Skip to main content

Ectomycorrhizal Mushrooms: Their Diversity, Ecology and Practical Applications

  • Chapter
  • First Online:
Mycorrhiza - Function, Diversity, State of the Art

Abstract

Ectomycorrhizal symbiosis is formed by a large number of plants and fungi. It is an association of fungal mycelia and roots of plants, mostly woody trees. Ectomycorrhiza are formed by fungi like Russula, Lactarius, Boletus, Cantharellus, etc. which are mostly common edible mushrooms. The trees which form ectomycorrhiza are Shorea, Pinus, etc. Ectomycorrhiza has been proved in at least 162 genera and more than 5400 species. Previous studies were based on morphology of ectomycorrhiza, but molecular data were lacking. However, relatively recently molecular studies and identification have confirmed ectomycorrhiza association of various fungi. These are formed by mostly members of Basidiomycota and Ascomycota. The orders like Agaricales, Boletales, Pezizales, Helotiales, and Cantharellales include the largest number of ectomycorrhizal lineages. In tropical regions, trees belonging to Dipterocarpaceae and Caesalpiniaceae form most ectomycorrhiza. There are attempts to study ectomycorrhiza in India but are way behind the studies that are been conducted around the world. Some of the studies conducted in India are related to ectomycorrhizal mushroom diversity and synthesis but none on genomics, ecological, and physiological studies. This chapter discusses from the basics what are ectomycorrhiza and their ecology and also applied aspects of ectomycorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (1987, 2002) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Schwabisch Gmiid, Germany

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizas: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Anderson IC, Cairney JWG (2007) Ectomycorrhizal fungi: exploring the mycelial frontier. FEMS Microbiol Rev 31:388–406

    Article  CAS  PubMed  Google Scholar 

  • Ashford AE, Allaway WG (1982) A sheathing mycorrhiza on Pisonia grandis R. Br. (Nyctaginaceae) with development of transfer cells rather than a Hartig net. New Phytol 90:511–517

    Article  Google Scholar 

  • Bagley SJ, Orlovich DA (2004) Genet size and distribution of Amanita muscaria in a suburban park, Dunedin, New Zealand. N Z J Bot 42:939–947

    Article  Google Scholar 

  • Baxter JW, Dighton J (2005) Phosphorus source alters host plant response to ectomycorrhizal diversity. Mycorrhiza 15:513–523

    Article  CAS  PubMed  Google Scholar 

  • Bergemann SE, Douhan GW, Garbaletto M, Miller SL (2006) No evidence of population structure across three isolated subpopulations of Russula brevipes in an oak/pine woodland. New Phytol 170:177–184

    Article  PubMed  Google Scholar 

  • Bever JD, Pringle A, Bchults PA (2002) Dynamics with in the plant-arbuscular mycorrhizal fungal mutualism: testing the Nahire of community feedback. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 267–294

    Google Scholar 

  • Bhagwat SA, Brown ND, Watkinson SC, Savill PS, Jennings SB (2000) Macrofungal diversity in three forested land use types, a case study from the Western Ghats of India. In: Tropical mycology. Liverpool John Moores University, Liverpool, pp 25–29

    Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Bücking H, Heyser W (2001) Microautoradiographic localization of phosphate and carbohydrates in mycorrhizal roots of Populus tremula × Populus alba and the implications for transfer processes in ectomycorrhizal associations. Tree Physiol 21:101–107

    Article  PubMed  Google Scholar 

  • Cairney JWG (2000) Evolution of mycorrhiza systems. Naturwissenschaften 87:467–475

    Article  CAS  PubMed  Google Scholar 

  • Cairney JWG, Chambers SM (1999) Ectomycorrhizal fungi—key genera in profile. Springer, Berlin, Heidelberg, p 369

    Book  Google Scholar 

  • Chevaliar G, Grente J (1973) Propagation de la mycorrhization par la truffle a partir de racines excisees et de plantules inseminatrices. Ann Phytopathol 4:317–318

