Skip to main content

Carbon Relations

  • Chapter
  • First Online:
Plant Ecology

Abstract

This chapter deals with the carbon relations of plants, which is a wide and complex field of research ranging from the diffusive flow of carbon dioxide (CO2) from the atmosphere into the leaf for photosynthesis up to the allocation of carbon within a plant during growth. Allocation and the use of carbon in the plant determine the plant structure, ranging from herbaceous to woody species. The initial part of this chapter is devoted to the diffusive exchange of gases between the plant and the atmosphere. The plant must balance an inevitable water loss during the process of CO2 uptake. Various processes exist at the biochemical level of carbon reduction that have consequences for water use, and these processes are modified by a wide range of adaptations at the leaf level. In the second part of the chapter, we analyse the flow and the use of carbon within a plant to give an understanding of the evolution of different plant forms, ranging from annual herbaceous species to trees where the balance between carbon requirements for the maintenance of existing plant structures and the carbon requirements for additional growth are the main determinants, as modified by the availability of water and nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams MA, Turnbull TL, Sprent JI, Buchmann N (2016) Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proceedings of the National Academy of Sciences 113:4098–4103

    Article  CAS  Google Scholar 

  • Allakhverdiev S, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550

    Article  CAS  PubMed  Google Scholar 

  • Amthor JS (1989) Respiration and crop productivity. Springer, Berlin

    Chapter  Google Scholar 

  • Arneth A, Kelliher FM, McSeveny TM, Byers JN (1999) Assessment of annual carbon dioxide exchange in a water-stressed Pinus radiata plantation: an analysis based on eddy covariance measurements and an integrated biophysical model. Glob Change Biol 5:531–545

    Google Scholar 

  • Arneth A, Lloyd J, Santrucova H, Bird M, Grigoriev S, Brand W, Werner R, Gleixner G, Schulze E-D (2002) Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration. Global Biogeochem Cycles 16:5–13

    Article  Google Scholar 

  • Beck E (1999) Towards an understanding of plant growth regulation: cytokinins as major signals for biomass distribution. In: Strnad M, Péc P, Beck E (eds) Advances in plant growth and development. PERES Publishers, Prague. pp 97–110

    Google Scholar 

  • Beerling DJ, Osborne CP (2006) The origin of the savanna biome. Glob Chang Biol 12:2023–2031

    Article  Google Scholar 

  • Bell TL, Pate JS, Dixon KW (1996) Relationship between fire response, morphology, root anatomy and starch distribution in south-west Australian Epacridaceae. Ann Bot 77:357–364

    Article  Google Scholar 

  • Biscoe PV, Scott RK, Monteith JL (1975) Barley and its environment. III. Carbon budget of the stand. J Appl Ecol 12:269–293

    Article  CAS  Google Scholar 

  • Björkman O (1971) Comparative photosynthetic CO2 exchange in higher plants. In: Hatch MD, Osmond CB, Slatyer RO (eds) Photosynthesis and photorespiration. Wiley, New York. pp 18–34

    Google Scholar 

  • Björkman O (1981) Responses to different quantum flux densities. Encycl Plant Physiol 12A:57–108

    Google Scholar 

  • Brodersen CR, Vogelmann TC, Williams WE, Gorton HL (2008) A new paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. Plant Cell Environ 31:159–164

    CAS  PubMed  Google Scholar 

  • Brown RH, Byrd GT (1993) Estimation of bundle sheath cell conductance in C4 species and O2 sensitivity of photosynthesis. Plant Physiol 103:1183–1188

    Google Scholar 

  • Buchmann N, Brooks R, Rapp KD, Ehleringer JR (1996) Carbon isotope composition of C4 grasses is influenced by light and water supply. Plant Cell Environ 19:392–402

    Article  CAS  Google Scholar 

  • Caemmerer von S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo interfered from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97

    Article  CAS  Google Scholar 

  • Chapin FS III, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447

    Article  Google Scholar 

  • Clayton WD (1981) Evolution and distribution of grasses. Ann Mo Bot Gard 68:5–14

    Article  Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. In: Jennings JR (ed) Interaction of activity in the higher plant. Cambridge University Press, Cambridge. pp. 471–505.

