Skip to main content

Abstract

The Pineapple, Ananas comosus var. comosus, a major contribution from Precolombian civilizations to world horticulture, evolved from the wild A. comosus var. ananassoides in the Guianas and further developed into a wide range of large-fruited cultivars in the upper Amazon, more than 3,500 thousands years ago, before diffusing to all tropical Americas in prehistoric times. As wild relatives and primitive cultigens belong to the botanical varieties of A. comosus and to the wild tetraploid A. macrodontes, reproductive barriers are inexistent or limited to differences in ploidy. The exploitation of wild and primitive germplasm is promising for pineapple breeding; however, it is limited by the difficult characterization and introgression of resistance traits. In comparison, the development of ornamental cultivars appears straightforward, as interesting traits are much easier to manipulate. Other uses, as high-quality fiber production and pharmaceutical treatments, open new commercial perspectives. Ananas germplasm collections clearly need further investigation to realize their full potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson EJ, Collins JL (1949) Progress in breeding for resistance to heart rot – root rot. Spl Rep PRI 16:8–13

    Google Scholar 

  • Anonymous (2007) International Bromeliad Society Website. www.bsi.org/

  • Aradhya MK, Zee F, Manshardt RM (1994) Isozyme variation in cultivated and wild pineapple. Euphytica 79:87–99

    Article  CAS  Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Ayala A (1961) An analysis of quantitative and qualitative composition of nematodes populations in pineapple fields in Puerto Rico. J Agric Univ Puerto Rico 45:285–299

    Google Scholar 

  • Ayala A, González-Tejera E, Irizarry H (1969) Pineapple nematodes and their control. In: Peachey JE (ed) Nematodes of tropical crops. CABI, Wallingford, UK, pp 210–224

    Google Scholar 

  • Aye T, Yi Mon M, Tha SJ, Chit M (1996) Anthelminthic property of Myanmar pineapple (Nanat) on experimental models. Myan Health Sci Res J 8:14–19

    Google Scholar 

  • Baker KF, Collins JL (1939) Notes on the distribution and ecology of Ananas and Pseudananas in South America. Am J Bot 26:697–702

    Article  Google Scholar 

  • Bello S, Julca A (1993) Colección y evaluación de ecotipos de piña Ananas comosus de la Amazonía peruana. Memorias Primer Simposio Latinoamericano de Piñicultura, Cali, Colombia, 25–29 May 1993, p 1–13

    Google Scholar 

  • Bertoni MS (1919) Contribution à l’étude botanique des plantes cultivées. I. Essai d’une monographie du genre Ananas. Ann Cient Parag (Ser II) 4:250–322

    Google Scholar 

  • Boom BM, Moestl S (1990) Ethnobotanical notes of Jose M. Cruxent from the Franco-Venezuelan expedition to the headwaters of the Orinoco river, 1951–1952. Econ Bot 44:416–419

    Article  Google Scholar 

  • Botella JR, Smith M (2008) Genomics of pineapple, crowning the king of tropical fruit. In: Moore PH, Ming R (eds) Genomics of tropical crop plants. Springer, New York, USA, pp 441–451

    Chapter  Google Scholar 

  • Brewbaker JL, Gorrez DD (1967) Genetics of self-incompatibility in the monocot genera, Ananas (pineapple) and Gasteria. Am J Bot 54:611–616

    Article  Google Scholar 

  • Brown CH (2010) Development of agriculture in prehistoric Mesoamerica: the linguistic evidence. In: Staller JE, Carrasco MD (eds) Pre-Columbian foodways: interdisciplinary approaches to food, culture, and markets in Mesoamerica. Springer, New York, USA, pp 71–107

    Google Scholar 

  • Brown GK, Palaci CA, Luther HE (1997) Chromosome numbers in Bromeliaceae. Selbyana 18:85–88

    Google Scholar 

  • Cabral JRS, de Matos AP, Coppens d'Eeckenbrugge G (1997) Segregation for resistance to fusariose, leaf colour and leaf margin type from the EMBRAPA pineapple hybridization programme. Acta Hortic 425:193–200

    Google Scholar 

  • Camargo F (1943) Vida e utilidade das Bromeliáceas. Bol Tec Instituto Agronómico do Norte, Belem, Pará, Brazil

    Google Scholar 

  • Capinpin JH, Rotor GB (1937) A cytological and morphogenetic study of some pineapple varieties and their mutant and hybrid derivatives. Philip Agric 26:139–158

