Skip to main content

A Consideration of Leaf Shape Evolution in the Context of the Primary Function of the Leaf as a Photosynthetic Organ

  • Chapter
  • First Online:
The Leaf: A Platform for Performing Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 44))

Summary

Leaf shape evolution in angiosperms is reviewed from an evolutionary developmental (evo/devo) viewpoint. Leaves have evolved as photosynthetic organs in land plants, while leaves in some angiosperms have lost their photosynthetic role, e.g., in some cacti, saprophytes/mycoheterotrophs, and parasitic plants. Although the roles are the same among leaves, their morphologies and developmental systems vary significantly, in part because of the need to maximize their photosynthetic efficiency for survival under particular environmental constraints. An example is the narrow leaves of the rheophyte plants located along river banks where frequent flooding occurs. Narrow leaves are less efficient at absorbing sunlight than are leaves with wider blades; however, they can withstand the destructive force of the water flow in full flood. In contrast, in some xerophytic epiphytes, the narrow leaves are effective at catching water from fog. Narrow leaf blade formation is also present in submerged amphibious plants, likely an adaptation to the underwater conditions. The leaf index, i.e., the ratio of leaf length to width, is regulated by several genetic factors, mutations of which may be driving the evolution of leaf shape. However, not all leaf shapes can be explained by environmental adaptation. For example, data on the relationship between leaf shape diversification and environmental habitats in terms of thermo regulation remain controversial.

In contrast, understanding of the genetic/cellular mechanisms underlying leaf blade shape is increasing. Leaf blade organogenesis is governed by adaxial/abaxial identities, in which the plate meristem, responsible for flat leaf blade development, is activated along the interface between the adaxial and abaxial domains. Thus, some morphological diversity in leaves can be partly attributed to changes in the adaxial/abaxial patterning. For example, unifacial leaves, which have only an abaxial identity in the leaf blade, develop into stick-like or terete forms. They can stand vertically and thus live in densely populated areas, unlike plants with bifacial leaves which extend, in most cases, horizontally. Interestingly, some unifacial leaves are flat or ensiform, as seen in the genera Iris and Juncus. In such cases, since the plate meristem is not available, they rely on thickening growth to create flat lamina from the terete primordia. Lotus-like or peltate leaves are also derived from partial alterations in the adaxial/abaxial patterning; however, the pitcher leaves of carnivorous plants, once considered an extreme deformation of the peltate leaves, result from local alterations in cell division. In compound leaves, the major genetic regulatory components are shared with those of serrated leaf margins. The proportion of serrated-leaf species in any particular habitat precisely correlates with the average air temperature, and thus serration mechanisms are likely linked to physiological adaptations to the external environment. The evolution of determinate and indeterminate leaves in angiosperms is also discussed. While leaves are usually determinate and discarded periodically, some species develop indeterminate leaves, with some looking like twigs or lateral branches and functioning as twigs. Some are simple leaves and have an intermediate nature between a leaf and a shoot. We also see the evolution of leaf-like, photosynthetic organs. Some plants develop cladodes, which are modified lateral shoots that resemble leaves. Molecular analysis revealed that recruitment of dorsiventral control mechanisms in leaves has resulted in lateral shoots changing into leaf-like cladodes in the genus Asparagus. All of the above can be interpreted from an evo/devo viewpoint, but the question of why such great diversification occurred in angiosperm leaves remains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AN:

ANGUSTIFOLIA

AN3:

ANGUSTIFOLIA3

ARF:

AUXIN RESPONSE FACTOR

AS1, AS2:

ASYMMETRIC LEAVES 1, ASYMMETRIC LEAVES 2

ATGIF1:

Arabidopsis thaliana GIF1

AtGRF:

Arabidopsis thaliana GRF

BOP:

BLADE-ON-PETIOLE

CIN-TCP:

CINCINNATA-class-TCP

CRC:

CRABS CLAW

CtBP/BARS:

