Skip to main content

Abstract

Phleum is a complex genus involving diploid, tetraploid, hexaploid and octoploid forms. The domesticated forms of Phleum pratense, known as Timothy, are usually hexaploid. There is now considerable potential to introgress and to resynthesize new forms using wild relatives from other ploidy levels of the section Phleum using the knowledge gained about their relationships from molecular studies. Germplasm of many of these forms is under serious threat from habitat degradation and climate warming. Unfortunately many of these forms, particularly those from the Mediterranean and North Africa, are absent from genebanks and their collection for storage in ex situ genebanks is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah AA, Pedersen S, Andersen SB (1994) Triploid and hexaploid regenerants from hexaploid Timothy (Phleum pratense) via anther culture. Plant Breed 112:342–345

    Article  Google Scholar 

  • AgriQuality (2007) Seed certification statistics 2006–2007. AgriQuality, New Zealand

    Google Scholar 

  • Anonymous (2007) Appendix: Total world seed production (tonnes) of various grasses and clovers in the world and EU countries 1993–2006. In: Proceedings of the 6th international herbage seed conference, Norway, 2007

    Google Scholar 

  • Barkworth ME, Capels KM, Long S, Anderton LK (2007) Flora of North America north of Mexico, vol 24: Magnoliophyta; Commelinidae (in part); Poaceae, part 1. Oxford University Press, Oxford, UK

    Google Scholar 

  • Bondesen OB (2007) Seed production and seed trade in a globalised world. Seed production in the northern light. In: Proceedings of the 6th international herbage seed conference, Norway, pp 9–12

    Google Scholar 

  • Bosemark NO (1967) Edaphic factors and the geographic distribution of accessory chromosomes in Phleum phleoides. Hereditas 57:239–262

    Article  Google Scholar 

  • Cabral D, Iannone LJ, Stewart AV, Novas MV (2007) The distribution and incidence of Neotyphodium endophytes in native grasses from Argentina and its association with environmental factors. In: Proceedings of the 6th international endophyte symposium, Christchurch, New Zealand, 26–28 Mar 2007, pp 79–82

    Google Scholar 

  • Cai Q, Bullen MR (1991) Characterization of genomes of timothy (Phleum pratense L.) 1. Karyotypes and C-banding patterns in cultivated timothy and two wild relatives. Genome 34:52–58

    Google Scholar 

  • Cai Q, Bullen MR (1994) Analysis of genome specific sequences in Phleum species: identification and use for study of genomic relationships. Theor Appl Genet 88:831–837

    Article  CAS  Google Scholar 

  • Cai HW, Yuyama N, Tamaki H, Yoshizawa A (2003) Isolation and characterization of simple sequence repeat markers in the hexaploid forage grass timothy (Phleum pratense L.). Theor Appl Genet 107:1337–1349

    Article  CAS  PubMed  Google Scholar 

  • Caradus JR (1978) Plant introduction trials. Performance of Timothy cultivars and lines in New Zealand as spaced plants. NZ J Exp Agric 6:11–17

    Google Scholar 

  • Casler MD (2001) Patterns of variation in a collection of Timothy accessions. Crop Sci 41:1616–1624

    Article  Google Scholar 

  • Cenci CA, Pegiati MT, Falistocco E (1984) Phleum pratense (Gramineae): chromosomal and biometric analysis of Italian populations. Willdenowia 14:343–353

    Google Scholar 

  • Charlton JFL, Stewart AV (2000) Timothy, the plant and its use on New Zealand farms. Proc NZ Grassl Assoc 62:147–153

    Google Scholar 

  • Conert HJ (1998) Phleum. In: Hegi G (ed) Illustrierte Flora von Mitteleuropa. Verlag Paul Parey, Berlin, pp 190–206

    Google Scholar 

  • Cooper JP (1958) The effect of temperature and photoperiod on inflorescence development in strains of timothy (Phleum spp.). J Br Grassl Soc 13:81–91

    Article  Google Scholar 

  • Cooper JP, Calder DM (1964) The inductive requirements for flowering of some temperate grasses. Grass Forage Sci 19:6–14

    Article  Google Scholar 

  • Dogan M (1988) A scanning electron microscope survey of the lemma in Phleum, Pseudophleum and Rhizocephalus (Gramineae). Notes R Bot Gard Edinburgh 45:117–124

    Google Scholar 

  • Dogan M (1991) A taxonomical revision of the genus Phleum L. (Gramineae). Karaca Arbor Mag 1:53–70