    Google Scholar 

  • Carlier JD, Reis A, Duval MF, Coppens d'Eeckenbrugge G, Leitão JM (2004) Genetic maps of RAPD, AFLP and ISSR markers in Ananas bracteatus and Ananas comosus using the pseudo-testcross strategy. Plant Breed 123:186–192

    Article  CAS  Google Scholar 

  • Carlier JD, Coppens d’Eeckenbrugge G, Leitão JM (2007) Pineapple. In: Kole C (ed) Genomic mapping and molecular breeding in plants, vol 4, Fruits and nuts. Springer, Berlin, pp 331–342

    Google Scholar 

  • Carter CE, Marriage H, Goodenough PW (2000) Mutagenesis and kinetic studies of a plant cysteine proteinase with an unusual arrangement of acidic amino acids in and around the active site. Biochemistry 39:11005–11013

    Article  PubMed  CAS  Google Scholar 

  • Cazzonelli CI, Cavallaro AS, Botella JR (1998) Cloning and characterisation of ripening-induced ethylene biosynthetic genes from non-climacteric pineapple (Ananas comosus) fruits. Aust J Plant Physiol 25:513–518

    Article  CAS  Google Scholar 

  • Chan YK (2006) Hybridisation and selection in pineapple improvement. The experience in Malaysia. Acta Hortic 702:87–92

    Google Scholar 

  • Clement CR (1989) A center of crop genetic diversity in western Amazonia. BioScience 39:624–631

    Article  Google Scholar 

  • Collins JL (1933) Morphological and cytological characteristics of triploid pineapples. Cytologia 4:248–256

    Google Scholar 

  • Collins JL (1953) Review of breeding for resistance to heart rot and root rot. PRI News 1:73–78

    Google Scholar 

  • Collins JL (1960) The pineapple. Interscience, New York, NY, USA

    Google Scholar 

  • Collins JL, Hagan HR (1932) Nematode resistance of pineapples. Varietal resistance of pineapple roots to the nematode Heterodera radicicola (Greef) Muller. J Hered 23(459–465):503–511

    Google Scholar 

  • Collins JL, Kerns KR (1931) Genetic studies of the pineapple. I. A preliminary report upon the chromosome number and meiosis in seven pineapple varieties (Ananas sativus Lindl.) and in Bromelia pinguin L. J Hered 22:39–142

    Google Scholar 

  • Collins JL, Kerns KR (1946) Inheritance of three leaf types in the pineapple. J Hered 37:123–128

    PubMed  CAS  Google Scholar 

  • Coppens d’Eeckenbrugge G, Leal F (2003) Morphology, anatomy and taxonomy. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple: botany, production and uses. CABI, Wallingford, Oxford, UK, pp 13–32

    Chapter  Google Scholar 

  • Coppens d'Eeckenbrugge G, Duval MF, Van Miegroet F (1993) Fertility and self-incompatibility in the genus Ananas. Acta Hortic 334:45–51

    Google Scholar 

  • Coppens d'Eeckenbrugge G, Leal F, Duval MF (1997) Germplasm resources of pineapple. Hortic Rev 21:133–175

    Google Scholar 

  • Corrêa MP (1952) Diccionário das Plantas úteis do Brasil e das Exóticas Cultivadas, vol III. Imprensa Nacional, Rio de Janeiro, Brazil

    Google Scholar 

  • Cuevas IC, Podestá FE (2000) Purification and physical and kinetic characterization of an NAD+−dependent malate dehydrogenase from leaves of pineapple (Ananas comosus). Physiol Plant 108:240–248

    Article  CAS  Google Scholar 

  • Dinardo-Miranda LL, Spironello A, Martins ALM (1996) Host suitability of pineapple varieties for Meloidogyne incognita race 1. Bragantia 55:275–278

    Article  Google Scholar 

  • Dujardin M (1991) Cytogénétique de l'ananas. Fruits 46:376–379

    Google Scholar 

  • Duval MF, Coppens d’Eeckenbrugge G, Fontaine A, Horry JP (2001a) Ornamental pineapple: perspective from clonal and hybrid breeding. Pineapple News 8:12

    Google Scholar 

  • Duval MF, Coppens d'Eeckenbrugge G (1993) Genetic variability in the genus Ananas. Acta Hortic 334:27–32

