Skip to main content

Harnessing Apomixis for Heterosis Breeding in Crop Improvement

  • Chapter
  • First Online:
Molecular Breeding for Sustainable Crop Improvement

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 11))

Abstract

Apomixis is an asexual mode of reproduction through seeds where embryo develops without undergoing meiosis and fertilization of gametes. Majority of natural apomicts are polyploids and thought to have evolved through hybridization and polyploidization. Apomixis is highly desirable for agriculture as it fixes hybridity or heterosis. Apomicts form huge polyploid complexes in nature which are the results of their facultative nature. They harbor enormous amount of variability resulting in cytotypes. Majority of the crop plants do not reproduce through apomixis although few wild relatives of crop plants such as Pennisetum glaucum and Zea mays reproduce asexually. Harnessing apomixis for heterosis breeding of crop plants through introgression of this trait from tertiary to primary gene pool was not possible due to imprinting barriers. Deviation in endosperm balance number from the male and female parents during introgression caused poor seed set in Pennisetum and Zea mays hybrids. Apomicts exhibit three major developmental variations from normal sexual reproduction, viz. apomeiosis, parthenogenesis, and autonomous endosperm development. Initial studies indicated that all the three components are governed by a single or a few genes which was later refuted owing to recombinants showing independent events. Thus, genetics of apomixis is very complex and is often riddled with large-scale segregation distortions. In many apomictic grasses, transmission of apomixis is through a physically large, hemizygous, non-recombining genomic region. One of the genes from an apospory-specific genomic region (ASGR) of Pennisetum squamulatum, namely BABY BOOM LIKE, elicited parthenogenetic development of embryo in the sexual pearl millet. Unraveling of genetic and molecular mechanisms controlling apomixis could revolutionize the way agriculture is practiced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilera PM, Galdeano F, Quarin CL, Pablo J, Ortiz A, Espinoza F (2015) Inheritance of aposporous apomixis in interspecific hybrids derived from sexual Paspalum plicatulum and apomictic Paspalum guenoarum. Crop Sci 55:1947–1956

    Article  Google Scholar 

  • Akiyama Y, Conner JA, Goel S, Morishige DT, Mullet JE, Hanna WW, Ozias-Akins P (2004) High-resolution physical mapping in Pennisetum squamulatum reveals extensive chromosomal heteromorphism of the genomic region associated with apomixis. Plant Physiol 134:1733–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyama Y, Goel S, Conner JA, Hanna WW, Yamada-Akiyama H, Ozias-Akins P (2011) Evolution of the apomixis transmitting chromosome in Pennisetum. BMC Evol Biol 11:289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albertini E, Barcaccia G, Porceddu A, Sorbolini S, Falcinelli M (2001a) Mode of reproduction is detected by Parth1 and Sex1 SCAR markers in a wide range of facultative apomictic Kentucky bluegrass varieties. Mol Breed 7:293–300

    Article  CAS  Google Scholar 

  • Albertini E, Porceddu A, Ferranti F, Reale L, Barcaccia G et al (2001b) Apospory and parthenogenesis may be uncoupled in Poa pratensis: a cytological investigation. Sex Plant Reprod 14:213–217

    Article  CAS  PubMed  Google Scholar 

  • Asker S (1980) Gametophytic apomixis: elements and genetic regulation. Hereditas 93:277–293

    Article  Google Scholar 

  • Asker S, Jerling L (1992) Apomixis in plants. CRC Press, London

    Google Scholar 

  • Babcock EB, Stebbins GL (1938) The American species of Crepis: Their relationships and distribution as affected by polyploidy and apomixis. Carnegie Inst Wash Publ 504:1–200

    Google Scholar 

  • Barcaccia G, Mazzucato A, Albertini E, Zethof J, Gerats A et al (1998) Inheritance of parthenogenesis in Poa pratensis L.: auxin test and AFLP linkage analyses support monogenic control. Theor Appl Genet 97:74–82

    Article  CAS  Google Scholar 

  • Battaglia E (1948) Ricerche sulla parameiosi restitzionale nel genere Taraxacum. Caryologia 1:1–47

    Google Scholar 

  • Bayer RJ (1987) Evolution and phylogenetic relationships of the Antennaria (Asteraceae: Inuleae) polyploid agamic complex. Biologie Zentralblatt 106:683–698