    Google Scholar 

  • Dogan M, Us J (1996) Infrageneric classification of the genus Phleum L. (Gramineae) estimated by numerical taxonomy. In: Öztürk M, Seçmen Ö, Görk G (eds) Plant life in Southwest and Central Asia. Ege University Press, Izmir, Turkey, pp 160–165

    Google Scholar 

  • Ellestrom S, Tijo JH (1950) Note on the chromosomes of Phleum echinatum. Bot Not 4:463–465

    Google Scholar 

  • Fjellheim S, Pedersen AJ, Andersen JR, Antonius-Klemola K, Bondo L, Brantestam AK, DafgÃ¥rd L, Helgadottir A, Isolahti M, Jensen LFB, Lübberstedt T, Mannien O, Marum P, Merker A, Tanuanpää P, Weibull J, Weibull P, Rognli OA (2007) Phenotypic and molecular characterization of genetic resources of Nordic timothy (Phleum pratense L.). In: Abstracts book of 27th EUCARPIA symposium on improvement of fodder crops and amenity grasses, Copenhagen, Denmark, 19–23 Aug 2007, p 61

    Google Scholar 

  • Foerster E (1968) Ein beitrag zur untercheidung von Phleum pratense und Phleum nodosum. Göttinger Flor Rundbreife 1:9

    Google Scholar 

  • Foerster E (2005) Natürliche Hybriden zwischen Phleum pratense und Phleum bertolonii (Natural hybrids between Phleum pratense and Phleum bertolonii). Gründungstagung der Vereinigung zur Erforschung der Flora Deutschlands, University of Vechta, Germany, 29–30 Oct 2005

    Google Scholar 

  • Fröst S (1969) The inheritance of accessory chromosomes in plants, especially in Ranunculus acris and Phleum nodosum. Hereditas 61:317–326

    Article  Google Scholar 

  • Gentile A, Rossi MS, Cabral D, Craven KD, Schardl CL (2005) Origin, divergence, and phylogeny of Epichloë endophytes of native Argentine grasses. Mol Phylogenet Evol 35:196–208

    Article  CAS  PubMed  Google Scholar 

  • Guo Y-D, Yli-Matilla T, Pulli S (2003) Assessment of genetic variation in timothy (Phleum pratense L.) using RAPD and UP-PCR. Hereditas 138:101–113

    Article  PubMed  Google Scholar 

  • Heide OM, Solhaug KA (2001) Growth and reproduction capacities of two bipolar Phleum alpinum populations from Norway and South Georgia. Arct Antarct Alp Res 33:173–180

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hewitt GM (1999) Post glacial recolonisation of European biota. Biol J Linn Soc 68:87–112

    Article  Google Scholar 

  • Hong Q, White P, Klinka K, Chourmouzis C (1999) Phytogeographical and community similarities of alpine tundras of Changbaishan Summit, and Indian Peaks, USA. J Veg Sci 10:869–882

    Google Scholar 

  • Humphries CJ (1978) Notes on the genus Phleum L. Bot J Linn Soc 76:337–340

    Google Scholar 

  • Humphries CJ (1980) Phleum. In: Tutin TG, Heywood VH, Burgess NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europeaea. Alismataceae to Orchidaceae (Monocotyledones), vol 5. Cambridge University Press, Cambridge, UK, pp 239–241

    Google Scholar 

  • Joachimiak A (1982) Cyto-genetics of standard B-chromosomes in Phleum boehmeri from Poland. Acta Biol Cracov Ser Bot 24:63–77

    Google Scholar 

  • Joachimiak A (1986) B-chromosome condensation in Phleum pollen grains. Genetica 68:169–174

    Article  Google Scholar 

  • Joachimiak A (2005) Heterochromatin and microevolution in Phleum. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1, Part B: Phanerogams. Science, Enfield, NH, USA, pp 89–117

    Google Scholar 

  • Joachimiak A, Kula A (1993) Cytotaxonomy and karyotype evolution in Phleum sect. Phleum (Poaceae) in Poland. Plant Syst Evol 188:11–25

    Google Scholar 

  • Joachimiak A, Kula A (1996) Karyosystematics of the Phleum alpinum polyploid complex (Poaceae). Plant Syst Evol 203:11–25

    Article  Google Scholar 

  • Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91:1709–1725

    Article  CAS  Google Scholar 

  • Kovats D (1976) Phleum studies I. Data of the taxonomy and morphology of Phleum bertolonii DC. and Phleum pratense L. Acta Bot Acad Sci Hungar 22:107–126

    Google Scholar 

  • Kovats D (1977) Phleum studies II. Phleum hubbardii a new species of Poaceae (Gramineae). Acta Bot Acad Sci Hungar 23:119–142