    Google Scholar 

  • Duval MF, Coppens d'Eeckenbrugge G, Ferreira FR, Cabral JRS, Bianchetti LDB (1997) First results from joint EMBRAPA-CIRAD Ananas germplasm collecting in Brazil and French Guyana. Acta Hortic 425:137–144

    Google Scholar 

  • Duval MF, Noyer JL, Perrier X, Coppens d’Eeckenbrugge G, Hamon P (2001b) Molecular diversity in pineapple assessed by RFLP markers. Theor Appl Genet 102:83–90

    Article  CAS  Google Scholar 

  • Duval MF, Buso GC, Ferreira FR, LdB B, Coppens d’Eeckenbrugge G, Hamon P, Ferreira ME (2003) Relationships in Ananas and other related genera using chloroplast DNA restriction site variation. Genome 46:990–1004

    Article  PubMed  CAS  Google Scholar 

  • Ferreira FR, Giacometti DC, LdB B, Cabral JRS (1992) Coleta de germoplasma de abacaxizeiros (Ananas comosus (L.) Merril) e espécies afins. Rev Bras Frut 14:5–11

    Google Scholar 

  • Firoozabady E, Heckert M, Gutterson N (2006) Transformation and regeneration of pineapple. Plant Cell Tiss Organ Cult 84:1–16

    Article  Google Scholar 

  • García ML (1988) Etude taxinomique du genre Ananas. Utilisation de la variabilité enzymatique. Doctoral Thesis, University of Science and Technology, Languedoc, Montpellier, France

    Google Scholar 

  • Gitaí J, Horres R, Benko-Iseppon AM (2005) Chromosomal features and evolution of Bromeliaceae. Plant Syst Evol 253:65–80

    Article  Google Scholar 

  • González-Arnao M, Márquez-Ravelo M, Urra-Villavicencio C, Martínez-Montero M, Engelmann F (1998) Cryopreservation of pineapple (Ananas comosus) apices. CryoLetters 19:375–382

    Google Scholar 

  • Guedes NMP, Maria J, Zambolin L, Ventura JA (1996) Protoplast isolation of Ananas comosus (L.) Merr. cv ‘Perolera’. Acta Hortic 425:259–265

    Google Scholar 

  • Heilborn O (1921) Notes on the cytology of Ananas sativus Lindl. and the origin of its parthenocarpy. Ark Bot 17:1–7

    Google Scholar 

  • Hepton A, Hodgson AS (2003) Pineapple: processing. In: Bartholomew DP, Paull RE, Rohrbach K (eds) The pineapple, botany, production and uses. CABI, Wallingford, UK, pp 281–290

    Chapter  Google Scholar 

  • Hernández MS, Montoya D (1993) Recolección de piña y otras especies de Ananas en Colombia. Memorias Primer Simposio Latinoamericano de Piñicultura, Cali, Colombia, 25–29 May 1993 (posters)

    Google Scholar 

  • Hordegen P, Cabaret J, Hertzberg H, Langhans W, Maurer V (2006) In vitro screening of six anthelmintic plant products against larval Haemonchus contortus with a modified methyl-thiazolyl-tetrazolium reduction assay. J Ethnopharmacol 108:85–89

    Article  PubMed  CAS  Google Scholar 

  • Johannessen GA, Kerns KR (1964) Screening and classifying new varieties for resistance to P. cinnamomi and P. parasitica. PRI Res Rep 111:96–100

    Google Scholar 

  • Jung Y, Choi C, Park J, Kang H, Choi J, Nou I, Lee S, Kang K (2008) Overexpression of the pineapple fruit bromelain gene (BAA) in transgenic Chinese cabbage (Brassica rapa) results in enhanced resistance to bacterial soft rot. Electron J Biotechnol 11:7

    Article  Google Scholar 

  • Kerns KR (1932) Concerning the growth of pollen tubes in pistils of Cayenne flowers. Pineapple Quart 1:133–137

    Google Scholar 

  • Ko HL, Campbell PR, Jobin-Décor MP, Eccleston KL, Graham MW, Smith MK (2006) The introduction of transgenes to control blackheart in pineapple (Ananas comosus L.) cv. Smooth Cayenne by microprojectile bombardment. Euphytica 150:387–395

    Article  CAS  Google Scholar 

  • Ko HL, Sanewski GM, Smith MK (2008) Pineapple. In: Kole C, Hall TC (eds) Compendium of transgenic crop plants, vol 5, Transgenic tropical and subtropical fruit and nuts. Wiley-Blackwell, Chicester, Oxford, UK, pp 109–130