C-terminal Binding Protein/ /BFA–ADP-Ribosylation Substrate

CUC:

CUP-SHAPED COTYLEDON

DL:

DROOPING LEAF

ETT:

ETTIN

FLO:

FLORICAULA

evo/devo:

evolutionary developmental biology

GA:

gibberellic acid

GIF:

GRF-INTERACTING FACTOR

GLK:

GOLDEN2-LIKE

GRF:

GROWTH REGULATING FACTOR

HD-ZipIII:

HOMEODOMAIN LEUCINE ZIPPER Class III

KAN:

KANADI

KNOX:

KNOTTED-LIKE HOMEOBOX

KNOX I:

Class I KNOX

L1:

Layer 1

LFY:

LEAFY

LNG:

LONGIFOLIA

miR:

micro RNA

NGA:

NGATHA

oli:

oligocellula

PIN1:

PIN-FORMED 1

PHAN:

PHANTASTICA

PRS:

PRESSED FLOWER

RCO:

REDUCED COMPLEXITY

ROT3:

ROTUNDIFOLIA 3

RTFL/DVL:

ROTUNDOFOLIA FOUR-LIKE/DEVIL

SAM:

shoot apical meristem

STM:

SHOOT MERISTEMLESS

tasiR:

trans-acting siRNA

TCP:

TEOSINTE BRANCHED1, CYCLOIDEA, PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR1 transcription factor

WOX1:

WUSCHEL-LIKE HOMEODOMAIN 1

xs:

extra-small sisters

YAB:

YABBY

References

  • Adams WW III, Stewart J, Cohu CM, Muller O, Demmig-Adams B (2016) Habitat temperature and precipitation of Arabidopsis thaliana ecotypes determine the response of foliar vasculature, photosynthesis, and transpiration to growth temperature. Front Plant Sci 25:1026

    Google Scholar 

  • Alvarez JP, Furumizu C, Efroni I, Eshed Y, Bowman JL (2016) Active suppression of a leaf meristem orchestrates determinate leaf growth. eLIFE 5:e15023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andriankaja M, Dhondt S, De Bodt S, Vanhaeren H, Coppens F, De Milde L, Mühlenbock P, Skirycz A, Gonzalez N, Beemster GT, Inzé D (2012) Exit from proliferation during leaf development in Arabidopsis thaliana: a not-so-gradual process. Dev Cell 22:64–78

    Article  CAS  PubMed  Google Scholar 

  • Bailey LW, Sinnott EW (1916) The climate distribution of certain types of angiosperm leaves. Am J Bot 3:24–39

    Article  Google Scholar 

  • Barkoulas M, Hay A, Kougioumoutzi E, Tsiantis M (2007) A developmental framework for dissected leaf formation in the Arabidopsis relative Cardamine hirsuta. Nat Genet 40:1136–1141

    Article  CAS  Google Scholar 

  • Bharathan G, Goliber TE, Moore C, Kessler S, Pham T, Sinha NR (2002) Homologies in leaf form inferred from KNOXI gene expression during development. Science 296:1858–1860

    Article  CAS  PubMed  Google Scholar 

  • Bilsborough GD, Runions A, Barkoulas M, Jenkins HW, Hasson A, Glinha C, Laufs P, Hay A, Prusinkiewicz P, Tsiantis M (2011) Model for the regulation of Arabidopsis thaliana leaf margin development. Proc Natl Acad Sci U S A 108:3424–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322:1835–181839

    Article  CAS  PubMed  Google Scholar 

  • Boyce CK (2007) Mechanisms of laminar growth in morphologically convergent leaves and flower petals. Int J Plant Sci 168:1151–1156

    Article  Google Scholar 

  • Brennan EB, Weinbaum SA, Rosenheim JA, Karban R (2001) Heteroblasty in Eucalyptus globulus (Myricales, Myricaceae) affects ovipositional and settling preferences of Ctenarytaina eucalypti and C. spatulata (Homoptera: Psyllidae). Environ Entomol 30:1144–1149