    Google Scholar 

  • Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:1–20

    Article  Google Scholar 

  • Comandini O, Contu M, Rinaldi AC (2006) An overview of Citrus ectomycorrhizal fungi. Mycorrhiza 16:381–395

    Article  CAS  PubMed  Google Scholar 

  • Cumming JR, Zawaski C, Desai S, Collart FR (2015) Phosphorus disequilibrium in the tripartite plant ectomycorrhiza-plant growth promoting rhizobacterial association. J Soil Sci Plant Nutr 15:464–485

    CAS  Google Scholar 

  • Dahlberg A (2001) Effects of fire on ectomycorrhizal fungi in Fennos Canadian boreal forests. Silva Fennica 36:69–80

    Google Scholar 

  • Danell E (1994) Formation and growth of the ectomycorrhiza of Cantharellus cibarius. Mycorrhiza 5:88–97

    Article  Google Scholar 

  • Danell E (2002) Current research on chanterelle cultivation in Sweden. In: Hall I, Wang Y, Danell E, Zambonelii A (eds) Edible mycorrhizal mushrooms and their cultivation. Crop and Food Research, Christ Church, pp 1–4

    Google Scholar 

  • Dearnaley JDW, Martos F, Selosse M-A (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations. Springer, Berlin, pp 207–230

    Chapter  Google Scholar 

  • Dunham SM, Kretzer A, Pfrender ME (2003) Characterization of Pacific golden chanterelle (Cantharellus formosus) genet size using co-dominant microsatellite markers. Mol Ecol 12:1607–1618

    Article  CAS  PubMed  Google Scholar 

  • Erland S, Taylor AFS (2002) Diversity of ectomycorrhizal fungal communities in relation to the abiotic-environment. In: van der Heijden MGA, Sanders JR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg, p 465

    Google Scholar 

  • Finlay RD (2004) Mycorrhizal fungi and their multifunctional role. Mycologist 18:91–96

    Article  Google Scholar 

  • Finlay RD (2008) Ecological aspects of mycorrhizal symbiosis: with special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot 59:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Finlay RD, Read DJ (1986a) The structure and function of the vegetative mycelium of ectomycorrhizal plants-I, translocation of 14C-labeled carbon between plants interconnected by a common mycelium. New Phytol 120:105–115

    Article  Google Scholar 

  • Finlay RD, Read DJ (1986b) The structure and function of the vegetative mycelium of ectomycorrhizal plants-II, the uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157–165

    Article  Google Scholar 

  • Frank AB (1885) Uber die auf wurzelsbiose beruhends eranhrung gewisser baume durch unterirdische pilze. Ber Deut Bot Ges 3:128–145

    Google Scholar 

  • Giachini AJ, Oliviera VI, Castellano MA, Trappe JM (2000) Ectomycorrhizal fungi in Eucalyptus and Pinus plantations in southern Brazil. Mycologia 92:1166–1177

    Article  Google Scholar 

  • Gobert A, Plassard C (2008) The beneficial effect of mycorrhizae on N utilization by the host plant: myth or reality? In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, Heidelberg, p 797

    Google Scholar 

  • Godbold DL, Hoosbeek MR, Lukac M et al (2006) Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281:15–24

    Article  CAS  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Hacskaylo E (1953) Pure culture synthesis of prime mycorrhizae in terralite. Mycologia 45:971–975

    Google Scholar 

  • Harnett DC, Wilson WT (1999) Mycorrhizae influence plant community structure and diversity in tall grass prairie. Ecology 80:1187–1195

    Article  Google Scholar 

  • Hart MM, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heilderberg, p 465

    Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with below ground allocation in culture studies. Ecology 87:563–569

    Article  PubMed  Google Scholar 

  • Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Jakobsen I, Smith SE, Smith FA (2002) Function and diversity of arbuscular mycorrhizae in carbon and mineral nutrition. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg, p 465