    Google Scholar 

  • Leal F, Amaya L (1991) The curagua (Ananas lucidus, Bromeliaceae) crop in Venezuela. Econ Bot 45:216–224

    Article  Google Scholar 

  • Leal F, Antoni MG (1981) Especies del género Ananas: origen y distribución geográfica. Rev Fac Agron, Univ Central de Venezuela, 29:5–12

    Google Scholar 

  • Leal F, Coppens d'Eeckenbrugge G (1996) Pineapple. In: Janick J, Moore JN (eds) Fruit breeding, vol I, Tree and tropical fruits. Wiley, New York, NY, USA, pp 565–606

    Google Scholar 

  • Leal F, Medina E (1995) Some wild pineapples in Venezuela. J Bromel Soc 45:152–158

    Google Scholar 

  • Leal F, García ML, Cabot C (1986) Prospección y recolección de Ananas y sus congéneres en Venezuela. Plant Genet Resour Newsl 66:16–19

    Google Scholar 

  • Leal F, Coppens d'Eeckenbrugge G, Holst B (1998) Taxonomy of the genera Ananas and Pseudananas – an historical review. Selbyana 19:227–235

    Google Scholar 

  • Leão AL, Machado IS, de Souza SF, Soriano L (2009) Production of Curauá (Ananas erectifolius L.B. Smith) fibers for industrial applications: characterization and micropropagation. Acta Hortic 822:227–238

    Google Scholar 

  • Lee KL, Albee KL, Bernasconi RJ, Edmunds T (1997) Complete amino acid sequence of ananain and a comparison with stem bromelain and other plant cysteine proteases. Biochem J 327:199–202

    PubMed  CAS  Google Scholar 

  • Lin BY, Ritschel PS, Ferreira FR (1987) Número cromossômico de exemplares da família Bromeliaceae. Rev Bras Fruit 9:49–55

    Google Scholar 

  • Lin MT, Fu MT, Ken CF, Lin CT (2000) Cloning and characterization of a cDNA encoding for Cu/Zn-superoxide dismutase from pineapple. Plant Physiol 122:619

    Article  Google Scholar 

  • Loeillet D (2008) The European pineapple market. A cure for morosity. FruiTrop 154:7–13

    Google Scholar 

  • López LMI, Sequeiros C, Trejo SA, Pardo MF, Caffini NO, Natalucci CL (2001) Comparison of two cysteine endopeptidases from Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). Biol Chem 382:875–878

    Article  PubMed  Google Scholar 

  • Loudon JC (1822) The different modes of cultivating the pineapple, from its introduction to Europe to the late improvements of T.A. Knight esq., Houlgman Hurst Resorme Brown, London, UK

    Google Scholar 

  • Majumder SK, Kerns KR, Brewbaler JL, Johannessen GA (1964) Assessing self-incompatibility by a pollen fluorescence technique. Proc Am Hortic Sci 84:217–223

    Google Scholar 

  • Maurer HR (2001) Bromelain: biochemistry, pharmacology and medical use. Cell Mol Life Sci 58:1234–1245

    Article  PubMed  CAS  Google Scholar 

  • Montinola LR (1991) Piña. Amon foundation, Manila, Philippines

    Google Scholar 

  • Moyle RL, Crowe ML, Ripi-Koia J, Fairbairn DJ, Botella JR (2005) PineappleDB: an online pineapple bioinformatics resource. BMC Plant Biol 5:21. http://www.biomedcentral.com/1471-2229/5/21. Accessed 16 July 2010

    Google Scholar 

  • Moyle R, Fairbairn DJ, Ripi J, Crowe M, Botella JR (2005b) Developing pineapple fruit has a small transcriptome dominated by metallothionein. J Exp Bot 56:101–112

    PubMed  CAS  Google Scholar 

  • Moyle R, Ripi J, Fairbairn DJ, Crowe M, Botella JR (2006) The pineapple EST sequencing and microarray project. Acta Hortic 702:47–50

    CAS  Google Scholar 

  • Muller A (1994) Contribution à l'étude de la fertilité et de l'autofertilité dans le genre Ananas. Eng Thesis, ISTOM, Montpellier, France

    Google Scholar 

  • Nakayama L, Souza JS de, Ohash OM, Vale WG (1993) Abortifacient effects of Ananas ananassoides BAK. (Ananai) in rats. Acta Amazonica. 13(5-6), 77–82