    Google Scholar 

  • Bergman B (1941) Studies on the embryo sac mother cell and its development in Hieracium (subg.) Archieracium. Svensk Bot Tidskr 35:1–41

    Google Scholar 

  • Berthaud J (2001) Apomixis and the management of genetic diversity. In: Savidan Y, Carman JG, Dresselhaus T (eds) The flowering of apomixis: from mechanisms to genetic engineering. CIMMYT, IRD, Mexico DF, pp 8–23

    Google Scholar 

  • Berthaud J, Savidan Y (1989) Genetic resources of Tripsacum and gene transfer to maize. In: Mujeeb-Kazi A, Sitch LA (eds) Review of advances in plant biotechnology, 1985–1988. 2nd international symposium on genetic manipulation in crops. CIMMYT and IRRI, Mexico DF, Mexico and Manila Philippines, pp 121130

    Google Scholar 

  • Bhat V, Dwivedi KK, Khurana JP, Sopory SK (2005) Apomixis: an enigma with potential applications. Curr Sci 89:1879–1893

    Google Scholar 

  • Bicknell R, Catanach A (2015) Apomixis: the asexual formation of seed. In: Li X-Q, et al (eds) Somatic genome manipulation. LLC 2015. Springer Science & Business Media, Berlin. doi:10.1007/978-1-4939-2389-2_7

    Google Scholar 

  • Bicknell RA, Borst NK, Koltunow AM (2000) Monogenic inheritance of apomixis in two Hieracium species with distinct developmental mechanisms. Heredity 84:228–237

    Article  PubMed  Google Scholar 

  • Brock MT (2004) The potential for genetic assimilation of a native dandelion species, Taraxacum ceratophorum (Asteraceae), by the exotic congener T. officinale. Am J Bot 91:656–663

    Article  PubMed  Google Scholar 

  • Brown WF, Emery WH (1958) Apomixis in the Gramineae: panicoideae. Am J Bot 45:253–263

    Article  Google Scholar 

  • Burson BL, Voigt PW, Sherman RA, Dewald CL (1990) Apomixis and sexuality in Eastern Gamagrass. Crop Sci 30:86–89

    Article  Google Scholar 

  • Caceres ME, Matzk F, Busti A, Pupilli F, Arcioni S (2001) Apomixis and sexuality in Paspalum simplex: characterization of the mode of reproduction in segregating progenies by different methods. Sex Plant Reprod 14:201–206

    Article  CAS  PubMed  Google Scholar 

  • Calderini O, Chang S, de Jong H, Busti A, Paolocci F et al (2006) Molecular cytogenetics and DNA sequence analysis of an apomixis-linked BAC in Paspalum simplex reveal a non pericentromere location and partial microcolinearity with rice. Theor Appl Genet 112:1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Campbell CS, Alice LA, Wright WA (1999) Comparisons of within population genetic variation in sexual and agamospermus Amelanchier (Rosaceae) using RAPD markers. Plant Syst Evol 215:157–167

    Article  Google Scholar 

  • Carman JG (1997) Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol J Linn Soc 61:51–94

    Article  Google Scholar 

  • Catanach AS, Erasmuson SK, Podivinsky E, Jordan BR, Bicknell R (2006) Deletion mapping of genetic regions associated with apomixis in Hieracium. Proc Natl Acad Sci USA 103:18650–18655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celarier RP, Harlan JR (1958) The cytogeography of the Bothriochloa ischaemum complex. I. Taxonomy and geographic distribution. J Linn Soc London Bot 55:755–760

    Article  Google Scholar 

  • Celarier RP, Mehra KL, Wulf ML (1958) Cytogeography of the Dichanthium annulatum complex. Brittonia 10:59–72

    Article  Google Scholar 

  • Chapman H, Houliston GJ, Robson B, Ilne I (2003) A case of reversal: the evolution and maintenance of sexuals from parthenogenetic clones in Hieracium pilosella. Int J Plant Sci 164:719–728

    Article  Google Scholar 

  • Chaudhury AM, Ming L, Miller C, Craig S, Dennis ES, Peacock WJ (1997) Fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:4223–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conner JA, Gunawan G, Ozias-Akins P (2013) Recombination within the apospory specific genomic region leads to the uncoupling of apomixis components in Cenchrus ciliaris. Planta 238:51–63