    Google Scholar 

  • Jonsson LM, Nilsson M-C, Wardle DA, Zachrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364

    Article  Google Scholar 

  • Kaul TN (2002) In: Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds) Conservation of mycodiversity in India: an appraisal. CABI Publishing, New York, p 191

    Google Scholar 

  • Kaushal SC (1991) Systematics of NW Himalayan species of Helvella (operculate discomycete). In: Khoshoo TN, Sharma M (eds) Himalayan botanical researches. Ashish Publishing House, New Delhi, pp 61–75

    Google Scholar 

  • Kennedy P, Walker JKM, Bogar L (2015) Interspecific mycorrhizal networks and non-networking hosts: exploring the ecology of the host genus Alnus. In: Horton TR (ed) Mycorrhizal networks, Ecological studies 224, Chapter 8. Springer, p 227

    Google Scholar 

  • Khoshoo TN (1991) Conservation of biodiversity in biosphere. In: Khoshoo TN, Sharma M (eds) Indian geosphere biosphere programme: some aspects. Har-Anand Publications, Vikas Publishing House Private, New Delhi, pp 183–233

    Google Scholar 

  • Khoshoo TN (1996) Biodiversity in the Indian Himalayas: conservation and utilization. In: Banking on biodiversity—report on the regional consultation on biodiversity assessment in the Hindukush Himalayas

    Google Scholar 

  • Kjøller R, Clemmensen KE (2008) The impact of liming on ectomycorrhizal fungal communities in coniferous forests in Southern Sweden. Skogsstyrelsen februari Publications, Jönköping

    Google Scholar 

  • Kretzer AM, Dunham S, Molina R, Spatafora JW (2004) Microsatellite markers reveal the below ground distribution of genets of two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol 161:313–320

    Article  CAS  Google Scholar 

  • Lakhanpal TN (1993) The Himalayan agaricales status of systematics. Mush Res 2:1–10

    Google Scholar 

  • Lakhanpal TN (1996) Mushrooms of India: Boletaceae. In: Mukerji KG (ed) Studies in cryptogamic botany, vol I. APH Publishing Corporation, Delhi

    Google Scholar 

  • Lakhanpal TN (2000) Ectomycorrhiza—an overview. In: Mukerji (ed) Mycorrhizal biology. Kluwer Academic Plenum Publishers, New York, pp 101–118

    Chapter  Google Scholar 

  • Lewis DH (1973) Concepts in fungal nutrition and the origin of biotrophy. Biol Rev 48:261–273

    Article  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Martin F, Nehls U (2009) Harnessing ectomycorrhizal genomics for ecological insights. Curr Opin Plant Biol 12:508–515

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Aerts A, Ahrén D (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS (2016) Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol 14:760–773

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1980) Ectomycorrhiza fungus inoculations, a tool for improving forestation practices. In: Mikola P (ed) Tropical mycorrhiza research. Oxford University Press, Oxford, pp 13–71

    Google Scholar 

  • Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. For Sci 21:245–254

    Article  Google Scholar 

  • Marx DH, Zak B (1965) Effect of pH on mycorrhizal formation of slash pine in aseptic culture. For Sci 11:66–75

    Google Scholar 

  • Melin E (1922) Untersuchungen iiber die Larix Mycorrhiza I. Synthese der Mykorrhiza in Rein culture. Sven Bot Tidskr 16:161–196

    Google Scholar 

  • Melin E (1923) Experimentelle Unters uchungen uber die Okologie der Mykorrhizen von Pinus sylvestris and Pinus abies. Mycol Unters 2:72–331

    Google Scholar 

  • Melin E (1936) Metroden der experimentelle untersuchung mylcotropher pflanzen. Handb Biol Arbeitsmety 11:1015–1108

    Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. APS, Saint Paul, pp 115–119