    Google Scholar 

  • Kovats D (1980) Distribution and diversity of Phleum hubbardii and Phleum pratense (Poaceae) in the Carpathian Basin. Stud Bot Hungar 14:107–116

    Google Scholar 

  • Kozuharov SI, Petrova AV (1991) Chromosome numbers of Bulgarian angiosperms. Fitologija 39:72–77

    Google Scholar 

  • Kula A (2003) Morphology and cytogenetics of Phleum hubbardii. In: Frey L, Szafer W (eds) Problems of grass biology. Institute of Botany, Polish Academy of Sciences, Krakow, Poland, pp 299–312

    Google Scholar 

  • Kula A (2005a) Kariologia i morfologia gatunków z rodzaju Phleum. Zesz Nauk AR Krak 418:1–172

    Google Scholar 

  • Kula A (2005b) Searching for a primeval Phleum karyotype. In: Frey L, Szafer W (eds) Problems of grass biology. Institute of Botany, Polish Academy of Science, Krakow, Poland, pp 197–206

    Google Scholar 

  • Kula A, Dudziak B, Sliwinska E, Grabowska-Joachimiak A, Stewart AV, Golczyk H, Joachimiak A (2006) Cytomorphological studies on American and European Phleum commutatum Gaud. (Poaceae). Acta Biol Cracov Ser Bot 48:99–108

    Google Scholar 

  • Levan A (1941) Syncyte formation in the pollen mother-cells of haploid Phleum pratense. Hereditas 27:243–252

    Article  Google Scholar 

  • Løhde JJH (1977) Phleum pratense and Phleum bertolonii hybridisation, morphology and ecology in Denmark. Dissertation, Kongelige Veterinær- og Landbohøjkole, Copenhagen, Denmark, 80p

    Google Scholar 

  • Maire R (1953) Flore de l’Afrique du Nord, vol 2. Lechevalier, Paris, France

    Google Scholar 

  • Manninen O, Erkkilä M, Isolahti M, Nissinen O, Pärssinen P, Rinne M, Tanhuanpää P (2006) Biotechnological tools for breeding feeding quality and optimal growth rhythm in timothy, Phleum pratense. Timothy productivity and forage quality – possibilities and limitations. NJF Seminar 384, Akureyri, Iceland, 10–12 Aug 2006, pp 119–120

    Google Scholar 

  • Moon CD, Craven KD, Leuchtmann A, Clement SL, Schardl CL (2004) Prevalence of interspecific hybrids amongst asexual fungal endophytes of grasses. Mol Ecol 13:1455–1467

    Article  CAS  PubMed  Google Scholar 

  • Müntzing A (1935) Cyto-genetic studies on hybrids between two Phleum-species. Hereditas 20:103–136

    Article  Google Scholar 

  • Müntzing A, Prakken R (1940) The mode of chromosome pairing in Phleum twins with 63 chromosomes and its cytogenetic consequences. Hereditas 26:463–501

    Article  Google Scholar 

  • Myers WM (1941) Meiotic behaviour of Phleum pratense, Phleum subulatum and their F1 hybrid. J Agric Res 63:649–655

    Google Scholar 

  • Nakazumi H, Furuya M, Shimokouji H, Fujii H (1997) Wide hybridization between timothy (Phleum pratense L.) and orchardgrass (Dactylis glomerata L.) Bull. Hokkaido Prefectural Agric Exp Stn (Japan) 72:11–16

    Google Scholar 

  • Nath J (1967) Cytogenetical and related studies in the genus Phleum L. Euphytica 16:267–282

    Article  Google Scholar 

  • Nielsen EL, Nath J (1961) Cytogenetics of a tetraploid form of Phleum pratense L. Euphytica 10:343–350

    Article  Google Scholar 

  • Nielsen EL, Smith DC (1959) Chlorophyll inheritance patterns and extent of natural self-pollination in Timothy. Euphytica 8:169–179

    Google Scholar 

  • Nördenskiold H (1945) Cyto-genetic studies in the genus Phleum. Acta Agric Suec 1:1–138

    Google Scholar 

  • Nördenskiold H (1949) Synthesis of Phleum pratense L. from P. nodosum L. Hereditas 35:190–202

    Google Scholar 

  • Nördenskiold H (1953) A genetical study in the mode of segregation in hexaploid Phleum pratense. Hereditas 39:469–488

    Article  Google Scholar 

  • Nördenskiold H (1957) Segregation ratios in progenies of hybrids between natural and synthesized Phleum pratense. Hereditas 43:525–540