    Article  CAS  PubMed  Google Scholar 

  • Conner JA, Mookkan M, Huo H, Chae K, Ozias-Akins P (2015) A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. Proc Natl Acad Sci USA 112(36):11205–11210

    Google Scholar 

  • Cosendai AC, Horandl E (2010) Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann Bot 105:457–470

    Article  PubMed  PubMed Central  Google Scholar 

  • d’Erfurth I, Jolivet S, Froger N, Catrice O, Novatchkova M, Mercier R (2009) Turning meiosis into mitosis. PLOS Biol 7:e1000124. 16:1–128

    Google Scholar 

  • Darlington CD (1939) The evolution of genetic systems. Cambridge University Press, Cambridge, p 254

    Google Scholar 

  • Daurelio LD, Espinoza F, Quarin CL, Pessino SC (2004) Genetic diversity in sexual diploid and apomictic tetraploid populations of Paspalum notatum situated in sympatry or allopatry. Plant Syst Evol 244:189–199

    Article  CAS  Google Scholar 

  • de Meeȗs T, Prugnolle F, Agnew P (2007) Asexual reproduction: genetics and evolutionary aspects. Cell Mol Life Sci 64:1355–1372

    Article  PubMed  CAS  Google Scholar 

  • den Nijs JCM, Menken SBJ (1996) Relations between breeding system, ploidy level, and taxonomy in some advanced sections of Taraxacum. In: Hind DJN, Beentje HJ (eds) Compositae: systematics. Proceedings of the international compositae conference. Royal Botanic Gardens, Kew, pp 665–677

    Google Scholar 

  • de Wet JMJ, Harlan JR (1970a) Apomixis, polyploidy and speciation in Dichanthium. Evolution 24:270–277

    Article  Google Scholar 

  • de Wet JMJ (1968) Diploid-tetraploid-haploid cycles and the origin of variability in Dichanthium. Evolution 22:394–397

    Article  Google Scholar 

  • de Wet JMJ, Engle LM, Grant CA (1973) Breeding behaviour of maize-Tripsacum hybrids. Crop Sci 13:254–256

    Article  Google Scholar 

  • de Wet JMJ, Harlan JR (1966) Morphology of the compilospecies Bothriochloa intermedia. Amer J Bot 53:94–98

    Article  Google Scholar 

  • de Wet JMJ, Harlan JR (1970b) Bothriochloa intermedia—a taxonomic dilemma. Taxon 19:339–340

    Article  Google Scholar 

  • de Wet JMJ, Timothy DH, Hilu KW, Fletcher GB (1981) Systematics of South American Tripsacum (Gramineae). Am J Bot 68:269–276

    Article  Google Scholar 

  • Dudman AA, Richards AJ (1997) Dandelions of Great Britain and Ireland. Botanical Society of the British Isles, London

    Google Scholar 

  • Dujardin M, Hanna WW (1989) Developing apomictic pearl millet: characterization of a BC3 plant. J Genet Breed 43:145–151

    Google Scholar 

  • Ebina M, Nakagawa H, Yamamoto T, Araya H, Tsuruta S et al (2005) Co-segregation of AFLP and RAPD markers to apospory in Guineagrass (Panicum maximum Jacq.). Grassland Sci 51:71–78

    Article  CAS  Google Scholar 

  • Farquharson LI (1955) Apomixis and polyembryony in Tripsacum dactyloides. Am J Bot 42:737–743

    Article  Google Scholar 

  • Fehrer J, Gemeinholzer B, Chrtek J Jr, Bra¨utigam S (2007a) Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Mol Phylogenet Evol 42:347–361

    Article  CAS  PubMed  Google Scholar 

  • Fehrer J, Krahulcová A, Krahulec F, Chrtek Jr J, Rosenbaumova´ R, Bräutigam S (2007b) Evolutionary aspects in Hieracium subgenus Pilosella. In: Hörandl E, Grosniklaus U, van Dijk P, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. Koeltzn, Königstein, pp 359–390

    Google Scholar 

  • Ford H, Richards AJ (1985) Isozyme variation within and between Taraxacum agamospecies in a single locality. Heridity 55:289–291