    Google Scholar 

  • Moser M (1958) Die Kiinstliche Mycorrhizaimp fung an Forstpflanzen. I. Erfahrungen bei der Reinkulture von Mycorrhizapilzen. For Wiss Centralbl 77:32–40

    Article  Google Scholar 

  • Murata H, Ohta A, Yamada A, Narimatsu M, Futamura N (2005) Genetic mosaics in the massive persisting rhizosphere colony “shiro” of the ectomycorrhizal basidiomycete Tricholoma matsutake. Mycorrhiza 15:505–512

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Ravindran C (2003a) Two new species of the genus Entoloma from south India. Mycotaxon 85:143–146

    Google Scholar 

  • Natarajan K, Ravindran C (2003b) Two new species of the genus Pholiota from south India. Mycotaxon 85:271–275

    Google Scholar 

  • Natarajan K, Narayanan K, Ravindran C, Kumaresan V (2005a) Biodiversity of agarics from Nilgiri Biosphere Reserve, Western Ghats, India. Curr Sci 88:1890–1893

    Google Scholar 

  • Natarajan K, Senthilarasu G, Kumaresan V, Riviere T (2005b) Diversity in ectomycorrhizal fungi of a dipterocarp forest in Western Ghats. Curr Sci 88:1893–1895

    Google Scholar 

  • Nehls U (2008) Mastering ectomycorrhizal symbiosis: the impact of carbohydrates. J Exp Bot 59:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Onguene NA, Kuyper TW (2001) Mycorrhizal associations in the rain forest of South Cameroon. For Ecol Manage 140:277–287

    Article  Google Scholar 

  • Pachlewski R, Pachlewski J (1974) Studies on symbiotic properties of mycorrhizal fungi of Pine (Pinus silvertris L.) with the aid of the method of mycorrhizal synthesis in pure cultures on agar. For Res Inst, Warsaw, Poland, p 228

    Google Scholar 

  • Pande V, Palni UT, Singh SP (2004) Species diversity of ectomycorrhizal fungi associated with temperate forest of Western Himalaya: a preliminary assessment. Curr Sci 86:1619–1623

    Google Scholar 

  • Peterson RL, Uetake Y, Zelmer C (1998) Fungal symbioses with orchid protocorms. Symbiosis 25:29–55

    Google Scholar 

  • Peterson RL, Massicotte HB, Melville LH (2004) Mycorrhizas: anatomy and cell biology. CABI Publishing, CAB International, Wallingford, Oxon

    Google Scholar 

  • Peterson RL, Wagg C, Pautier M (2008) Associations between microfungal endophytes and roots: do structural features indicate function? Botany 86:445–456

    Article  CAS  Google Scholar 

  • Pritsch K, Garbaye J (2011) Enzyme secretion by ECM fungi and exploitation of mineral nutrients from soil organic matter. Ann For Sci 68:25–32

    Article  Google Scholar 

  • Purkayastha RP, Chandra A (1976) Indian edible mushrooms. Firma KLM Pvt. Ltd., Calcutta

    Google Scholar 

  • Purkayastha RP, Chandra A (1985) Manual of Indian edible mushrooms. Today and Tomorrow’s Printers and Publishers, New Delhi

    Google Scholar 

  • Rattan SS, Khurana IPS (1978) The clavariaceae of the Sikkim Himalayas. Bibliotheca Mycologia, vol 66. Cramer in der A.R. Gantner Verlag Kommanditgesellschaft FL-9490 Vadauz. Liechtenstein 66:1–68

    Google Scholar 

  • Read DJ (1991a) Mycorrhizas in ecosystems. Experimentia 47:376–391

    Article  Google Scholar 

  • Read DJ (1991b) Mycorrhizal in ecosystems natures’ response to the “Law of the minimum”. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, Wallingford, pp 101–130