    Article  Google Scholar 

  • Nördenskiold H (1960) The mode of segregation in a family of hexaploid Phleum pratense. Hereditas 46:504–510

    Article  Google Scholar 

  • Perný M, Kolarcik V, Majeský L, Mártonfi P (2008) Cytogeography of the Phleum pratense group (Poaceae) in the Carpathians and Pannonia. Bot J Linn Soc 157:475–485

    Article  Google Scholar 

  • Saikkonen K, Ahlholm J, Helander M, Lehtimäki S, Niemeläinen O (2000) Endophytic fungi in wild and cultivated grasses in Finland. Ecography 23:360–366

    Article  Google Scholar 

  • Schardl C, Phillips T (1997) Protective grass endophytes: where are they from and where are they going? Plant Dis 81:430–438

    Article  Google Scholar 

  • Seto Y, Kogami Y, Shimanuki T, Takahashi K, Matsuura H, Yoshihara T (2005) Production of Phleichrome by Cladosporium phlei as Stimulated by Diketopiperadines of Epichloe typhina. Biosci Biotechnol Biochem 69:1515–1519

    Article  CAS  PubMed  Google Scholar 

  • Sliwinska E, Kula A, Joachimiak A, Stewart AV (2003) Genome size in seven Phleum species. In: International workshop on application of novel cytogenetic and molecular techniques in genetics and breeding of grasses, Poznan, Poland, 1–2 Apr 2003, p 19

    Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057

    Article  CAS  PubMed  Google Scholar 

  • Stewart AV, Joachimiak A, Ellison N (2008) Genomic origins of subgenus Phleum based on ITS and chloroplast sequences. In: Proceedings of the 5th international sympsoium on molecular breeding of forage and turf, Sapporo, Japan, 1–6 July 2008, pp 71–81

    Google Scholar 

  • t’Mannetje L (2007) Climate change and grasslands through the ages: an overview. Grass Forag Sci 62:113–117

    Article  Google Scholar 

  • Tanhuanpää P, Erkkilä M, Nissinen O, Rinne M, Manninen O, Isolahti M, Pärssinen P (2007) Developing DNA markers for feeding quality and gray snow mold resistance in timothy, Phleum pratense. In: Plant GEM 6: Plant Genomics European Meeting, Tenerife, Spain, 3–6 Oct 2007, p 94

    Google Scholar 

  • Tanhuanpää P, Isolahti M, Nissinen O, Pärssinen P, Kalendar R, Schulman A, Manninen O (2008) Identification of DNA markers for gray snow mold resistance in timothy, Phleum pratense, using bulked segregant analysis. In: Molecular mapping and marker assisted selection in plants, Vienna, Austria, 3–6 Feb 2008, p 68

    Google Scholar 

  • Thorn K (1960) Bemerkungen zu einer Ãœbersichtskarte vermutlicher Glazialre-liktpflanzen Deutschlands. Mitt Florist 8:81–85

    Google Scholar 

  • Uhríková A, Králik E (2000) Karyologicke Å¡túdium slovenskej flóry XX1X. Acta Fac Rerum Nat Univ Comen Bot 40:17–22

    Google Scholar 

  • Weber WA (2003) The Middle Asian element in the Southern Rocky Mountain flora of the western United States: a critical biogeographical review. J Biogeogr 30:649–688

    Article  Google Scholar 

  • Weibull J, Ottosson F, Kolodinska Brantestam A, Dafgard L, Weibull P, Merker A (2007) Vanishing variation – the diversity of Timothy (Phleum pratense L.) in historical grasslands. In: 18th EUCARPIA genetic resource section meeting – plant genetic resources and their exploitation in the plant breeding for food and agriculture, Piestany, Slovakia, 23–26 May 2007

    Google Scholar 

  • Wilton AC, Klebesadel LJ (1973) Karyology and phylogenetic relationships of Phleum pratense, P. commutatum, and P. bertolonii. Crop Sci 13:663–665

    Article  Google Scholar 

  • Yang-Dong G, Tapani Y, Seppo P (2003) Assessment of genetic variation in Timothy (Phleum pratense L.) using RAPD and UP-PCR. Hereditas 138:101–113

    Article  Google Scholar 

  • Zernig K (2005) Phleum commutatum and Phleum rhaeticum (Poaceae) in the Eastern Alps: characteristics and distribution. Phyton 45:65–79

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the support of PGG Wrightson Seeds and AgResearch, and the numerous people who supplied germplasm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan V. Stewart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stewart, A.V., Joachimiak, A.J., Ellison, N.W. (2011). Phleum . In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14255-0_14

Download citation

Publish with us

Policies and ethics