    Article  Google Scholar 

  • Chitwood DH, Headland LR, Ranjan A, Martinez CC, Braybrook SA, Koenig DP, Kuhlemeier C, Smith RS, Sinha N (2012) Leaf asymmetry as a developmental constraint imposed by auxin-dependent phyllotactic patterning. Plant Cell 24:2318–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronk QCB, Bateman RM, Hawkins JA (eds) (2002) Developmental genetics and plant evolution. Taylor & Francis, London/New York

    Google Scholar 

  • de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carrano N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci U S A 103:1627–1632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dengler NG (1999) Anisophylly and dorsiventral shoot symmetry. Int J Plant Sci 160:S67–S80

    Article  CAS  PubMed  Google Scholar 

  • Dengler NG, Dengler RE (1984) The mechanism of plication inception in palm leaves: Histogenic observations on the pinnate leaf of Chrysalidocarpus lutescens. Can J Bot 60:2976–2998

    Article  Google Scholar 

  • Deschamp PA, Cooke TJ (1984) Causal mechanisms of leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. Am J Bot 71:319–329

    Article  Google Scholar 

  • Donnelly PM, Bonetta D, Tsukaya H, Dengler R, Dengler NG (1999) Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 215:407–419

    Article  CAS  PubMed  Google Scholar 

  • Efroni I, Eshed Y, Lifschitz E (2010) Morphogenesis of simple and compound leaves: a critical review. Plant Cell 22:1019–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feild T, Sage T, Czerniak C (2005) Hydathodal leaf teeth of Chloranthus japonicas (Chlorantheceae) prevent guttation-induced flooding of mesophyll. Plant Cell Environ 28:1179–1190

    Article  CAS  Google Scholar 

  • Fisher JB, Rutishauser R (1990) Leaves and epiphyllous shoots in Chisocheton (Meliaceae), a continuum of woody leaf and stem axes. Can J Bot 68:2316–2328

    Article  Google Scholar 

  • Fonseca CA, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 158:509–525

    Google Scholar 

  • Fujikura U, Horiguchi G, Tsukaya H (2007) Dissection of enhanced cell expansion processes in leaves triggered by defect in cell proliferation, with reference to roles of endoreduplication. Plant Cell Physiol 48:278–286

    Article  CAS  PubMed  Google Scholar 

  • Fujikura U, Horiguchi G, Ponce MR, Micol JL, Tsukaya H (2009) Coordination of cell proliferation and cell expansion mediated by ribosome-related processes in the leaves of Arabidopsis thaliana. Plant J 59:499–508

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Yokoyama J, Tsukaya H (2003) The evolutionary origin of indeterminate leaves in Meliaceae: phylogenetic relationships among species in the genera Chisocheton and Guarea, as inferred from sequences of chloroplast DNA. Int J Plant Sci 164:13–24

    Article  CAS  Google Scholar 

  • Fukushima K, Fujita H, Yamaguchi T, Masayoshi K, Tsukaya H, Hasebe M (2015) Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea. Nat Commun 6:6450. https://doi.org/10.1038/ncomms7450

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ (1987) Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constrains. New Phytol 106:131–160

    Article  Google Scholar 

  • Givnish TJ, Kriebel R (2017) Causes of ecological gradients in leaf margin entirety: evaluating the roles of biomechanics, hydraulics, vein geometry, and bud packing. Am J Bot 104:354–366

    Article  PubMed  Google Scholar 

  • Gleissberg S, Groot EP, Schmalz M, Eichert M, Kölsch A, Hutter S (2015) Developmental events leading to peltate leaf structure in Tropaeolum majus (Tropaeolaceae) are associated with expression domain changes of a YABBY gene. Dev Genes Evol 215:313–319

