Skip to main content

Botany and Cytogenetics of Soybean

  • Chapter
  • First Online:
The Soybean Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

Abstract

Soybean [Glycine max (L.) Merr.], an economically important dicot legume, is a member of the family Fabaceae and belongs to the genus Glycine Willd. Based on classical and molecular taxonomy, the genus Glycine has been divided into two subgenera; the subgenus Soja (Moench) F.J. Hermann includes soybean and its wild annual progenitor G. soja Sieb. & Zucc. Both species contain 2n = 40 chromosomes, are cross-compatible, produce fertile F1 plants, and belong to the primary gene pool. The subgenus Glycine consists of 26 wild perennial species. Vegetative and reproductive morphology of soybean has been examined extensively. The cytogenetic knowledge of soybean lags far behind that of other model economically important crops (viz. rice, maize, wheat, tomato), because its somatic chromosomes are symmetrical and only one pair of satellite chromosomes can be identified. Molecular linkage maps have been associated with specific chromosomes, and soybean genome has been sequenced. The soybean breeders, worldwide, are confined to crossing within the primary gene pool; thus, genetic base of soybean is very narrow. Wild perennial Glycine species of the tertiary gene pool have been recently exploited to broaden the genetic base of modern soybean cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad QN, Britten EJ, Byth DE (1977) Inversion bridges and meiotic behavior in species hybrids of soybeans. J Hered 68:360–364

    Article  Google Scholar 

  • Ahmad QN, Britten EJ, Byth DE (1979) Inversion heterozygosity in the hybrid soybean × Glycine soja. J Hered 70:358–364

    Article  Google Scholar 

  • Ahmad QN, Britten EJ, Byth DE (1983) A quantitative method of karyotypic analysis applied to the soybean, Glycine max. Cytologia 48:879–892

    Article  Google Scholar 

  • Ahmad QN, Britten EJ, Byth DE (1984) The karyotype of Glycine soja and its relationship to that of the soybean, Glycine max. Cytologia 49:645–658

    Article  Google Scholar 

  • Ahmad F, Singh RJ, Hymowitz T (1992) Cytological evidence for four new primary trisomics in soybean. J Hered 83:221–224

    Article  Google Scholar 

  • Bodanese-Zanettini MH, Lauxen MS, Richter SNC, Cavalli-Molina S, Lange CE, Wang PJ, Hu CY (1996) Wide hybridization between Brazilian soybean cultivars and wild perennial relatives. Theor Appl Genet 93:703–709

    Article  CAS  PubMed  Google Scholar 

  • Broich SL, Palmer RG (1980) A cluster analysis of wild and domesticated soybean phenotypes. Euphytica 29:23–32

    Article  Google Scholar 

  • Broué P, Marshall DR, Müller WJ (1977) Biosystematics of subgenus Glycine (Verdc.): Isoenzymatic data. Aust J Bot 25:555–566

    Article  Google Scholar 

  • Broué P, Douglass J, Grace JP, Marshall DR (1982) Interspecific hybridization of soybeans and perennial Glycine species indigenous to Australia via embryo culture. Euphytica 31:715–724

    Article  Google Scholar 

  • Brown AHD, Doyle JL, Grace JP, Doyle JJ (2002) Molecular phylogenetic relationships within and among diploid races of Glycine tomentella (Leguminosae). Aust Syst Bot 15:37–47

    Article  Google Scholar 

  • Carlson JB, Lersten NR (2004) Reproductive morphology. In: Boerma HR, Specht J E (eds) Soybeans: improvement, production, and uses, 3rd edn, Agron. Monogra. 16. American Society of Agronomy, Inc./ Crop Science Society of America, Inc./ Soil Science Society of America, Inc, pp 59–95

    Google Scholar 

  • Chen LF, Palmer RG (1985) Cytological studies of triploids and their progeny from male-sterile (ms1) soybean. Theor Appl Genet 71:400–407

    Article  CAS  PubMed  Google Scholar 

  • Chung GH, Kim JH (1990) Production of interspecific hybrids between Glycine max and G. tomentella through embryo culture. Euphytica 48:97–101