    Google Scholar 

  • Cowan IR, Lange OL, Green TGA (1992) Carbon-dioxide exchange in lichens—determination of transport and carboxylation characteristics. Planta 187:282–294

    Article  CAS  PubMed  Google Scholar 

  • Dai Z, Ku MSB, Edwards GE (1993) C4 photosynthesis. The CO2-concentration mechanism and photorespiration. Plant Physiol 103:83–90

    Google Scholar 

  • Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, C4 Grasses Consortium (2010) The origin of C4 grasslands: integrating evolutionary and ecosystem services. Science 328:587–591

    Google Scholar 

  • Ehleringer JR (1978) Implications of quantum yield differences on the distribution of C3 and C4 grasses. Oecologia 31:255–267

    Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 112:285–299

    Google Scholar 

  • Ellenberg H (1978) Vegetation Mitteleuropas mit den Alpen. Ulmer, Stuttgart

    Google Scholar 

  • Evans LT (1971) Evolutionary, adaptive and environmental aspects of the photosynthetic pathway: assessment. In: Hatch MD, Osmond CB, Slatyer RO (eds) Photosynthesis and photorespiration. John Wiley, Sydney. pp 131–136

    Google Scholar 

  • Evans M, Aubriot X, Hearn D, Lanciaux M, Lavergne S, Cruaud C, Lowry PP, Haevermans T (2014) Insights on the evolution of plant succulence from a remarkable radiation in Madagarscar (Euphorbia). Syst Biol 63:697–711

    Article  PubMed  Google Scholar 

  • Evenari M, Shanan L, Tadmor N (1982) The Negev: the challenge of a desert. Harvard University Press, Cambridge

    Book  Google Scholar 

  • FAO (2000) Forest resources of Europe, CIS, North America, Australia, Japan and New Zealand. Main report. United Nations, New York

    Google Scholar 

  • Farquhar G, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon–water relations. Academic Press, San Diego. pp 47–70

    Chapter  Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modelling of photosynthetic response to environment. Encycl Plant Physiol 12B:549–587

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Fichtner K, Schulze E-D (1992) The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92:236–241

    Article  CAS  PubMed  Google Scholar 

  • Field C, Mooney HA (1986) The photosynthesis–nitrogen relationship in wild plants. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge. pp 25–56

    Google Scholar 

  • Fritts HC, Vaganov EA, Sviderskaya IV, Shashkin AV (1991) Climatic variation and tree-ring structure in conifers: empirical and mechanistic models of tree-ring width, number of cells, cell size, cell-wall thickness and wood density. Climate Res 1:97–116

    Article  Google Scholar 

  • Fuchs M, Schulze E-D, Fuchs MI (1977) Spacial distribution of photosynthetic capacity and performance in a mountain spruce forest of northern Germany. II. Climatic control of carbon dioxide uptake. Oecologia 29:329–340

    Article  CAS  PubMed  Google Scholar 

  • Galvagno M, Rossini M, Migliavacca M, Cremonese E, Colombo R, Morra di Cella U (2013) Seasonal course of photosynthetic efficiency in Larix decidua Mill. in response to temperature and change in pigment composition during senescence. Int J Biometeorol 57:871–880

    Article  CAS  PubMed  Google Scholar 

  • Ghasghaie J, Badeck FW (2014) Opposite isotope discrimination during dark respiration in leaves versus roots—a review. New Phytol 201:751–769

    Article  CAS  Google Scholar 

  • Gifford RM (1974) A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic metabolism. Aust J Plant Physiol 1:107–117

    CAS  Google Scholar 

  • Gowik U, Bräutigam A, Weber KL, Weber AMP, Westhoff P (2011) Evolution of C4 plants in the genus Flaveria—how many and which genes does it take to make C4? Plant Cell 23:2087–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grime JP (1974) Vegetation classification by reference to strategies. Nature 250:26–31

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Harley PC, Tenhunen JD, Lange OL (1986) Use of an analytical model to study limitations on net photosynthesis in Arbutus unedo under field conditions. Oecologia 70:393–401