    Article  CAS  Google Scholar 

  • Guo P, Yoshimura A, Ishikawa N, Yamaguchi T, Guo Y, Tsukaya H (2015) Comparative analysis of the RTFL peptide family on the control of plant organogenesis. J Plant Res 128:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta MD, Nath U (2015) Divergence in patterns of leaf growth polarity is associated with the expression divergence of miR396. Plant Cell 27:2785–2799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ha CM, Kim GT, Kim BC, Jun JH, Soh MS, Ueno Y, Machida Y, Tsukaya H, Nam H-G (2003) The BLADE-ON PETIOLE gene controls leaf pattern formation through regulation of meristematic activity. Development 130:161–172

    Article  CAS  PubMed  Google Scholar 

  • Harrison J, Möller M, Langdale J, Cronk Q, Hudson A (2005) The role of KNOX genes in the evolution of morphological novelty in Streptocarpus. Plant Cell 17:430–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay A, Tsiantis M (2010) KNOX genes: versatile regulators of plant development and diversity. Development 137:3153–3165

    Article  CAS  PubMed  Google Scholar 

  • Hay A, Kaur H, Phillips A, Hedden S, Hake S, Tsiantis M (2002) The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr Biol 12:1557–1565

    Article  CAS  PubMed  Google Scholar 

  • Hirayama Y, Yamada T, Oya Y, Ito M, Kato M, Imaichi R (2007) Expression patterns of class I KNOX and YABBY genes in Ruscus aculeatus (Asparagaceae) with implications for phylloclade homology. Dev Genes Evol 217:363–372

    Article  CAS  PubMed  Google Scholar 

  • Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi G, Kim GT, Tsukaya H (2005) The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of Arabidopsis thaliana. Plant J 43:68–78

    Article  CAS  PubMed  Google Scholar 

  • Horiguchi G, Nakayama H, Ishikawa N, Kubo M, Demura T, Fukuda H, Tsukaya H (2011) ANGUSTIFOLIA3 plays roles in adaxial/abaxial patterning and growth in leaf morphogenesis. Plant Cell Physiol 52:112–124

    Article  PubMed  CAS  Google Scholar 

  • Ichihashi Y, Kawade K, Usami T, Horiguchi G, Takahashi T, Tsukaya H (2011) Key proliferative activity in the junction between the leaf blade and the leaf petiole of Arabidopsis thaliana. Plant Physiol 157:1151–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichihashi Y, Aquilar-Martinez JA, Farhi M, Chitwood DH, Kumar R, Milon LV, Peng J, Maloof JN, Sinha N (2014) Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. Proc Natl Acad Sci U S A 111:E2616–E2621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeuchi M, Igarashi H, Okada K, Tsukaya H (2014) Acropetal leaflet initiation of Eschscholzia californica is achieved by constant spacing of leaflets and differential growth of leaf. Planta 240:125–135

    Article  CAS  PubMed  Google Scholar 

  • Imaichi R, Kato M (1992) Comparative leaf development of Osmunda lancea and Osmunda japonica (Osmundaceae) – heterochronic origin of rheophytic stenophylly. Bot Mag Tokyo 105:199–213

    Article  Google Scholar 

  • Ishikawa N, Takahashi H, Nakazono M, Tsukaya H (2017) Molecular bases for phyllomorph development in a one-leaf plant, Monophyllaea glabra. Am J Bot 104:233–240

    Article  CAS  PubMed  Google Scholar 

  • Jasinski S, Piazza P, Craft J, Hay A, Woolley L, Rieu I, Phillips A, Hedden P, Tsiantis M (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr Biol 15:1560–1565

    Article  CAS  PubMed  Google Scholar 

  • Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mijolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kane M, Albert LS (1987) Abscisic-acid induces aerial leaf morphology and vasculature in submerged Hippuris vulgaris L. Aquat Bot 28:81–88

    Article  CAS  Google Scholar 

  • Kato M, Imaichi R (1992a) Leaf anatomy of tropical fern rheophytes, with its evolutionary and ecological implications. Can J Bot 70:165–174

    Article  Google Scholar 

  • Kato M, Imaichi R (1992b) A broad-leaved variant of the fern rheophyte, Tectaria lobbii. Int J Plant Sci 153:212–216