    Article  Google Scholar 

  • Chung GH, Kim KS (1991) Obtaining intersubgeneric hybridization between Glycine max and G. latifolia through embryo culture. Korean J Plant Tissue Cult 18:39–45

    Google Scholar 

  • Chung G, Singh RJ (2008) Broadening the genetic base of soybean: a multidisciplinary approach. Crit Rev Plant Sci 27:295–341

    Article  CAS  Google Scholar 

  • Clarindo WR, de Carvalho CR, Alves BMG (2007) Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Syst Evol 265:101–107

    Article  Google Scholar 

  • Costanza SH, Hymowitz T (1987) Adventitious roots in Glycine subg. Glycine (Leguminosae): morphological and taxonomic indicators of the B genome. Plant Syst Evol 158:37–46

    Article  Google Scholar 

  • Crane CF, Beversdorf WD, Bingham ET (1982) Chromosome pairing and association at meiosis in haploid soybean (Glycine max). Can J Genet Cytol 24:293–300

    Article  Google Scholar 

  • Damla B, DeLucia EH, Zangerl AR, Singh RJ (2008) Plant-derived biofungicide against soybean rust disease. U.S. Provosional Application no. 61/028,459

    Google Scholar 

  • Darlington CD, Wylie AP (1955) Chromosome atlas of flowering plants. George Allen and Unwin Ltd., London

    Google Scholar 

  • Doyle JJ (1988) 5S ribosomal gene variation in the soybean and its progenitor. Theor Appl Genet 75:621–624

    Article  CAS  Google Scholar 

  • Doyle JJ, Beachy RN (1985) Ribosomal gene variation in soybean (Glycine) and its relatives. Theor Appl Genet 70:369–376

    CAS  PubMed  Google Scholar 

  • Doyle MJ, Brown AHD (1985) Numerical analysis of isozyme variation in Glycine tomentella. Biochem Syst Ecol 13:413–419

    Article  CAS  Google Scholar 

  • Doyle JJ, Brown AHD (1989) 5S nuclear ribosomal gene variation in the Glycine tomentella polyploid complex (Leguminosae). Syst Bot 14:398–407

    Article  Google Scholar 

  • Doyle MJ, Grant JE, Brown AHD (1986) Reproductive isolation between isozyme groups of Glycine tomentella (Leguminosae), and spontaneous doubling in their hybrids. Aust J Bot 34:523–535

    Article  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1990a) Analysis of a polyploid complex in Glycine with chloroplast and nuclear DNA. Aust Syst Bot 3:125–136

    Article  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1990b) Chloroplast DNA phylogenetic affinity of newly described species in Glycine (Leguminosae: Phaseoleae). Syst Bot 15:466–471

    Article  Google Scholar 

  • Doyle J, Doyle JL, Grace JP, Brown AHD (1990c) Reproductively isolated polyploid races of Glycine tabacina (leguminosae) had different chloroplast genome donors. Syst Bot 15:173–181

    Article  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD (1999) Origins, colonization, and lineage recombination in a widespread perennial soybean polyploid complex. Proc Natl Acad Sci USA 96:10741–10745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD, Pfeil BE (2000) Confirmation of shared and divergent genomes in the Glycinea tabacin polyploid complex (Leguminosae) using histone H3-D sequences. Syst Bot 25:437–448

    Article  Google Scholar 

  • Doyle JJ, Doyle JL, Brown AHD, Palmer RG (2002) Genomes, multiple origins, and lineage recombination in the Glycine tomentella (Leguminosae) polyploid complex: histone H3-D gene sequences. Evolution 56:1388–1402

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL, Rauscher JT, Brown AHD (2004) Evolution of the perennial soybean polyploid complex (Glycine subgenus Glycine): a study of contrasts. Biol J Linnn Soc 82:583–597

    Article  Google Scholar 

  • Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA, Stacey G (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185:727–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukuda Y (1933) Cyto-genetical studies on the wild and cultivated Manchurian soy beans (Glycine L.). Jpn J Bot 6:489–506