    Article  CAS  PubMed  Google Scholar 

  • Hattersley PW (1992) C4 photosynthetic pathway variation in grasses (Poaceae): its significance for arid and semi-arid lands. In: Chapman G (ed) Desertified grasslands: their biology and management. Academic Press, London. pp 181–212

    Google Scholar 

  • Heilmeier H, Schulze E-D, Whale DM (1986) Carbon and nitrogen partitioning in the biennial macrocarp Arctium tomentosum Mill. Oecologia 70:466–474

    Article  CAS  PubMed  Google Scholar 

  • Heilmeier H, Erhart M, Schulze E-D (1997) Biomass allocation and water use under arid conditions. In: Bazzaz F, Grace J (eds) Plant resource allocation. Academic Press, San Diego. pp 93–112

    Chapter  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL (1994) Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology 75:134–150

    Article  Google Scholar 

  • Hunt R (1982) Plant growth curves. Edward Arnold, London

    Google Scholar 

  • Jacobs BF, Kingston JD, Jacobs LL (1999) The origin of grass-dominated ecosystems. Ann Mo Bot Gard 86:590–643

    Article  Google Scholar 

  • Jarvis PG (1971) The estimation of resistances to carbon dioxide transfer. In: Sesták Z, Catsky J, Jarvis PG (eds) Plant photosynthetic production: manual of methods. Junk, Den Haag. pp 566–631

    Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos Trans R Soc Lond B 273:593–610

    Article  CAS  Google Scholar 

  • Jones HG (1994) Plants and microclimate, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones HG (1999) Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ 22:1043–1055

    Article  Google Scholar 

  • Kaiser WM (1982) Correlation between changes in photosynthetic activity and changes in total protoplast volume in leaf tissue from hygro-, meso- and xerophytes under osmotic stress. Planta 154:538–545

    Article  CAS  PubMed  Google Scholar 

  • Kappen L, Lange OL, Schulze E-D, Evenari M, Buschbom U (1972) Extreme water stress and photosynthetic activity of the desert plant Arteminsia herba-alba, asso. Oecologia 10:177–182

    Article  CAS  PubMed  Google Scholar 

  • Kappen L, Lange OL, Schulze E-D, Evenari M, Buschbom U (1976) Distributional pattern of water relations of Hammada scoparia (Pomel) Iljin in a desert environment. Oecologia 23:323–334

    Article  CAS  PubMed  Google Scholar 

  • Kirschbaum MUF, Farquhar GD (1984) Temperature dependence of whole-leaf photosynthesis in Eucalyptus pauciflora Sieb. Ex Spreng. Aust J Plant Physiol 11:519–538

    Google Scholar 

  • van der Kooi CJ, Reich M, Löw M, DeKok LJ, Tausz M (2016) Growth and yield stimulation under elevated CO2 and drought: a meta-analysis on crops. Envion Exp Bot 122:150–157

    Google Scholar 

  • Küppers M (1985) Carbon relations and competition between woody species in a central European hedgerow. IV. Growth form and partitioning. Oecologia 66:343–352

    Article  PubMed  Google Scholar 

  • Küppers M (1989) Ecological significance of aboveground architectural patterns in woody plants: a question of cost–benefit relationships. Trends Ecol Evol 4:375–379

    Article  PubMed  Google Scholar 

  • LaMarche VC Jr, Graybill DA, Fritts HC, Rose MR (1984) Increasing atmospheric carbon dioxide: tree ring evidence for growth enhancement in natural vegetation. Science 252:1019–1021

    Article  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (1998) Plant physiological ecololgy. Springer, Heidelberg

    Book  Google Scholar 

  • Lange OL (1965) Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory unter kontrollierten Bedingungen im Laboratorium. Flora 158:324–359

    Article  Google Scholar 

  • Lange OL (1988) Ecophysiology of photosynthesis: performance of poikilohydric lichens and homoiohydric Mediterranean sclerophylls. J Ecol 76:914–937

    Article  Google Scholar 

  • Lange OL, Schulze E-D, Kappen L, Evenari M, Buschbom U (1975) CO2-exchange patterns under natural conditions of Caralluma negevensis, a CAM plant of the Negev Desert. Photosynthetica 9:318–326