    Google Scholar 

  • Reddy MS, Singla S, Natarajan K, Senthilrasu G (2005) Pisolithus indicus, a new species of ectomycorrhizal fungus associated with Dipetrocarps in India. Mycologia 97:838–843

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Szaro TM, Bowman RJ, Bruns TD (2001) Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol Ecol 10:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Redeker KR, Treseder KK, Allen MF (2004) Ectomycorrhizal fungi: a new source of atmospheric methyl halides. Glob Chang Biol 10:1009–1016

    Article  Google Scholar 

  • Rillig MC, Wright SF, Eviner V (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333

    Article  CAS  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Sagar A, Lakhanpal TN (2005) Pure culture synthesis of Pinus wallichiana ectomycorrhizal with Suillus sibiricus. Indian Phytopathol 58:323–325

    Google Scholar 

  • Saini SS, Atri NS (1993) Studies on genus Lactarius from India. Indian Phytopathol 46:360–364

    Google Scholar 

  • Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg

    Google Scholar 

  • Schübler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sharda RM (1991) Clavaroid homobasidiomycetes in the Himalaya, a check list. In: Khullar SP, Sharma MP (eds) Himalayan botanical researches. Ashish publishing House, New Delhi, pp 31–60

    Google Scholar 

  • Sharma R (2008) Studies on ectomycorrhizal mushrooms of M.P. and Chhattisgarh. PhD thesis, R.D. University, Jabalpur, India

    Google Scholar 

  • Sharma R, Rajak RC (2011). Ectomycorrhizal Interaction between Cantharellus and Dendrocalamus. In: Rai M, Varma V (eds) Diversity and biotechnology of ectomycorrhizae. Soil Biol 25. Springer, Berlin, Heidelberg, pp 405–428

    Google Scholar 

  • Sharma PM, Sidhu D (1991) Notes on Himalayan Geoglossaceae. In: Khullar SP, Sharma MP (eds) Himalayan botanical researches. Ashish Publishing House, New Delhi, pp 13–29

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2008a) Some ectomycorrhizal mushrooms of Central India—I. Russula. J Mycopathol Res 46:201–212

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2008b) Growth response of Dendrocalamus seedlings by inoculation with ectomycorrhizal fungi. Middle East J Sci Res 3:200–206

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2009a) Some ectomycorrhizal mushrooms of Central India—II. Lactarius. J Mycopathol Res 47:43–47

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2009b) Simple technique for ectomycorrhizal formation between Cantharellus and Dendrocalamus strictus. Taiwan J For Sci 24:141–148

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2009c) Ectomycorrhizal mushrooms in Indian tropical forests. Biodiversity 10:25–30

    Article  Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2010a) Mass multiplication of ectomycorrhizal Cantharellus inoculum for large scale tailoring nursery inoculations of bamboo seedlings. Asian J Sci Res 4:84–89

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2010b) Some ectomycorrhizal mushrooms of Central India-V. Pisolithus, Scleroderma, Geastrum, Cantharellus. J Mycopathol Res 48:337–342

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2010c) Evidence of antagonistic interactions between rhizosphere and mycorrhizal fungi associated with Dendrocalamus strictus (Bamboo). J Yeast Fungal Res 1:112–117

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2010d) Some ectomycorrhizal mushrooms of Central India–III. Amanita. J Mycopathol Res 48:81–84

    Google Scholar 

  • Sharma R, Rajak RC, Pandey AK (2010e) Some ectomycorrhizal mushrooms of Central India-IV. Boletus, Leccinum. J Mycopathol Res 48:329–335

    Google Scholar 

  • Sim M-Y, Eom A-H (2006) Effects of ectomycorrhizal fungi on growth of seedlings of Pinus densiflora. Mycobiology 34:191–195

    Article  PubMed  PubMed Central  Google Scholar 

  • Simard SW, Durall D, Jones M (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg

    Google Scholar 

  • Skinner MF, Bowen GD (1974a) The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biol Biochem 6:53–56