    Google Scholar 

  • Gardner ME, Hymowitz T, Xu SJ, Hartman GL (2001) Physical map location of the Rps-1-k allele in soybean. Crop Sci 41:1435–1438

    Article  CAS  Google Scholar 

  • Grant JE, Brown AHD, Grace JP (1984a) Cytological and isozyme diversity in Glycine tomentella Hayata (Leguminosae). Aust J Bot 32:665–677

    Article  CAS  Google Scholar 

  • Grant JE, Grace JP, Brown AHD, Putievsky E (1984b) Interspecific hybridization in Glycine Willd. subgenus Glycine (Leguminosae). Aust J Bot 32:655–663

    Article  Google Scholar 

  • Grant JE, Pullen R, Brown AHD, Grace JP, Gresshoff PM (1986) Cytogenetic affinity between the new species Glycine argyrea and its congeners. J Hered 77:423–426

    Google Scholar 

  • Griffin JD, Broich SL, Delannay X, Palmer RG (1989) The loci Fr1 and EP define soybean linkage group 12. Crop Sci 29:80–82

    Article  Google Scholar 

  • Griffor MC, Vodkin LO, Singh RJ, Hymowitz T (1991) Fluorescent in situ hybridization to soybean metaphase chromosomes. Plant Mol Biol 17:101–109

    Article  CAS  PubMed  Google Scholar 

  • Gwyn JJ, Palmer RG (1989) Morphological discrimination among some aneuploids of soybean (Glycine max [L.] Merr.): 2. Double trisomics, tetrasomics. J Hered 80:209–213

    Article  Google Scholar 

  • Gwyn JJ, Palmer RG, Sadanaga K (1985) Morphological discrimination among some aneuploids in soybean (Glycine max (L.) Merr.). I. Trisomics. Can J Genet Cytol 27:608–613

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Hedges BR, Palmer RG (1991) Tests of linkage of isozyme loci with five primary trisomics in soybean, Glycine max (L.) Merr. J Hered 82:494–496

    Article  Google Scholar 

  • Hermann FJ (1962) A revision of the genus Glycine and its immediate allies. United States Department of Agriculture, Agricultural Research Service. Technical bulletin no. 1268, p 82

    Google Scholar 

  • Hsieh JS, Hsieh KL, Tsai YC, Hsing YI (2001) Each species of Glycine collected in Taiwan has a unique seed protein pattern. Euphytica 118:67–73

    Article  CAS  Google Scholar 

  • Hsing YIC, Hsieh JS, Peng CI, Chou CH, Chiang TY (2001) Systematic status of the Glycine tomentella and G. tabacina species complexes (Fabaceae) based on ITS sequences of nuclear ribosomal DNA. J Plant Res 114:435–442

    Article  CAS  Google Scholar 

  • Hymowitz T, Singh RJ, Larkin RP (1990) Long-distance dispersal: The case for the allopolyploid Glycine tabacina (labill.) benth. and G. tomentella Hayata in the West- Central Pacific. Micronesica 23:5–13

    Google Scholar 

  • Jin W, Palmer RG, Horner HT, Shoemaker RC (1999) Fr1 (root fluorescence) locus is located in a segregation distortion region on linkage group K of soybean genetic map. J Hered 90:553–556

    Article  CAS  Google Scholar 

  • Karasawa K (1936) Crossing experiments with Glycine soja and G. ussuriensis. Jpn J Bot 8:113–118

    Google Scholar 

  • Karpechenko GD (1925) On the chromosomes of Phaseolinae. Bull Appl Bot Genet Plant Breed Leningr 14(2):143–148 (In Russian with English summary)

    Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1993) Genomic diversity in aneudiploid (2n = 38) and diploid (2n = 40) Glycine tomentella revealed by cytogenetic and biochemical methods. Genome 36:391–396

    Article  CAS  PubMed  Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1994) Genomic diversity and multiple origins of tetraploid (2n = 78, 80) Glycine tomentella. Genome 37:448–459