    Google Scholar 

  • Lange OL, Geiger IL, Schulze E-D (1977) Ecophysiological investigations on lichens of the Negev Desert. V. A model to simulate net photosynthesis and respiration of Ramalina maciformis. Oecologia 28:247–259

    Article  CAS  PubMed  Google Scholar 

  • Lange OL, Beyschlag W, Tenhunen JD (1987) Control of leaf carbon assimilation—input of chemical energy into ecosystems. Ecol Stud 61:148–163

    Google Scholar 

  • Larcher W (1994) Ökophysiologie der Pflanzen. UTB, Eugen Ulmer, Stuttgart

    Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal–photosynthesis model for C3 plants. Plant Cell Environ 18:339–355

    Article  CAS  Google Scholar 

  • Leuning R, Dunin FX, Wang YP (1998) A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy. II. Comparison with measurements. Agric For Meteorol 91:113–125

    Article  Google Scholar 

  • Lloyd J, Grace J, Miranda AC, Meir P, Wong SC, Miranda BS, Wright IR, Gash JHC, McIntyre J (1995a) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant Cell Environ 18:1129–1145

    Article  Google Scholar 

  • Lloyd J, Wong SC, Styles JM, Batten D, Priddle R, Turnbull C, McConchie CA (1995b) Measuring and modelling whole-tree gas exchange. Aust J Plant Physiol 22:987–1000

    Google Scholar 

  • Long SP, Ainsworth EA, Bernacchi CJ, Davey PA, Hymus GJ, Leakey ADB, Morgan PB, Osborne CP (2006) Long-term responses of photosynthesis to elevated [CO2] in managed systems. Ecol Stud 187:254–270

    Google Scholar 

  • Loreto F, Velikova V, Di Marco G (2001) Respiration in the light measured by 12CO2 emission in 13CO2 atmosphere in maize leaves. Aust J Plant Physiol 28:1103–1108

    Google Scholar 

  • Lüttge U (1999) One morphotype, three physiotypes: sympatric species of Clusia with obligate C3 photosynthesis, obligate CAM and C3-CAM intermediate behaviour. Plant Biol 1:138–148

    Article  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • MacFadden BJ, Cerling TE (1996) Mammalian herbivore communities, ancient feeding ecology and carboisotopes: a 10-million-year sequence from the Neogene of Florida. J Vertebrate Paleontol 16:103–115

    Article  Google Scholar 

  • McCree KJ (1983) Carbon balance as a function of plant size in Sorghum plants. Crop Sci 20:82–93

    Google Scholar 

  • Merino J, Field C, Mooney HA (1982) Construction and maintenance costs of Mediterranean-climate evergreen and deciduous leaves. I. Growth and CO2 exchange analysis. Oecologia 53:208–213

    Article  CAS  PubMed  Google Scholar 

  • Miflin B (2000) Crop improvement in the 21st century. J Exp Bot 51:1–8

    Article  CAS  PubMed  Google Scholar 

  • Monsi M (1960) Dry-matter reproduction in plants. I. Schemata of dry-matter reproduction. Bot Mag 73:82–90

    Article  Google Scholar 

  • Mott KA, Parkhust DF (1991) Stomatal response to humidity in air and helox. Plant Cell Environ 14:509–515

    Article  Google Scholar 

  • Mott KA, Gordon ZG, Berry JA (1993) Asymmetric stomatal closure for the two surfaces of Xynthium strumarium L. leaves at low humidity. Plant Cell Environ 16:25–34

    Article  Google Scholar 

  • Nösberger J, Long SP, Norby RJ, Stitt M, Hendrey GR, Blum H (2006) Managed ecosystems and CO2, Ecological Studies, vol 187. Springer, Heidelberg

    Google Scholar 

  • Nyffelder R, Eggli U, Ogburn M, Edwards E (2008) Variations on a theme: repeated evolution of succulent life forms in the Portulacinae (Caryophyllales). Haseltonia 14:26–36