    Article  Google Scholar 

  • Kawamura E, Horiguchi G, Tsukaya H (2010) Mechanisms of leaf tooth formation in Arabidopsis. Plant J 62:429–441

    Article  CAS  PubMed  Google Scholar 

  • Kazama T, Ichihashi Y, Murata S, Tsukaya H (2010) The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of Arabidopsis thaliana. Plant Cell Physiol 51:1046–1054

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kende H (2004) A transcriptional coactivator, AtGIF1, is involved in regulating leaf growth and morphology in Arabidopsis. Proc Natl Acad Sci U S A 101:13374–13379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Tsukaya H (2015) Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. J Exp Bot 66:6093–6107. https://doi.org/10.1093/jxb/erv349

    Article  CAS  PubMed  Google Scholar 

  • Kim G-T, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P450 family that is required for the regulated polar elongation of leaf cells. Genes Dev 12:2381–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, McCormick S, Timmermans M, Sinha N (2003) The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature 424:438–443

    Article  CAS  PubMed  Google Scholar 

  • Kim G-T, Yano S, Kozuka T, Tsukaya H (2005) Photomorphogenesis of leaves: shade-avoidance syndrome and differentiation of sun/shade leaves. Photochem Photobiol Sci 4:770–774

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Karänen M, Aro EM, Fukaki H, Ohta H, Sugimoto K, Masuda T (2012) Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. Plant Cell 24:1081–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig D, Bayer E, Kang J, Kuhlemeier C, Sinha N (2009) Auxin patterns Solanum lycopersicum leaf morphogenesis. Development 136:2997–3006

    Article  CAS  PubMed  Google Scholar 

  • Kozuka T, Kong SG, Nagatani A (2011) Tissue-autonomous promotion of palisade cell development by phototropin2 in Arabidopsis. Plant Cell 23:3684–3695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwabara A, Ikegami K, Koshiba T, Nagata T (2003) Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata (Onagraceae). Planta 217:880–887

    Article  CAS  PubMed  Google Scholar 

  • Lee YK, Kim G-T, Kim I-J, Park J, Kwak S-S, Choi G, Chung W-I (2006) LONGIFOLIA1 and LONGIFOLIA2, two homologous genes, regulate longitudinal cell elongation in Arabidopsis. Development 133:4305–4314

    Article  CAS  PubMed  Google Scholar 

  • Leigh A, Close JD, Ball MC, Siebke K, Nicotra AB (2006) Leaf cooling curves: measuring leaf temperature in sunlight. Funct Plant Biol 33:515–519

    Article  PubMed  Google Scholar 

  • Li Y, Zheng L, Corke F, Smith C, Bevan MW (2008) Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes Dev 2:1331–1336

    Article  CAS  Google Scholar 

  • Mano E, Horiguchi G, Tsukaya H (2006) Gravitropism in leaves of Arabidopsis thaliana (L.) Heynh. Plant Cell Physiol 47:217–223

    Article  CAS  PubMed  Google Scholar 

  • Martorell C, Ezcurra E (2007) The narrow-leaf syndrome: a functional and evolutionary approach to the form of fog-harvesting rosette plants. Oecologia 151:561–573

    Article  PubMed  Google Scholar 

  • Minamisawa N, Sato M, Cho K-H, Ueno H, Takeuchi K, Kajiwara M, Yamato KT, Ohyama K, Toyooka K, Kim G-T, Horiguchi G, Takano H, Ueda T, Tsukaya H (2011) AUNGUSTIFOLIA, a plant homolog of CtBP/BARS, functions outside the nucleus. Plant J 68:788–799

    Article  CAS  PubMed  Google Scholar 

  • Nakata M, Matsumoto N, Tsugeki R, Rikirsch E, Laux T, Okada K (2012) Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. Plant Cell 24:519–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayama H, Yamaguchi T, Tsukaya H (2010) Expression patterns of AaDL, a CRABS CLAW ortholog in Asparagus asparagoides (Asparagaceae), demonstrate a stepwise evolution of CRC/DL subfamily of YABBY genes. Am J Bot 97:591–600