    Article  Google Scholar 

  • Grant V (1981) Plant speciation. Columbia University Press, New York, p 435

    Google Scholar 

  • Grimanelli D, Leblanc O, Espinosa E, Perotti E, Gonzales de Leon D, Savidan Y (1998) Mapping diplosporous apomixis in tetraploid Tripsacum: one gene or several genes? Heredity 80:33–39

    Article  PubMed  Google Scholar 

  • Grossniklaus U, Koltunow A, van Lookeren Campagne M (1998) A bright future for apomixis. Trends Plant Sci 3:415–441

    Article  Google Scholar 

  • Guitton E-A, Berger F (2005) Loss of function of MULTICOPY SUPPRESSOR OF IRA 1 produces nonviable parthenogenic embryos in Arabidopsis. Curr Biol 15:750–754

    Article  CAS  PubMed  Google Scholar 

  • Guo M, Rupe MA, Zinselmeier C, Habben J, Bowen BA, Smith OS (2004) Allelic variation of gene expression in maize hybrids. Plant Cell 16:1707–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hörandl E, Pan O (2007) Patterns and sources of genetic diversity in apomictic plants: implications for evolutionary potentials In: Hörandl E, Grossniklaus U, Van Dijk PJ, Sharbel T (eds) Apomixis: evolution, mechanisms and perspectives. International Association for Plant Taxonomy, Ruggel, pp 169–194

    Google Scholar 

  • Hand ML, Koltunow AM (2014) The genetic control of apomixis: asexual seed formation. Genetics 197:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hand ML, Vı´t P, Krahulcová A, Johnson SD, Oelkers K, Siddons H, Chrtek J, Fehrer Jr. J, Koltunow AMG (2015) Evolution of apomixis loci in Pilosella and Hieracium (Asteraceae) inferred from the conservation of apomixis-linked markers in natural and experimental populations. Hered 114:17–26

    Google Scholar 

  • Hanna WW, Burton GW (1986) Cytogenetics and breeding behavior of an apomictic triploid in bahiagrass. J Hered 77:457–459

    Google Scholar 

  • Hanna WW, Roche D, Ozias-Akins P (1998) Use of apomixis in crop improvement. In: Virmani SS, Siddiq ED, Muralidharan K (eds) Advances in hybrid rice technology. Proceedings of the 3rd international symposium on hybrid rice. International Rice Research Institute, Manila, pp 283–296

    Google Scholar 

  • Hao JH, Qiang S, Chrobock T, van Kleunen M, Liu QQ (2011) A test of Baker’s law: breeding systems of invasive species of Asteraceae in China. Biol Invasions 13:571–580

    Article  Google Scholar 

  • Hardesty BD, Le Roux JJ, Rocha OJ, Meyer JY, Westcott D, Wieczorek AM (2012) Getting here from there: testing the genetic paradigm underpinning introduction histories and invasion success. Divers Distrib 18:147–157

    Article  Google Scholar 

  • Harlan JR, de Wet JMJ (1963) The compilospecies concept. Evolution 17:497–501

    Article  Google Scholar 

  • Hörandl E, Dobes C, Lambrou M (1997) Chromosomen-und Pollenuntersuchungen an osterreichischen Arten des apomiktischen Ranunculus auricomus-Komplexes. Bot Helv 107:195–209

    Google Scholar 

  • Hörandl E, Greilhuber J (2002) Diploid and autotetraploid sexuals and their relationship to apomicts in the Ranunculus cassubicus group: insights from DNA content and isozyme variation. Plant Syst Evol 234:85–100

    Article  CAS  Google Scholar 

  • Hörandl E, Hojsgaard D (2012) The evolution of apomixis in angiosperms: a reappraisal. Plant Biosyst 146:681–693

    Google Scholar 

  • Hojsgaard D, Hörandl E (2015a) A little bit of sex matters for genome evolution in asexual plants. doi:10.3389/fpls.2015.00082

    Google Scholar 

  • Hojsgaard D, Hörandl E (2015b) Apomixis as a facilitator of range expansion and diversification in plants. In: From Genotype to phenotype. Springer International Publishing, Switzerland. doi:10.1007/978-3-319-19932-0_16

    Google Scholar 

  • Hojsgaard D, Klatt S, Baier R, Carman JG, Hörandl E (2014a) Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit Rev Plant Sci 33:414–427