    Article  Google Scholar 

  • Orians GH, Solbrig OT (1977) A cost–income model of leaves and roots with special reference to arid and semiarid areas. Am Nat 111:677–690

    Article  Google Scholar 

  • Pagani M, Zachos JC, Freeman KH, Tipple B, Bohaty S (2005) Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309:600–603

    Article  CAS  PubMed  Google Scholar 

  • Pearcy RW, Pfitsch WA (1994) The consequences of sunflecks for photosynthesis and growth of forest understory plants. Ecol Stud 100:343–357

    CAS  Google Scholar 

  • Penning de Vries FWT (1975) Use of assimilates in higher plants. In: Cooper JP (ed) JGP 3: photosynthesis and productivity in different environments. Cambridge University Press, Cambridge. pp 459–480

    Google Scholar 

  • Penning de Vries FWT (1983) Modelling of growth and productivity. Encycl Plant Physiol 12D:117–150

    Google Scholar 

  • Penning de Vries FWT, Djitèye MA (1982) La productivité des pâturages sahéliens: Une étude des sols, des végétations et de l'exploitation de cette ressource naturelle. PUDOC, Wageningen

    Google Scholar 

  • de Pury DGG, Farquhar GD (1999) A commentary on the use of a sun/shade model to scale from the leaf to a canopy. Agric For Meteorol 95:257–260

    Article  Google Scholar 

  • Raschke K (1979) Movements of stomata. Encycl Plant Physiol 7:383–441

    Google Scholar 

  • Raunkiaer C (1934) The life forms of plants and statistical plant geography: being the collected papers of C. Raunkiaer. Clarendon Press, Oxford

    Google Scholar 

  • Sage RF (2004) The evolution of C4 photosynthesis. New Phytol 161:341–370

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Physiol 63:19–47

    Article  CAS  PubMed  Google Scholar 

  • Scarascia-Mugnozza G, Bauer GA, Persson H, Mateucci G, Marci A (2000) Tree biomass, growth and nitrogen pools. Ecol Stud 142:49–62

    Article  CAS  Google Scholar 

  • Scheible WR, Gonzáles-Fortes A, Lauerer M, Müller-Röber B, Caboche M, Stitt M (1997) Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell 9:783–798

    Google Scholar 

  • Schulze E-D (1970) Der CO2-Gaswechsel der Buche (Fagus silvatica L.) in Ahhängigkeit von den Klimafaktoren im Freiland. Flora 159:177–232

    Article  Google Scholar 

  • Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. Encycl Plant Physiol 12B:616–676

    Google Scholar 

  • Schulze E-D, Chapin FS III (1987) Plant specialisation to environments of different resource availability. Ecol Stud 61:120–148

    Google Scholar 

  • Schulze E-D, Hall AL (1982) Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. Encycl Plant Physiol 12B:181–230

    Google Scholar 

  • Schulze E-D, Küppers M, Matyssek R (1987) The role of carbon balance and branching pattern in the growth of woody species. In: Givnish TJ (ed) On the economy of the plant form and function. Cambridge University Press, Cambridges. pp 585–602

    Google Scholar 

  • Schulze W, Stitt M, Schulze E-D, Neuhaus HE, Fichtner K (1991) A quantification of the significance of assimilatory starch for growth of Arabidopsis thaliana L. Heynh. Plant Physiol 95:890–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schulze E-D, Kelliher FM, Körner C, Lloyd J, Lenning P (1994) Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation and plant nitrogen nutrition: a global ecology scaling exercise. Annu Rev Ecol Syst 25:629–660

    Article  Google Scholar 

  • Schulze E-D, Schulze W, Kelliher FM, Vygodskaya NN, Ziegler W, Kobak KI, Koch H, Arneth A, Ksnetsova WA, Sogachev A, Issajev A, Bauer G, Hollinger DY (1995) Aboveground biomass and nitrogen nutrition in a chronosequence of pristine Dahurian Larix stands in eastern Siberia. Can J For Res 25:943–960

    Article  Google Scholar 

  • Schulze E-D, Ellis R, Schulze W, Trimborn P, Ziegler H (1996) Diversity, metabolic types and δ13C carbon isotope ratios in the grass flora of Namibia in relation to growth form, precipitation and habitat conditions. Oecologia 106:352–369