    Article  CAS  PubMed  Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1995) Genomic relationships in the genus Glycine (Fabaceae: Phaseoleae): use of a monoclonal antibody to the soybean Bowman-Birk inhibitor as a genome marker. Amer J Bot 82:1104–1111

    Article  CAS  Google Scholar 

  • Kollipara KP, Singh RJ, Hymowitz T (1997) Phylogenetic and genomic relationships in the genus Glycine Willd. based on sequences from the ITS region of nuclear rDNA. Genome 40:57–68

    Article  CAS  PubMed  Google Scholar 

  • Krishnan P, Sapra VT, Soliman KM, Zipf A (2001) FISH mapping of the 5S and 18S-28S rDNA loci in different species of Glycine. J Hered 92:295–300

    Article  CAS  PubMed  Google Scholar 

  • Lackey JA (1977) Neonotonia, a new generic name to include Glycine wightii (Arnott) Verdcourt (Legumonosae, Papilionoideae). Phytologia 37:209–212

    Google Scholar 

  • Ladizinsky G, Newell CA, Hymowitz T (1979a) Giemsa staining of soybean chromosomes. J Hered 70:415–416

    Article  Google Scholar 

  • Ladizinsky G, Newell CA, Hymowitz T (1979b) Wide crosses in soybean: prospects and limitations. Euphytica 28:421–423

    Article  Google Scholar 

  • Lersten NR, Carlson JB (2004) Vegetative morphology. In: Boerma HR, Specht JE (eds) Soybeans: improvement, production, and uses, 3rd edn. American Society of Agronomy, Inc./ Crop Science Society of America, Inc./ Soil Science Society of America, Inc., Agron Monogra 16, pp 15–57

    Google Scholar 

  • Lynch AJJ (1994) The identification and distribution of Glycine latrobeana (meissn.) Benth. In Tasmania. Proc Royal Soc Tasman 128:17–20

    Google Scholar 

  • Mahama AA, Palmer RG (2003) Translocation breakpoints in soybean classical genetic linkage groups 6 and 8. Crop Sci 43:1602–1609

    Article  CAS  Google Scholar 

  • Mahama AA, Deaderick LM, Sadanaga K, Newhouse KE, Palmer RG (1999) Cytogenetic analysis of translocations in soybean. J Hered 90:648–653

    Article  Google Scholar 

  • Newell CA, Hymowitz T (1980) A taxonomic revision in the genus Glycine subgenus Glycine (Leguminosae). Brittonia 32:63–69

    Article  Google Scholar 

  • Newell CA, Hymowitz T (1982) Successful wide hybridization between the soybean and a wild perennial relative, G. tomentella Hatyata. Crop Sci 22:1062–1065

    Google Scholar 

  • Newell CA, Hymowitz T (1983) Hybridization in the genus Glycine subgenus Glycine Willd. (Leguminosae, Papilionoideae). Am J Bot 70:334–348

    Article  Google Scholar 

  • Newell CA, Delannay X, Edge ME (1987) Interspecific hybrids between the soybean and wild perennial relatives. J Hered 78:301–306

    Article  Google Scholar 

  • Ohmido N, Sato S, Tabata S, Fukui K (2007) Chromosome maps of legumes. Chromosome Res 15:97–103

    Article  CAS  PubMed  Google Scholar 

  • Palmer RG (1976) Chromosome transmission and morphology of three primary trisomics in soybean (Glycine max). Can J Genet Cytol 18:131–140

    Article  Google Scholar 

  • Palmer RG, Heer H (1973) A root tip squash technique for soybean chromosomes. Crop Sci 13:389–391

    Article  Google Scholar 

  • Palmer RG, Newhouse KE, Graybosch RA, Delannay X (1987) Chromosome structure of the wild soybean. J Hered 78:243–247

    Article  Google Scholar 

  • Palmer RG, Sun H, Zhao LM (2000) Genetics and cytology of chromosome inversions in soybean germplasm. Crop Sci 40:683–687