    Article  CAS  PubMed  Google Scholar 

  • Nakayama H, Yamaguchi T, Tsukaya H (2013) Modification and co-option of leaf developmental programs for the acquisition of flat structures in monocots: unifacial leaves in Juncus and cladodes in Asparagus. Front Plant Sci 4:248. https://doi.org/10.3389/fpls.2013.00248

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakayama H, Nakayama N, Seiki S, Kojima M, Sakakibara H, Sinha N, Kimura S (2014) Regulation of the KNOX-GA gene module induces heterophyllic alteration in North American lake cress. Plant Cell 26:4733–4748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nardmann J, Werr W (2013) Symplesiomorphies in the WUSCHEL clade suggest that the last common ancestor of seed plants contained at least four independent stem cell niches. New Phytol 199:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Narita NN, Moore S, Horiguchi G, Kubo M, Demura T, Fukuda H, Goodrish J, Tsukaya H (2004) Overexpression of a novel small peptide ROTUNDIFOLIA4 decreases cell proliferation and alters leaf shape in Arabidopsis thaliana. Plant J 38:699–713

    Article  CAS  PubMed  Google Scholar 

  • Nelissen H, Rymen B, Jilumaru Y, Demuynck K, Van Lijsebettens M, Kamiya Y, Inzé D, Beemster GTS (2012) A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division. Curr Biol 22:1183–1187

    Article  CAS  PubMed  Google Scholar 

  • Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, van bel M, Vervoot M, Candaele J, De Block J, Aesaert S, Van Lijsebettens M, Goormachtig S, Vandepoele K, Van Leene J, Muszynski M, Gevaert K, Inzé D, De Jaeger G (2015) Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell 27:1605–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicotra AB, Cosgrove MJ, Cowling A, Schilichting CD, Jones CS (2008) Leaf shape linked to photosynthetic rates and temperature optima in south African Pelargonium species. Oecologia 154:625–635

    Article  CAS  PubMed  Google Scholar 

  • Nicotra AB, Leigh A, Boyce CK, Jones CS, Niklas KJ, Royer DL, Tsukaya H (2011) The evolution and functional significance of leaf shape in the angiosperms. Funct Plant Biol 38:535–552

    Article  PubMed  Google Scholar 

  • Nowak JS, Bolduc N, Dengler NG, Posluszny U (2011) Compound leaf development in the palm Chamaedorea elegans is KNOX-independent. Am J Bot 98:1575–1582

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Szatmari A-M, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Yokota T, Sakata K, Szakeres M, Mizutani M (2006) C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in Brassinosteroid biosynthesis. Plant Cell 18:3275–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okajima Y, Taneda H, Noguchi K, Terashima I (2012) Optimum leaf size predicted by a novel leaf energy balance model incorporating dependencies of photosynthesis on light and temperature. Ecol Res 27:333–346

    Article  CAS  Google Scholar 

  • Omidbakhshfard MA, Proost S, Fujikura U, Mueller-Roeder B (2015) Growth-Regulating Factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8:998–1010

    Article  CAS  PubMed  Google Scholar 

  • Poethig RS (2013) Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol 105:125–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royer DL, Wilf P, Janesko DA, Kowalski EA, Dilcher DL (2005) Correlations of climate and plant ecology to leaf size and shape: potential proxies for the fossil record. Am J Bot 92:1141–1151

    Article  PubMed  Google Scholar 

  • Royer DL, Meyerson LA, Robertson KM, Adams JM (2009) Phenotypic plasticity of leaf shape along a temperature gradient in Acer rubrum. PLoS One 4:e7653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakamoto T, Kamiya N, Ueguchi-Tanaka M, Iwahori S, Matsuoka M (2001) KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev 15:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmerler SB, Clement WL, Beauliue JM, Chatelet DS, Sack L, Donoghue MJ, Edwards EJ (2012) Evolution of leaf form correlates with tropical-temperate transitions in Viburnum (Adoxaceae). Proc Roy Soc B 279:3905–3913