    Google Scholar 

  • Neuteboom LW, Kunimitsu WY, Webb D, Christopher DA (2002) Characterization and tissue-regulated expression of genes involved in pineapple (Ananas comosus L.) root development. Plant Sci 163:1021–1035

    Article  CAS  Google Scholar 

  • Noyer JL (1991) Etude préliminaire de la diversité génétique du genre Ananas par les RFLPs. Fruits 46:372–375

    Google Scholar 

  • Noyer JL, Lanaud C, Duval MF, Coppens d'Eeckenbrugge G (1998) RFLP study on rDNA variability in Ananas genus. Acta Hortic 425:153–160

    Google Scholar 

  • Patiño VM (2002) Historia y dispersión de los frutales nativos del Neotrópico. CIAT, Cali, CO

    Google Scholar 

  • Pearsall DM (1992) The origins of plant cultivation in South America. In: Cowan CW, Watson PJ (eds) The origins of agriculture: an international perspective. Smithsonian Series in Archaeological Inquiries. Smithsonian Institution Press, Washington, DC, USA, pp 173–205

    Google Scholar 

  • Purseglove JW (1972) Tropical crops. Monocotyledons. Longman, London, 607 p

    Google Scholar 

  • Reitz R (1983) Bromeliáceas e a malaria – Bromélia endêmica. Flora Ilustrada Catarinense, Santa Catarina, 808 p

    Google Scholar 

  • Reyes-Zumeta H (1967) Breve nota taxonómica sobre piñas cultivadas Ananas comosus (L.) Merr. con mención de dos nuevas variedades silvestres. Rev Fac Agron (Maracay) 39:131–142

    Google Scholar 

  • Rios R, Khan B (1998) List of ethnobotanical uses of Bromeliaceae. J Bromel Soc 48:75–87

    Google Scholar 

  • Rohrbach KG, Johnson MW (2003) Pests, diseases and weeds. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple: botany, production and uses. CABI, Wallingford, UK, pp 203–252

    Chapter  Google Scholar 

  • Rohrbach KG, Leal F, Coppens d'Eeckenbrugge G (2003) History, distribution and world production. In: Bartholomew DP, Paull RE, Rohrbach KG (eds) The pineapple: botany, production and uses. CABI, Wallingford, UK, pp 1–12

    Chapter  Google Scholar 

  • Rowan AD, Buttle DJ, Barrett AJ (1988) Ananain: a novel cysteine proteinase found in pineapple stem. Arch Biochem Biophys 267:262–270

    Article  PubMed  CAS  Google Scholar 

  • Sanewski GM (2009) Breeding Ananas for the cut-flower and garden markets. Acta Hortic 822:71–78

    Google Scholar 

  • Sarah JL, Mesnildrey L, Marguerite E, Boisseau M (1997) Laboratory screening of pineapple germplasm for resistance to the lesion nematode Pratylenchus brachyurus. Acta Hortic 425:179–186

    Google Scholar 

  • Sawano Y, Muramatsu T, Hatano K, Nagata K, Tanokura M (2002) Characterization of genomic sequence coding for bromelain inhibitors in pineapple and expression of its recombinant isoform. J Biol Chem 277:28222–28227

    Article  PubMed  CAS  Google Scholar 

  • Schultes RE (1984) Amazonian cultigens and their northward and westward migration in pre-Columbian times. In: Stone D (ed) Pre-Columbian plant migration, Papers of the Peabody Museum of Archaeology and Ethnology, vol 76. Harvard University Press, Cambridge, MA, USA, pp 19–37

    Google Scholar 

  • Shyu DJH, Chyan CL, Tzen JTC, Chou WM (2004) Molecular cloning, expression, and functional characterization of a cystatin from pineapple stem. Biosci Biotechnol Biochem 68:1681–1689

    Article  PubMed  CAS  Google Scholar 

  • Silva JS, Andreo MA, Tubaldini FR, Varanda EA, Rocha LRM, Brito ARMS, Vilegas W, Hiruma-Lima CA (2008) Differences in gastroprotective and mutagenic actions between polar and apolar extracts of Ananas ananassoides. J Med Food 11:160–168

    Article  PubMed  CAS  Google Scholar 

  • Sipes BS, Schmitt DP (1994) Evaluation of pineapple, Ananas comosus, for host-plant resistance and tolerance to Rotylenchulus reniformis and Meloidogyne javanica. Nematropica 24:113–121