    Article  PubMed  PubMed Central  Google Scholar 

  • Hojsgaard DH, Greilhuber J, Pellino M, Paun O, Sharbel TF, Hörandl E (2014b) Emergence of apospory and by pass of meiosis via apomixis after sexual hybridization and polyploidization. New Phytol 204:1000–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Hörandl E (2009) A combinational theory for maintenance of sex. Heredity 103:445–457

    Article  PubMed  PubMed Central  Google Scholar 

  • Jessup RW, Burson BL, Burow GB, Wang YW, Chang C, Li Z, Paterson AH, Hussey MA (2002) Disomic inheritance, suppressed recombination, and allelic interactions govern apospory in buffel grass as revealed by genome mapping. Crop Sci 42:1688–1694

    Article  CAS  Google Scholar 

  • Kantama L, Sharbel TF, Eric Schranz M, Mitchell-Olds T, De Vries S, De Jong H (2007) Diploid apomicts of the Boechera holboelli complex display large scale chromosome substitutions and aberrant chromosomes. Proc Natl Acad Sci USA 104:14026–14031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindiger B, Sokolov V, Dewald C (1996) A comparison of apomictic reproduction in eastern gamagrass (Tripsacum dactyloides L.) and maize-Tripsacum hybrids. Genetica 97:103–110

    Article  Google Scholar 

  • Koch MA, Dobeš C, Mitchell-Olds T (2003) Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol Biol Evol 20:338–350

    Article  CAS  PubMed  Google Scholar 

  • Koltunow AM, Ozias-Akins P, Siddiqi I (2013) Apomixis. In: Becraft PW (ed) Seed genomics. Wiley, London, pp 83–110

    Chapter  Google Scholar 

  • Krahulcová A, Rotreklová O, Krahulec F, Rosenbaumová R, Plačková I (2009) Enriching ploidy level diversity: the role of apomictic and sexual biotypes of Hieracium subgen. Pilosella (Asteraceae) that coexist in polyploid populations. Folia Geobot 44:281–306

    Google Scholar 

  • Labombarda P, Busti A, Caceres ME, Pupilli F, Arcioni S (2002) An AFLP marker tightly linked to apomixis reveals hemizygosity in a portion of the apomixis-controlling locus in Paspalum simplex. Genome 45:513–519

    Article  CAS  PubMed  Google Scholar 

  • Leblanc O, Grimanelli D, González-de-León D, Savidan Y (1995) Detection of the apomictic mode of reproduction in maize-Tripsacum hybrids using maize RFLP markers. Theor Appl Genet 90:1198–1203

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1931) Hybridization of maize, Tripsacum and Euchlaena. J Hered 22:329–343

    Google Scholar 

  • Marimuthu MPA, Jolivet S, Ravi M, Pereira L, Davda JN et al (2011) Synthetic clonal reproduction through seeds. Science 331:876

    Article  CAS  PubMed  Google Scholar 

  • Markwelch D, Meselson M (2000) Evidence for the evolution of Bdelloid rotifers without sexual reproduction or genetic exchange. Science 288:(5468)1211–1215

    Google Scholar 

  • Martinez EJ, Hopp HE, Stein J, Ortiz JPA, Quarin CL (2003) Genetic characterization of apospory in tetraploid Paspalum notatum based on the identification of linked molecular markers. Mol Breed 12:319–327

    Article  CAS  Google Scholar 

  • Martinez EJ, Urbani MH, Quarin CL, Ortiz JPA (2001) Inheritance of apospory in bahiagrass, Paspalum notatum. Hereditas 135:19–25

    Article  CAS  PubMed  Google Scholar 

  • Mehra KL (1961) Chromosome number, geographical distribution and taxonomy of the Dichanthium annulatum complex. Cytologia 17:176

    Google Scholar 

  • Miles JW, Escandon ML (1997) Further evidence on the inheritance of reproductive mode in Brachiaria. Can J Plant Sci 77:105–107

    Article  Google Scholar 

  • Mitsuyuki MC, Hoya A, Shibaike H, Watanabe M, Yahara T (2014) Formation of a hybrid triploid agamosperm on a sexual diploid plant: evidence from progeny tests in Taraxacum platycarpum. Plant Syst Evol 300:863–870

    Article  Google Scholar 

  • Mogie M, Ford H (1988) Sexual and asexual Taraxacum species. Biol J Linnean Soc 35:155–168