    Article  Google Scholar 

  • Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103:1301–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steingraeber DA, Fisher JB (1986) Indeterminate growth of leaves in Guarea (Meliaceae): a twig analogue. Am J Bot 73:852–862

    Article  Google Scholar 

  • Sussex IM (1951) Experiments on the cause of dorsiventrality in leaves. Nature 167:651–652

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Iwakawa H, Ishibashi N, Kojima S, Matsumura Y, Prananingrum P, Iwasaki M, Takahashi A, Ikezaki M, Luo LL, Kobayashi T, Machida Y, Machida C (2013) Meta-analyses of microarrays of Arabidopsis asymmetric leaves1 (as1), as2 and their modifying mutants reveal a critical role for the ETT pathway in stabilization of adaxial-abaxial patterning and cell division during leaf development. Plant Cell Physiol 54:418–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tozer WC, Rice B, Westoby M (2015) Evolutionary convergence of leaf width and its correlates. Am J Bot 102:367–378

    Article  PubMed  Google Scholar 

  • Tsuge T, Tsukaya H, Uchimiya H (1996) Two independent and polarized processes of cell elongation regulate leaf blade expansion in Arabidopsis thaliana (L.). Heynh. Develop 122:1589–1600

    CAS  Google Scholar 

  • Tsukaya H (1997) Determination of the unequal fate of cotyledons of a one-leaf plant, Monophyllaea. Development 124:1275–1280

    CAS  PubMed  Google Scholar 

  • Tsukaya H (2000) The role of meristematic activities in the formation of leaf blades. J Plant Res 113:119–126

    Article  Google Scholar 

  • Tsukaya H (2002a) The leaf index: heteroblasty, natural variation, and the genetic control of polar processes of leaf expansion. Plant Cell Physiol 43:372–378

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2002b) Leaf anatomy of a rheophyte, Dendranthema yoshinaganthum (Asteraceae), and of hybrids between D. yoshinaganthum and a closely related non-rheophyte species, D. indicum. J Plant Res 115:329–333

    Article  PubMed  Google Scholar 

  • Tsukaya H (2006) Mechanism of leaf shape determination. Annu Rev Plant Biol 57:477–496

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H (2013) Leaf development, 2nd edn. The Arabidopsis Book 11:e0163, American Society of Plant Biologists, Rockville. doi:https://doi.org/10.1199/tab.0072

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukaya H (2014) Comparative leaf development in angiosperms. Curr Opin Plant Biol 17:103–109

    Article  PubMed  Google Scholar 

  • Tsukaya H (2018) How have leaves of mycoheterotrophic plants evolved—from the view point of a developmental biologist. New Phytol 217:1401–1406 https://doi.org/10.1111/nph.14994

    Article  PubMed  Google Scholar 

  • Tsukaya H, Uchimiya H (1997) Genetic analyses of developmental control of serrated margin of leaf blades in Arabidopsis: combination of a mutational analysis of leaf morphogenesis with characterization of a specific marker gene expressed in hydathodes and stipules. Mol Gen Genet 256:231–238

    Article  CAS  PubMed  Google Scholar 

  • Tsukaya H, Tsuge T, Uchimiya H (1994) The cotyledon: a superior system for studies of leaf development. Planta 195:309–312

    Article  CAS  Google Scholar 

  • Tsukaya H, Tsujino R, Ikeuchi M, Isshiki Y, Kono M, Takeuchi T, Araki T (2007) Morphological variation in leaf shape in Ainsliaea apiculata with special reference to the endemic characters of populations on Yakushima Island, Japan. J Plant Res 120:351–358

    Article  CAS  PubMed  Google Scholar 

  • Usami T, Horiguchi G, Yano S, Tsukaya H (2009) The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 136:955–964