    Article  Google Scholar 

  • Palmer RG, Pfeiffer TW, Buss GR, Kilen TC (2004) Qualitative genetics. In: Boerma HR, Specht JF, (eds) Soybean: improvement, production, and uses, 3rd edn, vol 16. American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin, pp 137–233

    Google Scholar 

  • Pfeil BE, Craven LA (2002) New taxa in Glycine (Fabaceae: Phaseolae) from north-western Australia. Aust Syst Bot 15:565–573

    Article  Google Scholar 

  • Pfeil BE, Craven LA, Brown AHD, Murray BG, Doyle JJ (2006) Three new species of northern Australian Glycine (Fabaceae, Phaseolae), G. gracei, G. montis-douglas, and G. syndetika. Aust Syst Bot 19:245–258

    Article  Google Scholar 

  • Pfeil BE, Tindale MD, Craven LA (2001) A review of the Glycine clandestina species complex (Fabaceae: Phaseolae) reveals two new species. Aust Syst Bot 14:891–900

    Google Scholar 

  • Putievsky E, Broué P (1979) Cytogenetics of hybrids among perennial species of Glycine subgenus Glycine. Aust J Bot 27:713–723

    Article  Google Scholar 

  • Rauscher JT, Doyle JJ, Brown AHD (2004) Multiple origins and nrDNA internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminosae) allopolyploid complex. Genetics 166:987–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadanaga K, Grindeland R (1981) Natural cross-pollination in diploid and autotetraploid soybeans. Crop Sci 21:503–506

    Google Scholar 

  • Sadanaga K, Grindeland RL (1984) Locating the w1 locus on the satellite chromosome in soybean. Crop Sci 24:147–151

    Article  Google Scholar 

  • Sakai B (1951) Karyotype analysis in Leguninous plants I. La Kromosoma 11:425–429 (In Japanese with English summary)

    Google Scholar 

  • Sakai T, Kaizuma N (1985) Hybrid embryo formation in an intersubgeneric cross of soybean (Glycine max Merrill) with a wild relative (G. tomentella Hayata). Jpn J Breed 35:363–374

    Google Scholar 

  • Schoen DJ, Burdon JJ, Brown AHD (1992) Resistance of Glycine tomentella to soybean leaf rust Phakopsora pachyrhizi in relation to ploidy level and geographical distribution. Theor Appl Genet 83:827–832

    Google Scholar 

  • Sen NK, Vidyabhusan RV (1960) Tetraploid soybeans. Euphytica 9:317–322

    Article  CAS  Google Scholar 

  • Singh RJ (2003) Plant cytogenetics, 2nd edn. CRC Press Inc, Boca Raton

    Google Scholar 

  • Singh RJ (2007) Methods for producing fertile crosses between wild and domestic soybean species. United States Patent Pub, No. US2007/0261139A1

    Google Scholar 

  • Singh RJ (2017) Practical manual on plant cytogenetics. CRC press Inc, Boca Raton

    Google Scholar 

  • Singh RJ, Chung GH (2007) Cytogenetics of soybean: progress and prospectives. Nucleus 50:403–425

    Google Scholar 

  • Singh RJ, Hymowitz T (1985a) Diploid-like meiotic behavior in synthesized amphiploids of the genus Glycine Willd. subgenus Glycine. Can J Genet Cytol 27:655–660

    Article  Google Scholar 

  • Singh RJ, Hymowitz T (1985b) The genomic relationships among six wild perennial species of the genus Glycine subgenus Glycine Willd. Theor Appl Genet 71:221–230

    CAS  PubMed  Google Scholar 

  • Singh RJ, Hymowitz T (1985c) Intra-and interspecific hybridization in the genus Glycine, subgenus Glycine Willd: chromosome pairing and genomic relationships. Z Pflanzenzüchtg 95:289–310

    Google Scholar 

  • Singh RJ, Hymowitz T (1985d) An intersubgeneric hybrid between Glycine tomentella Hayata and the soybean, G. max (L.) Merr Euphytica 34:187–192

    Google Scholar 

  • Singh RJ, Kollipara KP Hymowitz T (1987a) Intersubgeneric hybridization of soybeans with a wild perennial species, Glycine clandestina. Wendl Theor Appl Genet 74:391–396