    Article  Google Scholar 

  • Moreno-Perez E, Garcia-Velazquez A, Avendano-Arrazate CH (2009) Estudio citolo´gico en poblaciones diploides y poliploides del ge´nero Tripsacum. Interciencia 34:791–795

    Google Scholar 

  • Nakano M, Shimada T, Endo T, Fujii H, Nesumi H, Kita M, Ebina M, Shimizu T, Omura M (2012) Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus. Plant Sci 183:131–142

    Article  CAS  PubMed  Google Scholar 

  • Naumova TN, Hayward MD, Wagenvoort M (1999) Apomixis and sexuality in diploid and tetraploid accessions of Brachiaria decumbens. Sex Plant Reprod 12:43–52

    Article  Google Scholar 

  • Nogler GA (1984) Gametophytic apomixis. In: Johri BM (ed) Embryology of angisoperms. Springer, Berlin, pp 475–518

    Chapter  Google Scholar 

  • Norrmann GA, Quarín CL, Burson BL (1989) Cytogenetics and reproductive behavior of different chromosome races in six Paspalum species. J Heredity 80:24–28

    Google Scholar 

  • Noyes RD, Baker R, Mai B (2007) Mendelian segregation for two-factor apomixis in Erigeron annuus (Asteraceae). Heredity 98:92–98

    Article  CAS  PubMed  Google Scholar 

  • Noyes RD, Rieseberg LH (2000) Two independent loci control agamospermy (apomixis) in the triploid flowering plant Erigeron annuus. Genetics 155:379–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa D, Johnson SD, Henderson ST, Koltunow AM (2013) Genetic separation of autonomous endosperm formation (AutE) from two other components of apomixis in Hieracium. Plant Reprod 26:113–123

    Article  PubMed  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Michaeli D, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization. Plant Cell 11:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz JPA, Quarin CL, Pessino SC, Acuna CA, Martinez EJ, Espinoza F, Hojsgaard DH, Sartor ME, Caceres ME, Pupilli F (2013) Harnessing apomictic reproduction in grasses: what we have learned from Paspalum. Ann Bot (Lond) 112:767–787

    Article  Google Scholar 

  • Otto SP, Whitton J (2000) Polyploidy incidence and evolution. Annu Rev Genet 34:401–437.

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, Lubbers EL, Hanna WW, Mc Nay JW (1993) Transmission of the apomictic mode of reproduction in Pennisetum: co-inheritance of the trait and molecular markers. Theor Appl Genet 85:632–638

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins P, van Dijk PJ (2007) Mendelian genetics of apomixis in plants. Annu Rev Genet 41:509–537

    Article  CAS  PubMed  Google Scholar 

  • Ozias-Akins PE, Roche D, Hanna WW (1998) Tight clustering and hemizygosity of apomixis linked molecular markers in Pennisetum squamulatum implies genetic control of apospory by a divergent locus that may have no allelic form in sexual genotypes. Proc Natl Acad Sci USA 95:5127–5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellino M, Hojsgaard D, Schmutzer T, Scholz U, Hörandl E, Vogel H et al (2013) Asexual genome evolution in the apomictic Ranunculus auricomus complex: examining the effects of hybridization and mutation accumulation. Mol Ecol 22:5908–5921.

    Article  CAS  PubMed  Google Scholar 

  • Pernès J (1975) Organization evolution d’un groupe agamique: la section des Maximae du genre. Panicum (Gramineae). ORSTOM, Paris, pp 1–106

    Google Scholar 

  • Pessino SC, Evans C, Ortiz JPA, Armstead I, do Valle CB, Hayward MD (1998) A genetic map of the apospory-region in Brachiaria hybrids: identification of two markers closely associated with the trait. Hereditas 128:153–158

    Article  Google Scholar 

  • Pessino SC, Ortiz J, Leblanc O, do Valle CB, Hayward MD (1997) Identification of a maize linkage group related to apomixis in Brachiaria. Theor Appl Genet 94:439–444

    Article  CAS  Google Scholar 

  • Peters HA (2001) Clidemia hirta invasion at the Pasoh Forest Reserve: an unexpected plant invasion in an undisturbed tropical forest. Biotropica 33:60–68