    Article  CAS  PubMed  Google Scholar 

  • Usukura M, Imaichi R, Kato M (1994) Leaf morphology of a facultative rheophyte, Farfugium japonicum var. luchuense (Compositae). J Plant Res 107:263–267

    Article  Google Scholar 

  • van Steenis CGGJ (1981) Rheophytes of the world. Sijthoff & Noordhoff, Alphen aan den Rijn, The Netherlands

    Google Scholar 

  • Vlad D, Kierzkowski D, Rast M, Vuolo F, Ioio RD, Galinha C, Gan X, Haijeidari M, Hay A, Smith RS, Huijser P, Bailey CD, Tsiantis M (2014) Leaf shape evolution through duplication, regulatory diversification, and loss of a homeobox gene. Science 343:780–783

    Article  CAS  PubMed  Google Scholar 

  • Waites R, Hudson A (1995) Phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech J-C, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J-W, Park MY, Wang L-J, Koo YJ, Chen X-Y, Weigel D, Poethig RS (2011) MiRNA control of vegetative phase changes in trees. PLoS Genet 7:e1002012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen J, Lease KA, Walker JC (2004) DVL, a novel class of small polypeptides: overexpression alters Arabidopsis development. Plant J 37:668–677

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Xu Y, Dong A, Sun Y, Pi L, Xu Y, Huang H (2003) Novel as1 and as2 defects in leaf adaxial-abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development 130:4097–4107

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Okuda T, Abdullah M, Awang M, Furukawa A (2000) The leaf development process and its significance for reducing self-shading of a traopical pioneer tree species. Oecologia 125:476–482

    Article  PubMed  Google Scholar 

  • Yamaguchi T, Ikeuchi M, Tsukaya H (2013) Chapter 11: ROTUNDIFOLIA4. In: Matsuzaki Y (ed) Handbook of biologically active peptides, 2nd edn. Elsevier, San Diego, pp 53–57

    Chapter  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H-Y (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi T, Yano S, Tsukaya H (2010) Genetic framework for flattened leaf blade formation in unifacial leaves of Juncus prismatocarpus. Plant Cell 22:2141–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano S, Terashima I (2004) Developmental process of sun and shade leaves in Chenopodium album L. Plant Cell Physiol 27:781–793

    Google Scholar 

  • Yorifuji E, Ishikawa N, Okada H, Tsukaya H (2015) Arundina graminifolia var. revoluta (Arethuseae, Orchidaceae) has fern-type rheophyte characteristics in the leaves. J Plant Res 128:239–247

    Article  PubMed  Google Scholar 

  • Young JP, Dengler NG, Horton RF (1987) Heterophylly in Ranunculus flabellis: the effect of abscisic acid on leaf anatomy. Ann Bot 60:117–125

    Article  CAS  Google Scholar 

  • Zurakowski K, Gifford EM (1988) Quantitative studies of pinnule development in the ferns Adiantum raddianum and Cheilanthes viridis. Am J Bot 75:1559–1570

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Bio-Next project in NINS, the Japan Society for the Promotion of Science (Grants-in-Aid for Creative Scientific Research and Scientific Research A), The Ministry of Education, Culture, Sports, Science and Technology, Japan (Scientific Research on Priority Areas and Scientific Research on Innovative Areas No. 25113002). In addition, the author thanks reviewers of the manuscript who helped him to polish it. Dr. Hiroyuki Koga of the University of Tokyo also kindly checked the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Tsukaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsukaya, H. (2018). A Consideration of Leaf Shape Evolution in the Context of the Primary Function of the Leaf as a Photosynthetic Organ. In: Adams III, W., Terashima, I. (eds) The Leaf: A Platform for Performing Photosynthesis. Advances in Photosynthesis and Respiration, vol 44. Springer, Cham. https://doi.org/10.1007/978-3-319-93594-2_1

Download citation

Publish with us

Policies and ethics