    Google Scholar 

  • Singh RJ, Hymowitz T (1987b) Intersubgeneric crossability in the genus Glycine Willd. Plant Breed 98:171–173

    Article  CAS  Google Scholar 

  • Singh RJ, Hymowitz T (1988) The genomic relationships between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet 76:705–711

    Article  CAS  PubMed  Google Scholar 

  • Singh RJ, Hymowitz T (1991) Identification of four primary trisomics of soybean by pachytene chromosome analysis. J Hered 82:75–77

    Article  Google Scholar 

  • Singh RJ, Hymowitz T (1999) Soybean genetic resources and crop improvement. Genome 42:605–616

    Article  CAS  Google Scholar 

  • Singh RJ, Nelson RL (2014) Methodology for creating alloplasmic soybean lines by using Glycine tomentella as a maternal parent. Plant Breed 133:624–631

    Article  CAS  Google Scholar 

  • Singh RJ, Nelson RL (2015) Intersubgeneric hybridization between Glycine max and G tomentella: production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor Appl Genet 128:1117–1136

    Article  CAS  PubMed  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1987b) Polyploid complexes of Glycine tabacina (Labill.) Benth. and G. tomentella Hayata revealed by cytogenetic analysis. Genome 29:490–497

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1988) Further data on the genomic relationships among wild perennial species (2n = 40) of the genus Glycine Willd. Genome 30:166–176

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1989) Ancestors of 80- and 78-chromosome Glycine tomentella Hayata (Leguminosae). Genome 32:796–801

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1990) Backcrossed-derived progeny from soybean and Glycine tomentella Hayata intersubgeneric hybrids. Crop Sci 30:871–874

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Ahmad F, Hymowitz T (1992a) Putative diploid ancestors of 80-chromosome G. tabacina. Genome 35:140–146

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1992b) Genomic relationships among diploid wild perennial species of the genus Glycine Willd. subgenus Glycine revealed by crossability, meiotic chromosome pairing and seed protein electrophoresis. Theor Appl Genet 85:276–282

    CAS  PubMed  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1993) Backcross (BC2–BC4)-derived fertile plants from Glycine max and G. tomentella intersubgeneric hybrids. Crop Sci 33:1002–1007

    Article  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1998a) The genomes of Glycine canescens F. J. Herm., and G. tomentella Hayata of Western Australia and their phylogenetic relationships in the genus Glycine Willd. Genome 41:669–679

    Article  CAS  Google Scholar 

  • Singh RJ, Kollipara KP, Hymowitz T (1998b) Monosomic alien addition lines derived from Glycine max (L.) Merr. and G. tomentella Hayata: production, characterization, and breeding behavior. Crop Sci 38:1483–1489

    Article  Google Scholar 

  • Singh RJ, Kim HH, Hymowitz T (2001) Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet 103:212–218

    Article  CAS  Google Scholar 

  • Singh RJ, Chung GH, Nelson RL (2007a) Landmark research in legumes. Genome 50:525–537

    Article  CAS  PubMed  Google Scholar 

  • Singh RJ, Nelson RL, Chung GH (2007b) Soybean (Glycine max (L.) Merr.). In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement volume 4 oilseed crops. CRC Press, Boca Raton, pp 13–50

    Google Scholar 

  • Skorupska H, Palmer RG (1987) Monosomics from synaptic KS mutant. Soybean Genet Newsl 14:174–178

    Google Scholar 

  • Skorupska H, Palmer RG (1989) Genetics and cytology of ms6 male-sterile soybean. J Hered 80:304–310

    Article  Google Scholar 

  • Skorupska H, Albertsen MC, Langholz KD, Palmer RG (1989) Detection of ribosomal RNA genes in soybean, Glycine max (L.) Merr., by in situ hybridization. Genome 32:1091–1095

    Article  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JF, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Tateishi Y, Ohashi H (1992) Taxonomic studies on Glycine of Taiwan. J Jpn Bot 67:127–147