    Article  Google Scholar 

  • Petrov DF, Belousov NI, Fokina ES, Laikova LI, Yatsenko RM, Sorokina TP (1984) Transfer of some elements of apomixis from Tripsacum to maize. In: Petrov DF (ed) Apomixis and its role in evolution and breeding. Oxonian Press, New Delhi, pp 9–7

    Google Scholar 

  • Petrov DF, Belousova NI, Fokina ES (1979) Inheritance of apomixis and its elements in maize-Tripsacum hybrids. Genetika 15:1827–1836

    Google Scholar 

  • Porceddu A, Albertini E, Barcaccia G, Falistocco E, Falcinelli M (2002) Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudotestcross strategy based on AFLP and SAMPL markers. Theor Appl Genet 104:273–280

    Article  CAS  PubMed  Google Scholar 

  • Pupilli F, Labombarda P, Caceres ME, Quarin CL, Arcioni S (2001) The chromosome segment related to apomixis in Paspalum simplex is homoeologous to the telomeric region of the long arm of rice chromosome 12. Mol Breed 8:53–61

    Article  CAS  Google Scholar 

  • Pupilli F, Martinez EJ, Busti A, Calderini O, Quarin CL, Arcioni S (2004) Comparative mapping reveals partial conservation of synteny at the apomixis locus in Paspalum spp. Mol Genet Genom 270:539–548

    Article  CAS  Google Scholar 

  • Quarin CL (1992) The nature of apomixis and its origin in Panicoid grasses. Apomixis News 5:8–15

    Google Scholar 

  • Quattrocchi U (2008) CRC World dictionary of grasses: common names, scientific names, eponyms, synonyms and etymology. Taylor and Francis Group, Boca Raton, pp 632–637

    Google Scholar 

  • Randolph LF (1970) Variation among Tripsacum populations of Mexico and Guatemala. Brittonia 22:305–337

    Article  Google Scholar 

  • Ravi M, Chan SWL (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464:615–618

    Article  CAS  PubMed  Google Scholar 

  • Ravi M, Marimuthu MPA, Siddiqi I (2008) Gamete formation without meiosis in Arabidopsis. Nature 451:1121–1124

    Article  CAS  PubMed  Google Scholar 

  • Richards AJ (1973) The origin of Taraxacum agamospecies. Bot J Linn Soc 66:189–211

    Article  Google Scholar 

  • Richards AJ (1986) Plant breeding systems. Allen & Unwin, London

    Google Scholar 

  • Roche D, Chen Z, Hanna W, Ozias-Akins P (2001) Non-Mendelian transmission of an apospory-specific genomic region in a reciprocal cross between sexual pearl millet (Pennisetum glaucum) and an apomictic F1 (P. glaucum x P. squamulatum). Sex Plant Reprod 13:217–223

    Article  CAS  Google Scholar 

  • Roche D, Cong P, Chen ZB, Hanna WW, Gustine DL et al (1999) An apospory-specific genomic region is conserved between buffelgrass (Cenchrus ciliaris L.) and Pennisetum squamulatum Fresen. Plant J 19:203–208

    Article  CAS  PubMed  Google Scholar 

  • Roiloa SR, Antelo B, Retuerto R (2014) Physiological integration modifies d15 N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring. Ann Bot 114:399–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savidan Y (1980) Chromosomal and embryological analyses in sexual X apomictic hybrids of Panicum maximum Jacq. Theor Appl Genet 57:153–156

    Article  Google Scholar 

  • Savidan Y (1982) Nature et hérédité de l´apomixie chez Panicum maximum Jacq. ORSTOM Travaux et Documentos, 153. ORSTOM, Paris

    Google Scholar 

  • Savidan Y (2000) Apomixis: genetics and breeding. Plant Breed Rev 18:13–86

    CAS  Google Scholar 

  • Savidan Y, Pernès J (1982) Diploid-tetraploid-dihaploid cycles and the evolution of Panicum maximum Jacq. Evolution 36:596–600

    Article  Google Scholar 

  • Schallau A, Arzenton F, Johnston AJ, Hähnel U, Koszegi D et al (2010) Identification and genetic analysis of the APOSPORY locus in Hypericum perforatum L. Plant J 62:773–784

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Dobes C, Koch MA, Mitchell-Olds T (2005) Sexual reproduction, hybridization, apomixis, and polyploidization in the genus Boechera (Brassicaceae). Am J Bot 92:1797–1810