    Article  CAS  Google Scholar 

  • Skinner MF, Bowen GD (1974b) The penetration of soil by mycelial strands of ectomycorrhizal fungi. Soil Biol Biochem 6:57–61

    Article  Google Scholar 

  • Smith FA (2000) Measuring the influence of mycorrhizas. New Phytol 148:4–6

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Gianinazzi-Pearson V, Koide R, Cairney JWG (1994) Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. Plant Soil 159:103–113

    Article  CAS  Google Scholar 

  • Smith FA, Timonen S, Smith SE (2000) In: Blom WPM, Visser EJW (eds) Mycorrhizas. Springer, Berlin, Heidelberg, New York

    Google Scholar 

  • Sterkenburg E (2016) Drivers of soil fungal communities in boreal forests–feedbacks on soil fertility and decomposition. Doctoral Thesis, Swedish University of Agricultural Sciences, Uppsala

    Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tedersoo L, Liiv I, Kivistik PA, Anslan S, Kõljalg U, Bahram M (2016) Genomics and metagenomics technologies to recover ribosomal DNA and single-copy genes from old fruit-body and ectomycorrhiza specimens. MycoKeys 13:1–20

    Article  Google Scholar 

  • Thomas KA, Peintner U, Moser MM, Manimohan P (2002) Anamika, a new mycorrhizal genus of Cortinariaceae from India and its phylogenetic position based on ITS and LSU sequences. Mycol Res 106:245–251

    Article  CAS  Google Scholar 

  • van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: van der Heifden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heilderberg

    Google Scholar 

  • van der Heijden MGA, Sanders IR (2002) Mycorrhizal ecology. Springer, Berlin

    Google Scholar 

  • Verbeken A, Buyck B (2001) Diversity and ecology of tropical ectomycorrhizal fungi of Africa. In: Watling R, Frankland JC, Ainsworth AM, Isaac S, Robinson CH (eds) Tropical mycology, vol I. CABI Publishing, UK, pp 11–24

    Google Scholar 

  • Verma RN, Singh GB, Mukta S (1995) Mushroom flora of north-eastern hills. In: Advances in horticulture-13, mushroom. Malhotra Publishing House, New Delhi, pp 329–349

    Google Scholar 

  • Voke NR (2012) The effect of roots and ectomycorrhizal fungi on carbon cycling in forest soils. The University of York, York

    Google Scholar 

  • Walker JKM, Cohen H, Higgins LM, Kennedy PG (2014) Testing the link between community structure and function for ectomycorrhizal fungi involved in a global tripartite symbiosis. New Phytol 202:287–296

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Watling R, Lee SS (1995) Ectomycorrhizal fungi associated with members of the Dipterocarpaceae in Peninsular Malaysia. J Trop For Sci 7:657–669

    Google Scholar 

  • Wiemken V (2007) Trehalose synthesis in ectomycorrhizas—a driving force of carbon gain for fungi. New Phytol 174:228–230

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Nara K, Hogetsu T (2005) Genetic structure of Cenococcum geophilum populations in primary successional volcanic deserts on Mount Fuji as revealed by microsatellite markers. New Phytol 165:285–293

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Miwa M, Hogetsu T (2000) Genet distribution of ectomycorrhizal fungus Suillus grevillei populations in two Larix kaempferi stands over two years. J Plant Res 113:365–374

    Article  Google Scholar 

  • Zhou Z, Miwa M, Hogetsu T (2001) Polymorphism of simple sequence repeats reveals gene flow within and between ectomycorrhizal Suillus grevillei populations. New Phytol 149:339–348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sharma, R. (2017). Ectomycorrhizal Mushrooms: Their Diversity, Ecology and Practical Applications. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Function, Diversity, State of the Art. Springer, Cham. https://doi.org/10.1007/978-3-319-53064-2_7

Download citation

Publish with us

Policies and ethics