    Google Scholar 

  • Thseng FS, Tsai SJ, Abe J, Wu ST (1999) Glycine formosana Hosokawa in Taiwan: pod morphology, allozyme, and DNA polymorphism. Bot Bull Acad Stn 40:251–257

    CAS  Google Scholar 

  • Tindale MD (1984) Two new Eastern Australian species of Glycine Willd. (Fabaceae). Brunonia 7:207–213

    Article  Google Scholar 

  • Tindale MD (1986a) A new North Queensland species of Glycine Willd. (Fabaceae). Brunonia 9:99–103

    Article  Google Scholar 

  • Tindale MD (1986b) Taxonomic notes on three Australian and Norfolk Island species of Glycine Willd. (Fabaceae:Phaseolae) including the choice of a neotype for G. clandestina Wendl. Brunonia 9:179–191

    Article  Google Scholar 

  • Tindale MD, Craven LA (1988) Three new species of Glycine (Fabaceae: Phaseolae) from North-western Australia, with notes on amphicarpy in the genus. Aust Syst Bot 1:399–410

    Article  Google Scholar 

  • Tindale MD, Craven LA (1993) Glycine pindanica (Fabaceae, Phaseolae), a new species from West Kimberly, Western Australia. Aust Syst Bot 6:371–376

    Article  Google Scholar 

  • Veatch C (1934) Chromosomes of the soy bean. Bot Gaz 96:189

    Article  Google Scholar 

  • Verdcourt B (1966) A proposal concerning Glycine L. Taxon 15:34–36

    Article  Google Scholar 

  • Xia Z, Tsubokura T, Hoshi M, Hanawa M, Yano C, Okamura K, Ahmed TA, Anai T, Watanabe S, Hayashi M, Kawai T, Hossain KG, Masaki H, Asai K, Yamanaka N, Kubo N, Kadowaki K, Nagamura Y, Yano M, Sasaki T, Harada K (2007) An integrated high-density linkage map of soybean with RFLP, SSR, STS, and AFLP markers using a single F2 population. DNA Res 14:257–269

    Article  CAS  PubMed  Google Scholar 

  • Xu SJ, Singh RJ, Hymowitz T (2000a) Monosomics in soybean: origin, identification, cytology, and breeding behavior. Crop Sci 40:985–989

    Article  Google Scholar 

  • Xu SJ, Singh RJ, Kollipara KP, Hymowitz T (2000b) Hypertriploid in soybean: origin, identification, cytology, and breeding behavior. Crop Sci 40:72–77

    Article  Google Scholar 

  • Xu SJ, Singh RJ, Kollipara KP, Hymowitz T (2000c) Primary trisomics in soybean: origin, identification, breeding behavior, and use in linkage mapping. Crop Sci 40:1543–1551

    Article  Google Scholar 

  • Yanagisawa T, Tano S, Fukui K, Harada K (1991) Marker chromosomes commonly observed in the genus Glycine. Theor Appl Genet 81:606–612

    Article  CAS  PubMed  Google Scholar 

  • Zhu T, Shi L, Doyle JJ, Keim P (1995) A single nuclear locus phylogeny of soybean based on DNA sequence. Theor Appl Genet 90:991–999

    Article  CAS  PubMed  Google Scholar 

  • Zou JJ, Singh RJ, Hymowitz T (2003a) Association of the yellow leaf (y10) mutant to soybean chromosome 3. J Hered 94:352–354

    Article  CAS  PubMed  Google Scholar 

  • Zou JJ, Singh RJ, Lee J, Xu SJ, Cregan PB, Hymowitz T (2003b) Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet 107:745–750

    Article  CAS  PubMed  Google Scholar 

  • Zou JJ, Singh RJ, Lee J, Xu SJ, Hymowitz T (2006) SSR markers exhibit trisomic segregation distortion in soybean. Crop Sci 46:1456–1461

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Singh, R.J. (2017). Botany and Cytogenetics of Soybean. In: Nguyen, H., Bhattacharyya, M. (eds) The Soybean Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-64198-0_2

Download citation

Publish with us

Policies and ethics