    Article  CAS  PubMed  Google Scholar 

  • Sherwood RT, Berg CC, Young BA (1994) Inheritance of apospory in buffelgrass. Crop Sci 34:149–1494

    Article  Google Scholar 

  • Skawin´ska R (1963) Apomixis in Hieracium alpinum L. Acta Biol Cracov 5:7–14

    Google Scholar 

  • Smith J (1841) Notice of a plant which produces perfect seeds without any apparent action of pollen. Trans Linnean Soc London 18:509–512

    Article  Google Scholar 

  • Sochor M, Vašut RJ, Sharbel TF, Trávnícěk B (2015) How just a few makes a lot: Speciation via reticulation and apomixis on example of European brambles (Rubus subgen. Rubus, Rosaceae) Mol Phyl Evol 89:13–27

    Google Scholar 

  • Stebbins GL (1950) Variation and evolution in plants. Columbia University Press, New York, p 643

    Google Scholar 

  • Stein J, Quarin CL, Martinez EJ, Pessino SC, Ortiz JPA (2004) Tetraploid races of Paspalum notatum show polysomic inheritance and preferential chromosome pairing around the apospory-controlling locus. Theor Appl Genet 109:186–191

    Article  CAS  PubMed  Google Scholar 

  • Talent N, Dickinson TA (2005) Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Can J Bot 83:1268–1304

    Article  CAS  Google Scholar 

  • Tucker MR, Araujo ACG, Paech NA, Hecht V, Schmidt EDL et al (2003) Sexual and apomictic reproduction in Hieracium subgenus Pilosella are closely interrelated developmental pathways. Plant Cell 15:1524–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbani MH, Quarin CL, Espinoza F, Penteado MIO, Rodrigues IF (2002) Cytogeography and reproduction of the Paspalum simplex polyploid complex. Plant Syst Evol 236:99–105

    Article  Google Scholar 

  • Valle CB, Glenke C (1993) Towards defining the inheritance of apomixis in Brachiaria. Apomixis Newslett 6:24–25

    Google Scholar 

  • Van Dijk PJ (2003) Ecological and evolutionary opportunities of apomixis: insights from Taraxacum and Chondrilla. Philos Trans R Soc London Ser B 358:1113–1121

    Article  CAS  Google Scholar 

  • Van Dijk PJ, Bakx-Schotman JMT (2004) Formation of unreduced megaspores (diplospory) in apomictic dandelions (Taraxacum) is controlled by a sex-specific dominant gene. Genetics 166:483–492

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Dijk PJ, Vijverberg K (2005) The significance of apomixis in the evolution of the angiosperms: a reappraisal. In: Bakker F, Chatrou L, Gravendeel B, Pelser PB (eds) Plant species-level systematics: new perspectives on pattern and process (Gantner, Ruggell, Liechtenstein), pp 101–116

    Google Scholar 

  • Van Oostrum H, Sterk AA, Wijsman HJW (1985) Genetic variation in agamospermous microspecies of Taraxacum sect. Erythrosperma and sect. Obliqua. Heredity 55:223–228

    Article  Google Scholar 

  • Vijverberg K, Van der Hulst RGM, Lindhout P, Van Dijk PJ (2004) A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theor Appl Genet 108:725–732

    Article  CAS  PubMed  Google Scholar 

  • Whitton J, Sears CJ, Bacck EJ, Otto SP (2008) The dynamic nature of apomixis in the angiosperms. Int J Plant Sci 169:169–182

    Article  Google Scholar 

  • Winkler H (1908) Über Parthenogenesis und Apogamie im Pflanzenreiche. Progr Rei Bot 2:293–454

    Google Scholar 

  • Yadav CB, Anuj, Kumar S, Gupta MG, Bhat V (2012) Genetic linkage maps of the chromosomal regions associated with apomictic and sexual modes of reproduction in Cenchrus ciliaris. Mol Breed 30(1):239–250

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Bhat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Abdi, S., Shashi, Dwivedi, A., Bhat, V. (2016). Harnessing Apomixis for Heterosis Breeding in Crop Improvement. In: Rajpal, V., Rao, S., Raina, S. (eds) Molecular Breeding for Sustainable Crop Improvement. Sustainable Development and Biodiversity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-27090-6_4

Download citation

Publish with us

Policies and ethics