    Article  PubMed  Google Scholar 

  • Schulze E-D, Williams RJ, Farquhar GD, Schulze W, Langridge J, Miller JM, Walker BH (1998) Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust J Plant Physiol 25:413–425

    Google Scholar 

  • Schulze E-D, Wirth C, Mollicone D, von Lüpke N, Ziegler W, Achard F, Mund M, Prokushkin A, Scherbina S (2012) Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers. Biogeosciences 9:1405–1421

    Article  Google Scholar 

  • Schwarz PA, Fahey TH, Dawson TE (1997) Seasonal air and soil temperature effects on photosynthesis in red spruce (Picea rubens) saplings. Tree Physiol 17:187–194

    Article  CAS  PubMed  Google Scholar 

  • Sesták Z, Catsky J, Jarvis PG (eds) (1971) Plant photosynthetic production: manual of methods. Junk, Den Haag

    Google Scholar 

  • Shinozaki K, Yoda K, Hozumi K, Kira T (1964) A quantitative analysis of plant form—the pipe model theory. II. Further evidence of the theory and its application in forest ecology. Jpn J Ecol 14:133–139

    Google Scholar 

  • Steinlein T, Heilmeier H, Schulze E-D (1993) Nitrogen and carbohydrate storage in biennials originating from habitats of different resource availability. Oecologia 93:374–382

    Article  CAS  PubMed  Google Scholar 

  • Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, Álvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque Á, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makan J-R, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su S-H, Sun I-F, Tan S, Thomas D, van Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature 507:90–93

    Article  CAS  PubMed  Google Scholar 

  • Still CJ, Berry JA (2003) Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem Cycles 17:1006

    Google Scholar 

  • Stitt M, Schulze E-D (1994) Plant growth, storage, and resource allocation: from flux control in a metabolic chain to the whole plant level. In: Schulze E-D (ed) Flux control in biological systems. Academic Press, San Diego. pp 57–118

    Chapter  Google Scholar 

  • Takabayashi A, Kishine M, Asada K, Endo T, Sato F (2005) Differential use of two cyclic electron flows around photosystem I for driving CO2-concentration mechanism in C4 photosynthesis. Proceedings of the National Academy of Sciences 102:16898–16903

    Article  CAS  Google Scholar 

  • Trendlenburg R, Mayer-Wegelin H (1955) Das Holz als Rohstoff. Carl Hanser Verlag, Munich

    Google Scholar 

  • Troll W (1939) Vergleichende Morphologie der höheren Pflanzen. Bd. 1: Vegetationsorgane. Verlag Gebrüder Bornträger, Berlin

    Google Scholar 

  • Vareschi V (1980) Vegetationsökologie der Tropen. Ulmer, Stuttgart

    Google Scholar 

  • Volkens G (1887) Die Flora der ägyptisch-arabischen Wüste auf Grundlage anatomisch-physiologischer Forschung. Gebrüder Bornträger, Berlin

    Google Scholar 

  • Walter H, Kreeb K (1970) Die Hydration und Hydratur des Protoplasmas der Pflanzen und ihre öko-physiologische Bedeutung, Protoplasmologia, vol IIC6. Springer, Wien

    Book  Google Scholar 

  • Warburg O (1913) Die Pflanzenwelt, Bd 1. Bibliographisches Institut, Leipzig

    Google Scholar 

  • Ward JK, Tissue DT, Thomas RB, Strain BR (1999) Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob Change Biol 5:857–867

    Google Scholar 

  • Woodward GR (1976) Photosynthesis and expansion of leaves of soybean grown in two environments. Photosynthetica 10:274–279

    Google Scholar 

  • Yamori W, Hikosaka K, Way DA (2014) Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth Res 119:101–117

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schulze, ED., Beck, E., Buchmann, N., Clemens, S., Müller-Hohenstein, K., Scherer-Lorenzen, M. (2019). Carbon Relations. In: Plant Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56233-8_12

Download citation

Publish with us

Policies and ethics