PubMed  CAS  Google Scholar 

  • Shindo C, Lister C, Crevillen P, Nordborg M, Dean C (2006) Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Gene Dev 20:3079–3083

    Article  PubMed  CAS  Google Scholar 

  • Simberloff D, Dayan T, Jones C, Ogura G (2000) Character displacement and release in the small Indian mongoose, Herpestes javanicus. Ecology 81:2086–2099

    Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8:272–285

    Article  PubMed  CAS  Google Scholar 

  • Slotkin RK, Nuthikattu S, Jiang N (2012) The evolutionary impact of transposable elements on gene and genome evolution. In: Wendel JF (ed) Plant genome diversity, vol 1, Plant genomes, their residents, and their evolutionary dynamics. Springer, Wien/New York, pp

    Google Scholar 

  • Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM (2003) Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 33:70–74

    Article  PubMed  CAS  Google Scholar 

  • Specchia V, Piacentini L, Tritto P, Fanti L, D’Alessandro R, Palumbo G, Pimpinelli S, Bozzetti MP (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–665

    Article  PubMed  CAS  Google Scholar 

  • Stinchcombe JR, Weinig C, Ungerer M, Olsen KM, Mays C, Halldorsdottir S, Purugganan MD, Schmitt J (2004) A latitudinal cline in flowering time in Arabidopsis thaliana modulated by the flowering time gene FRIGIDA. Proc Natl Acad Sci USA 101:4712–4717

    Article  PubMed  CAS  Google Scholar 

  • Sung SB, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    Article  PubMed  CAS  Google Scholar 

  • Tatra GS, Miranda J, Chinnappa CC, Reid DM (2000) Effect of light quality and 5-azacytidine on genomic methylation and stem elongation in two ecotypes of Stellaria longipes. Physiol Plant 109:313–321

    Article  CAS  Google Scholar 

  • Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C, Cruaud C, Poulain J, Berdasco M, Fraga MF et al (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604

    Article  PubMed  CAS  Google Scholar 

  • Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T (2009) Bursts of retrotransposition reproduced in Arabidopsis. Nature 461:423–434

    Article  PubMed  CAS  Google Scholar 

  • Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD, Dedhia N, McCombie WR, Agier N, Bulski A, Colot V, Doerge RW, Martienssen RA (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:1617–1629

    Article  CAS  Google Scholar 

  • Verhoeven KJF, Jansen JJ, van Dijk PJ, Biere A (2010a) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  PubMed  CAS  Google Scholar 

  • Verhoeven KJF, van Dijk PJ, Biere A (2010b) Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Molec Ecol 19:315–324

    Article  CAS  Google Scholar 

  • Vongs A, Kakutani T, Martienssen RA, Richards EJ (1993) Arabidopsis thaliana DNA methylation mutants. Science 260:1926–1928

    Article  PubMed  CAS  Google Scholar 

  • Vrana PB, Fossella JA, Matteson P, del Rio T, O’Neill MJ, Tilghman SM (2000) Genetic and epigenetic incompatibilities underlie hybrid dysgenesis in Peromyscus. Nat Genet 25:120–124

    Article  PubMed  CAS  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characteristics. Nature 150:563–565

    Article  Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126

    Article  Google Scholar 

  • Wang JL, Tian L, Madlung A, Lee HS, Chen M, Lee JJ, Watson B, Kagochi T, Comai L, Chen ZJ (2004) Stochastic and epigenetic changes of gene expression in Arabidopsis polyploids. Genetics 167:1961–1973

    Article  PubMed  CAS  Google Scholar 

  • Weinig C, Ungerer M, Dorn LA, Kane NC, Halldorsdottir S, Mackay TFC, Purugganan MD, Schmitt J (2002) Novel loci control variation in reproductive timing in Arabidopsis thaliana in natural environments. Genetics 162:1875–1881

    PubMed  CAS  Google Scholar 

  • Wessler SR (1996) Turned on by stress. Plant retrotransposons. Curr Biol 6:959–961

    Article  PubMed  CAS  Google Scholar 

  • West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A 102:6543–6549

    Article  PubMed  CAS  Google Scholar 

  • Whittle CA, Otto SP, Johnston MO, Krochko JE (2009) Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany-Botanique 87:650–657

    Article  CAS  Google Scholar 

  • Zeh DW, Zeh JA, Ishida Y (2009) Transposable elements and an epigenetic basis for punctuated equilibria. Bioessays 31:715–726

    Article  PubMed  CAS  Google Scholar 

  • Zhai JX, Liu J, Liu B, Li PC, Meyers BC, Chen XM, Cao XF (2008) Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet 4:e1000056

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Jonathan Wendel for the invitation to write this chapter as well as JF Wendel and X Zhang for feedback on previous versions of the manuscript. This work was supported by University of South Florida (CR), the Netherlands Organisation for Scientific Research (KJFV), and the Swiss National Science Foundation (OB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina L. Richards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag Wien

About this chapter

Cite this chapter

Richards, C.L., Verhoeven, K.J.F., Bossdorf, O. (2012). Evolutionary Significance of Epigenetic Variation. In: Wendel, J., Greilhuber, J., Dolezel, J., Leitch, I. (eds) Plant Genome Diversity Volume 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1130-7_16

Download citation

Publish with us

Policies and ethics

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.