    Google Scholar 

  • Smith JB (1965) Plantation variety tests 1965. PRI News 13:255–262

    Google Scholar 

  • Smith JB (1966) Review of the root rot and heart rot problem in pineapple. II. Breeding for resistance. PRI Res Rep 118:50–63

    Google Scholar 

  • Smith LB, Downs RJ (1979) Bromelioideae (Bromeliaceae) Flora Neotropica. New York Botanical Garden, New York, NY, USA

    Google Scholar 

  • Smith MK, Ko HL, Sanewski GM, Botella JR (2005) Ananas comosus Pineapple. In: Litz RE (ed) Biotechnology of fruit and nut crops. CABI, Wallingford, UK, pp 158–172

    Chapter  Google Scholar 

  • Soler AP, Marie-Alphonsine Topart AP, Queneherve P (2009) How to evaluate the resistance or tolerance of pineapple varieties to nematodes. Acta Hortic 822:191–198

    Google Scholar 

  • Souza FVD, Cabral JRS, dos Santos-Serejo JA, de Matos AP, Reinhardt DH, da Cunha GAP, Ferreira FR, Pereira JA (2006) Identification and selection of ornamental pineapple plants. Acta Hortic 702:93–97

    Google Scholar 

  • Souza FVD, Cabral JRS, de Souza EH, MdJ S, Santos OSN, Ferreira FR (2009) Evaluation of F1 hybrids between Ananas comosus var. ananassoides and Ananas comosus var. erectifolious. Acta Hortic 822:79–84

    Google Scholar 

  • Sripaoraya S, Marchant R, Power JB, Davey MR (2001) Herbicide-tolerant transgenic pineapple (Ananas comosus) produced by microprojectile bombardment. Ann Bot 88:597–603

    Article  CAS  Google Scholar 

  • Stewart RJ, Sawyer BJB, Bucheli CS, Robinson SP (2001) Polyphenol oxidase is induced by chilling and wounding in pineapple. Aust J Plant Physiol 28:181–191

    CAS  Google Scholar 

  • Suriname (1995) Country report to the FAO International Technical Conference on Plant Genetic Resources. Ministry of Agriculture Animal Husbandry and Fisheries, Paramaribo, Suriname, 33 p

    Google Scholar 

  • Sugimoto A, Yamaguchi I, Matsuoka M, Nakagawa H, Kato S, Nakano H (1991) In vitro conservation of pineapple genetic resources. Research Highlights, Tropical Agricultural Center, pp 14–16

    Google Scholar 

  • Taussig SJ, Batkin S (1988) Bromelain, the enzyme complex of pineapple (Ananas comosus) and its clinical application: an update. J Ethnopharmacol 22(2):191–203

    Article  PubMed  CAS  Google Scholar 

  • Thomson KG, Thomas JE, Dietzgen RG (1998) Retrotransposon-like sequences integrated into the genome of pineapple, Ananas comosus. Plant Mol Biol 38:461–465

    Article  PubMed  CAS  Google Scholar 

  • Trusov Y, Botella JR (2006) Delayed flowering in pineapples (Ananas comosus (L.) Merr.) caused by co-suppression of the ACACS2 gene. Acta Hortic 702:29–36

    CAS  Google Scholar 

  • Valds EA, García RB, Rodríguez NN, Peña AC, Pérez MI (1998) Determination of haploid plants in pineapple and alternative methods in the evaluation of ploidy levels. In: Proceedings of 3rd international pineapple symposium, Pattaya, Thailand, 17–20 Nov 1998, P52

    Google Scholar 

  • Williams DDF, Fleisch H (1993) Historical review of pineapple breeding in Hawaii. Acta Hortic 334:67–76

    Google Scholar 

  • Zah R, Hischier R, Leão AL, Braun I (2007) Curauá fibers in the automobile industry – a sustainability assessment. J Clean Prod 15:1032–1040

    Article  Google Scholar 

  • Zee ET, Munekata M (1992) In vitro storage of pineapple (Ananas spp.) germplasm. HortScience 16:495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geo Coppens d’Eeckenbrugge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

d’Eeckenbrugge, G.C., Sanewski, G.M., Smith, M.K., Duval, MF., Leal, F. (2011). Ananas. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20447-0_2

Download citation

Publish with us

Policies and ethics